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Abstract

Recently, Large Language Models (LLMs)
have demonstrated significant potential for data
annotation, markedly reducing the labor costs
associated with downstream applications. How-
ever, existing methods mostly adopt an aggres-
sive strategy by prompting LLM to determine
a single gold label for each unlabeled sam-
ple. Due to the inherent uncertainty within
LLMs, they often produce incorrect labels for
difficult samples, severely compromising the
data quality for downstream applications. Mo-
tivated by ambiguity aversion in human behav-
iors, we propose a novel candidate annotation
paradigm wherein large language models are
encouraged to output all possible labels when
incurring uncertainty. To ensure unique labels
are provided for downstream tasks, we develop
a teacher-student framework CanDist that dis-
tills candidate annotations with a Small Lan-
guage Model (SLM). We further provide a rig-
orous justification demonstrating that distilling
candidate annotations from the teacher LLM
offers superior theoretical guarantees compared
to directly using single annotations. Exten-
sive experiments across six text classification
tasks validate the effectiveness of our proposed
method. The source code is available at https:
//github.com/MingxuanXia/CanDist.

1 Introduction

Various NLP tasks require collecting high-quality
labeled data for model training (e.g. text classifi-
cation (Kowsari et al., 2019), named entity recog-
nition (Li et al., 2022a), and sentiment analysis
(Wankhade et al., 2022)), which typically involves
human experts meticulously providing high-quality
target labels, a process that is notoriously time-
consuming and labor-intensive. With the develop-
ment of Large Language Models (OpenAI, 2023;
Anil et al., 2023; Dubey et al., 2024), LLM-driven
automatic data annotation approaches have been
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Figure 1: When facing uncertainty, humans instinc-
tively behave ambiguity aversion to avoid risk, which
motivated us to prompt LLM for candidate annotations
(multiple possible answers), increasing the likelihood
of providing the correct labels.

proposed (Gilardi et al., 2023; Tan et al., 2024;
Long et al., 2024), relieving the burden of the cost-
prohibitive human annotation.

Although LLMs excel at general language under-
standing and generation, their knowledge of down-
stream tasks remains limited (Li et al., 2024). As a
result, LLMs may be uncertain about some samples
during annotation. Nevertheless, existing LLM-
driven annotation methods prompt LLMs with sin-
gle annotation, which forces the model to assign
a specific label to each unlabeled sample—even
when it is unsure. This often leads to completely
wrong annotations, which is not only a waste of
computational resources but also affects down-
stream training (Zhu et al., 2022). Moreover, it ne-
cessitates further error localization and re-labeling,
which is both costly and time-consuming. This
raises a critical question: Can we induce LLMs to
provide a more valuable annotation rather than a
completely wrong label when they are uncertain?

To answer this question, we first draw an anal-
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Figure 2: Comparison of 1− α-error and F1-score be-
tween single annotations (SA) and candidate annota-
tions (CA) by GPT-3.5. Higher metric values indicate
better results. See section 3.2 for details.

ogy to human behavior—when faced with uncer-
tainty, humans often behave conservatively instead
of being overconfident—an instinctive psycholog-
ical phenomenon known as Ambiguity Aversion
(Fox and Tversky, 1995; Maccheroni et al., 2006).
This behavior helps people mitigate severe risks
and ensures the lower bound of the gains. Mo-
tivated by this, we propose to induce LLMs to
exhibit ambiguity aversion during annotation, by
prompting them to provide multiple possible labels
for each unlabeled sample, i.e., candidate anno-
tations. As shown in Figure 1, although the LLM
may fail to provide a correct answer with a single
label, answering with candidate labels successfully
includes the correct one. We further demonstrate
in Figure 2 that, on a macro level, candidate an-
notations are more likely to cover correct labels
(higher 1− α-error) and retain more value (higher
F1-score) than single annotations. Note that, un-
like methods such as Self-Consistency (Wang et al.,
2023), prompting candidates is asking for the inher-
ent uncertainty rather than randomness, see Table
4 for detailed discussion.

Despite its great potential, however, candidate
annotations cannot be directly applied to down-
stream tasks, as they require one specific label for
each sample. To address this issue, we draw inspi-
ration from knowledge distillation (Hinton et al.,
2015) where the student model is distilled from
the teacher’s output distribution and exhibits bet-
ter generalization on downstream tasks (Phuong
and Lampert, 2019), and propose a teacher-student
framework called CanDist that distills high-quality
knowledge from the teacher LLM’s candidate anno-
tations to a student Small Language Model (SLM)
to achieve data annotation. Specifically, we intro-
duce a distribution refinery (DR) mechanism dur-
ing distillation that dynamically adjusts the training
target based on SLM’s predictions, where correct

labels gradually emerge from those false positive
ones. Theoretically, we justify that distilling from
candidate annotations from the teacher LLM offers
superior theoretical guarantees than directly using
the single annotations from the teacher LLM. Em-
pirically, we evaluate CanDist on six text classifica-
tion tasks, where CanDist achieves state-of-the-art
among various LLM and SLM baselines.

2 Related Work

2.1 LLM for Data Annotation

LLM-driven data annotation has been applied in
various NLP tasks, such as text classification (Gi-
lardi et al., 2023), relation extraction (Ding et al.,
2023), named entity recognition (Ye et al., 2024),
question answering (He et al., 2024b), seman-
tic parsing (Shin et al., 2021), and multilingual
text generation (Choi et al., 2024). Advanced ap-
proaches adopt techniques like in-context learn-
ing (Brown et al., 2020; Xiao et al., 2023; Liu
et al., 2024), chain-of-thought prompting (Wei
et al., 2022; He et al., 2024b; Yuan et al., 2024), and
collaboration with fine-tuned SLMs (Xiao et al.,
2023; Xu et al., 2024; Yang et al., 2024) to boost
LLM’s zero-shot performance for annotations.

However, these approaches limit LLMs to pro-
vide single annotations, which inevitably intro-
duce completely wrong labels. In contrast, we
investigate a more conservative strategy by prompt-
ing LLMs for candidate annotations, which offers
greater value. Besides, while FreeAL (Xiao et al.,
2023), the pioneering work of SLM-collaborated
annotation, has demonstrated the effectiveness of
distilling the SLM from LLM’s single annotations,
we propose that distilling from candidate annota-
tions yields superior results and we rigorously pro-
vide its theoretical guarantees.

2.2 Generate and Aggregate Multiple
Answers with LLM

Recently, solving NLP tasks by generating multiple
diverse answers using LLMs and then aggregating
them to extract their essences has been increas-
ingly popular. Sampling-based strategy first sam-
ples a diverse set of reasoning paths during LLM
decoding, and then integrate them through methods
such as trained ranking models (Cobbe et al., 2021;
Shen et al., 2021; Thoppilan et al., 2022), major-
ity voting (Wang et al., 2023; Fu et al., 2023; Li
et al., 2022b), LLMs (Chen et al., 2023; Weng et al.,
2023; Zhang et al., 2024b), or human feedback (Li,
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Table 1: Key prompts of prompting single (SA) and candidate (CAadd and CAall) annotations on the TREC dataset.

Strategy Prompt

SA
Given a question: . . . What does the question ask about? Please identify the question into one
of the following types: Abbreviation; Description and abstract concepts; Entities; Human
beings; Locations; Numeric values.

CAadd

Given a question: . . . What does the question ask about? Please identify the question into one
of the following types: Abbreviation; Description and abstract concepts; Entities; Human
beings; Locations; Numeric values. If you are unsure about your answer, please include
other potential choices.

CAall

Given a question: . . . What does the question ask about? Please identify the question with all
possible choices of the following types: Abbreviation; Description and abstract concepts;
Entities; Human beings; Locations; Numeric values.

2024). Ensemble-based methods generate multiple
answers by gathering outputs from different prompt
designs, such as different prompt formats (Zhou
et al., 2022; Yue et al., 2023; Zhang et al., 2024a) or
different permutations of few-shot examples (Zhao
et al., 2021; Lu et al., 2022; Lazaridou et al., 2022).
Additionally, a few approaches propose to directly
prompt candidates, in the applications of model
calibration (Tian et al., 2023; Xiong et al., 2024)
and open-domain QA (Kim et al., 2024).

However, sampling and ensemble-based meth-
ods rely on the randomness of LLMs, making
them costly and inefficient in providing enough
valuable annotations compared to prompting can-
didates. Moreover, this paper proposes a novel ag-
gregation strategy that leverages an SLM to distill
high-quality annotations from the multiple labels
provided by the LLM.

3 Proposed Method

3.1 Preliminaries

In this paper, we consider the task of text classifica-
tion, where an unsupervised dataset D = {xi}ni=1

with n samples is provided. Given the label space
Y = {1, . . . , C} with corresponding semantic
meanings, each sample x ∈ X is associated with
a ground-truth label y ∈ Y , which is inaccessi-
ble. In LLM-driven data annotation, an LLM T
serves as the annotator, providing labels for the
unlabeled samples in D. Most existing methods
prompt LLMs to provide a Single Annotation
(SA), i.e., a specific label ỹi ∈ Y for each xi.

3.2 Prompt Candidate Annotations by LLM

However, LLM’s knowledge of downstream tasks
remains limited (Li et al., 2024), making them un-
certain about some samples during data annotation.
In this case, prompting with single annotations

may force the LLM to behave over-confidently
and generate completely incorrect answers, which
not only wastes computational resources but also
harms downstream processes. To tackle this prob-
lem, we propose to prompt LLM with Candidate
Annotations (CA), namely, a set of multiple pos-
sible labels s ⊆ Y, s ̸= ∅. Our motivation stems
from a human psychological phenomenon known
as Ambiguity Aversion (Fox and Tversky, 1995;
Maccheroni et al., 2006), where people tend to be-
have conservatively when facing uncertainty, which
helps mitigate severe risks and ensures the lower
bound of the gains. Prompting candidate anno-
tations can inject ambiguity aversion into LLMs,
which increases the likelihood of including correct
labels in LLM’s output, see examples in Figure 3.

Specifically, we investigate two strategies for
querying candidates: 1) CAadd prompts the LLM
to generate one answer first and then provide ad-
ditional answers if it is not sure; 2) CAall prompts
the LLM to generate all possible answers. Table
1 shows the key prompts of different prompting
strategies on the TREC dataset and the full prompts
can be found in Appendix D.

CA Exhibits Better Statistical Properties. In
this paragraph, we directly assess the value of can-
didate annotations. Regarding the annotation pro-
cess as label space pruning, we employ the met-
rics introduced in (He et al., 2024a): 1) 1 − α-
error, where α = 1

n

∑n
i=1 I[yi /∈ si], measuring

how the candidates include the correct labels; 2)
β-coverage, where β = 1

n

∑n
i=1

C−|si|
C−1 , measuring

how the answers shrink the original search space;
3) F1-score, which comprehensively considers both
metrics, namely, F1 = 2(1−α)β

1−α+β .
Figure 2 demonstrates the assessment results of

1−α-error and F1-score on three text classification
tasks annotated by GPT-3.5, where both CAadd and
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Unlabeled samples Candidate AnnotationSingle Annotation

ID Input Text

1 Name 11 famous martyrs.

2 What is the nature of learning?

3 What country's capital is Tirana?

4 When is Bastille Day?

5 What does S.O.S. stand for?

......

ABB DES ENT HUM LOC NUM

0.33 0.33

0.8

0.1

ID Answer GT?

1 DES

2 DES

3 LOC

4 DES

5 ABB

ID Cand1 Cand2 Cand3 GT?

1 ENT HUM DES

2 DES ENT -

3 LOC - -

4 DES NUM -

5 ABB DES -

...

ABB DES ENT HUM LOC NUM

Distill with SLM

CanDist (ours): 

Please identify the question with all possible choices of the following types:

Abbreviation (ABB); Description and abstract concepts (DES); Entities 

(ENT); Human Beings (HUM); Locations (LOC); Numeric Values (NUM)

Zero-shot / few-shot:

Please identify the question into one of the following types:

Abbreviation (ABB); Description and abstract concepts (DES); Entities 

(ENT); Human Beings (HUM); Locations (LOC); Numeric Values (NUM)

Single Annotation Prompt Candidate Annotation Prompt

0.33

0.1

Theoretical Guarantee

ID 1

After distillation

Figure 3: The overall framework of CanDist, which first prompts the LLM to provide candidate annotations, and then
distills an SLM to identify the correct labels. Examples on the TREC dataset annotated by GPT-3.5 demonstrate that
though the LLM fails to provide a correct answer with a single label, answering with candidate labels successfully
includes the correct one. We also provide theoretical guarantees for our proposed CanDist framework.

CAall improves the two metrics compared to SA.
Notably, by prompting all possible labels, CAall
outperforms SA by margins of 18.01%, 26.71%,
14.06% of 1 − α-error on the three datasets, in-
dicating the strong ability to include gold labels
of prompting candidate annotations. The higher
F1-scores further illustrate that while containing
more correct labels, CA also effectively shrinks the
search space, indicating its great value. The full
assessment results are in Appendix B.1.

3.3 Distill Candidate Annotations by SLM

Though candidate annotations demonstrate great
potential, they cannot be directly applied to down-
stream tasks where specific labels are required. To
address this, we propose a teacher-student frame-
work CanDist that trains an SLM student S on
the teacher LLM’s candidate annotations, allowing
the SLM to provide unique annotations. This is
inspired by knowledge distillation (Hinton et al.,
2015), where the student model is distilled from the
teacher model’s output distribution and can better
generalize to downstream tasks (Phuong and Lam-
pert, 2019; Jeong and Chung, 2025). The overall
framework of CanDist is shown in Figure 3.

Nevertheless, with multiple false positive labels,
training the SLM on the uniform distribution of
candidate labels is suboptimal. Therefore, we pro-
pose a Distribution Refinery (DR) strategy, which
dynamically adjusts the target distribution based
on the SLM’s prediction. This is motivated by
the memorization effect of deep neural networks

(DNNs) (Zhang et al., 2017), where the SLM can
first remember easy patterns, making a proportion
of true labels emerge from those false positive ones.
Formally, the refined distribution qi for sample xi

at each training iteration t is computed as the re-
normalized prediction among candidate labels:

qtij =

{
I(j ∈ si) · 1

|si| , t = 0

I(j ∈ si) · pt−1
ij /

∑
k∈si p

t−1
ik , t > 0

(1)
where pt

i denotes the SLM’s softmax output of
sample xi at iteration t. qi is the distribution vector
which is initialized from a uniform distribution.

Filter Out-of-Candidate Samples. Although
candidate annotations are more likely to include the
correct labels, there are still a few samples whose
true label lies outside the candidate set, which can
disrupt SLM distillation. To this end, we filter out
these samples by judging whether the SLM’s max
prediction lies beyond the candidate set:

Dout = {xi| argmax
c∈Y

pic /∈ si} (2)

Distribution Sharpening for Reliable Samples.
We further propose to select reliable samples in
Din = D − Dout and sharpen their target distribu-
tions to guide the distillation process. To assess
the reliability, we again leverage the memorization
effect of DNNs where clean samples always pose
small losses (Han et al., 2018). Specifically, we
select small loss samples in a class-wise manner to
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Algorithm 1 Pseudo-code of CanDist
Input: Unlabeled dataset D, teacher LLM T , and
student SLM S

1: Generate candidate annotations s using T by
prompting strategy CAadd or CAall

2: for epoch = 1, 2, . . . , do
3: Filter out-of-candidate samples by Eq.(2)
4: Select class-wise reliable samples by Eq.(3)
5: Select high confidence samples by Eq.(4)
6: for batch = 1, 2, . . . , do
7: Compute pseudo-labels by Eq.(1) and (5)
8: Calculate training loss Ldr by Eq.(5)
9: Train S by optimizing Ldr

10: end for
11: end for
Output: Student SLM S for annotation

ensure balanced training progress across all classes.
Formally, the reliable set is calculated as:

Dsl = ∪
c∈Y

Dc
sl, where

Dc
sl = {xi|li ∈ Lc

δ, li = lce(pi, qi)}
(3)

and lce denotes the cross-entropy loss, and Lc
δ de-

notes the top-δ percent smallest losses of samples
whose max prediction is class c. For samples in
Dsl, we use a pre-defined temperature γ to sharpen
their re-normalized distribution.

Besides, we regard those samples in Dout that
gradually pose high confidence as reliable samples:

Dhc = {xi|max
c∈Y

pic > τ} ⊂ Dout (4)

where we use their predicted class as the training
target. τ is a pre-defined high threshold.

Overall Distillation Object. The overall training
objective of Distribution Refinery is formalized as:

Ldr =
1

n

n∑

i=1

lce(pi, q̂i), where

q̂ij =





q
1/γ
ij /

∑
c∈Y q

1/γ
ic , xi ∈ Dsl

qij , xi ∈ Din −Dsl

I(j = argmax
c∈Y

pij), xi ∈ Dhc

(5)
Algorithm 1 shows the pseudo-code of CanDist.

4 Theoretical Analysis

In this section, we further theoretically explain
why prompting and then distilling candidate an-
notations leads to better results. Since there is still

a lack of theoretical understanding of LLMs, we
simplify this problem by treating the LLM as a
traditional teacher model, focusing on whether the
SLM can distill better results from candidate la-
bels. While most existing knowledge distillation
theories illustrate the advantages of distilling from
the teacher’s output distribution (Phuong and Lam-
pert, 2019; Das and Sanghavi, 2023), we analyze
distilling from the teacher’s candidate annotations
(top-k outputs), wherein the student SLM distilled
from teacher LLM’s candidate annotations demon-
strate more noise-tolerant than the teacher LLM,
as well as the SLM distilled from LLM’s single
annotations.

Theorem 1 Considering the scenario that both
the teacher LLM and student SLM are composed
of a feature extractor g(·) : X 7→ Rd (with
different scales) and a classifier W ∈ Rd×C .
The teacher LLM is pre-trained on an inaccu-
rate dataset D̃ = {xi, ỹi}mi=1 with noise rates
{Rc,c′}C,C

c=1,c′=1
1, where m denotes the number of

samples in the dataset and Rc,c′ indicates the prob-
ability of label c being flipped to c′. After pre-
training, the student SLM is then trained based
on the teacher LLM’s single (top-1) or candidate
(top-2) annotations on D̃. Suppose the models are
trained by l2-regularized cross-entropy loss with
regularization parameter λ, and the feature extrac-
tors are fixed. Besides, we consider that the feature
similarity between different samples from the same
class and different classes are a and b respectively,
with 1 > a > b > 0.

Then, with m→ ∞, the condition of achieving
100% accuracy (correctly predicting all training
data) for the teacher LLM, as well as the student
SLM distilled from LLM’s top-1 prediction is:

Rc,c′ +
∑

i ̸=c

Rc,i < 1− θ

ϕ− θ
, ∀c, c′ ̸= c

where θ = 1− Cmλ

Cmλ+ 1− a
,

ϕ = 1− Cmλ

Cmλ+ m
C (a− b) + 1− a

(6)

and the condition of that for the student SLM dis-
tilled from LLM’s top-2 prediction is:

Rc,c′ +
∑

i ̸=c

Rc,i < 1, ∀c, c′ ̸= c (7)

1Due to LLMs’ strong general capabilities, we assume
that, for a specific task, LLMs can consistently output a label
distribution P ′ that is relatively close to the true distribution
P . Under this assumption, LLMs appear to act like a teacher
pre-trained on a dataset with distribution P ′.
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Table 2: Comparisons of Accuracies (%) on the training and testing sets of different tasks. CanDistadd and CanDistall
apply CAadd and CAall to prompt candidates respectively. The best results are bold and the second best is underlined.

Method
Training Set Testing Set

TREC MA DBP AGN RCT BANK TREC MA DBP AGN RCT BANK

Zero-shot 62.84 62.03 93.33 87.72 61.41 65.19 72.20 63.12 93.94 87.24 61.83 68.41
Few-shot 71.07 62.28 95.41 88.73 65.18 66.08 77.20 63.40 95.40 88.05 65.85 68.86
CoT 71.88 60.05 91.85 83.23 60.06 57.54 80.60 61.15 92.44 83.05 60.43 60.97
SC 71.06 62.29 95.60 88.80 65.50 66.08 76.00 63.26 95.42 87.96 65.85 68.99
AnnoLLM 73.73 59.71 95.62 85.52 68.13 67.04 79.60 59.56 95.34 85.39 68.53 70.29
SuperICL 76.05 62.81 97.55 89.16 66.80 69.91 81.60 63.75 97.63 88.79 67.82 73.25
Distillation 76.04 62.45 97.52 89.13 66.86 69.83 81.00 63.54 97.61 88.29 67.66 72.40
FreeAL 78.24 62.89 97.76 89.58 67.57 71.38 82.33 64.13 97.92 88.64 68.32 74.58
CanDistadd 80.87 63.31 98.67 89.91 68.69 72.92 83.13 64.23 98.72 89.46 69.77 76.27
CanDistall 79.73 63.76 98.54 89.29 68.90 72.94 87.80 64.20 98.65 88.78 70.57 75.97

SFT - - - - - - 97.80 64.54 98.78 92.29 84.52 93.31

The proof is provided in Appendix C. The theorem
illustrates that the SLM distilling top-2 predictions
from the teacher LLM achieves 100% accuracy
with a more tolerant condition on label noise
than using the top-1 prediction, which theoretically
demonstrates the great potential of the paradigm
that first generates candidates by the teacher LLM
and then distilling them using a student SLM.

5 Experiments

In this section, we report our empirical results to
show the superiority of CanDist. We refer the read-
ers to the Appendix for more details and results.

5.1 Setup

Datasets. We conduct experiments on the follow-
ing six text classification datasets, namely, TREC
(Li and Roth, 2002) for topic classification, Medi-
cal Abstract (MA) (Schopf et al., 2022) for medical
diagnosis classification, DBpedia (DBP) for ontol-
ogy classification (Zhang et al., 2015), AGNews
(AGN) (Gulli, 2005) for news topic classification,
RCT (Dernoncourt and Lee, 2017) for content type
classification in medical abstracts, and Banking
(BANK) (Casanueva et al., 2020) for intent classi-
fication in banking dialogues.

Baselines. We adopt the following LLM-based
or SLM-based baselines: Zero-shot and Few-shot
(Liu et al., 2022) directly prompt for single anno-
tations without/with few-shot examples; CoT (Ko-
jima et al., 2022) employs chain-of-thought prompt-
ing by adding "Let’s think step by step" before each
answer; Self-Consistency (SC) (Wang et al., 2023)

samples diverse reasoning paths and generates the
answer by majority voting; AnnoLLM (He et al.,
2024b) provides explanations for few-shot exam-
ples to boost performance; SuperICL (Xu et al.,
2024) first trains an SLM using labeled data and
uses its output and confidence as references dur-
ing LLM annotation; Distillation distill an SLM
from LLM’s single annotation and use the SLM to
provide the final annotation; FreeAL (Xiao et al.,
2023) introduces a robust training mechanism to
improve generalization when distilling the SLM
from single annotations, where we apply 1 round of
annotation-distillation for a fair comparison. Note
that few-shot examples are applied to CanDist and
all baselines except Zero-shot and CoT. Besides,
for SuperICL, LLM’s single annotations are lever-
aged to train the plug-in SLM.

Performance Evaluation. We evaluate the an-
notation accuracy on both the training and testing
set. For SLM-based methods (Distillation, FreeAL,
and our method), the unlabeled training set is first
annotated by the LLM, and then the SLM is trained
on this training set to provide annotations. We also
report the testing results of supervised fine-tuning
(SFT) where the SLM is trained on the human-
labeled training dataset. For all experiments, we
run three times and report the averaged results.

Implementation Details. We exploit GPT-3.5 as
the LLM annotator (see results of more advanced
LLMs in Appendix B.2) and RoBERTa-Base (Liu
et al., 2019) as the SLM for all tasks except MA,
where BioMed-RoBERTa-Base (Gururangan et al.,
2020) is used to boost performance for the medical
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Table 3: Comparison with selecting answers from candidates using LLM on the training sets. Results of single
annotations (Few-shot) are also listed for the sake of comparison.

Ablation TREC MA DBP AGN RCT BANK Avg.

CanDistadd 80.87 63.31 98.67 89.91 68.69 73.50 79.16
with LLM Select 72.87 (-8.00) 63.42 (+0.11) 96.38 (-2.29) 88.33 (-1.58) 63.17 (-5.52) 68.33 (-5.16) 75.42 (-3.74)

CanDistall 79.73 63.76 98.54 89.29 68.90 72.94 78.86
with LLM Select 70.95 (-8.78) 63.18 (-0.58) 96.30 (-2.24) 88.23 (-1.06) 63.67 (-5.23) 67.42 (-5.52) 74.96 (-3.90)

Few-shot 71.07 62.28 95.41 88.73 65.18 66.08 74.79

task. We set the number of few-shot examples as 10
for all tasks except 5 for MA due to limited context
length. Since we cannot access labeled samples,
the few-shot examples are LLM-generated (Xiao
et al., 2023). For sampling-based baseline SC, we
sample the decoding path 5 times with a tempera-
ture of 0.5. For other LLM generation processes,
the temperature is set to a lower value of 0.3. More
details of training SLM are in Appendix A.3.

5.2 Main Results

The comparison results on the training and testing
sets are shown in Table 2 where the best results
are shown in bold and the second best is under-
lined. Overall, CanDist outperforms all baselines
on all tasks. For example, on the testing set of
TREC, CanDist improves the best baseline by a
large margin of 5.47%. Also, in the tasks of MA
and DBpedia, CanDist achieves competitive testing
performance on par with supervised fine-tuning.
The superior results against all baselines imply the
effectiveness of our proposed CanDist framework.

Specifically, CanDist largely improves Zero-shot
and Few-shot, where CanDistadd and CanDistall
outperform Few-shot by averaged improvements
of 5.48% and 6.10% on the testing set, and 7.03%
and 6.63% on the training set. Though effective in
reasoning tasks, CoT prompting performs poorly in
most annotation tasks and self-consistency achieves
similar results with Few-shot. AnnoLLM improves
Few-shot in several tasks by providing explana-
tions on input examples. However, these LLM-
based methods underperform SLM-based methods,
where SLM can distill the high-quality task-related
knowledge from the LLM’s annotation. Regarding
the knowledge of SLM as a reference, SuperICL
slightly improves the performance of Distillation.
FreeAL further improves Distillation through a ro-
bust training objective that tackles label noise. For
CanDist, we declare that there is a trade-off be-
tween the number of candidates and the accuracy

Table 4: Comparison with other candidate generation
strategies on TREC, where 1−α-error, average number
of labels (#Labels), and testing accuracy are reported

Strategy 1− α #Labels Accuracy

5 sampled paths 77.59 1.17 81.40
10 sampled paths 79.92 1.25 81.73
20 sampled paths 82.36 1.32 82.27
40 sampled paths 84.30 1.39 82.33

5 example orders 79.15 1.21 81.27
5 prompt formats 83.82 1.30 82.67

CanDistadd 74.65 1.07 83.13
CanDistall 89.09 1.70 87.80

since more candidates are more challenging to iden-
tify while fewer candidates contain fewer correct
labels. Though CAall generally retrieves more la-
bels than CAadd, we suppose that the performance
of different prompting strategies depends on tasks,
and both strategies achieve state-of-the-art results.

5.3 Analysis

Comparison with Other Candidate Generation
Strategies. To show the superiority of gener-
ating candidates by prompting, we compare the
following two candidate generation strategies: 1)
sampling-based strategy (Wang et al., 2023) sam-
ples K = 5, 10, 20, 40 paths and gathers them into
a candidate set; 2) ensemble-based strategy gathers
the answers from diverse prompting results, where
we consider prompting with 5 few-shot example
orders (Zhao et al., 2021) and 5 prompting formats
(Gao et al., 2021). To evaluate the generated candi-
dates, we report their 1− α-error, average number
of labels, and the testing accuracy of SLM trained
by our proposed Distribution Refinery objective.

Table 4 demonstrates that by retrieving more
candidate labels, CanDistall enjoys much higher
1 − α-error than other methods and achieves the
highest testing accuracy. Moreover, CanDistadd
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Table 5: Key prompt for selecting answers from candi-
date annotations on the TREC dataset.

Prompt of selecting the answer from candidates

Given a question: . . . What does this question ask
about? It is known that the answer belongs to one of
the following classes: .... Please select the correct
answer from them.

Table 6: Ablation study on Distribution Refinery mech-
anism on the testing set of TREC and Banking.

Ren. Out. Sha. Cla. Hig. TREC BANK

82.47 71.40
✓ 85.47 74.88
✓ ✓ 86.60 75.13
✓ ✓ ✓ 87.07 74.99
✓ ✓ ✓ ✓ 87.40 75.70
✓ ✓ ✓ ✓ ✓ 87.80 75.97

also outperforms the sampling and ensemble-based
methods even if it retrieves fewer candidates, indi-
cating that directly prompting candidates results in
more valuable annotation. For the sampling-based
method, though incorporating more sampled paths
offers a higher 1−α-error, the increment in testing
accuracy remains limited. Besides, sampling and
ensemble-based strategies suffer from more costs
in querying LLMs while promoting candidates only
need to prompt and sample once.

Comparison with Selecting Answers from Can-
didates using LLM. To validate the effective-
ness of our proposed teacher-student framework
for identifying the correct label from candidate la-
bels, we compare CanDist with its variant, CanDist
with LLM Select, which directly queries LLM to
select the correct label from the given candidate
annotations. The key prompt for selecting the an-
swer from candidates is shown in Table 5. As
shown in Table 3, LLM selection suffers from per-
formance drops compared with CanDist on most
tasks, which demonstrates the superiority of our
proposed teacher-student framework. Moreover,
we found that CanDist with LLM Selection slightly
outperforms single annotations (Few-shot), indi-
cating that the paradigm of prompting candidates
and then selecting from them is better than direct
prompting for a single label.

Ablation Study on Distribution Refinery. To
demonstrate the effectiveness of different compo-
nents in DR, we run CanDistall with varying com-
binations of the components. We denote the com-

Figure 4: Comparison of 1− α on TREC’s training set
(left) and accuracy on the testing set (right) between
different collaboration strategies with self-consistency.

ponents in DR as 1) Ren. for the re-normalization
function in Eq.(1); 2) Out. for filtering out-of-
candidate samples; 3) Sha. for whether employ-
ing distribution sharpening for reliable samples;
4) Cla. for whether select small loss samples in
a class-wise manner; 5) Hig. for whether using
high confidence samples as reliable samples. As
shown in Table 6, distilling from re-normalized dis-
tribution improves the vanilla version (trained on
cross-entropy loss) by a large margin, i.e., 3.00%
for TREC and 3.70% for Banking. DR also helps
by filtering out-of-candidate samples and sharpen-
ing the target distribution, where class-wise selec-
tion is essential for employing distribution sharp-
ening, which balances the training progress across
all classes. High-confidence label assignment fur-
ther improves the performance by maximizing the
utility of the out-of-candidate samples.

Synergism with Self-Consistency. We further
show that our vanilla method can work collabora-
tively with Self-Consistency (SC). Specifically, we
first prompt LLMs with candidate labels and sam-
ple K = 40 answers {sj}Kj=1, and then calculate
the frequency for each class c by

∑K
j=1 I(c ∈ sj)

to filter the top-k frequent labels as candidate an-
notations. We name this strategy as SC-k and we
also define SC-All as using all the appeared labels
as candidate labels. As shown in Figure 4, the com-
parison on 1−α-error illustrates that collaborating
with SC further increases the diversity of candidate
labels which includes more correct labels, and this
also yields a higher accuracy for the final annota-
tion, as shown on the right. Further discussion on
SC-1 can be found in Appendix B.3.

6 Conclusion

In this work, we study LLM-driven data annotation
by proposing a novel teacher-student framework,
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CanDist, which first prompts the teacher LLM to
generate candidate labels and then distill a stu-
dent SLM to identify the true labels. We illustrate
that candidate annotations exhibit better statistical
properties and theoretically justify that distilling
from LLM’s candidate annotations is more noise-
tolerant. Empirically, we show that CanDist outper-
forms various LLM and SLM-based methods. We
hope our work will inspire future research to ex-
ploit candidate annotations with weak annotators.

Limitations

Despite the effectiveness of our proposed CanDist
framework for data annotation, there is still much
potential for further improvement. On the one hand,
as the Distribution Refinery mechanism is specif-
ically designed for classification, the application
of CanDist is currently limited to text classifica-
tion tasks, and we aim to explore its potential in
text generation tasks in our future works. On the
other hand, the derivation of our proposed theory
is based on the assumption that the LLM is a tra-
ditional encoder model, which is not the case for
the prevailing decoder-only LLMs. Besides, there
is still a lack of theoretical understanding of LLMs
in the community and we hope that this field will
further develop in the near future.

Ethical Considerations

While the datasets used in our paper are all publicly
available and are widely adopted by researchers,
utilizing LLMs for data annotation and generating
few-shot examples may include bias and unfairness.
Allowing LLMs to output multiple annotations may
further amplify such issues, although we did not
observe such phenomena in our experiments. Nev-
ertheless, if CanDist is used with such biased anno-
tations, it may unpleasantly yield unfair and biased
predictions based on characteristics like race, gen-
der, disabilities, LGBTQ, or political orientation.
To alleviate this issue, we recommend that potential
users first use bias reduction and correction tech-
niques to remove biased text and predictions so as
to improve overall fairness and ethical standards.
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A Additional Experimental Setup

A.1 Statistics of Datasets

Table 7: Statistics of the used datasets. #Class denotes
the number of classes. #Train and #Test indicate the
size of the training and testing set.

Dataset Task #Class #Train #Test

TREC Topic cls 6 5,452 500
MA Medical cls 5 11,550 2,888
DBpedia Ontology cls 14 10,000 70,000
AGNews Topic cls 4 10,000 7,600
RCT Content cls 5 10,000 30,135
Banking Intent cls 77 9,003 3,080

Table 7 shows the statistics of datasets used in
our experiments. Given the extensive size of the
original training sets for DBpedia, AGNews, and
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Table 8: Comparisons on 1− α-error, average number of labels (#La.), and F1-score between different prompts.

Method
TREC MA BANK AGN RCT DBP

1− α #La. F1 1− α #La. F1 1− α #La. F1 1− α #La. F1 1− α #La. F1 1− α #La. F1

SA 71.07 1.00 83.1 62.28 1.00 76.8 66.08 1.00 79.6 88.73 1.00 94.0 65.18 1.00 78.92 95.41 1.00 97.7
CAadd 74.65 1.07 85.0 79.06 1.56 82.4 76.99 1.74 86.6 94.47 1.30 92.2 75.18 1.56 80.26 98.59 1.37 97.9
CAall 89.09 1.70 87.5 88.99 1.95 82.1 80.14 2.00 88.5 97.19 1.70 85.7 79.15 1.81 79.51 99.25 1.75 96.7

RCT, we randomly selected 10,000 examples from
each as their respective training sets. Note that
the most competitive baseline, FreeAL, primarily
evaluates binary classification datasets, which are
easier to annotate and do not need to apply candi-
date annotations, whereas we conduct experiments
on more challenging tasks.

A.2 More Details of SLM Distillation
During SLM distillation, we incorporate consis-
tency regularization and mixup training to boost
performance following FreeAL. Consistency regu-
larization encourages the model to produce similar
outputs for different augmented views of the same
sample. Specifically, we adopt back-translation
(Sennrich et al., 2016) to augment each sample xi

into x
aug
i . Then, for samples in Din and Dout, the

consistency regularization are formulated as:

Lin
cr =

1

|Din|
∑

xi∈Din

lce(p
aug
i , q̂i)

Lout
cr =

1

|Dout|
∑

xi∈Dout

lkl(p
aug
i ,pi)

(8)

where lkl denotes the KL-divergence. For mixup
training, we create virtual training samples by lin-
early interpolating both:

g(xm) = ω · g(xi) + (1− ω) · g(xj)

q̂m = ω · q̂i + (1− ω) · q̂j
(9)

where g(xi) is the embedding of xi. ω ∼
Beta(ς, ς) where ς is simply set as 4. The mixup
loss Lmix is then defined by the cross-entropy loss
between the SLM’s prediction on g(xm) and ym.
The total loss for SLM distillation is aggregated as:

Ltotal = Ldr + η · (Lin
cr + Lout

cr + Lmix) (10)

A.3 More Implementation Details
In our main experiments, we use the gpt-3.5-turbo-
0125 version for the LLM API. For generating few-
shot examples, we follow the setting in FreeAL
which first queries the LLM to generate an example
pool of size 100 with corresponding labels. Then,

the few-shot examples for each unlabeled sample
are retrieved based on embedding similarity with
the bert-base-uncased model.

For SLM distillation, we use Nvidia RTX A5000
GPU to train the model for 50 epochs with AdamW
optimizer with a learning rate selected from {3e−
5, 1e − 5, 3e − 6} and a weight decay of 0.01.
The batch size is fixed as 32 with a maximum se-
quence length of 128. We warm up the model
by training on the re-normalized distribution for
a few epochs to achieve high-quality selection in
the Distribution Refinery mechanism. For hyper-
parameters, the small loss ratio δ is selected from
{0.4, 0.5, 0.6}. The sharpen parameter γ is fixed as
0.85 and the high confidence threshold is selected
from {0.95, 0.99, 1.0}. Note that we employ the
default validation set for each dataset for parameter
selection. The loss weight parameter η is linearly
ramped up from 0 to 1 to avoid overfitting false
labels at the start.

B Additional Experimental Results

B.1 Full Assessment Results

In this section, we demonstrate the assessment re-
sults of single annotations and candidate annota-
tions on all tasks (training sets), where we use the
average number of labels (#La.) to represent β-
coverage since it is more intuitive to understand.
As shown in Table 8, CAadd and CAall improve
1− α-error on all datasets with average number of
labels no more than two. Candidate annotations
also achieve higher F1-scores on all tasks except
for AGNews. These results statistically demon-
strate that candidate annotations are more likely to
include the correct labels and offer great potential.

B.2 Results of Different LLMs

In this section, we evaluate the annotation results
using two other LLMs: Llama 3.1 (Llama-3.1-8B-
Instruct) and GPT-4o. As shown in Table 9 and 10,
Llama 3.1 achieves results at the same level as GPT-
3.5, and using the more advanced GPT-4o boosts
the performance of all data annotation methods.
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Table 9: Assessment results of different prompting
strategies on TREC using Llama 3.1 and GPT-4o.

Method
Llama 3.1 GPT-4o

1− α #La. F1 1− α #La. F1

SA 68.80 1.00 81.52 87.53 1.00 93.35
CAadd 85.34 1.87 83.98 94.42 1.20 95.17
CAall 89.56 2.06 83.80 96.28 1.44 93.63

Table 10: Comparisons on the training set and testing
set of TREC using Llama 3.1 and GPT-4o.

Method
Llama 3.1 GPT-4o

Train Test Train Test

Few-shot 68.80 77.00 87.53 87.60
FreeAL 76.60 82.67 89.14 93.80
CanDistadd 76.99 83.40 89.53 95.60
CanDistall 77.66 85.60 90.48 96.40

Still, CanDist improves GPT-4o’s single annota-
tions (Few-shot) by a large margin of 8.80% and
outperforms the most competitive baseline FreeAL
by a margin of 2.60% on the testing set.

B.3 Synergism with Self-Consistency

Following the setting in paragraph 5.3, we fur-
ther show that the collaboration of prompting
candidates and majority voting (i.e. SC-1) also
brings great potential by outperforming voting on
single annotations. Specifically, after sampling
K = 40 candidate annotations, we use major-
ity voting to obtain the final annotation: ŷ =
argmaxc ∈Y

∑K
j=1 I(c ∈ sj). Figure 5 demon-

strates the comparison results on the training set of
TREC and Banking, where we found that voting on
candidate annotations results in higher performance
than voting on single annotations. Notably, as the
number of sampled paths increases, the accuracy
of voting on candidates grows more significantly,
especially from 1 to 5. This further indicates the
great value of prompting candidate annotations.

B.4 Comparison of Different ICL Strategies
for Prompting Candidates

In this section, we further investigate how the de-
sign of in-context learning (ICL) examples for
prompting candidate annotations affects the results
of CanDist. Note that we employ Self-generated
(Single) for our method following FreeAL, which
leverages sample-single label pairs generated by
LLM as ICL examples. We further explore the

Figure 5: Comparison of different prompting strate-
gies for self-consistency shows the synergism between
prompting candidates with self-consistency.

Table 11: Comparison of different ICL strategies for
prompting candidate annotations.

Example Type TREC BANK

Zero-shot 87.00 68.47
Self-generated (Single) 87.80 75.97
Self-generated (Candidate) 89.60 74.71
Supervised 90.47 76.04

effect of two other types of ICL examples: Self-
generated (Candidate) which leverages sample-
candidate label pairs generated by LLM as exam-
ples; Supervised adopt human-labeled training data
as examples. For both methods, we first gather an
example pool of size 100 and retrieve ICL exam-
ples for each unlabeled sample based on embedding
similarity with the bert-base-uncased model. As
shown in Table 11, CanDist using self-generated
examples outperforms zero-shot CanDist, and us-
ing supervised ICL can make further improve-
ments. Besides, CanDist using examples with self-
generated single labels outperforms the one with
candidate labels on Banking but underperforms it
on TREC. This suggests that whether to use single
labels or candidate labels as ICL examples depends
on the specific task and we simply adopt the former,
which achieves state-of-the-art results.

B.5 Comparison with Traditional Active
Learning Methods

To compare the effectiveness of CanDist with hu-
man annotation, we further evaluate some active
learning (AL) baselines, including 1) AL-Random,
which acquires to-be-labeled data randomly; 2) AL-
Entropy (Holub et al., 2008), which is the most
commonly used uncertainty-based method that ac-
quires samples with highest predictive entropy; 3)
AL-CAL (Margatina et al., 2021) is a recent active
learning method that acquires contrastive examples.
We also report Supervised Fine-tuning which ac-
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Figure 6: Comparison between active learning methods
and CanDist on TREC where CanDistall is applied.

Table 12: Running time (in seconds) of one SLM train-
ing epoch of baseline FreeAL and CanDist.

Method TREC MA DBP AGN RCT BANK

FreeAL 80.2 172.7 148.5 147.8 146.2 131.7
CanDist 79.1 174.0 149.4 148.1 146.5 132.4

quires annotation for the whole training set and
CanDist-hybrid which incorporates randomly ac-
quired human annotations into CanDist. For all
methods, we first train the SLM on the annotated
training set and evaluate its testing accuracy.

Figure 6 demonstrates the comparison results
under different annotation budgets on the TREC
datasets. Firstly, CanDist, without human annota-
tion, outperforms most traditional AL baselines
under 10% human annotations. Also, incorpo-
rating merely 20% human annotations, CanDist-
hybrid achieves comparable performance with AL
baselines under 50% human annotations. Further-
more, CanDist-hybrid with 50% human annota-
tions achieves competitive performance on par with
supervised fine-tuning. These results yield the su-
periority of our proposed CanDist framework.

Besides, though FreeAL shows that LLM-driven
active learning surpasses traditional active learning
and achieves competitive results with supervised
fine-tuning on the SST-2 (Socher et al., 2013) and
MR (Pang and Lee, 2005) datasets, we show that
on a harder task, LLM-driven active learning still
requires a small proportion of human annotations
to achieve near-supervised performance.

B.6 Time Complexity Analysis

To analyze the time complexity of the SLM distilla-
tion process in our proposed CanDist, we compare
the empirical running time (in seconds) of SLM
distillation in CanDist and the baseline FreeAL in

Table 12, which demonstrates CanDist is in the
same magnitude as FreeAL.

C Proof of Theorem 1

In this section, we provide the proof of Theorem
1, which illustrates that the SLM distilled from the
LLM’s candidate annotations enjoys better theoret-
ical guarantees than the LLM as well as the SLM
distilled from the LLM’s single annotations.

Theorem 1 Considering the scenario that both the
teacher LLM and student SLM are composed of a
feature extractor g(·) : X 7→ Rd (with different
scales) and a classifier W ∈ Rd×C . The teacher
LLM is pre-trained on an inaccurate dataset D̃ =
{xi, ỹi}mi=1 with noise rates {Rc,c′}C,C

c=1,c′=1, where
m denotes the number of samples in the dataset
and Rc,c′ indicates the probability of label c being
flipped to c′. After pre-training, the student SLM
is then trained based on the teacher LLM’s single
(top-1) or candidate (top-2) annotations on D̃. Sup-
pose the models are trained by l2-regularized cross-
entropy loss with regularization parameter λ, and
the feature extractors are fixed. Besides, we con-
sider that the feature similarity between different
samples from the same class and different classes
are a and b respectively, with 1 > a > b > 0.

Then, with m→ ∞, the condition of achieving
100% accuracy (correctly predicting all training
data) for the teacher LLM as well as the student
SLM distilled from LLM’s top-1 prediction is:

Rc,c′ +
∑

i ̸=c

Rc,i < 1− θ

ϕ− θ
, ∀c, c′ ̸= c

where θ = 1− Cmλ

Cmλ+ 1− a
,

ϕ = 1− Cmλ

Cmλ+ m
C (a− b) + 1− a

(11)

and the condition of that for the student SLM dis-
tilled from LLM’s top-2 prediction is:

Rc,c′ +
∑

i ̸=c

Rc,i < 1, ∀c, c′ ̸= c (12)

Proof.

Closed-form Solutions of Model’s Prediction.
Denote the training objective of the models as:

L(W ) =
1

m

m∑

i=1

lce(pi, qi) +
λ||W ||2F

2
(13)
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where pi = softmax(W⊤g(xi)) is the model’s
prediction distribution and qi denotes the train-
ing target. When pre-training the teacher LLM,
qi = e(ỹi) where e(y) denotes the one-hot form of
a specific label y; When distilling the student SLM
from teacher LLM’s top-1 prediction, qi is a one-
hot vector where the value on the max prediction
index equals 1 and otherwise 0; When distilling
the student SLM from teacher LLM’s top-2 predic-
tion, qi is a vector where the value on the top-2
prediction index equals 0.5 and otherwise 0.

The optimal classifier satisfies the condition of
dL(W )
dW = 1

m

∑m
i=1 g(xi)(pi − qi)

⊤ + λW = 0.
Thus, the optimal classifier can be formalized as:

W⊤ =
1

mλ

m∑

i=1

(qi − pi)g(xi)
⊤ (14)

To derive the relation between the training target
qi and model’s prediction pi, we define ai = qi −
pi and derive as follows:

ai = qi − pi = qi − softmax(W⊤g(xi))

= qi − softmax(
1

mλ

m∑

j=1

ajg(xj)
⊤g(xi))

= qi − softmax(
1

mλ

m∑

j=1

⟨g(xi), g(xj)⟩aj)

Due to the non-linearity of the softmax function,
directly solving ai is challenging. To this end,
we employ a linear approximation of the softmax
function following (Hinton et al., 2015):

softmax(v)i =
exp(vi)∑C
j=1 exp(vj)

≈ 1 + vi

C +
∑C

j=1 vj
≈ 1 + vi

C

(15)

Note that this linear approximation, originally in-
troduced by Hinton et al. (2015), is based on ap-
plying softmax with a high temperature T > 0,
i.e., softmax(v/T ). Therefore, when T = 1, the
approximation in Eq.(15) becomes valid when the
logits are of sufficiently small magnitude. By ap-
plying the above approximation, we have:

ai = qi −
1

C
1C − 1

Cmλ

m∑

j=1

⟨g(xi), g(xj)⟩aj

(16)
where 1C a C-dimensional all-ones vector. De-
noting A = [a1, . . . ,am] ∈ RC×m, Q =

[q1, . . . , qm] ∈ RC×m, and S ∈ Rm×m with
Si,j = ⟨g(xi), g(xj)⟩, Eq.(16) can be expressed
as:

A = Q− 1

C
1C×m − 1

Cmλ
AS⊤ (17)

With the definition of A and the symmetry of S,
and denote P = [p1, . . . ,pm] ∈ RC×m as the out-
put matrix, the relation between the training target
Q and the model’s prediction P can be derived as:

A = Q− 1

C
1C×m − 1

Cmλ
AS;

A

(
Im +

1

Cmλ
S

)
= Q− 1

C
1C×m;

A =

(
Q− 1

C
1C×m

)(
Im +

1

Cmλ
S

)−1

;

(
Q− 1

C
1C×m

)
−
(
P − 1

C
1C×m

)
=

(
Q− 1

C
1C×m

)(
Im +

1

Cmλ
S

)−1

;

P − 1

C
1C×m =

(
Q− 1

C
1C×m

)

(
Im −

(
Im +

1

Cmλ
S

)−1
)

(18)
where Im is an m-dimensional identity matrix. To
further simplify the above expression, we apply
eigen-decomposition for the similarity matrix S as
S = V ΛV −1 with eigenvalue-eigenvector pairs
{λi,vi}mi=1. Then, by applying Woodbury’s matrix
identity, Eq.(18) can be simplified as:

P − 1

C
1C×m =

(
Q− 1

C
1C×m

)

(
Im −

(
Im + V

1

Cmλ
ΛV −1

)−1
)

=

(
Q− 1

C
1C×m

)
V
(
CmλΛ−1 + Im

)
V −1

(19)

Quantification of the Similarity Matrix. In
the following derivations, we further simplify the
closed-form solution of P through the quantifica-
tion of the similarity matrix S. Specifically, we
assume that the feature similarity of different sam-
ples depends on classes, i.e.:

Si,j =





1, i = j

a, i ̸= j, yi = yj

b, yi ̸= yj

,where b < a < 1

(20)
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Denote the class-wise similarity matrix Z ∈ RC×C

with Zi,j = a when i = j and Zi,j = b when i ̸=
j, and let Y = [e(y1), . . . , e(ym)] ∈ RC×m be the
ground-truth label matrix, the similarity matrix S
can be expressed as:

S = Y ⊤ZY + (1− a)Im

= Y ⊤ (b1C×C + (a− b) IC)Y + (1− a)Im
(21)

Lemma 1 Suppose the symmetric matrix B ∈
Rn×n is composed of the sum of rank-m (m < n)
matrix and a multiple of the identity matrices:

B = UΞU⊤ + λIn

where U = [u1, . . . ,um] ∈ Rn×m is an or-
thonormal matrix satisfying U⊤U = Im. Ξ =
diag(ξ1, . . . , ξm) ∈ Rm×m containing the eigen-
values ξi. Then, B has the following two types of
eigenvalue-eigenvector pairs {σi,vi}ni=1:

1) m eigenvalues that are shifts of the original
eigenvalues from the rank-m matrix:

σi = ξi + λ, i = 1, . . . ,m

with corresponding eigenvectors vi = ui.
2) (n−m) eigenvalues from the identity matrix:

σi = λ, i = m+ 1, . . . , n

with corresponding eigenvectors orthogonal to the
columns of U .

Proof. The eigenvalue equation is given by:

(UΞU⊤ + λIn)v = σv

Decompose v into components v∥ + v⊥, where v∥
is in the column space of U and v⊥ is orthogonal to
the column space of U , and we have v∥ = Uβ and
U⊤v⊥ = 0 for some β ∈ Rm. Then, multiplying
U⊤ on both sides of the eigenvalue equation yields:

ΞU⊤v + λU⊤v = σU⊤v;

ΞU⊤(v∥ + v⊥) + λU⊤(v∥ + v⊥)

= σU⊤(v∥ + v⊥);

(Ξ + λU⊤U)β = σβ;

(Ξ + λI)β = σβ

which indicates σi = ξi + λ for i = 1, . . . ,m with
corresponding eigenvectors given by vi = ui. The
remaining n−m eigenvalues arise from λI , with
eigenvectors orthogonal to the columns of U .

With Lemma 1, we can reformulate S in Eq.(21).
For Z = b1C×C + (a− b) IC , it has two types of
eigenvalue-eigenvector pairs {σi,ui}Ci=1:

1) one pair with eigenvalue:

σ1 = Cb+ (a− b)

and eigenvector u1 =
1√
C
1C ;

2) C − 1 pairs with eigenvalues:

σi = a− b, i = 2, . . . , C

and the corresponding eigenvectors ui. Denoting
Σ = diag(σ1, . . . , σC) and U = [u1, . . . ,uC ] ∈
Rm×C , thus:

S = Y ⊤ZY + (1− a)Im

= Y ⊤UΣU⊤Y + (1− a) Im

=

√
C

m
Y ⊤U

(m
C
Σ
)(√C

m
Y ⊤U

)⊤

+ (1− a) Im

(22)

where we assume
∑m

j=1 Yi,j = m/C, namely, the
dataset is balanced. Again, by applying Lemma 1,
S has three types of eigenvalue-eigenvector pairs
{λi,vi}mi=1:

1) one pair with eigenvalue:

λ1 =
m

C
σ1 + (1− a)

= mb+
m

C
(a− b) + (1− a)

and eigenvector v1 =
√

C
mY ⊤u1 =

1√
m
Y ⊤1C ;

2)C−1 pairs with eigenvalues for i = 2, . . . , C:

λi =
m

C
σi + (1− a)

=
m

C
(a− b) + (1− a)

and the eigenvectors vi =
√

C
mY ⊤ui;

3) m− C pairs with eigenvalues:

λi = (1− a), i = C + 1, . . . ,m

and the corresponding eigenvectors vi.
Denoting S′ = V

(
CmλΛ−1 + Im

)
V −1 in

Eq.(19), and denoting θ, ϕ, ψ according to the fol-
lowing equations:

θ = 1− Cmλ

Cmλ+ 1− a

ϕ = 1− Cmλ

Cmλ+ m
C (a− b) + 1− a

ψ = 1− Cmλ

Cmλ+mb+ m
C (a− b) + 1− a
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we have:

S′ =
m∑

i=1

λi
Cmλ+ λi

viv
⊤
i

=
λ1

Cmλ+ λ1
v1v

⊤
1 +

C∑

i=2

λi
Cmλ+ λi

viv
⊤
i

+
m∑

i=C+1

λi
Cmλ+ λi

viv
⊤
i

=
ψC

m
Y ⊤u1u

⊤
1 Y +

ϕC

m

C∑

i=2

Y ⊤uiu
⊤
i Y

+ θ

m∑

i=C+1

viv
⊤
i

=
ψ

m
Y ⊤1C×CY

+
ϕC

m
Y ⊤

(
IC − 1

C
1C×C

)
Y

+ θ

(
Im − C

m

C∑

i=1

Y ⊤uiu
⊤
i Y

)

=
ψ − ϕ

m
1m×m +

(ϕ− θ)C

m
Y ⊤Y + θIm

(23)
Finally, the model’s prediction pi is quantified as:

pi =

(
Q− 1

C
1C×m

)
S′
:,i +

1

C
1C

= θqi + (ϕ− θ)


C

m

∑

j:yi=yj

qj




+ (ψ − ϕ)


 1

m

m∑

j=1

qj


+ (1− ψ)

1

C
1C

= θqi + (ϕ− θ)


C

m

∑

j:yj=yi

qj




+ (1− ϕ)
1

C
1C

(24)
where we assume the target Q is also balanced
which indicates 1

m

∑m
j=1 qj =

1
C1C .

Condition for Achieving Correct Prediction.
Recall that the teacher model is trained on an in-
accurate dataset D̃ = {xi, ỹi}mi=1 with noise rates
{Rc,c′}C,C

c=1,c′=1, and we have qi = e(ỹi) when
training the teacher model. Then, when m → ∞,
the second term in Eq.(24) can be expressed as
C
m

∑
j:yj=yi

qj = R⊤
yi,:, which yields:

pi = θe(ỹi) + (ϕ− θ)R⊤
yi,: +

(1− ϕ)

C
1C (25)

Then, we aim to find the conditions for the pre-
diction pi to have the maximum value at the true la-
bel position yi, indicating a correct prediction. On
the one hand, if sample xi is clean, i.e., yi = ỹi:

[pi]c =

{
θ + (ϕ− θ)Ryi,yi , c = yi

(ϕ− θ)Ryi,c, c ̸= yi
(26)

where the condition for argmaxc [pi]c = yi is
Rc,c > Rc,c′ − θ

ϕ−θ ,∀c, c′ ̸= c; On the other hand,
if sample xi is noisy, i.e., yi ̸= ỹi:

[pi]c =





(ϕ− θ)Ryi,yi , c = yi

θ + (ϕ− θ)Ryi,ỹi , c = ỹi

(ϕ− θ)Ryi,c, c ̸= yi, ỹi

(27)

where the condition is Rc,c > Rc,c′+
θ

ϕ−θ ,∀c, c′ ̸=
c. Overall, since we have ϕ > θ, the most stringent
condition for correct prediction of the teacher LLM
is Rc,c > Rc,c′ +

θ
ϕ−θ ,∀c, c′ ̸= c.

Note that if Rc,c < Rc,c′ +
θ

ϕ−θ for some c and
c′ ̸= c, the teacher model’s top-1 prediction on
those samples with yi = c and ỹi = c′ remains
noisy, which indicates that when distilling from
the teacher model’s top-1 prediction Q, the noise
rates {Rq}C,C

c=1,c′=1 for Q still satisfies Rq
c,c <

Rq
c,c′ +

θ
ϕ−θ for those c and c′ ̸= c. To this end,

the condition for achieving correct prediction for
the student SLM distilled from the teacher LLM’s
top-1 prediction coincides with the condition of the
teacher LLM, i.e., Rc,c > Rc,c′ +

θ
ϕ−θ , ∀c, c′ ̸= c.

In the following paragraph, we justify when
Rc,c > Rc,c′ ,∀c, c′ ̸= c, the student SLM dis-
tilled from the teacher LLM’s top-2 prediction can
achieve correct prediction. With Eq.(27), we have
when Rc,c > Rc,c′ ,∀c, c′ ̸= c, the teacher model’s
top-2 prediction always includes the true label yi.
Denote ȳi as:

ȳi = argmaxc ̸=yi Ryi,c

the training target qi for distilling the teacher
model’s top-2 prediction can be expressed as:

qi =

{
1
2e(yi) +

1
2e(ȳi), xi is clean

1
2e(yi) +

1
2e(ỹi), xi is noisy

(28)

Then, with the balance assumption, the second term
in Eq.(24) is given as:

C

m

∑

j:yj=yi

qj =
1

2
e(yi) +

1

2
Ryi,yie(ȳi)

+
1

2

∑

c ̸=yi

Ryi,ce(c)

(29)
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Thus, if sample xi is clean then [pi]c =





θ
2 + ϕ−θ

2 + 1−ϕ
C , c = yi;

θ
2 + ϕ−θ

2 (Ryi,yi +Ryi,ȳi) +
1−ϕ
C , c = ȳi;

ϕ−θ
2 Ryi,c +

1−ϕ
C , c ̸= yi, ȳi.

(30)
where obliviously the max prediction is yi since∑C

c=1C Ryi,c = 1. Then, if sample xi is noisy and
ỹi = ȳi, [pi]c =:





θ
2 + ϕ−θ

2 + 1−ϕ
C , c = yi;

θ
2 + ϕ−θ

2 (Ryi,yi +Ryi,ỹi) +
1−ϕ
C , c = ỹi;

ϕ−θ
2 Ryi,c +

1−ϕ
C , c ̸= yi, ȳi.

(31)
and when ỹi ̸= ȳi, [pi]c =:




θ
2 + ϕ−θ

2 + 1−ϕ
C , c = yi;

θ
2 + ϕ−θ

2 Ryi,ỹi +
1−ϕ
C , c = ỹi;

ϕ−θ
2 (Ryi,yi +Ryi,ȳi) +

1−ϕ
C , c = ȳi.

ϕ−θ
2 Ryi,c +

1−ϕ
C , c ̸= yi, ỹi, ȳi.

(32)
Eq.(31) and (32) also yield yi as the max prediction
of pi, which indicates the student SLM distilled
from the teacher LLM’s top-2 prediction achieves
accurate predictions.

To sum up, the condition of achieving accurate
prediction, i.e., achieving 100% accuracy for either
the pre-trained teacher LLM or the SLM distilled
from the teacher LLM’s top-1 prediction is:

Rc,c > Rc,c′ +
θ

ϕ− θ
, ∀c, c′ ̸= c (33)

and the condition of achieving 100% accuracy for
the SLM distilled from the teacher LLM’s top-2
prediction is:

Rc,c > Rc,c′ , ∀c, c′ ̸= c (34)

Since Rc,c reflects the clean probability, we re-
place Rc,c in Eq.(33) and (34) by 1 −∑i ̸=cRc,i

that reflects the noise rates, which directly yields
the conclusion in Eq.(11) and (12). These illustrate
that the SLM distilled from LLM’s top-2 predic-
tion achieves 100% accuracy with a more tolerant
condition on label noise, providing the theoretical
foundation of our proposed CanDist framework.

D Full Prompt Design

The full prompt designs of single annotations and
candidate annotations are listed in Table 13.
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Table 13: Full prompts of prompting single (SA) and candidate (CAadd and CAall) annotations on the TREC dataset.

Strategy Prompt

SA

You are a helpful assistant for the task of question classification on the TREC (The Text REtrieval
Conference Question Classification) dataset. You reply with brief, to-the-point answers with no
elaboration as truthfully as possible. TREC dataset contains 5452 questions, each question is
identified as one of the 6 types with respect to what it asks for: DESC; ENTY; ABBR; HUM; LOC;
NUM, which stand for Abbreviation; Description and abstract concepts; Entities; Human beings;
Locations; Numeric values, respectively. Each of these 6 classes contains a non-overlapping
set of fine-grained sub-classes as follows: ABBR (Abbreviation): [Abbreviation and Expression
abbreviated], DESC (Description and abstract concepts): [Definition of something. Description of
something. Manner of an action and Reason.], ENTY (Entities): [Animal. Organ of body; Color;
Invention, book and other creative piece; Currency name; Disease and medicine; Event; Food;
Musical instrument; Language; Letter like a-z; Other entity; Plant; Product; Religion; Sport; Element
and substance. Symbols and sign. Techniques and method. Equivalent term. Vehicle. Word with a
special property.], HUM (Human beings): [Group or organization of persons; Individual; Title of a
person; Description of a person], LOC (Locations): [City; Country; Mountain; Other location. State],
NUM (Numeric values): [Postcode or other code; Number of something; Date; Distance, linear
measure; Price; Order, rank; Other number; Lasting time of something; Percent, fraction; Speed;
Temperature; Size, area and volume; Weight]. Your task is to classify the the given question as one
of the 6 given coarse classes (ABBR, DESC, ENTY, HUM, LOC and NUM) based on what is asked
and type of the answer. Given a question: . . . What does this question ask about? Please identify
the question into one of the six mentioned types.

CAadd

You are a helpful assistant for the task of question classification on the TREC (The Text REtrieval
Conference Question Classification) dataset. You reply with brief, to-the-point answers with no
elaboration as truthfully as possible. TREC dataset contains 5452 questions, each question is
identified as one of the 6 types with respect to what it asks for: DESC; ENTY; ABBR; HUM; LOC;
NUM, which stand for Abbreviation; Description and abstract concepts; Entities; Human beings;
Locations; Numeric values, respectively. Each of these 6 classes contains a non-overlapping
set of fine-grained sub-classes as follows: ABBR (Abbreviation): [Abbreviation and Expression
abbreviated], DESC (Description and abstract concepts): [Definition of something. Description of
something. Manner of an action and Reason.], ENTY (Entities): [Animal. Organ of body; Color;
Invention, book and other creative piece; Currency name; Disease and medicine; Event; Food;
Musical instrument; Language; Letter like a-z; Other entity; Plant; Product; Religion; Sport; Element
and substance. Symbols and sign. Techniques and method. Equivalent term. Vehicle. Word with a
special property.], HUM (Human beings): [Group or organization of persons; Individual; Title of a
person; Description of a person], LOC (Locations): [City; Country; Mountain; Other location. State],
NUM (Numeric values): [Postcode or other code; Number of something; Date; Distance, linear
measure; Price; Order, rank; Other number; Lasting time of something; Percent, fraction; Speed;
Temperature; Size, area and volume; Weight]. Your task is to classify the the given question as one
of the 6 given coarse classes (ABBR, DESC, ENTY, HUM, LOC and NUM) based on what is asked
and type of the answer. Given a question: . . . What does the question ask about? Please identify
the question into one of the six mentioned types. If you are unsure about your answer, please
include other potential choices.

CAall

You are a helpful assistant for the task of question classification on the TREC (The Text REtrieval
Conference Question Classification) dataset. You reply with brief, to-the-point answers with no
elaboration as truthfully as possible. TREC dataset contains 5452 questions, each question is
identified as one of the 6 types with respect to what it asks for: DESC; ENTY; ABBR; HUM; LOC;
NUM, which stand for Abbreviation; Description and abstract concepts; Entities; Human beings;
Locations; Numeric values, respectively. Each of these 6 classes contains a non-overlapping
set of fine-grained sub-classes as follows: ABBR (Abbreviation): [Abbreviation and Expression
abbreviated], DESC (Description and abstract concepts): [Definition of something. Description of
something. Manner of an action and Reason.], ENTY (Entities): [Animal. Organ of body; Color;
Invention, book and other creative piece; Currency name; Disease and medicine; Event; Food;
Musical instrument; Language; Letter like a-z; Other entity; Plant; Product; Religion; Sport; Element
and substance. Symbols and sign. Techniques and method. Equivalent term. Vehicle. Word with a
special property.], HUM (Human beings): [Group or organization of persons; Individual; Title of a
person; Description of a person], LOC (Locations): [City; Country; Mountain; Other location. State],
NUM (Numeric values): [Postcode or other code; Number of something; Date; Distance, linear
measure; Price; Order, rank; Other number; Lasting time of something; Percent, fraction; Speed;
Temperature; Size, area and volume; Weight]. Your task is to classify the the given question as one
of the 6 given coarse classes (ABBR, DESC, ENTY, HUM, LOC and NUM) based on what is asked
and type of the answer. Given a question: . . . What does the question ask about? Please identify
the question with all possible choices of the six mentioned types.
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