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Abstract

Sign language processing has traditionally re-
lied on task-specific models, limiting the po-
tential for transfer learning across tasks. Pre-
training methods for sign language have typi-
cally focused on either supervised pre-training,
which cannot take advantage of unlabeled data,
or context-independent (frame or video seg-
ment) representations, which ignore the effects
of relationships across time in sign language.
We introduce SHUBERT (Sign Hidden-Unit
BERT), a self-supervised contextual represen-
tation model learned from approximately 1,000
hours of American Sign Language video. SHu-
BERT adapts masked token prediction objec-
tives to multi-stream visual sign language in-
put, learning to predict multiple targets cor-
responding to clustered hand, face, and body
pose streams. SHuBERT achieves state-of-the-
art performance across multiple tasks includ-
ing sign language translation, isolated sign lan-
guage recognition, and fingerspelling detection.

1 Introduction

Sign language presents unique challenges com-
pared to other language modalities, because of the
relative scarcity of data and its multi-channel na-
ture, combining manual, facial, and other body
movements, which can be quick and highly coar-
ticulated (Bellugi and Fischer, 1972). Existing ap-
proaches to sign language processing have typically
relied on models designed and trained for specific
tasks, such as sign language translation (SLT) from
signed to written languages (Camgoz et al., 2018;
Shi et al., 2022; Zhang et al., 2024), isolated sign
language recognition (ISLR) (Kezar et al., 2023),
and fingerspelling detection and recognition (Shi
et al., 2019; Fayyazsanavi et al., 2024; Georg et al.,
2024). Pre-training approaches allow for pooling
data across tasks, and several pre-training methods
have been successful for sign language tasks (Uthus
et al., 2023; Rust et al., 2024). However, these have
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Figure 1: Comparison between our results using fine-
tuned SHuBERT and results of the previous state-of-
the-art task-specific models on a suite of tasks, datasets,
and metrics. Note: The orange shade does not rep-
resent a single model but a collection of the previous
SOTA results for models trained on public data. The
SHuBERT-based results improve on all but one task-
specific SOTA model. See Sec. 4 for details.

typically focused on either supervised pre-training,
which cannot take advantage of unlabeled data,
context-independent (frame or video segment) rep-
resentations, which ignore the effects of relation-
ships across time in sign language, or contextual
representations of only some aspects of sign lan-
guage (see Sec. 2). These limitations have histori-
cally constrained the performance and scalability
of sign language processing systems.

The success of self-supervised representations
for written and spoken language, such as BERT for
written language (Devlin et al., 2019) and HuBERT
for speech (Hsu et al., 2021), has yet to be real-
ized for sign language. Self-supervised learning
seems particularly relevant for sign language, for
which annotated datasets are scarce. But the unique
multi-channel and other visual properties of sign
languages suggest a specialized approach.

In this work, we present SHuBERT (Sign
Hidden-Unit BERT) (Fig. 2), a self-supervised rep-
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Figure 2: SHuUBERT pre-training. (a) We locate a set of landmarks in each frame of the input video using
MediaPipe (Lugaresi et al., 2019), with inter-frame interpolation to fill in missing landmarks. From these, we extract
the upper body pose, crop the hand and face regions, and blur and partially mask the face crop for a measure of
privacy and robustness. (b) We use DINOv2 (Oquab et al., 2023) to extract features for the hands and face, yielding
a four-stream representation (two hands, face, body pose) for each frame. (c) We assign the feature vectors for
frame ¢ to cluster indices using pre-computed k-means clusters, yielding assignments (f;, I, ¢, b;) € [k]* for face,
left and right hand, and body pose, respectively. (d) We partially mask the features, and the masked features form
the input to the transformer encoder. (e) We train SHUBERT to predict the cluster assignments for each masked

input frame, (f;, 1y, 74, ).

resentation learning approach that learns contextual
frame representations for all sign language chan-
nels jointly. SHuBERT adapts the masked predic-
tion paradigm of BERT and HuBERT to the char-
acteristics of sign language video, and learns by
predicting cluster assignments of multiple masked
feature streams representing the hands, face, and
body pose. The learned representations transfer
effectively to multiple sign language understand-
ing tasks, achieving state-of-the-art performance
on several SLT benchmarks, multiple ISLR bench-
marks, and fingerspelling detection, and improving
over specialized models for each task (Fig. 1).

2 Related Work

Sign language understanding (recognition and
translation) tasks have received increasing atten-
tion in the last few years (Camgoz et al., 2018; Shi
et al., 2022; Lin et al., 2023; Kezar et al., 2023).
For translation, early work mainly focused on gloss-
based methods, which rely on (the rare and small)
datasets with manually labeled glosses (Camgoz
et al., 2018). More recent work has turned to larger
and more naturalistic datasets without gloss labels.

The most commonly used datasets are in Ameri-
can Sign Language (ASL) (Duarte et al., 2021; Shi
et al., 2022; Uthus et al., 2023), German Sign Lan-
guage (DGS) (Camgoz et al., 2018), British Sign
Language (Albanie et al., 2021), and Chinese Sign
Language (Zhou et al., 2021a). Of these, recent
ASL datasets are the most naturalistic, and include
large quantities of natively produced sign language
(rather than translated from a spoken language,
which has properties of “translationese” (Desai
et al., 2024b)). For this reason we focus on ASL
data and tasks, but our approach is applicable and
extensible to any sign language.

2.1 Pre-Training for Text And Speech

Pre-training is a cornerstone of modern language
processing across modalities. For written lan-
guage, encoder models like BERT (Devlin et al.,
2019) and its variants (e.g., (Liu, 2019; Lan et al.,
2020)), based on masked language modeling, have
served as dependable representations for language
understanding tasks. In speech processing, self-
supervised learning approaches (Mohamed et al.,
2022) have taken inspiration from text encoder
models while addressing the unique challenges
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posed by continuous audio, which has no inherent
segmentation into tokens nor a pre-defined token
vocabulary. For example, Hidden-Unit BERT (Hu-
BERT) (Hsu et al., 2021) adapts BERT by adding
an offline clustering step to provide pseudo-labels
for masked prediction. Such self-supervised repre-
sentations, combined with task-specific fine-tuning,
remain the state of the art for many speech tasks.

Sign languages share similar challenges to
speech, with no pre-existing token lexicon and
variable-length units (gestures) with no explicit
boundaries, and our approach takes inspiration
from HuBERT. However, sign language video has
its own unique challenges: the many sources of
variation (signer appearance, background, light-
ing, camera angles), the multiple streams of ges-
tures (hands, face, body), the high dimensionality
of video, and the relative dearth of data. These chal-
lenges are addressed in SHUBERT by focusing on
the relevant streams (via pose tracking) combined
with multi-stream masking and clustering.

2.2 Pre-Training for Sign Language

Supervised pre-training. For translation of sign
language video, the supervised pre-training ap-
proach has focused on (pre-)training a translation
model on a large (but often noisy) out-of-domain
dataset, followed by fine-tuning on a smaller in-
domain dataset. This type of pre-training leverages
large collections of annotated data, with some sys-
tems (Uthus et al., 2023; Tanzer and Zhang, 2024;
Tanzer, 2024a; Zhang et al., 2024) trained on up
to 6,600 hours of sign language content (Uthus
et al., 2023) to achieve state-of-the-art performance.
However, much of this data remains private. In ad-
dition, these approaches often involve substantial
computational resources: The supervised model
of Zhang et al. (2024), for example, was trained
on 128 TPU-v3 chips for 20 days. Jiao et al.
(2024) propose an alternative pre-training approach
that greatly improves efficiency by using pose in-
formation only (rather than image pixels); how-
ever, this approach pre-trains and fine-tunes on the
same training data. Unlike these approaches, Uni-
Sign (Li et al., 2025) is a supervised pre-training
approach, based on mT5 (Xue et al., 2021), that
has been applied to multiple tasks including both
translation and ISLR. Like all supervised methods,
these approaches can not take advantage of avail-
able unlabelled sign language data.

Self-supervised pre-training. Previous work
has compared multiple context-independent self-
supervised techniques for ISLR, finding masked au-
toencoders (MAE) particularly effective (Sandoval-
Castaneda et al., 2023). SSVP-SLT (Rust et al.,
2024) adapts MAEs for large-scale sign language
pre-training, achieving competitive performance on
ASL-to-English translation. This approach is com-
putationally demanding, using 64 A100 GPUs for
14 days, and takes a maximum of 128 input frames
(~8 seconds) at a time so is unable to model longer-
term dependencies. Other lines of work on SLT
(e.g., Chen et al. (2022a)) have used a pre-trained
S3D model (Xie et al., 2018), which requires the
video sequence to be segmented into chunks, with
each chunk treated as independent. All of these ap-
proaches learn context-independent representations
of individual frames or video segments, whereas
SHuBERT learns contextual frame representations
and can operate on long video directly.

The only previous self-supervised approach of
which we are aware for contextual sign represen-
tation learning is SignBERT+ (Hu et al., 2023),
which extends the earlier SignBERT (Hu et al.,
2021). This approach learns a representation specif-
ically for hand poses, via masked reconstruction of
hand joints, and has strong results on ISLR, con-
tinuous (gloss-based) sign recognition, and sign
translation on the RWTH-PhoenixT German Sign
Language dataset (Camgoz et al., 2018). However,
this approach is inherently limited by not modeling
the face and global body pose, and the results are
obtained by combining SignBERT+ with a dataset-
specific image pixel (RGB) representation. In ad-
dition, SignBERT+ is pre-trained on the union of
datasets on which it is tested; that is, it is exposed to
the fine-tuning data during pre-training. In contrast,
SHuBERT models all components of sign language
jointly, and is pre-trained on data that is disjoint
from the fine-tuning data for the downstream tasks.

2.3 Multi-Stream Models of Sign Language

Several previous methods have taken advantage
of the observation that sign language naturally
decomposes into multiple streams of hand, face,
and body motions.! For example, prior work in-
cudes multi-stream models for fingerspelling recog-

'The term “multi-stream” has been used in different senses
in prior work. For example, DSTA-SLR (Hu et al., 2024)
creates multiple streams consisting of different geometric rep-
resentations of the same skeleton data, while we are concerned
with streams that correspond to different body parts.
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Figure 3: Sample frames of several signers and the cor-
responding input channels used for SHuBERT: blurred
face crop, left hand crop, and right hand crop. In ad-
dition to the face and left/right hand features extracted
from these crops, each frame is represented by an addi-
tional feature vector corresponding to the upper body
pose extracted from MediaPipe (see Fig. 2).

nition (which combines hand and mouthing ges-
tures) (Shi, 2023), SLT (Camgoz et al., 2020; Zhou
et al., 2021b; Chen et al., 2022b; Shi et al., 2022;
Gueuwou et al., 2025), and ISLR (Pu et al., 2016;
Jiang et al., 2021). This factorization into multiple
streams can enable dramatic improvements in data
and compute efficiency over single-stream models
that use the full image (Gueuwou et al., 2025).

Like this prior work, SHuBERT also adopts the
idea of multiple streams. However, unlike prior
approaches, SHuBERT learns a self-supervised rep-
resentation from the multiple streams jointly that
performs well on multiple tasks.

3 Sign Hidden-Unit BERT (SHuBERT)

SHuBERT is a transformer encoder (Vaswani et al.,
2017) that learns contextualized representations of
sign language video frames through self-supervised
learning. The pre-training approach is outlined in
Fig. 2. In the following sections we describe the
video features used in SHUBERT (Sec. 3.1) and the
self-supervised training approach (Sec. 3.2).

3.1 Multi-Stream Feature Pre-Processing
Fig. 3 provides examples of SHuBERT’s input

video features, described in detail below.

Handshapes We use the MediaPipe Hand Land-
marker? model, which has hand detection accuracy

2https ://ai.google.dev/edge/mediapipe/
solutions/vision/hand_landmarker

~95% on OpenASL.?> Upon inspection, we find
that the majority of the remaining 5% of “failed"
detections occur when the hands are outside the
frame. For these cases, we interpolate from the
nearest frames with successful detections. Dilated
bounding boxes for the detected hand landmarks
(for both left and right hand) are cropped and re-
sized to 224x224.

Facial Features The signer’s face contains
important non-manual markers for sign lan-
guages (Bragg et al., 2019). Previous approaches ei-
ther use the full face, compromising privacy (Gueu-
wou et al., 2025), or blur the whole face in an at-
tempt to protect privacy, potentially losing essential
non-manual markers (Rust et al., 2024). Our design
attempts to balance the need to preserve linguistic
information with the goal of enhancing privacy. We
identify the whole face, mouth and eye regions in
the frame from the relevant MediaPipe facial land-
marks. The face pixels are greyed out except for
the pixels in the mouth and eye regions. We then
apply Gaussian blur to the entire face region and
resize it to 224x224.

Image Feature Extractor for Hands and Face
We use DINOvV2 (Oquab et al., 2023), which has
proven successful in previous sign language work
(Wong et al., 2024; Gueuwou et al., 2025), as the
feature extractor for face and hand image crops.
An additional benefit of DINOv2 representations
is that they yield meaningful clusters after quan-
tization (Zheng et al., 2024), which is an impor-
tant property since SHuBERT training targets are
clustered input features. While many other prior
approaches use keypoint estimation tools, these
have some weaknesses in capturing handshapes
(Moryossef et al., 2021) and facial expressions
(Kuznetsova and Kimmelman, 2024).

To adapt the general image feature extractor to
a face feature extractor for sign language, we ran-
domly sample 5 million face crops from videos in
the YouTube-ASL (Uthus et al., 2023) dataset and
use them for continued pre-training of DINOv2
for 1 epoch. We do the same for the hand feature
extractor, using 5 million randomly sampled hands
(mix of left and right hand crops) from YouTube-
ASL. For both the face and hand streams, crop re-
gions of interest (ROIs) are processed through the
face or hand fine-tuned DINOvV2 models, yielding

3Estimated from a small-scale experiment on 100 Ope-
nASL videos, with manual verification of detections.
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Figure 4: Three strategies for sequence masking. Each
color-coded row corresponds to one of the four channels
(face, right hand, left hand, body).

a 384-dimensional feature vector per crop, which
we denote x! , x!, x € R34 for the face, left hand,
and right hand features respectively.

Body Pose For (coarse) body pose, we extract
seven key upper body landmarks (nose, shoulders,
elbows, and wrists) and normalize their coordinates
relative to the signing space, resulting in a compact
14-dimensional pose vector, x? € R4,

3.2 Self-Supervised Training of SHuBERT

For each of the four channels (left/right hand,
face, and pose), we layer-normalize the extracted
features (producing zero mean and unit variance
across all dimensions for each feature vector) and
linearly project them to 256 dimensions, produc-
ing a 1024-dimensional input feature vector per
frame. This joint representation of the four streams
is masked (see below) and input to the transformer
encoder. The output of the transformer is one rep-
resentation vector per input frame, y;, which may
take into account information from the entire length
of the input video, and from all four input channels.

Sequence Masking SHuBERT learns by predict-
ing masked elements of the input feature sequence,
given the observed (unmasked) data. We use a
masking strategy designed for multi-channel sign
language input. We consider three types of mask-
ing, illustrated in Fig. 4: channel masking, which
masks entire channels (e.g., all face and left hand
features in a video) to learn cross-channel depen-
dencies; time masking, which masks all channels
at selected temporal positions (e.g., face, hand, and
body pose in frames 20-40 in a given video); and

random masking, which independently masks ran-
dom small frame spans in each channel. Based on
our experiments comparing these strategies (Ap-
pendix A), we ultimately chose random masking.

Learning Objective We use offline k-means
clustering (separately for each of the four channels)
to create discrete target pseudo-labels ( fz, l¢, ¢, bt)
for the face, left hand, right hand, and body pose re-
spectively. The transformer output vector for each
frame is fed to four linear classifiers (one per chan-
nel) to predict the cluster assignments for masked
channels for that frame.

As an example, suppose that face and body
pose channel features for frame ¢, respectively
x/ € R34 and x! € R, are masked. The k-
means cluster assignments for these masked feature
vectors are, respectively, f; and b;, each a number
between 1 and k. The classifier predicts, from the
output vector y; for frame ¢, labels ft and gt. The
training objective is a cross-entropy loss between
the target and predicted cluster assignments for the
masked positions. The unmaksed positions are not
included in the loss (but of course influence the
predictions for the masked ones).

This self-supervised training produces the pre-
trained SHUBERT model, which can then be fine-
tuned for downstream sign language tasks using ap-
propriate task-specific prediction layers and losses.

4 Experiments and Results

In this section, we describe the experimental setup
for self-supervised training of SHuBERT, followed
by its adaptation as a foundation model for mul-
tiple sign language processing tasks: sign lan-
guage translation (Sec. 4.2), isolated sign language
recognition (Sec. 4.3) and fingerspelling detection
(Sec. 4.4). We also apply SHuBERT to phonolog-
ical feature recognition, as a baseline for future
work (see Appendix B).

4.1 Pre-Training SHuBERT

Data and Pre-Processing For pre-training SHu-
BERT, we use the YouTube-ASL dataset (Uthus
et al., 2023). Note that we excluded the clips that in-
tersect with the OpenASL dataset (Shi et al., 2022)
to evaluate SHuBERT on OpenASL. To maintain
the same training set size as the original YouTube-
ASL dataset, we replaced the removed content
with ASL videos from YouTube-SL-25 (Tanzer and
Zhang, 2024) that are not present in YouTube-ASL.
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Our final pre-training dataset comprises approxi-
mately 984 hours of ASL content.*

To reduce computation, we downsample the
videos by removing every other frame (Uthus
et al., 2023). The average frame rate of the post-
processed videos is 14.89 fps.

Model Configuration and Training We train a
base model consisting of 12 transformer blocks,
with each block having an embedding dimension-
ality of 768, feed-forward dimensionality of 3072,
and 12 attention heads. The complete model con-
tains 86M parameters. For each channel (face, left
hand, right hand, and body pose), we use k-means
on 10% of the data to create 256 discrete clusters
that serve as prediction targets. Figs. 5 to 8 in the
Appendix provide examples of images in several
clusters. Our masking strategy uses a span length of
3 frames (approximately 200ms), which is roughly
the average duration of fingerspelling a single letter
in ASL and is therefore roughly the smallest ges-
ture length (Hanson, 1982). We train the model for
400K steps using 8 NVIDIA A6000 (48GB) GPUs,
with a total training time of approximately 7 days.

We optimize the model using Adam with a peak
learning rate of 5 x 10~%, warming up for the first
8% of updates followed by linear decay. We batch
videos to maintain efficiency while not exceeding
1,500 frames per GPU.

4.2 Sign Language Translation

For sign language translation, where the input
sign language video is mapped to text in English,
we use ByT5-Base (Xue et al., 2022), pre-trained
on a large corpus of unlabeled multilingual text
data, as a translation model to map from SHu-
BERT representations to written English, follow-
ing prior work showing its strong performance on
this task (Tanzer and Zhang, 2024; Zhang et al.,
2024). We first extract video representations from
SHuBERT and project them to ByT5’s input space
through a linear layer. We train the combined
model (SHuBERT+projection layer+ByT5) with a
cross-entropy loss and label smoothing factor of
0.2.

Similarly to Uthus et al. (2023) and Rust et al.
(2024), we use a two-phase training strategy. In the
first phase, we train the translation system on the

*Note that YouTube-ASL encompasses parts of several
datasets used in other work, including 72.4% of the OpenASL
test set and 38.2% of the MSASL (Joze and Koller, 2018) test
set. We do not compare to other work on MSASL for this
reason.

weakly labeled YouTube-ASL dataset (with Ope-
nASL removed, as described above) for 250K steps.
During this phase, we use the AdamW optimizer
with a peak learning rate of 5 x 10~ for ByT5 and
a reduced learning rate of 5 x 10~ for SHuBERT
parameters (when fine-tuned). The learning rate
follows a cosine schedule with 10K warmup steps.
We use a batch size of 2 utterances per GPU with
gradient accumulation over 8 steps and use weight
decay of 0.1.

In the second phase, we fine-tune on two tar-
get benchmark datasets (How2Sign (Duarte et al.,
2021) and OpenASL (Shi et al., 2022)) for 50K
steps, using a lower learning rate of 10~% and 5K
warmup steps. We also evaluate in a zero-shot
setting, without any additional fine-tuning, on a
third dataset (for which no training data exists),
FLEURS-ASL (Tanzer, 2024b). We use a learned
weighted sum of features from all SHuBERT lay-
ers rather than using a single layer’s output, as is
commonly done when using speech representations
such as HuBERT (Yang et al., 2021). During de-
coding, we use beam search with a beam width of
5 and a maximum sequence length of 384 tokens.

We evaluate the final model on the three bench-
mark test sets of How2Sign, OpenASL, and
FLEURS-ASL, using the standard BLEU (Papineni
et al., 2002; Post, 2018)5 and BLEURT (Sellam
et al., 2020) translation metrics, as shown in Tab. 1
(see also example translations in Tabs. 11 to 13).

In all cases, our results using SHuBERT improve
over the best prior published results using publicly
available training data. On How2Sign, SHuBERT
improves by +0.7 BLEU/+0.3 BLEURT over the
prior state-of-the-art result (using public data) of
SSV-SLT (Rust et al., 2024), which used slighty
more pre-training data (1,054 vs. 984 hours) that
included the training data of How2Sign. Better
published results exist (as shown in Tab. 1), but
they rely on private fine-tuning datasets so we can-
not reproduce their settings nor compare to them
meaningfully.

In the case of OpenASL, SHuBERT’s improve-
ment over the best prior result is +2.0 BLEU.°
This larger improvement may be attributable to pre-
training on similar-domain (generally native, natu-

5SacreBLEUversionsignature :BLEU+c.mixed+#.1+s.
exp+tok.13a+v.1.4.1.

Uni-Sign (Li et al., 2025) reports a similar BLEU score
of 23.1 on OpenASL, but Uni-Sign is pre-trained on YouTube-
ASL. Therefore, most of the test set is included in Uni-Sign’s
pre-training data, so we do not consider the results directly
comparable.
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How2Sign OpenASL FLEURS-ASL
Method SSL PTdata (hrs) | gy piyr BLEURTY | BLEUT BLEURT! | BLEU? BLEURT]
Private data
Tanzer (2024a) x ~2,800 18.1 50.8 - - 58 45.4
Zhang et al. (2024) x ~6,600 21.1 55.7 - - - -
Publicly available data
SSVP (Rust et al., 2024) v 1,054 15.5 49.6 - - - -
Uthus et al. (2023) x 984 12.4 46.6 - - - -
Tanzer and Zhang (2024) X 3,207 154 47.9 - - 4.4 40.1
SM (Gueuwou et al., 2025) v 984 14.3 - - - - -
VAP (Jiao et al., 2024) X - 12.9 - 21.2 - - -
Uni-Sign (Li et al., 2025) x 984 14.9 49.4 23.1" 60.4" - -
OpenASL (Shi et al., 2022) X - - - 6.7 31.1 - -
GloFE-VN (Lin et al., 2023) X - - - 7.1 36.7 - -
C2RL (Chen et al., 2025) X - - - 13.2 - - -
Tanzer (2024b) X 984 - - - - 3.9 38.3
Ours v 984 |  16.2 499 | 232 60.6| 47 41.2

Table 1: Translation results on the How2Sign, OpenASL, and FLEURS-ASL test sets. SSL: self-supervised learning
(yes/no); PT: pre-training. * Uni-Sign is pre-trained on YouTube-ASL, which contains >72% of the OpenASL test
samples, so we do not consider the results on OpenASL to be directly comparable to ours.

ral rather than interpreted signing) data in YouTube-
ASL (but, as previously mentioned, none of the
same data). The distinction between interpreted
signing in a constrained visual environment (as in
How2Sign and FLEURS-ASL) and natural signing
in a less constrained environment (as in OpenASL
and much of YouTube-ASL) is an important one
that has not received sufficient attention, and is
worth exploring further in future work. The proper-
ties of the visual environment affect the difficulty of
the task, and natural signing has different character-
istics from those of interpreted sign language (De-
sai et al., 2024c).

On FLEURS-ASL, a dataset designed for testing
only, SHuBERT demonstrates strong performance
in a zero-shot setting, surpassing both prior meth-
ods, which used over 3x as much pre-training data
(3,207 hours) as ours.

We also note that some previous approaches use
additional techniques such as auxiliary losses that
contribute to their final results, such as additional
contrastive learning with labelled data (Rust et al.,
2024), joint training with text machine translation
(Zhang et al., 2024), and multi-tasking with ran-
dom dynamic clips from an original video (Tanzer,
2024b). It is possible that incorporating such tech-
niques into our framework will further improve
performance, but we leave this for future work.

Ablations We conduct several ablation studies

to validate our design choices and analyze SHu-
BERT’s behavior. These studies examine: (1) the
impact of different masking strategies during pre-
training, where random masking proves most effec-
tive based on BLEURT scores; (2) the importance
of pre-training data scale, showing the clear ben-
efit of using the full pre-training dataset; (3) the
contribution of different architectural components,
demonstrating that a weighted combination of lay-
ers significantly improves translation performance;
and (4) the effects of fine-tuning versus keeping
SHuBERT frozen during translation training, with
fine-tuning providing moderate gains. The strong
performance of the frozen, layer-weighted SHu-
BERT suggests that it is a promising approach for
low-resource settings where parallel data may be
limited. Detailed results and analysis of these abla-
tions can be found in Appendix A.

4.3 Isolated Sign Language Recognition

For isolated sign language recognition (ISLR), the
task of classifying a short video of a single sign, we
include results for SHuBERT adapted with LoRA
adapters (Hu et al., 2022). Unless otherwise speci-
fied, for all experiments, we train for 125 epochs
with a batch size of 128 and perform early stopping
according to validation results (R @ 1/P-I). We use
an Adam optimizer (Kingma, 2014) with a learn-
ing rate of 10~* and weight decay of 10~*. For
classification tasks, we first average SHuUBERT rep-

28798



Method #Params ASL Citizen Sem-Lex WLASL2000

Rec@11T Rec@57 Rec@107 | Rec@11T Rec@51 Rec@107T | P-IT P-Ct
ST-GCN (Desai et al., 2024a) 0.45M 0.60 0.82 0.88 - - - - -
SignCLIP (Jiang et al., 2024) 217M 0.60 0.84 0.89 0.30 0.48 0.55 - -
13D (Desai et al., 2024a) 25M 0.63 0.86 0.91 - - - - -
Sem-Lex (Kezar et al., 2023) 0.45M - - - 0.69* - - - -
SignBERT (Hu et al., 2021) - - - - - - - 13940 36.74
SignBERT+ (Hu et al., 2023) - - - - - - - | 48.85 46.37
MSLU (Zhou et al., 2024) - - - - - - -1 5629 53.29
NLA-SLR (Zuo et al., 2023) - - - - - - -1 61.05 58.05
Uni-Sign (Li et al., 2025) 580M - - - - - - | 63.52 61.32
Ours (rank=1 LoRA) 0.17M | 0.65 0.87 091 |  0.54 0.74 0.80 | 60.90 58.01

Table 2: ISLR results on the ASL Citizen, Sem-Lex, and WLASL2000 test sets. Note: For Sem-Lex, the result
marked with an asterisk (*) is not directly comparable to Ours as it is for a reduced (and easier) test set, as mentioned
in (Jiang et al., 2024). Additionally, the dataset version released by (Kezar et al., 2023) has a significant fraction of
videos missing. For WLASL2000, evaluation metrics are per-instance (P-I) and per-class (P-C) Top-1 accuracy.

Method SSL Mean IoU 1
Contrastive Learning (Yin et al., 2024) X 0.28
SHuBERT (Ours) v 0.40

Table 3: Fingerspelling detection on ASL-Stem Wiki
(Yin et al., 2024).

resentations across the time dimension and add a
batch-norm layer followed by a linear layer as the
classification head.

For LoRA training, we learn a rank-1 LoRA
module for each linear layer in SHuBERT while
keeping all the other weights frozen, resulting in
training only 0.2% of the number of parameters
of the original model. In addition to the aforemen-
tioned hyperparameters, we reduce the learning rate
of the LoORA modules to 1/10 of the classification
head’s and also use 0.1 label smoothing.

Our ISLR results on ASL Citizen, WLASL2000
(original), and Sem-Lex are shown in Tab. 2. We
note that we do not report on MSASL, as done in
some of the prior work, because of the aforemen-
tioned overlap between its test set and YouTube-
ASL. Following prior work, we report Recall at
1, 5 and 10, unless stated otherwise.” We achieve
state-of-the-art performance on all datasets except
WLASL2000 where Uni-Sign has a better result.
We note that Uni-Sign fine-tunes 3,000 times more
paramters than ours.®

4.4 Fingerspelling detection

Finally, we evaluate SHUBERT on the task of
fingerspelling detection on the ASL-Stem-Wiki

"Note that some prior work reports ISLR results in terms
of accuracy, which is equivalent to Recall at 1.

8Note: As described in the caption of Tab. 2, the Sem-Lex
results in (Kezar et al., 2023) are not comparable with other
methods, including ours.

dataset (Yin et al., 2024). Given a sign language
video input v, which consists of an ordered se-
quence of frames {vy,vo, ..., v,}, the task is to
identify all segments containing fingerspelling. The
output is represented as a set I’ of frame intervals:
F = {[s1,e1],[s2,€e2],...,[sk,ex]}, where each
interval [s;, ;] represents the start and end frames
of a fingerspelling sequence, such that frames vy,
through v,, contain fingerspelling. We follow the
original ASL-Stem-Wiki evaluation pipeline (cross-
validation) and evaluation metric (intersection over
union, or IoU). The results are shown in Tab. 3. We
see that by simply fine-tuning SHUBERT for this
task, we increase the IoU by 42% compared to the
previous state of the art method, which pre-trains
and fine-tunes on the same dataset.

5 Conclusion

SHuBERT, our proposed self-supervised approach
for learning sign language video representations,
yields a transformer encoder that maps from mul-
tiple feature streams (face and hand appearance
and upper body pose) to a stream of per-frame con-
textual representations. A single base SHuBERT
model, when adapted to a range of sign language
processing benchmarks including both translation
and isolated sign recognition, achieves strong per-
formance on all of them and almost always im-
proves over the prior state of the art. SHuBERT is
trained on public data and is publicly available.”
Based on its strong performance on the tasks stud-
ied here, we expect that SHuBERT can serve as
a base model for a broad range of sign language
processing tasks.

http://shubert.pals.ttic.edu
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Limitations Our work has several limitations.
First, although the results are competitive with or
outperform prior work, the absolute performance
is still quite poor. Neither our model nor others
can replace human interpreters for broad-domain
sign language translation. Second, our training data
volume is significantly smaller than that of typical
self-supervised speech and text models. We can-
not say with certainty how our model would scale
up to much larger datasets. Third, we have not
carefully studied potential sources of bias in the
model. From our qualitative visual inspection of
images and their corresponding clusters (Figs. 5
to 8 in the Appendix), we observe that semantic
properties appear to take precedence over attributes
like skin color, gender, or eyewear. While these
preliminary observations are encouraging, a more
thorough investigation of potential biases would be
valuable future work. Finally, the current scope of
our work is limited to American Sign Language.
Although sign languages use the same channels and
share many elements, we do not know how well our
model would generalize to other languages. Future
work could address these limitations by expanding
the training dataset and training on data from other
sign languages.
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Masking strategy BLEU-1 BLEU BLEURT

Layer of SHuBERT BLEU-1 BLEU BLEURT

Channel masking 14.5 2.6 29.9
Time masking 15.1 2.3 31.2
Random masking 15.4 2.2 314

Table 4: Comparison of masking strategies in SHuBERT
pre-training. SHuUBERT is frozen and stopped after
100K steps, and fine-tuned and evaluated on How2Sign
only.

Hours of pre-train data BLEU-1 BLEU BLEURT
984 154 22 314
98 12.7 0.7 29.1

None 15.3 2.5 31.6
Last Layer 21.4 4.7 35.0
Weighted Sum 29.3 7.1 39.5

Table 6: Contribution of several components of SHu-
BERT: direct use of input video features (None) vs. us-
ing SHuBERT’s last layer vs. weighted combination of
all layers. In all cases SHUBERT is frozen.

Fine-tune SHUBERT BLEU-1 BLEU BLEURT

X 214 4.7 35.0
v 30.0 7.5 39.9

Table 5: Impact of pre-training data size on SHuBERT’s
performance.

A Ablations on SHuBERT

We conduct ablations, using the How2Sign trans-
lation task, to measure the importance of different
factors in the SHUBERT pre-training and adapta-
tion to the downstream task. Unless stated other-
wise, in the ablation experiments we pre-train SHu-
BERT for 100K steps (instead of the full 400K) for
a faster turnaround and freeze SHUBERT for the
downstream task.

Masking Strategies Tab. 4 compares translation
performance when using each of the three masking
strategies (Fig. 4). We observe different signals
from different metrics. While the BLEU scores
suggest channel masking to be the best, random
masking produces better BLEURT scores. Contra-
dicting signals between different evaluation met-
rics for sign language translation has also been
observed in prior work (Zhang et al., 2024). We
chose to priotize BLEURT, as it generally has better
alignment with human judgements of translation
quality (Freitag et al., 2022), and therefore use ran-
dom masking in all of our other experiments.

Data Scaling Behavior of SHuBERT In addi-
tion to the full pre-training dataset, we also train
SHuBERT from scratch on a randomly selected
10% of the full data. In Tab. 5 we see that there
is a noticeable drop in performance in BLEU
and BLEURT, suggesting that data size is impor-
tant. With multiple larger datasets now available—
BOBSL (Albanie et al., 2021), JWSign (Gueu-
wou et al., 2023) and YouTube-SL-25 (Tanzer and
Zhang, 2024) contain approximately 1500, 2500,
and 3200 hours of data respectively—we expect
that expanding the SHuBERT pre-training data may
further improve performance. In addition, these

Table 7: Effect of fine-tuning on translation perfor-
mance: Fine-tuning SHUBERT along with the trans-
lation model (v') vs. using frozen SHUBERT represen-
tations ().

larger datasets also include more language diver-
sity, which may also improve performance and/or
applicability to additional languages.

Isolating SHuBERT’s Impact on Performance
To understand SHuBERT’s impact on translation
performance, we conduct three experiments, shown
in Tab. 6. In our baseline experiment (“None"),
we directly feed the projected 4-channel features
(face, left hand, right hand, body pose) to the ByT5
translation model, bypassing SHUBERT entirely,
resulting in fairly poor performance. When we
instead pass these features through a frozen pre-
trained SHuBERT (400k steps, random masking)
and use its final layer’s output (“Last Layer"), we
see significant improvement. Finally, computing
a learned weighted combination of all SHuBERT
layers (“Weighted Sum") further improves perfor-
mance. These results demonstrate that each com-
ponent of SHUBERT contribute to translation per-
formance.

Frozen vs. Fine-Tuned SHuBERT We also in-
vestigate the impact of fine-tuning during trans-
lation training, as shown in Tab. 7. We compare
two scenarios: using a frozen SHuBERT (400k
steps, random masking) and only fine-tuning ByTS,
versus fine-tuning both SHUBERT (from the same
base model) and ByT5 together. Both scenarios
use features from SHuBERT’s last layer. Fine-
tuning SHuBERT leads to substantial improve-
ments compared to keeping it frozen, when using
the final layer. However, referring back to Tab. 6,
the relatively small difference between the fine-
tuned performance and that of the frozen and layer-
weighted SHUBERT is noteworthy. This observa-
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Streams Used BLEU 1

Face only 0.6
Hands only 0.2
Upper body only 0.8
Hands + Upper Body 2.1
All streams 24

Table 8: Stream contributions in ASL-to-English trans-
lation.

. Rec@11
Phonological Feature Sem-Lex  ASL Citizen
Major Location 0.8477 0.9022
Minor Location 0.7130 0.8000
Second Minor Location 0.7328 0.8118
Contact 0.8684 0.9157
Thumb Contact 0.8474 0.8752
Sign Type 0.8464 0.9154
Repeated Movement 0.8265 0.8993
Path Movement 0.7275 0.7942
Wrist Twist 0.9058 0.9300
Selected Fingers 0.7953 0.8344
Thumb Position 0.8604 0.8819
Flexion 0.7264 0.7773
Spread 0.7942 0.8480
Spread Change 0.8160 0.8658
Nondominant Handshape 0.7632 0.8432
Handshape 0.6293 0.7080
Average 0.7938 0.8502

Table 9: Phonological feature recognition accuracy on
two datasets, Sem-Lex and ASL Citizen.

tion is promising for low-resource sign languages,
where we may have plentiful unlabeled video data
for pre-training, but very limited parallel data for
translation training.

Stream contributions in ASL-to-English trans-
lation To quantify the contribution of each in-
put stream, we conduct a translation experiment
with the How2Sign dataset (without pre-training),
feeding the concatenation of the multiple streams
directly to a language model (T5). The resulting
BLEU scores are shown in Tab. 8, showing that
all of the streams contribute to translation. These
results should be interpreted as assessing the true
relative importance of each stream, however, since
this is a very small-scale experiment.

B Phonological Feature Recognition

We also conduct experiments on phonological fea-
ture recognition, that is the classification of linguis-
tic features of signs, for two of the ISLR datasets.
We report the Recall at 1 (prediction accuracy) for

16 commonly used phonological features (from
ASL-LEX 2.0 (Sevcikova Sehyr et al., 2021)) in
Tab. 9. The training setups and hyperparameters are
identical to those of the full fine-tuning method in
Sec. 4.3, except that we now train 16 classification
heads simultaneously. We also find that removing
weight decay gives a slight performance boost.

To the best of our knowledge, no previous work
has reported phonological feature recognition ac-
curacies on the ASL Citizen dataset. Similarly,
though the Sem-Lex authors (Kezar et al., 2023)
report phonological feature prediction accuracies,
they are not comparable to ours, which are com-
puted on the entire test set available to the public.
Thus, we hope that our results in Tab. 9 can serve
as a benchmark for future work.

C ASL Phonological Feature
Classification Details

American Sign Language (ASL) can be described
through a set of phonological features, similarly
to the description of spoken languages via fea-
tures. These features capture the essential compo-
nents of sign formation, including hand configura-
tion, movement patterns, and spatial relationships.
Tab. 10 presents the number of classes for each
of the phonological features we use in our phono-
logical feature prediction analysis for Sem-lex and
ASL-Citizen, and below we list the values of each
feature. This commonly used feature set is from
ASL-LEX 2.0 (Sevcikova Sehyr et al., 2021)).

Handshape v, 5,y,h, open_b, c, baby_o, flat_h,
0,1, 1, a, open_8, w, curved_5, d, flatspread_5, i, f,
s, p, flat_b, curved_4, flat_o, g, open_e, 4, closed_b,
bent_1, 3, flat_horns, goody_goody, flat_m, bent_v,
flat_1, r, 8, curved_v, open_h, curved_1, horns,
flat_ily, flat_n, bent_l, stacked_3, ily, e, flat_v,
curved_l, spread_open_e, curved_h, 7, closed_e, t,
flat_4, open_f, k, and spread_e.

Nondominant Handshape v, 5, y, none, open_b,
Dominance Condition Violation, B, 1, a, open_8,
C, s, h, o, flat_b, curved_5, p, c, S, closed_b, 4,
flat_m, bent_v, flat_1, flat_h, baby_o, curved_yv,
i, f, bent_1, Symmetry Violation, flatspread_5,
flat_o, curved_1, open_h, stacked_35, g, 1, bent_I,
3, 8, spread_open_e, e, horns, w, r, Lax, curved_l,
open_e, flat_4, O, curved_b, A, ily, flat_v, and
flat_horns.

Minor Location Neutral, Head Away, Body
Away, Hand Away, Palm, Finger Tip, Forehead,
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Number of Classes

Phonological Feature Sem-Lex  ASL Citizen

Major Location 5 6
Minor Location 37 37
Second Minor Location 37 38
Contact 2 2
Thumb Contact 3 3
Sign Type 6 6
Repeated Movement 2 2
Path Movement 8 8
Wrist Twist 2 2
Selected Fingers 12 12
Thumb Position 2 2
Flexion 8 8
Spread 3 3
Spread Change 3 3
Nondominant Handshape 56 57
Handshape 58 58

Table 10: Number of classes for each phonological
feature represented in two ASL datasets, Sem-Lex and
ASL Citizen. Most features have the same number of
classes across datasets, while a few features have values
that don’t appear in one of the datasets (for example,
Second Minor Location has 37 classes that appear in
Sem-Lex and 38 classes in ASL Citizen).

Finger Front, Mouth, Chin, Other, Upper Arm,
Torso Top, Forearm Back, Cheek Nose, Wrist
Front, Palm Back, Finger Back, Finger Radial, Un-
der Chin, Finger Ulnar, Wrist Back, Shoulder, Arm
Away, Forearm Ulnar, Torso Mid, Heel, Clavicle,
Eye, Forearm Front, Neck, Torso Bottom, Upper
Lip, Head Top, Elbow Back, Hips, and Waist.

Second Minor Location Neutral, Head Away,
Torso Bottom, Finger Tip, Hand Away, none, Palm,
Forearm Back, Finger Back, Body Away, Torso
Top, Finger Front, Chin, Arm Away, Upper Arm,
Finger Ulnar, Eye, Hips, Neck, Palm Back, Fore-
arm Front, Finger Radial, Mouth, Heel, Torso Mid,
Other, Waist, Cheek Nose, Forehead, Elbow Back,
Under Chin, Clavicle, Shoulder, Forearm Ulnar,
Head Top, Upper Lip, and Forearm Radial.

Sign Type Symmetrical Or Alternating, One
Handed, Dominance Violation, Asymmetrical Dif-
ferent Handshape, Asymmetrical Same Handshape,
and Symmetry Violation.

Path Movement Curved, Back And Forth,
Straight, Circular, None, Z-shaped, Other, and X-
shaped.

Flexion Fully Open, Curved, Bent, Flat, none,
Fully Closed, Stacked, and Crossed.

Selected Fingers
imr, r, and mrp.

im, imrp, p, i, t, m, ip, imp, mr,

Major Location Neutral, Head, Body, Hand, and
Arm.

Flexion Change 1.0, 0.0, and none.

Spread Change 1.0, 0.0, and none.

Thumb Contact 1.0, 0.0, and none.
Spread 1.0, 0.0, and none.

Thumb Position Closed and Open.

Repeated Movement 1.0 and 0.0.
Contact 1.0 and 0.0.
Wrist Twist 0.0 and 1.0.

D Cluster Samples

We visualize clustering results for the face, left
hand, right hand, and upper body pose in Figs. 5
to 8. All cluster samples were randomly selected
(i.e., without manual curation or cherry-picking).
Each row represents a cluster. For each channel
(Face, Left hand, Right hand, Upper Body), we
include 10 random examples for 5 random clusters.
While there is variability within each cluster, and
some clusters contain a large mix of poses, we
can also see a great deal of systematic behavior,
where the images in a cluster tend to correspond to
similar gestures regardless of signer appearance or
other visual properties. The caption for each figure
provides our interpretations of some of the clusters.

E Translation examples

We provide example translations produced by
our model given inputs from three ASL datasets:
How2Sign (instructional content, Tab. 11),
FLEURS-ASL (zero-shot setting, Tab. 12), and
OpenASL (general domain with native signers and
varying background, Tab. 13).
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(1) Reference
(Uthus et al., 2023)
(Rust et al., 2024)
Ours

And that’s a great vital point technique for women’s self defense.
It’s really great for women’s self defense.

This is a really great point for women’s self defense.

If you’re a bigger person we’re talking about really self defense here.

(2) Reference
(Uthus et al., 2023)
(Rust et al., 2024)
Ours

In this clip I'm going to show you how to tape your cables down.

In this clip we’re going to show you how to cut a piece of clay.

In this clip I’'m going to show you how to clip the cable, the cable.

In this clip I'm going to show you how to brand out the cable strings.

(3) Reference
(Uthus et al., 2023)
(Rust et al., 2024)

Ours

In this segment we’re going to talk about how to load your still for distillation of
lavender essential oil.

In this clip we’re going to talk about how to feed a set of baiting lizards for a lava
field oil.

In this clip we’re going to talk about how to feed the trail for draining clean for
laborer oil.

In this clip we’re going to talk about how to take our stick for disinfectant oil.

(4) Reference
(Uthus et al., 2023)
(Rust et al., 2024)

Ours

You are dancing, and now you are going to need the veil and you are going to just
grab the veil as far as possible.

Their hopping and dancing is now, they’re going to need their squat and squat and
they’re going to be able to move independently.

So that she’s going to get her hips up as far as she can, and now she’s going to lift
her head up as far as possible.

Her dancing and now she needs her feather to grab it with her foot as far as possible.

(5) Reference

(Uthus et al., 2023)

(Rust et al., 2024)

Ours

But if you have to setup a new campfire, there’s two ways to do it in a very low
impact; one is with a mound fire, which we should in the campfire segment earlier
and the other way to setup a low impact campfire is to have a fire pan, which is just a
steel pan like the top of a trash can.

But if you have to set up a new campfire, there are two ways to do a low impact fire,
one is a cone fire, which we have to do in the tent earlier, and the other one is to set
up a campfire in a fire pan.

But if you have to set up a new campfire, this is one way to do it in a low impact. One
is a monk fire. One is a campfire. The other one is to set a campfire in a campfire.
That’s just a post like the top of the post.

But if you have to set a new campfire, there are two ways to do a low impact one is a
bond fire, which we should do in your campfire, another one is to set a campfire in a
fire pan that is just just set a pan like the top of it pan.

(6) Reference
(Uthus et al., 2023)
(Rust et al., 2024)
Ours

So, this is a very important part of the process.
Alright, let’s get started.

It’s an important part of the process.

This is a very important part of the process.

Table 11: Qualitative translation examples from the How2Sign dataset, comparing SHuBERT-based translations to
previous models.

28806



cluster 141

cluster 22

cluster 57

cluster 251

Figure 5: Sample face clusters. Each row represents a distinct cluster and 10 random examples from it. Cluster 141
includes mainly open-mouthed expressions with raised eyebrows, cluster 57 seems to capture closed or squinting
eyes with neutral mouths, and cluster 251 corresponds to a slightly tilted head with direct gaze and little mouth
opening. NOTE: For clarity, we show unblurred cropped faces here.

CIUSter 146 .
cluster 125 E
4
—
cluster 98 R
- -

Figure 6: Sample left hand clusters. Each row represents a distinct cluster and 10 random examples from it. Cluster
125 shows pointing configurations with the index finger extended. Cluster 115 generally corresponds to closed fist
formations oriented with the thumb on top. Cluster 51 seems to be a mix of poses without a consistent description.
Cluster 98 seems to include mainly transitional hand movements around the chest.
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cluster 146

cluster 105

cluster 42

cluster 76

Figure 7: Sample right hand clusters. Each row represents a distinct cluster and 10 random examples from it. Cluster
42 captures mainly multi-finger pointing gestures. Cluster 76 corresponds to clasped or overlapped hands in resting
positions.

. ..-.-...--
e ..........
e ..........
- 168..........
CIUSter19 ..........

Figure 8: Sample upper body clusters. Each row represents a distinct cluster and 10 random examples from it.
Cluster 5 seems to correspond to configurations of the upper body pose where the right hand is at shoulder level
and the left hand is down. Cluster 43 seems to be a configuration where the two hands are raised and close to each
other near the chest, and the signer is facing slightly to the right. This might correspond to signs being performed
with both hands involved/active. Cluster 36 appears similar, but with the hands slightly farther apart. Cluster 19 is
generally similar to cluster 43, except that the signer tends to be facing slightly to the left. Finally in cluster 168, the
right hand is usually above the shoulder and close to the face/head.
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(1) Reference During the 1980s he worked on shows such as Taxi, Cheers, and The Tracy Ullman

Show.
(Tanzer, 2024b) In the 1980s, she worked in theaters like taxesi, cheesy, and tracy.
Ours In the 1980’s, she worked for theaters like Taxi Chers, Tracy Ullman Shaw.
(2) Reference The rise of new technologies allows us to see and investigate brain structures and

processes never seen before.
(Tanzer, 2024b) There is a new technique to detect brains and vision.

Ours Increasing new technology that allows people to consider investigating their brain
structures and brain structures.
(3) Reference The Articles required unanimous consent from all the states before they could be

amended and states took the central government so lightly that their representatives
were often absent.
(Tanzer, 2024b) The law requires all states to agree on a standard and that it is a legal requirement.
Ours The state’s agreement requires all standardized agreements to remove the standards
of representatives from the state to represent the state’s amendments.

Table 12: Qualitative translation examples from the FLEURS-ASL dataset, comparing SHuBERT-based translation
(zero-shot) to a previous approach (Tanzer, 2024b).
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(1) Reference thank you
(Shi et al., 2022) thank you
Ours thank you
(2) Reference come on
(Shi et al., 2022) come on
Ours maybe
(3) Reference now i’ve come this far and it ’s a different team
(Shi et al., 2022) how do you feel about it
Ours it feels like a crash in the team
(4) Reference i was there from the beginning to the end and time went by fast
(Shi et al., 2022) the students were thrilled by this
Ours i just wanted to leave because it went ahead and started
(5) Reference i’m here at nad’s 50th wow
(Shi et al., 2022) the nad has been <unk> for many years
Ours well the nad is shocked to have 50 years of dhh
(6) Reference i entered the yap 2018 competition and won
(Shi et al., 2022) the competition was started with ideas
Ours i enrolled in that competition in 2018 and then i won
(7) Reference you can check out their kickstarter in the link below
(Shi et al., 2022) you can watch the conversation at lake county
Ours you can check out their kickstarter link below
(8) Reference that is one thing i found interesting and wanted to share with you today
(Shi et al., 2022) i also am the president of the jr. nad conference here
Ours that’s one interesting thing she wanted to share with you
(9) Reference those are the different types of bills
(Shi et al., 2022) schools have switched to teaching students
Ours ilooked at several different types of interpreting services
(10) Reference dry january has picked up in popularity since it began in 2012
(Shi et al., 2022) krispy kreme is bringing back its original playstation in 2016
Ours the qury dry january started in 2012
(11) Reference we will be happy to respond give you support and listen to your concerns
(Shi et al., 2022) please review and submit your time passion and support this important issue
Ours the nad is willing to respond and support your concerns
(12) Reference there were videos posted on the internet that showed a person walking on the grass
completely engulfed in flames
(Shi et al., 2022) a video shows the officer walking up to his shoulder and before he was shot
Ours videos posted on social media of him walking on a grass walking completely with
fire
(13) Reference and people would become carpenters laborers mechanics plowers and farmers
(Shi et al., 2022) the next year 1880 the nad was established in the first operation 30 of the house in
2015
Ours and he was forced to wear a wearing a labover meganic and a financial warper
(14) Reference for nad youth programs related information please contact us via facebook at the nad
youth programs or email us through
(Shi et al., 2022) you can contact us through our website where you can check our facebook page
online at <unk>
Ours if you want to contact the nad youth program you can contact us through our facebook
page at the nad youth program or youth program through our website
(15) Reference last week suspects gregory mcmichael and his son travis were arrested and charged

(Shi et al., 2022)

Ours

with felony murder and aggravated assault

last week a black man named <unk> <unk> was arrested and charged with felony
murder and aggravated assault

last week two suspects gregory mcmichael and his son travis were arrested and
charged with felony murder and wounded by another gravated assaulter

Table 13: Qualitative translation examples from the OpenASL dataset, comparing SHuBERT-based translations to a
previous model (Shi et al., 2022)
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