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Abstract

Unsupervised keyphrase prediction has gained
growing interest in recent years. However, ex-
isting methods typically rely on heuristically
defined importance scores, which may lead to
inaccurate informativeness estimation. In addi-
tion, they lack consideration for time efficiency.
To solve these problems, we propose ERU-KG,
an unsupervised keyphrase generation (UKG)
model that consists of an informativeness and
a phraseness module. The former estimates
the relevance of keyphrase candidates, while
the latter generate those candidates. The in-
formativeness module innovates by learning
to model informativeness through references
(e.g., queries, citation contexts, and titles) and
at the term-level, thereby 1) capturing how the
key concepts of documents are perceived in
different contexts and 2) estimating informa-
tiveness of phrases more efficiently by aggre-
gating term informativeness, removing the need
for explicit modeling of the candidates. ERU-
KG demonstrates its effectiveness on keyphrase
generation benchmarks by outperforming un-
supervised baselines and achieving on average
89% of the performance of a supervised model
for top 10 predictions. Additionally, to high-
light its practical utility, we evaluate the model
on text retrieval tasks and show that keyphrases
generated by ERU-KG are effective when em-
ployed as query and document expansions. Fur-
thermore, inference speed tests reveal that ERU-
KG is the fastest among baselines of similar
model sizes. Finally, our proposed model can
switch between keyphrase generation and ex-
traction by adjusting hyperparameters, catering
to diverse application requirements. 1

1 Introduction

Keyphrases are short sequences of words that de-
scribe the core concepts of a document. Automati-
cally predicting keyphrases is a crucial problem, as

1Code and data are available at https://github.com/
louisdo/ERU-KG
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Figure 1: An example of the different type of references.

the outputs can be utilized in various downstream
tasks, such as document retrieval (Zhai, 1997;
Gutwin et al., 1999; Jones and Staveley, 1999; Wit-
ten et al., 2009; Fagan, 2017; Boudin et al., 2020)
and document visualization (Chuang et al., 2012).
There are two approaches for keyphrase prediction,
namely keyphrase extraction (KE) and keyphrase
generation (KG). The two approaches differ in the
output space, where keyphrase generation addi-
tionally predicts absent keyphrases. Since human
tend to use both present and absent keyphrases to
describe documents, keyphrase generation has re-
ceived much attention in recent years.

In this work, we focus on unsupervised
keyphrase generation (UKG). In line with previous
work, we target a model that receives a document as
input and predicts present and absent keyphrases.
The desired UKG model must learn to generate
keyphrases without labeled data. Being able to
build an UKG model in the unsupervised setting is
highly desirable, since labeled data is often expen-
sive and difficult to obtain. In addition, KG models
are expected to be used to process large volumes of
documents, as evidenced by their potential appli-
cations. For example, when utilized for document
visualization or retrieval tasks, these models must
efficiently handle entire corpora. Therefore, it is
desirable for KG models to be time efficient, to
manage large scale data processing.
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There are two challenges of building a keyphrase
generation model that meet those requirements.
The first challenge is ensuring accurate informa-
tiveness estimation. Informativeness refers to how
well the phrase illustrates the core concepts of the
text. Without labeled keyphrases, it is not straight-
forward to train a model that captures informative-
ness. Unsupervised approaches, including unsuper-
vised keyphrase extraction (UKE) and generation,
rely on heuristically designed importance scores as
proxies for estimating informativeness (see Section
A). However, since these importance scores are
heuristically defined, they may lead to inaccurate
estimations.

The second challenge is efficient informative-
ness estimation. Existing keyphrase generation
methods typically employ a seq2seq approach that
directly model the distribution of keyphrases given
a document. This could make keyphrase gen-
eration slow due to the autoregressive approach
taken by most models (Wu et al., 2022b). Existing
UKE models, on the other hand, separate candidate
phrase generation and informativeness estimation.
While candidate generation is typically fast, mod-
ern UKE approaches leverage complex importance
scoring function that require modeling of a doc-
ument and all its candidates, potentially slowing
down the process. Specifically, embedding-based
approaches (Bennani-Smires et al., 2018; Sun et al.,
2020) generate embeddings for the given text and
all candidates, then measure informativeness via
proximity in the embedding space. On the other
hand, language model-based approaches (Ding and
Luo, 2021; Kong et al., 2023) use pretrained lan-
guage models (PLMs) to score each document-
candidate pair individually.

Our key idea for addressing the first challenge
is learning to model informativeness through refer-
ences. We propose that accurate informativeness
estimation can be achieved by capturing community
perception of a document’s key concepts, i.e. the
central ideas as recognized by domain experts and
readers. This community perception can be learned
by analyzing references - the different contexts that
mention the document. We illustrate this observa-
tion in Figure 1, where we consider three types of
references, including queries (how the document is
retrieved), citation contexts (how the document is
cited) and titles (how the authors summarize their
own work). These references provide insights into
of what the community considers the key concepts
of the text.

Next, our key idea for addressing the second
challenge is learning to model informativeness at
the term-level rather than at the phrase-level. Esti-
mating informativeness for each candidate phrase
can be computationally expensive and slow down
keyphrase generation. Instead, we propose estimat-
ing informativeness at the term-level. In particular,
we leverage pairs of references and documents to
train a term importance predictor, which are used to
estimate informativeness of phrases by aggregating
informativeness of its constituent terms, removing
the need to explicitly model each candidate phrase
individually.

We summarize the contributions of our paper.
Firstly, we propose ERU-KG: an Efficient,
Reference-aligned, Unsupervised Keyphrase
Generation model. ERU-KG comprises two
components - an informativeness and a phraseness
module. The former incorporates our novel key
ideas to tackle the identified challenges, while
the latter generates present and absent keyphrase
candidates by extracting noun phrases from the
given text and retrieving present keyphrases
from textually-similar documents. Notably, our
proposed model can switch between keyphrase
generation and extraction by adjusting hyper-
parameters, making it suitable for different use
cases. Secondly, we conduct groundtruth-based
evaluation and show that ERU-KG outperforms
unsupervised baselines and comes very close
to CopyRNN (Meng et al., 2017), a supervised
model. Thirdly, to assess the utility of generated
keyphrases, we carry out retrieval-based evalua-
tion. Our results show that keyphrases generated
by ERU-KG enhance text retrieval performance
when employed as query and document expansions.
Finally, we perform inference speed test to assess
the time-efficiency of ERU-KG, showing that
our method is faster than existing KE and KG
baselines with comparable model sizes.

2 Methodology

Figure 2 presents an overview of ERU-KG. Our
proposed model takes as input a document x
and outputs sets of present and absent keyphrases
Y present

x and Y absent
x , each containing k keyphrases.

Similar to (Do et al., 2023), ERU-KG consists of
two modules, namely informativeness and phrase-
ness. The former determines the degree to which
a candidate phrase represents the key concepts of
the given text, while the latter is responsible for
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Figure 2: Overview of ERU-KG. Further details of the inference process are provided in Algorithm 1

generating those candidates.

2.1 Informativeness Module

The informativeness module is responsible for rank-
ing candidate phrases. As mentioned above, it in-
corporates our key ideas to addressing the chal-
lenges of accurate and efficient informativeness
estimation: modeling informativeness through ref-
erences and at the term-level. Specifically, we lever-
age pairs of references and documents to train a
term importance predictor, which is used to esti-
mate informativeness of candidate phrases during
inference.

There exists multiple term importance predic-
tors in the area of text retrieval. One option is
DeepCT (Dai and Callan, 2019), which predicts
importances for all terms appearing in a given doc-
ument. However, since DeepCT is not designed to
model importances of absent terms, it is not suit-
able for evaluating absent candidate phrases. In an-
other line of work, EPIC (MacAvaney et al., 2020),
SparTerm (Bai et al., 2020) and SPLADE (Formal
et al., 2021b,a) predict importances for all terms
in a vocabulary, making them more suitable for
evaluation of both present and absent candidates.

Among these models, SPLADE is the most suit-
able for predicting keyphrases. Different from
EPIC and SparTerm, SPLADE employs explicit
sparsity regularization mechanisms, which encour-
ages assigning non-zero importance for only the
most relevant terms. In the next sections, we
discuss the term importance predictor: SPLADE

(§2.1.1), training data (§2.1.2) and informativeness
estimation (§2.1.3).

2.1.1 Term Importance Predictor: SPLADE

SPLADE predicts term importances for an input
document x based on the logits produced by the
Masked Language Modeling (MLM) layer. In par-
ticular, wx

ij denotes the importance, predicted by
MLM layer, of the term i ∈ x and the term j
in BERT vocabulary2. Then, the importance of j
given x is computed by max pooling

wx
j = max

i∈x
log(1 + ReLU(wx

ij)) (1)

Model training. SPLADE is trained by optimizing
a ranking loss and two regularization losses

L = Lrank−IBN + λqLqreg + λdLdreg (2)

where Lreg is the sparse regularizer introduced in
(Paria et al., 2020). Given a training batch, contain-
ing the query qi, the positive (referenced) document
d+i and the negative document d−i , the ranking loss
Lrank−IBN is a contrastive loss that maximizes the
relevance of d+i , while lowering the relevance of
d−i . Relevance is measured by dot product between
q and d representations from Eq. 1. For further de-
tails, we refer readers to the original papers (Formal
et al., 2021b,a).

2In this work, term refers to a word or sub-word in BERT
vocabulary
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2.1.2 Training Dataset
To train SPLADE, we build a training set T =

{(ri, d+i , d−i )}
|T |
i=1, containing triplets, where ri is

a reference, while d+i and d−i denote positive (ref-
erenced) and negative documents, respectively. We
note that references ri are used in place of queries
qi. In this work, we focus on scientific text, as all
three types of references (queries, citation contexts,
and titles) are readily accessible in this domain.
Query. Our work leverages training data from
the Search task within SciRepEval 3 (Singh et al.,
2023), which contains about 478k queries from real
users on Semantic Scholar. Each query accompa-
nies a list of candidates and their relevance score.
We build triplets from this dataset by regarding
query as reference ri. We concatenate the title and
abstract of each candidate as d+i for those with a
relevance score > 0, and as d−i for those with a
relevance score = 0.
Citation context. We utilize the permissively li-
censed subset of unarXive4 (Saier et al., 2023),
which contains over 165k full-text documents. For
each document, we extract citing sentences as ref-
erences ri. We employ only citation contexts that
cite one paper, or collectively cite several paper
as a single group, to ensure focus on the concepts
of the referenced document. The concatenated ti-
tles and abstracts of cited articles are chosen to
be positive documents d+i . Negative documents
d−i are similarly constructed by concatenating ti-
tles and abstracts but are selected from research
articles cited in different sections of the same pa-
per, distinct from the section containing the citing
sentence.
Title. We continue to utilize unarXive dataset
(Saier et al., 2023). More specifically, we desig-
nate titles as ri and corresponding abstracts as d+i
for research articles. For negative documents d−i ,
we select abstracts of other research articles cited
within the paper.

2.1.3 Estimating Informativeness of Phrases
In this section, we explain how to measure informa-
tiveness of phrases based on the term importance
predictor described above. A simple approach is to
aggregate the importance of the component terms.
More formally, the probability that a candidate
phrase c is informative given the document x is
defined as

3https://huggingface.co/datasets/allenai/
scirepeval/viewer/search

4https://zenodo.org/records/7752615

Pin(c|x) ∝ f(c,x) =
1

|c| − γ

∑

ci∈c
wx
ci (3)

where wx
ci is the predicted importance of term

ci ∈ c. Next, γ is the length penalty, which is
used to control the preference towards longer can-
didates. A negative value of γ leads to larger value
of f(c,x) for longer candidates, and vice versa.

Although SPLADE can evaluate importance of
absent terms, the scores for these terms are often un-
derestimated. On a set of 20k documents sampled
from SciRepEval Search, only 25% of terms with
non-zero importances are absent terms. This could
lead to inaccurate ranking of absent candidates.
To mitigate this problem, our approach is inspired
by pseudo-relevance feedback (Cao et al., 2008),
which is to incorporate additional context from re-
lated documents. In particular, the importance of
each candidate is determined by its importance in
the given document x and its related documents
x′ ∈ N (x). Consequently, the informativeness
probability is redefined as follows

Pin(c|x) ∝ f̂(c,x) =
1

|c| − γ

∑

ci∈c
ŵx
ci (4)

ŵx
ci = α wx

ci + (1− α)
∑

x′∈N (x)

s̃x′,x wx′
ci (5)

Here,N (x) is retrieved using BM25 from a doc-
ument collection D. The hyperparameter α con-
trols the relative contribution of the given document
and its related documents. s̃x′,x =

sx′,x∑
x′′∈N (x) sx′′,x

is the normalized similarity between two docu-
ments, where sx′,x denotes the BM25 similarity
score. It is worth noting that the term importances
of the documents in D are precomputed and there-
fore no additional computations are required.

2.2 Phraseness Module

The phraseness module is responsible for generat-
ing keyphrase candidates, including present and
absent ones. A discussion in (Do et al., 2023)
mentions that most keyphrases are noun phrases
(Chuang et al., 2012) and absent keyphrases can be
found in other documents (Ye et al., 2021). Based
on this idea, we employ a candidate generation
procedure that extract noun phrases from 1) the
given document x and 2) its related documents
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N (x). More formally, given a document, its can-
didate set Ĉx = {c1, c2, ...} containing keyphrase
candidates, is obtained as follows

Ĉx = Cx ∪CN (x) = Cx ∪
⋃

x′∈N (x)

Cx′ (6)

where Cx denotes the set of noun phrases ex-
tracted from x. CN (x) denotes the union of noun
phrase sets Cx′ from related documents x′ ∈
N (x). To assign a phraseness probability of each
candidate c ∈ Ĉx, we compute the likelihood that
it is drawn from either the noun phrases in the given
document (Cx) or those in the related documents
(Cx′)

Ppn(c|x) = β P (c|Cx)

+ (1− β)
∑

x′∈N (x)

s̃x′,x P (c|Cx′) (7)

P (c|C) =

{
1
|C| , c ∈ C

0, otherwise
(8)

The parameter β controls the relative contribu-
tion from the given document and its related docu-
ments.

However, as the size of N (x) grows, the size
of CN (x) (and therefore Ĉx) may grow signifi-
cantly. The large number of candidates slows down
keyphrase generation process, regardless of how
fast informativeness estimation is. To limit the num-
ber of candidates for speeding up the KG process,
we employ two strategies for pruning CN (x).
Strategy 1: Pruning low informativeness and low
reliability candidates from each Cx′ . The informa-
tiveness of a candidate given the input document x
depends not only on x but also on how important
that candidate is to the related documents. Specifi-
cally, we can see from Eq. 4 and 5 that unimportant
candidates given the related documents are likely
to have low informativeness and hence unlikely to
be chosen as keyphrases. Based on this idea, we
prune Cx′ by keeping only the top 10 c ∈ Cx′

with the highest value of f(c,x′) (see Eq. 3).
Next, we further prune Cx′ based on their reli-

ability. Inspired by (Boudin and Aizawa, 2024),
we estimate phrase reliability by using the number
of documents in which they appear as one of the
most informative candidates. Intuitively, a phrase
is reliable if it is used frequently to describe key
concepts. With this in mind, we employ GD, which
is a glossary formed by retaining noun phrases that

appear in the top 10 most informative candidates
for at least three documents x′ ∈ D. Applying
the first strategy, the pruned candidate set from re-
lated documents x′, denoted as C̃x′ , is defined as
follows

C̃x′ = Top10(Cx′ , f) ∩GD (9)

We note that C̃x′ is precomputed for every docu-
ment inD and therefore no additional computations
are required in the inference phase. The pruned can-
didate sets C̃x′ are used in place of Cx′ in Eq. 6
and 7.
Strategy 2: Pruning low phraseness candidates
from CN (x). As will be discussed in §2.3, candi-
dates chosen as keyphrases not only need to exhibit
high informativeness, but also phraseness probabil-
ity. Therefore, candidates with low phraseness are
unlikely to be chosen as keyphrases. Based on this
idea, we prune CN (x) by retaining only the top 100
with the highest value of Ppn(c|x). Applying the
second strategy, the final candidate set is redefined
as follows

Ĉx = Cx ∪ Top100(CN (x), Ppn) (10)

2.3 Combining Phraseness and
Informativeness

To generate keyphrases, we combine the two mod-
ules. Specifically, given an input text, we first ap-
ply the phraseness module to generate keyphrase
candidates Ĉx. Next, we evaluate the informative-
ness of each candidate. The candidates are ranked
based on a composite ranking score, which is com-
puted as the product-of-experts (Hinton, 2002) of
the phraseness and informativeness probabilities

Pkp(c|x) ∝ Ppn(c|x)λ × Pin(c|x) (11)

where λ is a hyperparameter that controls the
importance of phraseness in the ranking score.
Position penalty. Previous work have shown that
position information is useful for predicting present
keyphrases (i.e. keyphrase extraction) (Florescu
and Caragea, 2017; Boudin, 2018; Gallina et al.,
2020). Therefore, we include this feature into mea-
suring informativeness of phrases. In particular,
we adopt the position penalty defined in (Do et al.,
2023). The final ranking score is defined as follows

sx(c) = ωx(c)Pkp(c|x) (12)

where ωx(c) = 1 + 1
log2[Px(c)+2] is the posi-

tion penalty. The position Px(c) is the number of
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words preceding the phrase c in x. This penalty
prioritizes phrases appearing earlier in the text. For
absent phrases, we define Px(c) →∞ and there-
fore ωx(c) → 1. Finally, top ranked (present or
absent) candidates are chosen as (present or absent)
keyphrases.
Switching between generation and extraction.
Our proposed framework can flexibly switch be-
tween generation and extraction. This is achieved
by setting both interpolation hyperparameters, α
and β (Eq. 5 and 7, respectively) to 1. Setting these
two parameters to 1 disables the use of N (x) and
therefore is equivalent to not retrieving any related
documents, i.e. |N (x)| = 0.

3 Experiments

In this work, we assess the effectiveness of ERU-
KG using two evaluation methods: Ground truth-
based and Retrieval-based evaluation. The for-
mer measures the alignment between predicted
keyphrases and human-annotated keyphrases,
while the latter assesses the usefulness of predicted
keyphrases when applied to text retrieval tasks.
More specifically, retrieval-based evaluation aim to
determine if keyphrases effectively serve as query
and document expansion to enhance text retrieval
performance. The datasets, baselines & evaluation
metrics, and experiment results are respectively
presented in §3.1, §3.2 and §3.3.

One of the core contributions of this work is
that keyphrase generation can be made more time-
efficient by leveraging term-based representations
of documents. To validate this, we conduct Infer-
ence speed evaluation (§3.4).

3.1 Datasets

We present the statistics for the evaluation datasets
in Table 5.

Ground truth-based evaluation. We utilize 5
datasets, namely SemEval (Kim et al., 2010), In-
spec (Hulth, 2003), NUS (Nguyen and Kan, 2007),
Krapivin (Krapivin et al., 2009) and KP20K (Meng
et al., 2017) for the ground truth-based evaluation
of our model. We follow previous work and form
the testing document by concatenating the title and
abstract of each testing example.
Retrieval-based evaluation. We utilize 6 scientific
retrieval datasets. Four of these datasets - TREC-
COVID (Voorhees et al., 2021), SCIDOCS (Cohan
et al., 2020), SciFact (Wadden et al., 2020) and
NFCorpus (Boteva et al., 2016) - are sourced from

the BEIR benchmark (Thakur et al., 2021). The
other two datasets are DORIS-MAE (Wang et al.,
2024) and ACM-CR (Boudin, 2021).

3.2 Baselines & Evaluation Metrics

3.2.1 Baselines

Ground truth-based evaluation. We evaluate
our proposed model by comparing against four un-
supervised keyphrase extraction algorithms: Tex-
tRank (Mihalcea and Tarau, 2004), MultiPartiteR-
ank (Boudin, 2018), EmbedRank (Bennani-Smires
et al., 2018), and PromptRank (Kong et al., 2023).

Additionally, we compare our model with three
unsupervised keyphrase generation methods: Au-
toKeyGen (Shen et al., 2022), UOKG (Do et al.,
2023) and TPG (zero-shot setting) (Kang and Shin,
2024). Finally, we include CopyRNN (Meng et al.,
2017) as a supervised baseline.
Retrieval-based evaluation. We compare ERU-
KG with keyphrase generation methods mentioned
above. For all keyphrase generation models, we
generate keyphrases for each document (and/or
query). We employ the top 10 present keyphrases
and top 10 absent keyphrases (20 total) as query
and document expansions. In the case of TPG, we
evaluate its performance solely on query expansion,
due to its slow inference speed. In addition, we
compare our model with well-established methods,
specifically DocT5Query (Nogueira et al., 2019b,a)
for document expansion and RM3 (Abdul-Jaleel
et al., 2004) for query expansion. All expansion
techniques are followed by BM25 retrieval.

3.2.2 Evaluation Metrics

Ground truth-based evaluation. In line with pre-
vious work, we utilize the macro-average F1-score
and Recall for evaluation of present and absent
keyphrases. For both, we conduct evaluations at
top 5 and 10 predictions. Before evaluation, both
the predicted and ground truth keyphrases are pro-
cessed using Porter Stemmer (Porter, 1980), after
which duplicates are removed. Our implementation
of F1-score is similar to that of (Chan et al., 2019).
Specifically, for F1@k we add wrong keyphrases
until the number of predictions reaches k if a model
predicts fewer than k keyphrases. The purpose of
this processing step is to eliminate the favor to-
wards models that produce fewer keyphrases.
Retrieval-based evaluation. We utilize recall at
top 1000 (R@1000) as the primary evaluation met-
ric, with the aim to assess the effectiveness of gen-
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Present keyphrase generation
SemEval Inspec NUS Krapivin KP20K Avg

F@5 F@10 F@5 F@10 F@5 F@10 F@5 F@10 F@5 F@10 F@5 F@10
TextRank 16 20.3 29.3 36.2 11.6 16.6 10.1 13.6 9.1 11.6 15.2 19.7
MultiPartiteRank 22.3 22.5 26.3 30.3 23.7 22.2 17.9 15.9 18.4 15.9 21.7 21.4
EmbedRank 23.5 25.2 27.9 33.4 23.8 22.3 18.6 17.7 19.5 16.8 22.7 23.1
EmbedRank (SBERT) 25.4 27.1 35.1 39.8 22.5 24.1 20.7 19.3 18.3 17.1 24.4 25.5
PromptRank 16.1 19.9 33.4 37.5 18.5 19.8 15.9 15.5 16.3 15.6 20 21.7
AutoKeyGen 22.1 24.4 23.1 23.7 26.1 27.1 20.6 18.6 20.4 19 22.5 22.6
UOKG 21.5 22.1 23.9 22.9 27.8 26.2 21.5 17.9 21 17.6 23.1 21.3
TPG 24.7 22.2 34 33.3 25 21.3 20.3 16.3 18.7 14.2 24.5 21.5
ERU-KG-small 27.4∗ 30.1∗ 28.4 35.7 28.1∗ 26.9 20.7 19.6 21.6∗ 19.2 25.2 26.3∗

ERU-KG-base 27.6∗ 30.6∗ 29 36 27.8 27 21.3 19.5∗ 22∗ 19.4∗ 25.5 26.5∗

Supervised - CopyRNN 29.6 29.7 22.6 23.7 37.2 34.3 30.1 24.5 30.6 25.7 30 27.6
Absent keyphrase generation

SemEval Inspec NUS Krapivin KP20K Avg
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

AutoKeyGen 0.7 1.1 1.8 2.6 2.3 3.2 2.5 3.7 2.2 3.6 1.9 2.8
UOKG 1.4 2.3 1.9 2.9 2.5 3.6 4.6 6.9 2.6 4.5 2.6 4
TPG 0.4 0.8 1.5 2.4 1.7 2.4 1 1.2 1.2 1.9 1.2 1.7
ERU-KG-small 2.1∗ 3.1 5.4∗ 6.5∗ 3.7∗ 5.9∗ 5 6.2 6∗ 8∗ 4.4∗ 5.9∗
ERU-KG-base 2.3∗ 3∗ 5.3∗ 6.5∗ 3.4∗ 5.5∗ 4.9 6.2 6∗ 8.1∗ 4.4∗ 5.8∗

Supervised - CopyRNN 2.3 2.8 3.5 4.9 5.9 7.8 7.9 10.8 7.1 9.3 5.3 7.1

Table 1: Keyphrase generation performances on five benchmark datasets. The best results are bolded, while the
second-best are underlined. Experiments for AutoKeyGen, UOKG, TPG, CopyRNN, and our method are conducted
three times, with the mean reported. Both F1 and Recall are presented as percentages. ∗ indicates significance over
AutoKeyGen, UOKG and TPG with p < 0.05.

erated keyphrases in enhancing the recall of First-
stage Retrieval.

3.3 Results

3.3.1 Ground truth-based Evaluation
Table 1 presents the performance of our proposed
method and the baselines on the five benchmark
datasets. In addition, we report the average perfor-
mances.
Present keyphrase generation. For generating
present keyphrases, our proposed method achieves
the best or second-best performance across all
datasets except Inspec. While our model does
not outperform the baselines on every dataset, it
achieves the highest average results overall. No-
tably, compared to CopyRNN, a supervised base-
line, our model demonstrates competitive results.
Specifically, CopyRNN outperforms ERU-KG by
only 1.1 percentage point in the overall F1@10
score. This illustrates the effectiveness of our
approach, particularly since it is independent of
human-labeled keyphrases.
Absent keyphrase generation. For generating
absent keyphrases, our model achieves the best per-
formance across all benchmark datasets, leading to
the highest average results overall. Furthermore,
our approach continues to demonstrate competi-
tive performance in comparison to the supervised
baseline.

3.3.2 Retrieval-based Evaluation

Table 2 displays the performance of our model
and the baselines on six text retrieval evaluation
datasets. In addition, we report average perfor-
mance across datasets. For KG models, we investi-
gate their effectiveness in three settings: 1) when
employed as query expansion (Query); 2) when em-
ployed as document expansion (Doc) and 3) when
employed as both query and document expansion
(Both).
Comparison with KG methods. In the Query and
Both setting, ERU-KG consistently achieve the best
performance among existing KG models across
datasets, with one exception being the ACM-CR
dataset, where ERU-KG is second best after Copy-
RNN. In the Doc setting, the performance gain is
less consistent. In particular, although our proposed
method achieves performance that matches or ex-
ceeds the baselines on the majority of datasets, it
is outperformed by all baselines on TREC-COVID
and DORIS-MAE.

In addition, it is worth noting that when em-
ployed as query and document expansion in con-
junction (i.e. Both setting), ERU-KG on average re-
sults in superior performance comparing to Query
and Doc setting, where query and document expan-
sion are employed individually. This effect is not
evident in other KG models.
Comparison with existing expansion methods.
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Type Model SCIDOCS SciFact TREC-COVID NFCorpus DORIS-MAE ACM-CR Avg
- BM25 56.4 97.7 39.6 37 70.1 71.5 62.1

Query

+ RM3 59 98 44.5 56.5 59.6 74.4 65.3
+ AutoKeyGen 52.3 97 33.4 48.7 70.4 69.2 61.8
+ UOKG 54.2 98 35.4 48.6 69 70.2 62.6
+ TPG 54.1 98.3 34.5 48.1 73.9 71 63.3
+ CopyRNN 53.6 97.7 35.8 48 72.8 73.8 63.6
+ ERU-KG-small 58.5 99.3 43.7 56.3 73.9 72.1 67.3
+ ERU-KG-base 58.7 99 43.2 54.8 73.4 72.6 67

Document

+ docT5query 57 98 43.2 37 - - -
+ AutoKeyGen 57 97.3 40.5 37.3 69.8 71.3 62.2
+ UOKG 57.7 97.7 40.9 37.5 70.1 72.4 62.7
+ CopyRNN 57 97.3 40.8 37.2 69.7 71.6 62.3
+ ERU-KG-small 59.9 98.3 38.5 39 68.9 73 62.9
+ ERU-KG-base 60 98.3 39.6 38.7 68 72.7 62.9

Both

+ docT5query + RM3 59.7 98.3 47.7 56.5 - - -
+ AutoKeyGen 52.8 97 33.5 48.3 69.3 68 61.5
+ UOKG 54.8 98.3 36.1 49.2 69.1 69.4 62.8
+ CopyRNN 54.7 97.5 32.4 48.1 72 73.8 63.1
+ ERU-KG-small 62.4 100 46.2 56.2 73.6 72.8 68.5
+ ERU-KG-base 62.9 99.7 46.7 55.6 71.7 73.5 68.4

Table 2: Retrieval-based evaluation (R@1000) on four benchmark datasets, reported as percentages. For each
dataset, we bold the best overall results and underline the best results in each type (query expansion, document
expansion and both).

ERU-KG achieves performance on par with RM3
in the Query setting, DocT5Query in the Doc set-
ting, and DocT5Query + RM3 in the Both setting.
While it does not demonstrate a clear performance
advantage over existing expansion methods, it of-
fers a distinct benefit in terms of visualizability.
Specifically, the keyphrases generated by ERU-KG
are more structured and concise, making them eas-
ier to visualize compared to the term-based expan-
sions of RM3 and the synthetic queries produced
by DocT5Query.

3.4 Inference Speed Evaluation

We evaluate the inference speed of our method
to measure its time efficiency. Throughput (TP),
defined as the number of documents processed
per second, serves as the primary metric for this
assessment. ERU-KG is tested in two scenar-
ios: keyphrase extraction and keyphrase genera-
tion. In the keyphrase extraction scenario, we com-
pare ERU-KG (α and β set to 1, as described in
§2.3) against EmbedRank and PromptRank, using
SBERT in place of Sent2vec for EmbedRank to
ensure a fair comparison. For the keyphrase gener-
ation scenario, we benchmark ERU-KG against the
previously mentioned KG baselines, along with an
additional baseline, PromptKP (Wu et al., 2022b)
— a non-autoregressive supervised keyphrase gen-
eration model. Furthermore, we evaluate two con-
figurations of ERU-KG by varying the size of
N (x), setting it to 100 (default), 50 and 10. For
fair comparison, we run all experiments with batch

size of 1, on the same hardware (see §B.4), using
a dataset composed of SemEval, Inspec, NUS and
Krapivin.

We present the results in Table 3. ERU-KG
achieves the best throughput in both scenarios.
Results in the keyphrase generation scenario re-
quires further explanations. In the default setting,
i.e. |N (x)| = 100, our proposed method fails to
achieve a clear advantage over all baselines. How-
ever, when setting |N (x)| to smaller sizes, e.g. 50
or 10, ERU-KG becomes significantly faster. This
shows that the retrieval of related documents is
the bottleneck and create a trade-off between ef-
fectiveness and efficiency, as will be illustrated in
§3.5.2, retrieving fewer related documents cause
the performance to drop.

Scenario Model name Note Model size TP (doc/s)

Keyphrase
extraction

EmbedRank (SBERT) - 33M 43.5
PromptRank - 60M 1.4
ERU-KG-base α = 1, β = 1 66M 72.9∗

Keyphrase
generation

AutoKeyGen - 37M 9.7
UOKG - 37M 4.8
TPG - 139M 0.8
CopyRNN - 37M 11
PromptKP - 110M 10.4
ERU-KG-base |N (x)| = 100 66M 10.9
ERU-KG-base |N (x)| = 50 66M 12.1∗

ERU-KG-base |N (x)| = 10 66M 15.5∗

Table 3: Throughput (TP) of ERU-KG and baselines.
We bold and underline the highest and second-highest
throughput in each scenario. ∗ denotes significance over
the second-best baselines with p < 0.05, respectively.
Statistical significance tests are conducted separately
for each scenario.
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Figure 3: The performance change (in percentage) when
excluding one reference type. -[type] indicates the omi-
sion of [type]

3.5 Ablation Studies

We conduct two ablation studies to understand 1)
how different of references (queries, citation con-
texts and titles) contribute to ERU-KG performance
and 2) how retrieving fewer related documents af-
fect our proposed model’s performance. In this
section, we conduct the experiments on ERU-KG-
base, i.e. the version of ERU-KG with informative-
ness module initialized from DistilBERT-base. We
also provide a sensitivity analysis of α and β in
§D.1.

3.5.1 Contribution of Each Type of References

We study the contribution of each type of refer-
ences by excluding one type at a time to train vari-
ations of ERU-KG. We evaluate the performance
change in keyphrase generation tasks (F1@10 and
R@10 for present and absent keyphrases respec-
tively), text retrieval tasks (Recall@1k). We evalu-
ate text retrieval in the Both setting, where gener-
ated keyphrases are used as both query and docu-
ment expansion. We average the evaluate results
across all datasets for each task to measure perfor-
mance changes. We present the results in Figure
3.

For present keyphrase generation (keyphrase ex-
traction), removing title from the training dataset
effect performance the most. This suggest that ti-
tle is a great source of information for enhancing
keyphrase extraction, aligning with previous work
(Chen et al., 2019; Song et al., 2023). Regarding ab-
sent keyphrase generation, performance decreases
when any reference type is removed, suggesting

|N (x)| KG-present
(F1@10)

KG-absent
(R@10)

TR
(R@1000)

100 26.5 5.8 68.4
50 26.5 5.5↓ 67
10 26.4 4.5↓ 63.1↓

Table 4: The performance change when adjusting the
size of related documents set N (x), ↓ denotes perfor-
mance drop larger than 5% in comparison to default
setting (|N (x)| = 100).

that this task is benefitted by understanding how
the given document would be mentioned in differ-
ent contexts. The same comment can be made for
text retrieval, where removing any reference type
hurt performance.

3.5.2 Effect of Retrieving Fewer Related
Documents

We study ERU-KG’s performance change as it re-
trieve fewer related documents N (x). Table 4
presents the results.

It can be seen that retrieving fewer related doc-
uments only affect absent keyphrase generation
and text retrieval. Next, we can see that perfor-
mance gradually decrease as the fewer related doc-
uments are retrieved. Notably, when |N (x)| = 10
the performance drop exceeds 5% for both absent
keyphrase generation and text retrieval. Combin-
ing the results with Table 3, |N (x)| = 50 appears
to strike a good balance between efficiency and
effectiveness.

4 Conclusion

In this paper, we propose ERU-KG, an unsuper-
vised keyphrase generation model that 1) captures
how the community perceives key concepts and
2) estimates informativeness of phrases efficiently.
Experiments on keyphrase generation benchmarks
demonstrate the effectiveness of ERU-KG. We fur-
ther validate its performance through evaluations
from text retrieval perspective. Notably, the infer-
ence speed assessment highlights the model’s time
efficiency, significantly enhancing its potential for
real-world applications.

Limitations

In this section, we discuss the limitations of our
work. Firstly, we conducted experiments only in
the scientific domain, and therefore it is unclear
how ERU-KG would perform in other domains.
Secondly, we limited our analysis to only three
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types of references, which may not encompass
all possible types (e.g. Tweets referencing a re-
search article). Including additional type of refer-
ences could improve the performance of our pro-
posed model. Lastly, the design of our phrase-
ness module does not allow customization for ab-
sent keyphrase generation. Specifically, since our
phraseness module source (absent) keyphrase can-
didates from other documents, it lacks the flexi-
bility to adapt to the specific context of the given
document.
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Groundtruth-based evaluation
Dataset name #doc #kps/doc %absent

SemEval 100 15.2 59.7
Inspec 500 9.8 22
NUS 211 11.6 49.3
Krapivin 460 5.7 51.2
KP20K 19,987 5.3 44.7

Retrieval-based evaluation
Dataset name #Query #Corpus Avg D /Q

SCIDOCS 1,000 25,657 4.9
SciFact 300 5,183 1.1
TREC-COVID 50 171,332 493.5
NFCorpus 323 3,633 38.2
DORIS-MAE 100 363,133 109.3
ACM-CR 552 114,882 1.8

Table 5: Statistics of test splits of evaluation datasets.

A Related Work

Unsupervised keyphrase extraction (UKE).
UKE focuses on identifying keyphrases within
the given text. Previous work typically employ
a two-stage procedure: 1) candidate generation
via ngram or noun phrase extraction; 2) candidate
ranking, where candidates are ranked based on their
informativeness and the top-ranked are selected as
keyphrases.

Existing methods in UKE can be classified into
four categories, namely statistics-based, graph-
based, embedding-based and language model-
based. These categories are distinguished by the
importance scoring functions that are used to es-
timate informativeness, i.e. how candidates are
ranked. Statistics-based methods (Sparck Jones,
1972; Campos et al., 2018) utilizes features like
word frequency, word position, context diversity,
etc. Graph-based method (Mihalcea and Ta-
rau, 2004; Wan and Xiao, 2008; Bougouin et al.,
2013; Gollapalli and Caragea, 2014; Florescu
and Caragea, 2017; Boudin, 2018) rank candi-
dates based on different graph-theoretic measures.
Embedding-based methods (Bennani-Smires et al.,
2018; Sun et al., 2020; Zhang et al., 2022) se-
lect candidates that are closest to the given doc-
ument in the embedding space. Language model-
based methods utilize Pretrained Language Models
(PLMs) to evaluate the informativeness of phrases.
(Ding and Luo, 2021) evaluate local and global im-
portance of a candidate by leveraging self and cross
attention, (Kong et al., 2023) estimate informative-
ness by computing the likelihood of generating the
candidate given the input text and a pre-specified
prompt.
Unsupervised keyphrase generation (UKG). Dif-
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ferent from UKE, UKG focuses on generating both
present and absent keyphrases. Similar to UKE
methods, UKG models typically rely on impor-
tance scoring functions, but they are utilized in two
distinct ways: 1) to extract silver-labeled data for
training seq2seq models or 2) to guide the genera-
tion of noun phrases towards those that represent
the core concepts.

The first approach is exemplified by AutoKey-
Gen (Shen et al., 2022) and Title Phrase Gener-
ation (TPG) (Kang and Shin, 2024). AutoKey-
Gen trains a seq2seq model on silver-labeled data,
where present keyphrases are sourced directly from
the text, and absent keyphrases are synthesized by
combining present terms. To select present and
absent keyphrases, AutoKeyGen employ an im-
portance score that combine semantic and lexical
similarity between keyphrase candidates and the
document. TPG proposes extracting phrases from
titles as silver-labeled keyphrases to train a seq2seq
model.

The second approach is demonstrated by UOKG
(Do et al., 2023). UOKG comprises two modules,
named phraseness and informativeness. The for-
mer, a seq2seq model trained to generate noun
phrases, generate phrases while the latter, an
embedding-based importance scoring function,
guide this generation towards phrases that are key.
Our proposed method, ERU-KG, follows this sec-
ond approach.
Generation/Extraction of keyphrases using ref-
erences. The use of references, particularly cita-
tion contexts and titles, has been explored in prior
work on keyphrase extraction and generation. Cite-
TextRank (Gollapalli and Caragea, 2014) proposes
a graph-based approach that incorporates citation
contexts. (Caragea et al., 2014) employ occur-
rences of candidates in citation contexts as a feature
for supervised keyphrase extraction. (Garg et al.,
2022) investigate the use of citation contexts as ad-
ditional information for supervised keyphrase gen-
eration. More recently, (Boudin and Aizawa, 2024)
proposes a framework that extracts silver-labeled
keyphrases from citation contexts for domain adap-
tation. TG-Net (Chen et al., 2019) leverages ti-
tles to enhance input text encodings for supervised
keyphrase generation. Recently, (Kang and Shin,
2024) propose TPG as an unsupervised pretraining
objective, where the resulting pretrained model can
be viewed as an UKG model.

Our proposed approach differs from the existing
work. Specifically, our approach leverage refer-

ences to learn document representations, which
are used to generate keyphrases that aligned with
the key concepts as recognized by the community.
In contrast, existing work typically use references
1) for mining silver-labeled keyphrases or 2) as
additional information to enhance the keyphrase
extraction/generation process.
Time-efficiency in keyphrase extraction and gen-
eration. Efficient processing of large document col-
lections is critical for the practicality of keyphrase
extraction and generation models. Despite this,
time-efficiency has been underdiscussed in the
design of modern keyphrase extraction and gen-
eration methods. One notable exception is the
work by (Wu et al., 2022b), which employs a non-
autoregressive decoding strategy to significantly
enhance the speed of keyphrase generation com-
pared to autoregressive approaches. Additionally,
(Wu et al., 2022a) shows that prioritizing model
depth over width and using deep encoders with
shallow decoders has been shown to improve infer-
ence latency while maintaining accuracy.

B Implementation Details

B.1 ERU-KG

Informativeness module. We employ SPLADE as
our term-importance predictor, as mentioned above.
We initialized the models with DistilBERT-base5

(66M parameters) (Sanh, 2019) for ERU-KG-base
and a BERT_L-6_H-512_A-86 (33M parameters),
which is a BERT (Devlin et al., 2019) with 6 layers,
model dimensionality of 512 and 8 attention heads,
for ERU-KG-small. Models are trained with the
Adam (Kingma and Ba, 2014) optimizer, with a
learning rate of 2e−5, a warmup of 20000 steps
and a batch size of 32. The models are trained
for 100k steps. For FLOPS regularization, we set
λq = 0.05 and λd = 0.03. We set the length
penalty parameter, as mentioned in Eq. 3 and 4,
γ = −0.25.

Unless specified otherwise, the two interpolation
weights α, β (Eq. 4 and 7 respectively), are both
set to 0.8. In addition, the balancing parameter λ
in Eq. 11, is set to 1.5.
Phraseness module. We employ NLTK’s (Bird
and Loper, 2004) RegexpParser and extract noun
phrases from document with the following gram-

5https://huggingface.co/distilbert/
distilbert-base-uncased

6https://huggingface.co/google/bert_uncased_
L-6_H-512_A-8
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mar

(< NN. ∗ |JJ.∗ > + < NN. ∗ |CD >)| < NN.∗ >

For finding the set of neighbor documents N (x)
of the input text x, we build BM25 retrievers using
the document collection D. In particular, D is the
630,749 documents from the evaluation and valida-
tion split of SciRepEval-Search7 dataset, alongside
with their top 10 present keyphrases and predicted
term-importances. We build our retrievers using
Pyserini (Lin et al., 2021). In the inference phase,
we set |N (x)| = 100, unless specified otherwise.

B.2 Keyphrase Generation/Extraction
Baselines

For TextRank and MultiPartiteRank, we use the
pke package (Boudin, 2016). EmbedRank is im-
plemented following the description in (Bennani-
Smires et al., 2018), with the exception that
we employ the same noun phrase extractor de-
scribed in B.1. For EmbedRank, we employ both
Sent2Vec (sent2vec_wiki_unigrams8) (Pagliardini
et al., 2018), as in the original paper, and SBERT
(all-MiniLM-L12-v29) (Reimers and Gurevych,
2019). For PromptRank (Kong et al., 2023), we
adopt the official implementation10.

For AutoKeyGen, UOKG, and CopyRNN, we
use the implementations and checkpoints provided
by the authors of (Do et al., 2023) 11. Finally, for
TPG12 (Kang and Shin, 2024) and PromptKP13

(Wu et al., 2022b), we utilize the official implemen-
tation.

B.3 RM3 and DocT5Query

For DocT5Query, we utilized the pre-generated
queries provided for the datasets within the BEIR
benchmark. For RM3, we leveraged Pyserini’s
(Lin et al., 2021) implementation14 and utilize the
default hyperparameters.

7https://huggingface.co/datasets/allenai/
scirepeval/viewer/search

8https://github.com/epfml/sent2vec
9https://huggingface.co/sentence-transformers/

all-MiniLM-L12-v2
10https://github.com/NKU-HLT/PromptRank
11https://github.com/ForwardDataLab/UOKG/

issues/1
12https://github.com/kangnlp/

low-resource-kpgen-through-TPG
13https://github.com/m1594730237/

FastAndConstrainedKeyphrase
14https://github.com/castorini/pyserini

B.4 Computing Infrastructure

We run all our experiments on a server with two
AMD EPYC 7302 3GHz CPUs, three NVIDIA
Ampere A40 GPUs (300W, 48GB VRAM each),
and 256 GB of RAM.

C Case Study

To gain further insights into ERU-KG’s effective-
ness, we display the keyphrases generated by ERU-
KG and the baselines on two types of text, namely
document and query, in Table 7 and Table 8, respec-
tively. For document, we use the same example
document as in Figure 1. For query, we provide
two examples, a long multi-aspected query from
DORIS-MAE dataset and a short query from SCI-
DOCS.
Document. Upon initial examination, there appear
to be no significant differences in the predicted
present keyphrases across methods, as they all re-
flect concepts used in reference to the given doc-
ument. However, considering absent keyphrases,
ERU-KG produces keyphrases that are more rele-
vant. Specifically, ERU-KG is able to predict “sea
ice classification”, “sea ice concentration” and “sea
ice detection”, which are not only used later in the
main body of the given paper, but also used in a
citation context (“sea ice classification” is used in
the second citation context in Table 7)
Query. It can be seen that keyphrases generated
by ERU-KG might be more beneficial as additional
information. In the first example, ERU-KG is the
only model that can produce the name of alterna-
tive GAN techniques (e.g. “ac gan”, “am gan”, “net
gan” and “conditional gan”). Moreover, the intro-
duction of phrases such as “image generation” and
“synthetic data” is also suitable for the objective of
the user.

Present keyphrase
generation

Absent keyphrase
generation

F@5 F@10 R@5 R@10
α, β = 0 13.9 12.1 5.1 7.1
α, β = 0.2 17.7 18.2 5.6 7.6
α, β = 0.4 20.8 19.9 5.8 7.9
α, β = 0.6 22 19.9 5.9 8.1
α, β = 0.8 22 19.4 6 8.1
α, β = 1 21.5 18.8 0 0

Table 6: Sensitivity analysis of interpolation hyperpa-
rameters α and β. Experiments are conducted on the
KP20K dataset, using ERU-KG-base.

In the second example, ERU-KG is the only KG
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model that manages to generate “brain computer
interface” - the full-form version of “BCI”. In addi-
tion, other absent phrases predicted by ERU-KG,
e.g. “domain adaptation”, “meta learning”, are
also highly relevant. On the other hand, it can
be seen that absent keyphrases generated by other
KG methods do not offer as much valuable addi-
tional information. In particular, AutoKeyGen and
UOKG produces absent keyphrases that are oftenly
reorderings of present terms, while CopyRNN in-
troduces irrelevant keyphrases, such as “world wide
web”.

D Additional Ablation Studies

D.1 Sensitivity Analysis of Interpolation
Hyperparameters

To better understand the impact of the hyperparam-
eters α and β on keyphrase generation quality, we
conduct experiments on the KP20K dataset and us-
ing the ERU-KG-base model. In our experiments,
we set the two hyperparameters to the same value,
as both controls the influence of related documents.
The results for both present and absent keyphrase
generation are displayed in Table 6.

Firstly, when α, β = 0 (i.e. only information
from related documents are used), the performance
is inferior across all metrics. Secondly, at the op-
posite extreme where α, β = 1 (i.e. only infor-
mation from the input document is used), there
exists two limitations: 1) no absent keyphrase are
predicted and 2) keyphrase extraction performance
drops slightly, indicating that related documents
are beneficial for this task. Finally, across the inter-
mediate range of α, β = 0.2 to 0.8, we observe an
upward trend in performance. Based on the above
discussions, we conclude that optimal performance
is achieved when both sources are utilized, with the
given document maintains greater influence.

E Algorithm Descriptions of ERU-KG

We provide an algorithm description of the infer-
ence process of ERU-KG in Algorithm 1.
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Algorithm 1: ERU-KG inference
Input: Document x, number of output keyphrases k
Output: Sets of present and absent keyphrases Y present

x and Y absent
x , each containing k keyphrases

Phraseness module

1 N (x), {s̃x,x′ | x′ ∈ N (x)} ← BM25Retrieve(query = x, numdocs = 100) // Retrieve
similar documents and the similarity scores

2 Cx ← NounphraseExtract(x)
3 CN (x) ← {}
4 foreach x′ ∈ N (x) do
5 C̃x′ ← GetPrecomputedCandidate(x′)
6 CN (x) ← CN (x) ∪ C̃x′

7 Ĉx ← Cx ∪ Top100(CN (x), Ppn)

Informativeness module

8 wx = {wx
j }j∈V ← SPLADE(x) // Term importances given x. V denotes BERT’s

vocabulary
9 foreach x′ ∈ N (x) do

10 wx′
= {wx′

j }j∈V ← SPLADE(x′) // Precomputed

11 foreach j ∈ V do
12 ŵx

j ← α wx
j + (1− α)

∑
x′∈N (x) s̃x,x′ wx′

j

13 foreach c ∈ Ĉx do
14 f̂(c,x)← 1

|c|−γ

∑|c|
i=1 ŵ

x
ci

Combining phraseness and informativeness

15 foreach c ∈ Ĉx do
16 Pin(c|x)← f̂(c,x)/

∑
c′∈Ĉx

f̂(c′,x) // Since the final score is only used for
ranking, we skip this normalization step in practice and directly set
Pin(c|x)← fin

x (c)
17

18 Pkp(c|x)← Ppn(c|x)λ × Pin(c|x) // Keyphrase distribution given x. Pkp(c|x) is
also not normalized since we only use it for ranking

19

20 sx(c)← ωx(c)Pkp(c|x) // Apply position penalty

21 Y ← sorted(Ĉx, sortby = sx(c), descending=True)
22 Y present

x = {y ∈ Y | y ∈ x}[: k]
23 Y absent

x = {y ∈ Y | y ̸∈ x}[: k]
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Document

[DOI: 10.1109/JSEN.2021.3084556]
Supplementing Remote Sensing of Ice: Deep Learning-Based Image Segmentation System for Automatic Detection and Localization of Sea-ice 
Formations From Close-Range Optical Images
This paper presents a three-stage approach for the automated analysis of close-range optical images containing ice objects. The proposed system is 
based on an ensemble of deep learning models and conditional random field postprocessing. The following surface ice formations were considered: 
Icebergs, Deformed ice, Level ice, Broken ice, Ice floes, Floebergs, Floebits, Pancake ice, and Brash ice. Additionally, five non-surface ice 
categories were considered: Sky, Open water, Shore, Underwater ice, and Melt ponds. To find input parameters for the approach, the performance 
of 12 different neural network architectures was explored and evaluated using a 5-fold cross-validation scheme...

Query sea ice deep learning
Citation 
context

1) ...some literatures have utilized real-time ice monitoring using aerial images captured by cameras onboard icebreakers...
2) Many researchers have applied classical semantic segmentation models such as the PSPNet and Deeplab to sea ice 
classification tasks...

Title Supplementing Remote Sensing of Ice: Deep Learning-Based Image Segmentation System for Automatic Detection and 
Localization of Sea-ice Formations From Close-Range Optical Images

ERU-KG present: ice, sea ice, sky, remote sensing, ice floes, underwater ice, sea ice formations, close-range optical images, level ice, brash 
ice
absent: sea ice detection, sea ice classification, sea ice concentration, arctic sea ice, antarctic ice sheet, ice sheet, sea ice extent, 
sea ice image classification, arctic ocean, greenland ice sheet

AutoKeyGen present: ice, ice formations, optical sensors, image segmentation system, image segmentation, approach, optical images, ice floe, 
floe, deformed ice
absent: image segmentation approach, image segmentation process, neural network approach, neural networks models, neural 
network analysis, neural network parameters, convolutional neural networks, neural networks model, segmentation approach, 
image segmentation techniques

UOKG present: ice, ice formations, neural network architectures, ice objects, deformed ice, surface ice, ice floes, water ice, neural 
networks, brash ice
absent: ice field, ice flow, optical flow, ice surface, input data, ice melt, ice sheet, ice shelf, automated approach, satellite images

CopyRNN present: conditional random field, neural networks, random field, image segmentation, remote sensing, neural network, deep 
learning, ice, ice formations, pancake ice
absent: deep neural networks, deep neural network, convolutional neural networks, random field neural networks, convolutional 
neural network, optical ice, random field neural network, ensemble learning, conditional random fields, underwater optical ice

Indexed terms image segmentation approach, image segmentation process, neural network approach, neural networks models, neural network 
analysis, neural network parameters, convolutional neural networks, neural networks model, segmentation approach, image 
segmentation technique

Table 7: Generated keyphrases for an example document, by our proposed model and the baselines. We illustrate
the top 10 present and absent keyphrases. In addition, we provide the paper’s indexed terms, as well as references of
each type (i.e. query, citation context and title) that mentions the given paper.
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Query
[Source: DORIS-MAE]
I am seeking alternatives to Generative Adversarial Networks (GANs) that can be applied to image datasets, such as CIFAR-10. The alternative 
should be capable of generating new data points based on the original data distribution and should perform comparably to GANs across various 
metrics. Could you provide information on the standard metrics typically used to evaluate the performance of GANs? I anticipate that this alternative 
method would initially estimate and model the original data distribution, possibly using a neural network, and then generate diverse data points that 
adhere to the same distribution through an intelligent sampling technique. However, I am open to learning about other promising approaches as well.

ERU-KG

present: alternatives, gans, gan, new data points, alternative, cifar-10, diverse data points, intelligent sampling technique, various 
metrics
absent: generation, image generation, gan training, ac gan, data augmentation, synthetic data, am gan, text generation, conditional 
gan, net gan

AutoKeyGen

present: data distribution, original data distribution, original data, data points, data, image data, gans, new data, neural network, 
standard metrics
absent: alternative metrics, original data points, standard data, distribution data, data distribution networks, other data points, data 
networks, various data, neural data, network data

UOKG

present: data points, data distribution, image datasets, diverse data points, original data, new data, alternatives, neural network, 
standard metrics, data
absent: diverse data sources, multiple data sources, original data set, different data sources, data sampling, various data sources, 
other data sources, time-series data, open datasets, neural networks

CopyRNN

present: neural network, image data, gans, data distribution, sampling, data, image, cifar-10, sampling technique, metrics
absent: neural networks, data mining, image data mining, generative model, generative neural networks, intelligent image data, 
artificial neural networks, adversarial neural networks, open neural networks, open data

[Source: SCIDOCS]
Real World BCI: Cross-Domain Learning and Practical Applications

ERU-KG

present: real world bci, cross-domain learning, practical applications, bci, domain, rl
absent: domain adaptation, source domain, target domain, cross domain recommendation, bcis, eeg, cross domain, brain computer 
interface, cross domain transfer, domain shift

AutoKeyGen

present: practical applications, cross-domain learning, real world, real world bci, bci, practical application, learning, world bci, 
applications, practical
absent: practical learning, real world applications, learning applications, bci applications, learning models, learning system, learning 
method, learning model, learning methods, practical systems

UOKG

present: real world bci, real world, world bci, practical applications, cross-domain learning, world, real, bci, applications, learning
absent: real world applications, bci applications, practical learning, learning applications, real applications, real world practical 
applications, practical real world applications, practical learning applications, real world learning applications, practical world bci 
applications

CopyRNN

present: cross-domain learning, bci, learning, applications, practical, cross-domain, real world, real
absent: world wide web, cross-domain world wide web, real world wide web, learning world wide web, learning applications, cross-
domain applications, support vector machines, real time, finite element method

Table 8: Generated keyphrases for two example queries, by our proposed model and the baselines. We illustrate the
top 10 present and absent keyphrases.
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