
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 28715–28732
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Pretraining Context Compressor for Large Language Models with
Embedding-Based Memory

Yuhong Dai1, Jianxun Lian2, Yitian Huang1, Wei Zhang1, Mingyang Zhou1,
Mingqi Wu3, Xing Xie2, Hao Liao1

1College of Computer Science and Software Engineering, Shenzhen University, China
2Microsoft Research Asia

3Microsoft Gaming
jianxun.lian@outlook.com, haoliao@szu.edu.cn

Abstract

Efficient processing of long contexts in large
language models (LLMs) is essential for real-
world applications like retrieval-augmented
generation and in-context learning, especially
in resource-constrained environments such as
edge computing. This paper explores the
embedding-based context compression to re-
duce inference costs while preserving the down-
stream LLM configurations. We propose a
decoupled compressor-LLM framework, pre-
trained on text reconstruction and completion
tasks, designed to effectively preserve essen-
tial contextual information within condensed
embedding representations. Our extensive ex-
periments investigate pretraining, model config-
urations, compression rates, efficiency across
tasks, and adaptability to various LLMs. Re-
sults demonstrate that our approach outper-
forms competitive baselines in three domains
and across eight datasets while being adapt-
able to different downstream LLMs. We find
that thorough pretraining and carefully selected
compression rates, such as 4x and 16x, enable
a lightweight compressor to achieve a good
balance between accuracy and speed. These
findings underscore the potential of embedding-
based compression to enhance LLM efficiency
and motivate further research in this area.

1 Introduction

Processing long context as input in large language
models (LLMs) is essential for numerous real-
world tasks, such as retrieval-augmented genera-
tion (RAG) (Gao et al., 2023), in-context learn-
ing (Li et al., 2024a) scenarios with extensive con-
tent in each demonstration, and life-long AI com-
panions (Zhong et al., 2024) requiring the preser-
vation of past interactions for a consistent expe-
rience. Consequently, enabling LLMs with long
context processing capabilities (Chen et al., 2023b;
Ding et al., 2024) has become a significant trend in
newly released models. However, inference with

long context poses severe challenges, as the com-
putational cost increases quadratically with the se-
quence length (as illustrated in Figure A1), which
is particularly unfriendly for low-resource devices
such as consumer endpoints.

To mitigate these costs without altering LLM ar-
chitecture, explicit and implicit compression meth-
ods have been proposed. Explicit compression
methods, such as Selective Context (Li et al., 2023)
and LLMLingua-2 (Pan et al., 2024), compact the
context by removing redundant or unimportant to-
kens from the input. Implicit compression methods,
such as AutoCompressor (Chevalier et al., 2023),
xRAG (Cheng et al., 2024), and ICAE (Ge et al.,
2024), compress the input into several dense em-
bedding vectors (aka memory slots). This approach
is inspired by the idea that embedding representa-
tions act as a new type of compact information
modality, conveying denser information than ex-
plicit text tokens.

In this paper, we focus on implicit compression,
as it has the potential to achieve higher compres-
sion rates, leading to more efficient LLM inference.
While there are several pioneering works in this
direction, we observe that some fundamental ques-
tions remain understudied. For instance, can we de-
velop a universal compressor that benefits various
downstream LLMs? Can we decouple the compres-
sor from the downstream LLMs, allowing the com-
pressor architecture to be much more lightweight
while still maintaining high performance? Addi-
tionally, how does the performance change with
varying compression rates? Addressing these ques-
tions, our research aims to provide insights into de-
signing and optimizing implicit compression meth-
ods for efficient LLMs.

We propose a context compression architecture,
as illustrated in Figure 1. Our design principle
is to decouple the context compressor from the
downstream LLM, ensuring that the compressor
can be lighter than the LLM. The compressor and

28715

the LLM generator are connected via a converter,
which projects compressed memory slots into com-
patible vectors for the downstream LLM genera-
tor. We pretrain the context compressor using two
tasks: the reconstruction task and the language
completion task. The goal of these tasks is to
enable the compressed slots to effectively mem-
orize useful information from the context, thereby
supporting high-quality language generation. We
conduct thorough experiments, examining key as-
pects of the context compressor, such as pretraining
tasks, model and data size, compression rate, and
efficiency in various downstream tasks. These ex-
periments lead to the following key findings:
Pretraining: Thorough pretraining of the compres-
sor model is critical for achieving optimal perfor-
mance. Both content reconstruction and language
completion tasks are important for generating ef-
fective memory slots.
Suggested Compression Rates: 4x and 16x com-
pression rates are recommended for current appli-
cations. A 4x compression achieves near-perfect
content reconstruction, while 16x offers significant
speed gains with minimal information loss.
Higher Compression Rates: Rates like 128x and
256x can still condense useful information but re-
sult in higher information loss, highlighted by the
challenges in compressor pretraining.
Model Size: Larger backbone models for compres-
sors generally produce higher quality memory slots,
indicating the untapped capacity of memory slots.
Scaling to Longer Contexts: To scale to longer
context compression with multiple memory slots, it
is important to wrap each segment of memory slots
with special tokens to clearly delineate memory
boundaries.

These findings suggest that embedding-based
context compression holds significant potential for
improving the efficiency of LLM inference, though
its full capabilities have yet to be fully explored.
We hope this paper serves as a foundation and moti-
vates further research on pretraining universal con-
text compressors for LLMs. To summarize, the
main contributions of this paper are:

• We conduct empirical studies on context com-
pression for efficient LLM inference, utilizing a
decoupled compressor-LLM framework and two
pretraining tasks. We emphasize that embedding-
based compression is a promising and underex-
plored direction in current literature.

• We conduct a comprehensive investigation into

the impact of pretraining and other key config-
urations, such as compression rate and memory
boundary tokens, on the effectiveness of context
compression. Based on our findings, we provide
key insights for best practices in this area.

• Our method outperforms competitive baselines
across three different domains and eight datasets.
Additionally, we demonstrate the high adaptabil-
ity of our method to various downstream LLMs.
Source code are released at https://aka.ms/
memorycompressor.

2 Methodology

2.1 Problem Definition
This paper focuses on implicit context compression.
Given an input sequence x = (x1, . . . , xt) of t
tokens, a compressor model converts x into a dense
memory representation:

h̃ = fcomp(x1, . . . , xt) (1)

where h̃ = (h1, . . . ,hm) is a concatenation of m
embedding vectors, and the compression rate is
r = t/m. The dense memory can then substitute
the original context x for downstream tasks in an
LLM for text generation:

fllm : (h̃, prompt) → X (2)

Our approach involves a two-stage training process
that includes both pretraining and fine-tuning of the
compressor, while keeping the downstream LLM
frozen. An overview of the framework is presented
in Figure 1.

2.2 Model Architecture
To enhance adaptability to different LLMs, our
compressor consists of two components: an en-
coder and a converter. The encoder condenses
the context into embedding representations, with
the embedding dimension determined by the en-
coder’s backbone model. These representations are
then processed by the converter, which scales their
dimensions and adjust the embedding semantics.
This ensures that the memory vectors are compati-
ble with a wide range of downstream LLMs, allow-
ing for more efficient and flexible inference across
diverse models and tasks.
Memory Encoder. The memory encoder trans-
forms textual input into high-information-density
memory embeddings. As mainstream LLMs have

28716

https://aka.ms/memorycompressor
https://aka.ms/memorycompressor

Title: Donald Trump 2024 TIME Person of the Year
Context: The Donald Trump's unprecedented political
comeback culminated in his victory in the 2024 presidential
election, marking a remarkable transformation from his
controversial exit in 2021. After clearing the Republican
field in one of the fastest contested primaries in history,
Trump survived an assassination attempt and defeated
both Joe Biden and Kamala Harris······

 Generative LM

Memory Token
Plain Token

Memory Embedding

Compressor

LLM

Question:
Who is TIME's 2024 Person of Year?

Text Completion

With Memory
Response:
Donald Trump

Without Memory
Response: I don't know who Time Magazine's Person of
the Year is for 2024 because my information goes up to
October 2023.

Chunking

…
Encoder

Training

Inference

Text Reconstruction

Memory
context

User
Instruction

… …
x1 x2 xt-1 xt

… concat

LLM

Input Embeddings

Memory BOS Embedding Memory EOS Embedding <AE> Embedding

x1 x2 xk-1 xk

…

LLM

Input Embeddings

concat

…

(|)ip x
{1,..., }i t

([1 :])Compressor x t
(|)ip x

{ 1,..., }i k n
([1 :])Compressor x k

{ {

Figure 1: Overview of our PCC Framework. Given a long context, the compressor condenses the content into
embedding-based memory slots for fast and accurate inference with an downstream LLM.

increasingly adopted the decoder-only transformer
structure in recent years, we use this structure as
the backbone in experiments, utilizing two variants:
GPT2-Large1 and Llama-3-8B-Instruct2. Specifi-
cally, given a sequence of input tokens to be com-
pressed, (x1, . . . , xt), we first append m special
memory tokens (< mem1 >, ..., < memm >) to
the end. We then take the hidden representations
of these memory tokens from the final transformer
layer as the encoded memory slots. In our experi-
ments, t is set to 256 as we explore the maximum
compression rate of 256x. If the original context
is longer than t, it will be divided into multiple
segments, each generating memory slots indepen-
dently.
Memory Converter. The converter acts as an inter-
mediary to adapt the memory embeddings, ensur-
ing compatibility with the target LLM decoder. It
addresses potential mismatches in both the embed-
ding dimensions and the semantics produced by the
memory encoder, aligning them with the require-
ments of the downstream LLM decoder. Addition-
ally, the converter facilitates efficient adaptability
to various downstream LLMs without large-scale
pre-training. This strategy utilizes the pre-trained
knowledge embedded in the compressor while en-
abling efficient adaptation to new decoders. Specif-
ically, the converter is a two-layer MLP, with RM-

1https://huggingface.co/openai-community/
gpt2-large

2https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

SNorm (Zhang and Sennrich, 2019) applied to the
memory embeddings and GELU (Hendrycks and
Gimpel, 2016) activations in the first hidden layer.

2.3 Pre-training

Unlike other scenarios such as dense retrieval (Xiao
et al., 2022) or generative language modeling (Rad-
ford et al., 2018), where pre-training tasks typically
involve either token reconstruction or next token
prediction, compressed memories play a unique
role. On one hand, we want the memories to recall
the original content, and on the other hand, we want
them to assist in the generation of future tokens.
Therefore, we use both types of pre-training tasks:
Auto-Encoding for text reconstruction and Auto-
Regression for text completion. Specifically, the
compressor first compresses the original lengthy
context x into memory slots h̃. To distinguish the
boundaries of memory slots from different con-
text segments (as mentioned in the Memory En-
coder Section, lengthy context will be divided into
segments), a pair of special tokens <MEM> and
</MEM>, which indicate the beginning and end of
a memory representation, are used to wrap each
memory slot. Containing memory slots in the in-
put prompt, an LLM performs the following pre-
training tasks:
Text Completion: The purpose of text completion
is to allow memory representation to extract in-
formation from the original text that is beneficial
to LLMs. Using the memory representation h̃ of

28717

https://huggingface.co/openai-community/gpt2-large
https://huggingface.co/openai-community/gpt2-large
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

the input sequence prefix (x1, ...xk−1), the LLM
completes the rest part of sequence:

LTC = − 1

n− k

n∑

i=k+1

log fllm(xi| h̃, xk, ...xi−1)

(3)
Text Reconstruction: Instead of using a prompt
like "Please repeat the sentence:" to instruct the
LLM to perform the text reconstruction task, we
follow (Ge et al., 2024) and use a new token <AE>
after the memory h̃ to prompt the LLM to conduct
text reconstruction:

LTR = − 1

n

n∑

i=1

log fllm(xi| h̃, <AE>, x1, ...xi−1)

(4)
The final loss function, L, is defined as:

L = λLTC + (1− λ)LTR (5)

We observe that the difficulty of text reconstruc-
tion from memories increases with the length of
the original context. To facilitate training, we pro-
pose a two-step strategy. In the first stage, we
train the model on a warm-up dataset containing
shorter texts and utilizing a lower compression rate.
Specifically, texts are divided into fixed-length se-
quences of 128 tokens and a 4x compression rate
is applied. This configuration is used solely for the
text reconstruction task and utilize 32M tokens for
training. In the second stage, training is conducted
on a larger dataset with 5B tokens with extended
text segments of 256 tokens. Both text comple-
tion and text reconstruction tasks are carried out
concurrently, with the weighting coefficient λ set
to 0.5. Since pre-training is crucial for achieving
a high-quality context compressor, we denote our
method as PCC, short for "Pre-training Context
Compressor."

2.4 Fine-tuning

While pre-training enables the compressor to con-
dense information in a general manner, different
specific scenarios, such as RAG-based QA or in-
context learning, may require slightly different
memorization patterns. To capture this nuance, we
conduct domain-level fine-tuning on the compres-
sor. Typically, the fine-tuning stage requires only
a small amount of domain-specific data to achieve
superior performance. Here, "domain-level" in-
dicates that we do not fine-tune the compressor
on a dataset-by-dataset basis. Instead, we group

Stage Source Train Test
Pre-training FineWeb 19,167,479 576

Fine-tuning
SQuAD 86,821 5,928
GSM8K 6,725 748

HPD 987 110

Table 1: Basic Statistics on the number of data samples
of the Datasets

datasets by their application type (such as RAG)
and fine-tune on only one of the datasets within the
same domain to observe whether the compressor
can generalize to other datasets within this domain.

3 Experiments

3.1 Experimental Setup
3.1.1 Datasets
This study leverages multiple datasets, including
FineWeb (Penedo et al., 2024), SQuAD (Rajpurkar
et al., 2018), and GSM8K (Cobbe et al., 2021), to
support training and evaluation. A detailed sum-
mary of the datasets utilized at different training
stages is provided in Table 1. During the pre-
training phase, the FineWeb dataset is employed.
We utilize 5 billion tokens from the FineWeb. For
the fine-tuning phase, three datasets are incorpo-
rated: SQuAD, with 86,821 training examples
and 5,928 test examples; GSM8K, consisting of
6,725 training examples and 748 test examples;
and HPD (Harry Potter Dialogue dataset) (Chen
et al., 2023a), containing 987 training examples and
110 test examples. The training sets of SQuAD,
GSM8K and HPD are employed as the datasets
for the QA tasks and in-context learning tasks, re-
spectively. The selection of these datasets ensures
a diverse set of tasks, enabling robust and com-
prehensive evaluation across the pre-training and
fine-tuning stages.

3.1.2 Experimental Details
During pretraining, we employ Llama-3-8B-
Instruct as the target LLM and train two types
of compressors: a lightweight compressor and a
large compressor, which uses the same decoder-
only architecture. For the lightweight compressor,
we utilize GPT2-Large as the base model, trained
using a full-parameter fine-tuning method. The
large compressor employs Llama-3-8B-Instruct as
its base model, trained with Low-Rank Adapta-
tion (LoRA) (Hu et al., 2021) with a parameter
setting of r = 64. The learning rates are set to

28718

4 16 64 128 256
Ratio

0
10
20
30
40
50
60
70
80
90

100

M
et

ric
s

BLEU
BLEU-4
ROUGE-L

(a) Converged metrics (Lite)

0 10000 20000 30000 40000 50000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ev
al

 L
os

s

4x
16x
64x
128x
256x

(b) Different compression rate (Lite)

0 10000 20000 30000 40000 50000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ev
al

 L
os

s

Lite-4x
Lite-16x
Lite-128x

Large-4x
Large-16x
Large-128x

(c) Light v.s. Large compressor

Figure 2: The converged metrics and pre-training curves for various configurations in the text reconstruction task.

1× 10−4 during the pre-training phase. The train-
able parameters remain consistent between the pre-
training and fine-tuning phases. Pre-training takes
123 hours for PCC (lite) and 204 hours for PCC
(large) using four A100 (80GB) GPUs on a node.
In all experiments, the decoding method for the
LLM decoder is greedy decoding. Further imple-
mentation details can be found in Section A.1.

3.1.3 Baselines
We adopt five competitive context compression
models as the baselines:
AutoCompressor (Chevalier et al., 2023) We use
the princeton-nlp/AutoCompressor-Llama-2-7b-6k
checkpoint, which pre-train from Llama-2-7b-hf3,
to generate summary vectors, achieving a compres-
sion rate of 40×.
xRAG (Cheng et al., 2024) We use the
Hannibal046/xrag-7b checkpoint. It employs
Mistral-7B-Instruct-v0.24 as its target LLM and
is extensively fine-tuned on multiple downstream
datasets, including SQuAD, NQ, and TriviaQA.
COCOM (Rau et al., 2024) We adopt the 4x, 16x,
and 128x Lite compression models released by
the authors, along with the fine-tuned target LLM
Mistral-7B-Instruct-v0.2.
ICAE (Ge et al., 2024) We use the sgge-
tao/icae/mistral_7b_ft_icae checkpoint with 4x
compression rate. It employs Mistral-7B-Instruct-
v0.2 as its target LLM.
LLMLingua-2 (Pan et al., 2024) LLMLingua-2
is an explicit compression method. For our ex-
periments, we use the microsoft/llmlingua-2-xlm-
roberta-large-meetingbank checkpoint. The com-

3https://huggingface.co/meta-llama/
Llama-2-7b-hf

4https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

pression rate is set to 4x, and we conduct experi-
ments with Llama-3-8B-Instruct as the target LLM.

3.2 Pre-Training Dynamics

We begin by examining the convergence of pre-
training using different configurations.
Text Reconstruction Figure 2a illustrates the abil-
ity to reconstruct original text from memory slots.
We use commonly-used metrics in machine trans-
lation, namely BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004). The results indicate that with
compression rates of 4x and 16x, the compressor
captures almost all the original content. However,
the reconstruction quality drops sharply at 64x com-
pression. Figure 2b presents the training curves,
showing that lower compression rates, such as 4x
and 16x, quickly converge to a low loss state, while
higher compression rates face difficulties in con-
vergence. Switching to a larger compressor only
slightly improves the situation but does not change
the overall pattern, as shown in Figure 2c. We offer
a case study on text reconstruction with PCC in
Table A5 in Appendix.
Text Completion Figure 3 presents the training
curves for the text completion task. The main con-
clusions are similar to those in the text reconstruc-
tion task, but with two unique characteristics. First,
compressors with lower compression rates take
longer to converge. For example, the 4x compres-
sor takes the longest time to converge, while com-
pression rates of 64x and above converge quickly
but remain at a high loss value. Second, the ad-
vantage of larger compressors over smaller ones is
much more significant in the text completion task
compared to the text reconstruction task. Addi-
tionally, we evaluate the perplexity with various
number of memory slots in the context, and the
results are presented in Table A1 in Appendix A.2.

28719

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

Dataset SQuAD HotPotQA AdversarialQA NQ Average
Metrics F1 EM F1 EM F1 EM F1 EM F1 EM
w/o Context 14.84 3.41 24.80 14.90 12.05 6.43 27.48 15.02 19.79 9.94Reference
w/ Context 79.81 59.97 64.60 51.12 56.10 38.67 64.64 51.38 66.29 50.29

Baselines

AutoCompressor 21.46 0.35 16.29 0.29 14.09 2.00 25.57 0.63 19.35 0.82
xRAG 18.19 3.46 27.51 16.29 13.75 3.47 38.06 20.80 24.38 11.01
4x COCOM-Lite 21.70 9.17 40.07 32.32 19.45 13.90 50.45 41.87 32.92 24.32
16x COCOM-Lite 19.23 8.13 31.94 25.27 19.35 14.73 26.36 20.66 24.22 17.20
128x COCOM-Lite 19.56 7.61 23.63 18.68 19.47 15.13 18.79 14.36 20.36 13.95
ICAE 45.69 21.63 35.16 26.68 27.98 11.70 59.15 47.35 42.00 26.84
LLMLingua2 51.20 32.18 55.72 44.18 35.41 24.80 68.44 55.85 52.69 39.25

PCC (Lite)

4x Memory Context 75.83 57.44 50.37 42.20 50.36 37.83 70.51 61.97 61.77 49.86
16x Memory Context 56.82 37.72 35.67 27.88 40.94 28.07 62.56 52.73 49.00 36.60
64x Memory Context 37.89 22.66 20.62 14.27 27.02 16.30 36.82 29.18 30.59 20.60
128x Memory Context 32.24 15.92 22.98 16.92 25.18 15.73 44.25 36.08 31.16 21.16
256x Memory Context 26.71 12.63 18.69 12.92 22.32 13.93 35.69 27.86 25.85 16.84

PCC (Large)
4x Memory Context 77.76 60.04 48.19 39.97 52.56 39.37 75.96 67.71 63.62 51.77
16x Memory Context 55.32 37.72 33.76 25.27 38.96 26.47 71.09 61.97 49.78 37.86
128x Memory Context 33.72 18.86 27.60 20.44 29.75 21.13 62.57 53.30 38.41 28.43

Table 2: Performance comparison of various methods on the QA task across four datasets. NQ stands for Natural
Questions dataset, EM indicates Exact Match. The best-performing results on each dataset are highlighted in bold,
while the second-best results are underlined. To address potential inconsistencies in decoder configurations across
baselines, we further evaluate our method using alternative decoders to ensure fairness. We provide additional
detailed results in Table A2 in the Appendix.

The results show that our model can generalize to
multiple segments well.

3.3 Results of Downstream Tasks
3.3.1 RAG-based QA
The first type of downstream task is retrieval-
augmented generative question-answering (RAG-
based QA). Each data sample consists of a triple:
(context, question, answer). Reference (w/o Con-
text) means prompting the target LLM only with
the question, while Reference (w/ Context) means
concatenating the context and question as the
prompt. For all compression models, including
both our PCC and baselines, they compress the con-
text and then concatenate the compressed memory
with the original question as the prompt. To demon-
strate the generalization ability of our model, for
PCC models, we fine-tune only using the training
set of SQuAD and then evaluate on SQuAD, Hot-
PotQA (Yang et al., 2018), AdversarialQA (Bartolo
et al., 2020), and NQ (Karpukhin et al., 2020). For
baselines, we use their released settings, so they
may be fine-tuned with multiple training sets, such
as xRAG.

We evaluate performance using F1 and Exact
Match (EM) metrics, where F1 score denotes the
harmonic mean of precision and recall, and EM
evaluates whether the predicted response precisely
aligns with the ground truth answer.

Table 2 reports the overall results. First, in most

cases and in terms of average scores, PCC (large)
performs best, followed by PCC (lite). This verifies
the efficacy of our method. The only exception is
on HotPotQA, where LLMLingua2 outperforms
our models. However, our PCC (Large) 4x outper-
forms LLMLingua2 in all the other three datasets.
Second, 4x compression preserves the information
from the context well for both lite and large com-
pressors, sacrificing only slightly in performance
compared to the reference model with the full con-
text as explicit input. With larger compression
rates, the performance drops more significantly.
However, even with a compression rate as high as
256x, PCC still outperforms Reference (w/ Con-
text), indicating that the memory still captures use-
ful information in the highly compressed memory
slots. Furthermore, our models demonstrate strong
generalization ability, performing well on the Hot-
PotQA, AdversarialQA, and NQ datasets without
fine-tuning on their training sets.

3.3.2 In-Context Learning

The challenge of RAG-based QA lies in learning to
locate useful evidence from the augmenting context
for answer generation. In contrast, the in-context
learning (ICL) task requires the ability to infer la-
tent patterns from demonstrations in the augment-
ing context and apply these patterns to the current
task. This task is more challenging than direct ev-
idence identification and thus warrants a separate

28720

0 10000 20000 30000 40000 50000
Step

2.45

2.50

2.55

2.60

2.65
Ev

al
 L

os
s

4x
16x
64x
128x
256x

(a) Comparison across different compression rates (Lite)

0 10000 20000 30000 40000 50000
Step

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Ev
al

 L
os

s

Lite-4x
Lite-16x
Lite-128x

Large-4x
Large-16x
Large-128x

(b) Comparison between Lite and Large compressors

Figure 3: The pre-training curves with various configu-
rations in the text completion task.

testing scenario. We use three datasets for evalu-
ation: GSM8K (mathematical reasoning), SST-2
(sentiment analysis) (Socher et al., 2013), and WSC
(Winograd Schema Challenge) (Levesque et al.,
2012). PCC (Large) is fine-tuned with the training
set of GSM8K. We compare zero-shot generation,
few-shot ICL with a maximum context of 150 to-
kens and 750 tokens, and PCC (Large) with 4x and
16x compressed in-context examples. Results are
reported in Table 3. PCC performs very well in the
ICL scenario, with a 4x compression rate perform-
ing on par with or even better than explicit ICL
with 750 tokens.

3.3.3 Role-Playing

Role-playing is a critical capability of LLMs that
facilitates many applications, such as social simu-
lations, AI companions, and digital twins. A com-
monly used strategy for LLM-based role-playing
tasks is to include the character’s profile and past
experiences (such as historical utterances and be-
haviors) in the prompt. This makes the task an

Methods GSM8K SST-2 WSC
Zero-shot 64.82 87.04 53.85
ICL 150 Tokens 71.72 93.92 50.00
ICL 750 Tokens 78.92 94.19 45.83
4x Comp. 750 Tokens 74.91 94.61 69.55
4x Comp. 1500 Tokens 63.76 93.50 64.42
16x Comp. 750 Tokens 71.65 93.16 62.18
16x Comp. 1500 Tokens 67.48 89.99 61.54

Table 3: Comparison of performance in three ICL
datasets. Accuracy (%) is employed as the metrics.
Bold values indicate the highest and underlined values
denote the second-highest accuracy. The compressor
employed here is PCC (Large).

Category Methods PPL
Zero-shot 36.45
750 tokens context 27.74Reference
1500 tokens context 26.08
Zero-shot 24.39
750 tokens context 17.38SFT
1500 tokens context 19.18

PCC
(Lite)

4x 750 tokens context 19.57
4x 1500 tokens context 20.31
16x 750 tokens context 32.46
16x 1500 tokens context 30.49

Table 4: Perplexity (PPL) in the role-play task. Lower
PPL indicates better performance in generating the tar-
get character’s responses.

ideal playground for memory representation. To
evaluate the effectiveness of context compression
in the role-playing scenario, we use the Harry Pot-
ter Dialogue dataset. PCC (Lite) is fine-tuned on
a hold-out training set and trained with the com-
pressed 6-shot examples, while SFT (Supervised
Fine-Tuning) is fine-tuned on the same number of
examples but without compressing the 6-shot ex-
amples. A lower perplexity (PPL) indicates better
capture of the character’s target utterance by the
model. The results, presented in Table 4, shows
that PCC demonstrates excellent efficacy in this
scenario. With a 4x compression rate, it outper-
forms the explicit prompt-based role-playing strat-
egy, with only a slight performance degradation
compared to the SFT method. At 16x compression,
its performance lies between zero-shot role-playing
and few-shot role-playing.

3.4 Connecting Various LLMs

To assess whether the pre-trained compressor can
enhance the performance of various LLMs, we con-

28721

0 10000 20000 30000 40000 50000
Step

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Ev

al
 L

os
s

Origin
w/o Text Reconstruction Task
w/o Text Completion Task

(a) Training loss in the text reconstruction task

0 10000 20000 30000 40000 50000
Step

2.35

2.40

2.45

2.50

2.55

Ev
al

 L
os

s

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75Origin
w/o Text Reconstruction Task
w/o Text Completion Task

(b) Training loss in the text completion task

Figure 4: Ablation study: pre-training curves for PCC (Large) with 16x compression rate when some components
are removed during the pre-training stage. And Origin represents original LLM.

Model Methods F1 EM

Mistral-7B
w/o Context 11.33 1.25
w Context 49.02 23.89
4x Comp. 46.57 35.15
16x Comp. 35.29 20.55

Qwen2.5-7B
w/o Context 25.91 16.48
w Context 66.51 49.95
4x Comp. 46.39 32.77
16x Comp. 31.52 16.90

Phi-3.5-mini
w/o Context 11.45 2.24
w Context 60.53 40.66
4x Comp. 48.01 34.97
16x Comp. 39.30 27.30

Llama-3-8B
w/o Context 19.79 9.94
w Context 66.29 50.29
4x Comp. 61.77 49.86
16x Comp. 49.00 36.60

Table 5: Performance of four different downstream
LLMs. The metrics employed are the average F1 score
and Exact Match (EM) on four datasets: SQuAD, Hot-
PotQA, AdversarialQA, and Natural Questions (NQ).
The compressor employed here is PCC (Lite).

duct experiments using three additional LLMs as
downstream decoders: Mistral-7B-Instruct-v0.2,
Qwen2.5-7B-Instruct, and Phi-3.5-mini-instruct,
within the RAG-based QA domain. For each de-
coder, using the pre-training checkpoint described
in Section 2.3, we perform lightweight fine-tuning
on the compressor with 32 million pre-training to-
kens and the SQuAD training set to ensure align-
ment with the frozen decoder. The results are pre-

Methods F1 EM

Reference (w/o Context) 19.79 9.94
PCC (Large) 16x 49.78 37.86
w/o Pretrain Stage 23.51 15.96
w/o Text Reconstruction Task 47.65 36.74
w/o Text Completion Task 46.79 35.65
w/o Mutil Special Tokens 47.87 36.36

Table 6: Ablation study: Average performance of four
datasets on the RAG-based QA domain. The metrics
reported are in percentages (%).

sented in Table 5 (for the complete table, please re-
fer to Table A2 in the Appendix). Across all down-
stream LLMs, the pre-trained compressor (PCC)
demonstrates its effectiveness by providing valu-
able context from the compressed memory slots,
showing significant improvement compared to the
models’ performance without context.

3.5 Ablation Study

In addition to the compression rate and compressor
model size, which have been extensively studied
in previous experiments, other important compo-
nents of PCC include the pre-training stage, spe-
cific pre-training tasks, and the memory slots wrap-
per (<MEM> </MEM>). To further investigate
these components, we conduct an ablation study.
For example, w/o PretrainStage indicates remov-
ing the entire pre-training stage and retaining only
the fine-tuning stage with the SQuAD training set.
Results are reported in Table 6 (for the full table,
please refer to Table A3 in the Appendix). We find

28722

that the pre-training stage is particularly crucial for
generating high-quality memory slots. Removing
any component from the PCC framework results
in a noticeable performance drop, highlighting the
importance of this comprehensive approach to pre-
training and memory representation. We further
demonstrate the changes in the pre-training loss
curves when either the text reconstruction or the
text completion tasks are removed in Figure 4. It is
interesting to observe that when only the text com-
pletion task is used in pre-training (as shown in
Figure 4a), the text reconstruction ability degrades
significantly. Conversely, when only the text recon-
struction task is used in pre-training (as shown in
Figure 4b), the text completion task fails to con-
verge. The synergy of these two tasks makes the
pre-training of the compressor more robust.

4 Related Work

LLMs with Long Context. Perceiving long con-
text in large language models (LLMs) has become
ubiquitous with numerous real-world applications,
such as RAG systems (Gao et al., 2023), infor-
mation extraction from social platforms (Shang
et al., 2024), agentic frameworks for task automa-
tion (Wang et al., 2024; Huang et al., 2023), and
role-playing agents (Zhong et al., 2024; Liu et al.,
2024), where LLMs need to remember extensive
character profiles, experiences, and past conversa-
tions. Pretraining LLMs to be context-aware over
long sequences is expensive, so researchers often
develop context extension techniques to expand the
context windows of well-pretrained LLMs (Chen
et al., 2023b; Ding et al., 2024; Zhang et al., 2024b).
Given the high computational and storage costs as-
sociated with long-sequence inference, researchers
have explored various methods to reduce these ex-
penses (Zhang et al., 2024a; Jiang et al., 2024; Fang
et al., 2024; Munkhdalai et al., 2024). However,
these methods typically require modifications or
fine-tuning of the LLMs. In this paper, we examine
methods that compress long contexts into shorter
versions while keeping the LLMs frozen. Thus, our
focus is on context compression.
Context Compression. There are primarily two
approaches for context compression: explicit com-
pression and implicit compression. In the explicit
compression approach, researchers develop meth-
ods to identify and remove redundant and non-
essential tokens in the context, retaining only the
important and compact information(Li et al., 2023;

Jiang et al., 2023; Pan et al., 2024). This approach
has the advantage of explainability, as it is possible
to see which tokens are removed from the original
context. However, the utilization of context can
be suboptimal since it is limited to explicit tokens.
In the implicit compression approach, researchers
compress the original context into implicit mem-
ory slots, leveraging the fact that embedding rep-
resentations can effectively condense key informa-
tion (Chevalier et al., 2023; Cheng et al., 2024;
Ge et al., 2024; Li et al., 2024b; Rau et al., 2024).
This paper aims to push the frontier of the second
approach forward by addressing key questions in
context compression from a systematic perspec-
tive, including pretraining, universal and decou-
pled module design, compressor size and rate, and
efficacy across different types of downstream ap-
plications.

5 Conclusion

In this paper, we focus on efficient long contexts
processing for LLMs using embedding-based com-
pression. We propose a decoupled compressor-
LLM framework and advocate for pre-training
with two language modeling tasks. The resulting
method, PCC, serves as a universal and lightweight
compressor adaptable to various downstream LLM
decoders. Through rigorous experiments, we
demonstrate that compression rates of 4x and 16x
strike a good balance between accuracy and effi-
ciency, while higher rates like 256x capture useful
context at the expense of some information loss.
Notably, our method outperforms competitive con-
text compression baselines across diverse down-
stream tasks. We hope this research highlights the
potential of implicit context compression to en-
hance LLM efficiency and lays the groundwork for
future innovations in scalable LLM inference.

6 Limitation

While our work demonstrates promising results
in embedding-based compression for LLMs, we
acknowledge several limitations that provide op-
portunities for future improvement.

• Investigating different configurations of compres-
sor pre-training is both time and GPU consuming.
For the current version, we can only afford up to
8B LLM’s pretraining experiments. While this
paper advocates for a lightweight compressor, we
hope in the next version, we can launch larger
compressors such as 70B models to investigate

28723

the upper bounds of implicit compression. This
may break the dilemma of higher compression
rates, like 256x, being highly efficient but losing
too much useful information.

• The current design of PCC compresses segments
of a long context into even memory slots. How-
ever, considering that different segments of text
may convey different levels of information mass
and redundancy, an even compression is not an
optimal approach. In the future, we plan to inves-
tigate a dynamic implicit compression technique
that can determine the compression rate for each
segment adaptively.

• Although currently the adaptation of the compres-
sor to various downstream LLMs only requires
a few steps of fine-tuning, it still necessitates pa-
rameter updates on both the compressor encoder
and compressor converter to achieve desirable
performance. In the future, we hope to develop
a solution where only the converter needs to be
fine-tuned, allowing the compressor encoder to
remain frozen, thereby making the adaptation
process even more lightweight.

7 Acknowledgments

The authors from SZU acknowledge the fi-
nancial support from the National Natural
Science Foundation of China (Grant Nos.
62276171, 62476173, 62002233, 61972145),
the Shenzhen Fundamental Research-General
Project (Grant Nos. JCYJ20240813142610014,
JCYJ20240813141503005, JCYJ2022081115580-
3001), Guangdong Basic and Applied Basic Re-
search Foundation (Grant Nos. 2024A1515011938
and 2020B1515120028), Guangdong Peral River
Recruitment Program of Talents (2019ZT08X603).
Hao Liao is the corresponding author.

References
Max Bartolo, Alastair Roberts, Johannes Welbl, Sebas-

tian Riedel, and Pontus Stenetorp. 2020. Beat the ai:
Investigating adversarial human annotation for read-
ing comprehension. Transactions of the Association
for Computational Linguistics, 8:662–678.

Nuo Chen, Yan Wang, Haiyun Jiang, Deng Cai, Yuhan
Li, Ziyang Chen, Longyue Wang, and Jia Li. 2023a.
Large language models meet harry potter: A dataset
for aligning dialogue agents with characters. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 8506–8520.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon-
glora: Efficient fine-tuning of long-context large lan-
guage models. arXiv preprint arXiv:2309.12307.

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-
Qing Chen, Furu Wei, Huishuai Zhang, and Dongyan
Zhao. 2024. xrag: Extreme context compression
for retrieval-augmented generation with one token.
arXiv preprint arXiv:2405.13792.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. 2023. Adapting language models to
compress contexts. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-
10, 2023, pages 3829–3846. Association for Compu-
tational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang,
Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. 2024. Longrope: Extending llm con-
text window beyond 2 million tokens. arXiv preprint
arXiv:2402.13753.

Junjie Fang, Likai Tang, Hongzhe Bi, Yujia Qin, Si Sun,
Zhenyu Li, Haolun Li, Yongjian Li, Xin Cong,
Yankai Lin, et al. 2024. Unimem: Towards a unified
view of long-context large language models. arXiv
preprint arXiv:2402.03009.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen,
and Furu Wei. 2024. In-context autoencoder for con-
text compression in a large language model. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Xu Huang, Jianxun Lian, Yuxuan Lei, Jing Yao, Defu
Lian, and Xing Xie. 2023. Recommender ai agent:
Integrating large language models for interactive rec-
ommendations. arXiv preprint arXiv:2308.16505.

28724

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.232
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.232
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin,
et al. 2024. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention.
arXiv preprint arXiv:2407.02490.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. Llmlingua: Compressing
prompts for accelerated inference of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 13358–13376. Association for Computational
Linguistics.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue,
and Wenhu Chen. 2024a. Long-context llms
struggle with long in-context learning. Preprint,
arXiv:2404.02060.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin.
2023. Compressing context to enhance inference ef-
ficiency of large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 6342–6353. Association
for Computational Linguistics.

Zongqian Li, Yixuan Su, and Nigel Collier. 2024b.
500xcompressor: Generalized prompt compres-
sion for large language models. arXiv preprint
arXiv:2408.03094.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Jiongnan Liu, Yutao Zhu, Shuting Wang, Xiaochi Wei,
Erxue Min, Yu Lu, Shuaiqiang Wang, Dawei Yin,
and Zhicheng Dou. 2024. Llms+ persona-plug= per-
sonalized llms. arXiv preprint arXiv:2409.11901.

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid-
dharth Gopal. 2024. Leave no context behind:
Efficient infinite context transformers with infini-
attention. arXiv preprint arXiv:2404.07143.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia,
Xufang Luo, Jue Zhang, Qingwei Lin, Victor Rühle,
Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu,
and Dongmei Zhang. 2024. Llmlingua-2: Data distil-
lation for efficient and faithful task-agnostic prompt

compression. In Findings of the Association for Com-
putational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 963–
981. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov,
Margaret Mitchell, Colin Raffel, Leandro Von Werra,
Thomas Wolf, et al. 2024. The fineweb datasets:
Decanting the web for the finest text data at scale.
arXiv preprint arXiv:2406.17557.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

David Rau, Shuai Wang, Hervé Déjean, and Stéphane
Clinchant. 2024. Context embeddings for effi-
cient answer generation in rag. arXiv preprint
arXiv:2407.09252.

Tianqi Shang, Weiqing He, Tianlong Chen, Ying Ding,
Huanmei Wu, Kaixiong Zhou, and Li Shen. 2024.
Integrating social determinants of health into knowl-
edge graphs: Evaluating prediction bias and fairness
in healthcare. Preprint, arXiv:2412.00245.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao.
2022. Retromae: Pre-training retrieval-oriented
language models via masked auto-encoder. arXiv
preprint arXiv:2205.12035.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing (EMNLP).

28725

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2404.02060
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.391
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.391
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.57
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.57
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.57
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://arxiv.org/abs/2412.00245
https://arxiv.org/abs/2412.00245
https://arxiv.org/abs/2412.00245
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Advances in Neural Information
Processing Systems, 32.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,
Qiwei Ye, and Zhicheng Dou. 2024a. Long context
compression with activation beacon. arXiv preprint
arXiv:2401.03462.

Peitian Zhang, Ninglu Shao, Zheng Liu, Shitao Xiao,
Hongjin Qian, Qiwei Ye, and Zhicheng Dou. 2024b.
Extending llama-3’s context ten-fold overnight.
arXiv preprint arXiv:2404.19553.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and
Yanlin Wang. 2024. Memorybank: Enhancing large
language models with long-term memory. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 19724–19731.

28726

A Appendix

A.1 Pipline Implementation Details

Table A4 presents the hyperparameters utilized for
training both the lightweight and large compres-
sor models. Both models are optimized using the
AdamW algorithm in conjunction with a cosine
learning rate scheduler. The learning rate is adapted
for different training phases, including pretrain-
ing and fine-tuning on the SQuAD and GSM8K
datasets. Batch sizes and warmup steps are specif-
ically configured for each model and task, with
a maximum gradient norm of 0.5 consistently ap-
plied. For the lightweight compressor, all param-
eters are trained directly, whereas the large com-
pressor employs LoRA with a rank of 64, a scaling
factor of α = 32, and a dropout rate of 0.1. Train-
ing is conducted on 4xA100 and 8xH100 GPUs,
each equipped with 80 GB of memory, ensuring
efficient computation for both model types. The
lightweight compressor completes one epoch dur-
ing pretraining and three epochs during fine-tuning,
while the large compressor adheres to the same
schedule for fine-tuning tasks.

A.2 Perplexity Evaluation

The effect of memory embedding on the perplexity
of the target LLM is evaluated by calculating the
perplexity of the second half of the input tokens.
In the Plain method, as described in Reference, the
first half of the input tokens is discarded, whereas
the Context method retains the complete input se-
quence. Conversely, the PCC method compresses
the first half of the input tokens into memory em-
beddings. Detaled experimental results are pro-
vided in Table A1.

A.3 Inference Efficiency

We evaluate the enhancement in inference effi-
ciency of the target LLM using the lightweight com-
pressor across various input combinations. Given
that our method allows for the pre-caching of con-
text memory embeddings, we also investigat the
impact of caching these embeddings on the im-
provement of inference efficiency. The experimen-
tal results are presented in Table A7.

The machine configuration used for testing la-
tency. The hardware setup included an AMD
EPYC 7V13 64-Core Processor for the CPU, an
A100 80GB PCIe GPU for computation, and
216GB of RAM for memory-intensive operations.

The version of software are Python 3.11, PyTorch
2.7.0, Transformers 4.41.2 and CUDA 12.6.

A.4 Case Study
The performance of the model on the text recon-
struction task is evaluated by compressing a 256-
token text sequence with compression rates of 4x,
16x, and 64x, respectively. The original text and
the reconstructed text are presented in Table A5.
In the 4x and 16x compression scenarios, the re-
constructed text closely aligned with the original,
achieving BLEU scores of 100% and 98.8%, re-
spectively, demonstrating the model’s high fidelity
in text restoration at low and moderate compression
rates. However, as the compression rate increased
to 64x, performance deteriorated significantly, with
the BLEU score dropping to 27.8%.

Samples from the NQ dataset are selected for
testing to evaluate performance. Unlike COCOM,
which is fine-tuned on the target LLM, our pro-
posed method is not fine-tuned on the target model.
Despite this, our method outperforms COCOM in
the evaluation. However, it can be observed that
as the compression rate increases, the ability of
the memory embedding to effectively extract and
retain useful information gradually diminish.

28727

Input Tokens 512 1024 2048 4096
w/o Context 17.31 14.70 13.07 11.99Reference
w/ Context 12.38 11.57 11.00 10.57

PCC (Lite)

4x Comp. 11.22 10.97 10.82 11.30
16x Comp. 12.14 11.78 11.48 11.78
64x Comp. 13.05 12.46 12.42 13.02
128x Comp. 13.13 12.42 11.88 11.57
256x Comp. 13.24 13.15 12.69 12.13

PCC (Large)
4x Comp. 10.66 10.82 10.79 11.10
16x Comp. 11.84 11.64 11.28 11.23
128x Comp. 13.01 12.51 12.26 12.28

Table A1: Perplexity (PPL) trends across different context lengths and memory slot configurations for the pre-
training text completion task. Each context length is evenly divided, with the first half used to generate memory
slots and the second half used for PPL computation.

Dataset SQuAD HotPotQA AdversialQA NQ Average
Metrics F1 EM F1 EM F1 EM F1 EM F1 EM

Mistral
w/o Context 10.34 0.69 8.44 0.13 7.80 0.83 18.75 3.36 11.33 1.25
w Context 56.30 27.33 52.32 30.97 36.96 12.60 50.51 24.64 49.02 23.89
4x Comp. 62.40 44.12 31.97 24.52 42.51 30.70 49.41 41.28 46.57 35.15
16x Comp. 45.89 25.61 23.91 17.92 30.23 19.02 41.12 19.63 35.29 20.55

Qwen
w/o Context 21.03 7.09 30.66 23.29 16.55 10.53 35.41 25.00 25.91 16.48
w Context 78.30 57.44 63.30 51.73 55.10 36.17 69.33 54.47 66.51 49.95
4x Comp. 56.79 36.16 38.09 28.84 37.55 25.70 53.14 40.40 46.39 32.77
16x Comp. 34.01 14.53 30.98 20.64 25.01 12.97 36.06 19.46 31.52 16.90

Phi
w/o Context 11.49 1.04 14.11 4.14 8.64 1.70 11.55 2.08 11.45 2.24
w Context 73.12 46.71 59.03 44.31 50.22 29.27 59.75 42.34 60.53 40.66
4x Comp. 57.63 36.68 36.43 27.52 41.63 29.20 56.33 46.50 48.01 34.97
16x Comp. 44.29 26.47 32.81 24.74 32.14 20.33 47.94 37.65 39.30 27.30

Table A2: Performance evaluation of three LLMs—Mistral 7B v0.2 Instruct, Qwen-2.5-instruct, and Phi-3.5-mini-
instruct—on four widely-used question-answering datasets: SQuAD, HotPotQA, AdversarialQA, and NQ. F1 score
(%) and Exact Match (EM, %) are utilized as evaluation metrics. Each model is assessed under three conditions: (1)
Without Context, where no additional context is provided during evaluation; (2) With Context, where relevant context
is included; and (3) 4x/16x Compression, which evaluates model performance after applying a 4x/16x compressor.
The average scores across all datasets are presented in the last columns for a comprehensive comparison.

28728

Dataset SQuAD HotPotQA AdversarialQA NQ Average
Metrics F1 EM F1 EM F1 EM F1 EM F1 EM
w/o Context 14.84 3.41 24.80 14.90 12.05 6.43 27.48 15.02 19.79 9.94Reference
w/ Context 79.81 59.97 64.60 51.12 56.10 38.67 64.64 51.38 66.29 50.29

Baselines

AutoCompressor 21.46 0.35 16.29 0.29 14.09 2.00 25.57 0.63 19.35 0.82
xRAG 18.19 3.46 27.51 16.29 13.75 3.47 38.06 20.80 24.38 11.01
4x COCOM-Lite 21.70 9.17 40.07 32.32 19.45 13.90 50.45 41.87 32.92 24.32
16x COCOM-Lite 19.23 8.13 31.94 25.27 19.35 14.73 26.36 20.66 24.22 17.20
128x COCOM-Lite 19.56 7.61 23.63 18.68 19.47 15.13 18.79 14.36 20.36 13.95
ICAE 45.69 21.63 35.16 26.68 27.98 11.70 59.15 47.35 42.00 26.84
LLMLingua2 51.20 32.18 55.72 44.18 35.41 24.80 68.44 55.85 52.69 39.25

Ablation

16x Memory Context 55.32 37.72 33.76 25.27 38.96 26.47 71.09 61.97 49.78 37.86
w/o Pretrain Stage 19.80 8.13 25.21 19.10 15.93 11.00 33.10 25.61 23.51 15.96
w/o Text Completion Task 47.76 29.24 33.54 25.72 35.71 25.33 70.15 62.29 46.79 35.65
w/o Text Reconstruction Task 44.86 28.55 36.34 28.39 38.53 27.53 70.88 62.47 47.65 36.74
w/o Mutil Special Tokens 51.92 33.39 31.25 23.71 38.27 27.17 70.05 61.18 47.87 36.36

Table A3: Detailed results of the 16x compression configuration using the large compressor in the ablation study for
QA tasks. The table presents the performance (F1 and Exact Match (EM)) across four datasets: SQuAD, HotPotQA,
AdversarialQA, and NQ, along with the average metrics. Methods compared include baseline models, ablation
variations (e.g., removal of pretraining, text completion,text reconstruction tasks, and multi-special tokens), and the
full model configurations. Best-performing results for each dataset are highlighted in bold, and second-best results
are underlined.

Hyperparameter PCC (Lite) PCC (Large)

Optimizer AdamW AdamW

Learning rate
1e-4 (Pre-train) 1e-4 (Pre-train)
5e-5 (SQuAD Fine-tune) 5e-5 (SQuAD Fine-tune)
1e-5 (HPD Fine-tune) 1e-5 (GSM8K Fine-tune)

Lr schedular Cosine Cosine

Batch size

256 (Pre-train) 256 (Pre-train)
128 (SQuAD Fine-tune) 128 (SQuAD Fine-tune)
8 (HPD Fine-tune) 32 (GSM8K Fine-tune)

Warmup steps
300 (Pre-train) 300 (Pre-train)
100 (Fine-tune) 100 (Fine-tune)

Max grad norm 0.5 0.5

Epochs
1 (Pre-train) 1 (Pre-train)
3 (Fine-tune) 3 (Fine-tune)

Training method Full parameters
LoRA
(r = 64, α = 32, dropout=0.1)

Pre-training Time
123 Hours(4 × A100 80GB) 204 Hours(4 × A100 80GB)
– 67 Hours(8 × H100 80GB)

Table A4: Hyperparameters for training the light-weight and large compressor models.

28729

Origin 4x
the numbers used in the formula on your IRS
Form 1040. Here’s where each input you’ll
need is located: -Total tax: Line 24 -Taxable
income: Line 15 Worth noting, income refers
to both earned and unearned income: -Earned
income: Wages, commissions, salary, and
bonuses -Unearned income: Interest income
on saving accounts, dividends from stocks, and
bond interest As an example, consider an in-
dividual who paid $24,000 in total tax and
had a taxable income of $95,000 in salary, a
$5,000 bonus, and $1,000 in income from sav-
ings interest and dividends. This person’s total
taxable income would be $95,000 + $5,000 +
$1,000 = $101,000. Individual effective tax
rate = 24,000 / 101,000 = 0.2376 You can then
express this as a percentage by multiplying it
by 100 to arrive at 23.76%.

the numbers used in the formula on your IRS
Form 1040. Here’s where each input you’ll
need is located: -Total tax: Line 24 -Taxable
income: Line 15 Worth noting, income refers
to both earned and unearned income: -Earned
income: Wages, commissions, salary, and
bonuses -Unearned income: Interest income
on saving accounts, dividends from stocks, and
bond interest As an example, consider an in-
dividual who paid $24,000 in total tax and
had a taxable income of $95,000 in salary, a
$5,000 bonus, and $1,000 in income from sav-
ings interest and dividends. This person’s total
taxable income would be $95,000 + $5,000 +
$1,000 = $101,000. Individual effective tax
rate = 24,000 / 101,000 = 0.2376 You can then
express this as a percentage by multiplying it
by 100 to arrive at 23.76%. (Exactly recover.)

16x 64x
the numbers used in the formula on your IRS
Form 1040. Here’s where each input you’ll
need is located: -Total tax: Line 24 -Taxable
income: Line 15 Worth noting, income refers
to both earned and unearned income: -Earned
income: Wages, commissions, salary, and
bonuses -Unearned income: Interest income
on saving accounts, dividends from stocks, and
bond interest As an example, consider an in-
dividual who paid $24,000 in total tax and
had a taxable income of $95,000 in salary, a
$5,000 bonus, and $1,000 in income from sav-
ings interest and dividends. This person’s total
taxable income would be $95,000 + $5,000
+ $1,000 = $101,000 Individual effective tax
rate = 24,000 / 101,000 = 0.2376 You can then
express this as a percentage by multiplying it
by 100 to arrive at 23.76%. (Almost Exactly
recover.)

the numbers you’ll use on the IRS Form 1040.
Here’s where each hlline is located: - Total
income: Taxable income. - Worthy of note:
Taxable income includes both earned and un-
earned income. Taxable income includes: -
Wages: Earned income from salaries, commis-
sions, and bonuses on an hourly basis. - Un-
earned income: Interest, dividends, and capi-
tal gains from saving and investing in stocks,
bonds, and a total return account. As an ex-
ample, consider a person who had $25,000
in taxable income and paid $5,000 in taxes
on an income of $100,000 in salary and inter-
est. Total person’s taxable income would be
$100,000 + $25,000 = $125,000. This person’s
effective tax rate would be 100,000 / 125,000
= 80%. Individuals can then express this as a
percentage by multiplying 80% by 100 to get
80. Effective tax rate = 80%

Table A5: Case study: Reconstructed text using different compression rates (4, 16, and 64). The compressor
employed here is PCC (Lite). And Origin represents original LLM. Dataset: FineWeb. Highlighted words indicate
inconsistencies between the restored text and the original text.

28730

Model input

Question: When did the hawks win the NBA championship?

Passage 1: Atlanta Hawks
the NBA as part of the merger between the NBL and the Basketball Association of America
(BAA), and briefly had Red Auerbach as coach. In 1951, Kerner moved the team to
Milwaukee, where they changed their name to the Hawks. Kerner and the team moved again
in 1955 to St. Louis, where they won their only NBA Championship in 1958 and qualified to
play in the NBA Finals in 1957, 1960 and 1961. The Hawks played the Boston Celtics in all
four of their trips to the NBA Finals. The St. Louis Hawks moved to Atlanta in 1968, when
Kerner

Passage 2: 1958 NBA Finals
The 1958 NBA World Championship Series was the championship series for the 1957–58
National Basketball Association (NBA) season, and the conclusion of the seasonś playoffs.
It pitted the Western Division champion St. Louis Hawks against the Eastern Division
champion Boston Celtics. The Hawks won the series in six games to win the clubś first and
so far only NBA championship title. "Hawks win series 4–2" After suffering a heartbreaking
loss to the Celtics in Game 7 of the 1957 NBA Finals, St. Louis survived a sometimes
difficult 1957-58 NBA season, returning to the NBA Finals to face

Passage 3: 1971 NBA Finals
The 1971 NBA World Championship Series was the championship series played at the
conclusion of the National Basketball Association (NBA)’s 25th anniversary season of
1970–71. The Western Conference champion Milwaukee Bucks, who were founded just
three years earlier, swept the Eastern Conference champion Baltimore Bullets in four games.
Baltimore had dethroned the 1969–70 NBA champion New York Knicks. The Bucks were
the first Western Conference champions to win the league’s finals since the St. Louis Hawks
did so in 1958. This was the first NBA Finals not played in the state of California in 10 years.
It

Generated Response

Label: 1958

LLM w/o passages: The Atlanta Hawks have never won an NBA championship.

LLM w/ passages: 1958

PCC Lite 4x Comp: 1958
PCC Lite 16x Comp: 1958
PCC Lite 128x Comp: 1958
PCC Lite 256x Comp: 1957
COCOM 4x Comp: 1958
COCOM 16x Comp: 2006
COCOM 128x Comp: The Nba is a professional wrestling championship

Table A6: Case Study: Generated responses using different methods. The LLM used is Llama-3-8B-Instruct, and
the compressors applied are the lightweight versions of PCC and COCOM. Dataset: NQ.

28731

Batch×Input Model Compression Time Prefilling Time Decoding Time Total Time

16×1024

Origin - 1378.79 1437.60 2816.39
4x Comp. 604.71 359.20 956.97 1920.88

16x Comp. 509.83 100.95 1090.76 1701.54
128x Comp. 500.88 35.87 1051.63 1588.38

32×1024

Origin - 2774.99 2372.02 5147.01
4x Comp. 1189.60 709.19 1087.64 2986.43

16x Comp. 998.91 188.27 1047.38 2234.56
128x Comp. 975.19 37.49 1057.84 2070.52

16×2048

Origin - 2830.40 2311.84 5142.24
4x Comp. 1217.97 718.31 1037.90 2974.18

16x Comp. 1025.82 188.61 1069.69 2284.12
128x Comp. 1000.76 37.30 1059.60 2097.66

8×4096

Origin - 2910.01 2320.38 5230.39
4x Comp. 1257.87 720.62 1062.48 3040.97

16x Comp. 1076.08 189.72 1068.69 2334.49
128x Comp. 1047.36 37.13 1082.19 2166.68

4×8192

Origin - 3091.50 2145.15 5236.65
4x Comp. 1343.40 730.81 1084.96 3159.17

16x Comp. 1145.68 187.20 1032.63 2365.51
128x Comp. 1114.67 36.75 1058.20 2209.62

Table A7: Inference speed test experiment for lightweight compressor. The unit used in the table is milliseconds.
The decoding time is the time it takes to generate 32 tokens. The value on the left side of the bracket represents
the acceleration factor of uncached memory embedding, and the value on the right side represents the acceleration
factor of cached memory embedding. And Origin represents the original LLM.

8x512 8x1024 8x2048 8x4096 8x8192 8x16k
Input Sequence

20

30

40

50

60

GP
U

M
em

or
y

(G
B)

Gap=39.34GB

Origin
4x
16x
128x

Figure A1: We compare the memory usage during inference between the original LLM method and the PCC method.
The original LLM method, represented by Origin, runs out of memory (OOM) when the input text has a batch size
of 8 and a length of 8192 tokens, exceeding 80 GB of GPU memory. In contrast, the PCC method maintains a much
lower memory footprint under the same conditions.

28732

