
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 28563–28576
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Speed Up Your Code: Progressive Code Acceleration Through
Bidirectional Tree Editing

Longhui Zhang1, Jiahao Wang1, Meishan Zhang1, Gaoxiong Cao2,
Ensheng Shi2, Yuchi Ma2, Jun Yu1, Honghai Liu1, Jing Li1#, Min Zhang1

1Harbin Institute of Technology, Shenzhen, China, 2Huawei, Shenzhen, China
longhuizhang97@gmail.com jingli.phd@hotmail.com

Abstract
Large language models (LLMs) have made sig-
nificant strides in code acceleration (CA) tasks.
Current works typically fine-tune LLMs using
slow-fast code pairs mined from online pro-
gramming platforms. Although these methods
are widely recognized for their effectiveness,
the training data often lack clear code accel-
eration patterns and offer only limited speed
improvements. Moreover, existing training
methods, such as direct instruction fine-tuning
(IFT), tend to overlook the hierarchical relation-
ships among acceleration patterns. In this work,
we introduce BITE, a novel training paradigm
designed to improve LLMs’ CA capabilities
through two key innovations: (1) Bidirectional
tree editing, which generates high-quality train-
ing data by incrementally transforming given
code into both its most efficient and least ef-
ficient variants, and (2) Progressive code ac-
celeration learning, which enables LLMs to
internalize multi-level CA strategies by learn-
ing increasingly sophisticated acceleration pat-
terns. Additionally, we introduce a new CA
evaluation benchmark and metric for compre-
hensive assessment of model performance on
CA tasks. Extensive experiments on both our
benchmark and existing benchmarks demon-
strate the effectiveness of our approach. No-
tably, BITE enables Qwen1.5B to outperform
prompt-enhanced GPT-4 and current training-
based methods on average across five program-
ming languages.

1 Introduction

As outlined by the ISO/IEC 25010 software quality
guidelines, computational efficiency is a critical
indicator of system quality (ISO/IEC25010, 2011).
Consequently, CA, the task of automatically refac-
toring inefficient code for speed improvement, has
been an active area of research (Mankowitz et al.,
2023). Early CA works (Nistor et al., 2013) usu-
ally relied on manually defined inefficiency types

Corresponding author.

int n;
cin >> n;
int sum = 0;
for (int i = 1; i <= n; ++i) {
 if (i % 2 == 0) {
 sum += i;
 }
}
cout << sum << endl;

Slow Code

int n;
cin >> n;
if (n % 2 != 0)
{
 n = n - 1;
}
int sum = (n / 2) * (2 + n) / 2;
cout << sum << endl;

 int x;
 cin >> x;
 int z = 0;
 int y = 2;
 while (y <= x) {
 if ((y & 1) == 0) {
 z += y;
 }
 y=y+2;
 }
 cout << z << endl;

Online Fast Code Fast Code of BITE (Ours)

Figure 1: Limitations of using slow-fast code pairs from
online platforms as training data. These data often con-
tain task-irrelevant variations (e.g., variable naming con-
ventions or loop structure choices) that hinder models
from identifying meaningful optimization patterns. Ad-
ditionally, the limited speedup ratio leads the model to
favor overly conservative code changes.

and corresponding modifications—referred to as
Acceleration Patterns—to optimize the code. With
the advent of deep learning, it became possible to
learn from CA data, thereby expanding the scope of
inefficient code that can be addressed (Garg et al.,
2022). However, achieving the performance neces-
sary for practical deployment remains a challenge.

The exceptional performance of LLMs like GPT-
4 (OpenAI, 2023) has opened new possibilities for
CA tasks. Initial explorations using simple prompt-
based learning have shown promise (Mankowitz
et al., 2023), with further enhancements achieved
through optimized prompting strategies such as in-
context learning (Waghjale et al., 2024) and chain-
of-thought (Gao et al., 2024). Training-based strate-
gies have proven even more effective , particularly
those that fine-tune LLMs on paired slow and fast
code solutions collected from online platforms like
Codeforces (Shypula et al., 2024). These methods
have demonstrated superior performance compared

28563

to traditional deep learning and prompt-based ap-
proaches (Waghjale et al., 2024).

Despite these advancements, training-based CA
models still face two challenges. (1) Obscure
Acceleration Patterns and Limited Speedup in
Training Data: As shown in Figure 1, slow and
fast code snippets collected from online platforms
often originate from different developers, resulting
in style differences (e.g., variable naming) that ob-
scure the underlying acceleration patterns. Even
when snippets come from the same developer, they
usually show limited speedup since developers
rarely proactively optimize their own code (Charfi
et al., 2010). (2) The Neglect of Hierarchical
Relationships among Acceleration Patterns in
CA Training: Code optimization occurs at mul-
tiple levels, from simple changes (e.g., removing
redundant computations) to more complex algo-
rithmic optimizations, which may build upon or
combine simpler optimizations (Ouni et al., 2017).
Current CA training methods, such as IFT (Shypula
et al., 2024), usually treat all acceleration patterns
equally, leading to suboptimal performance.

To address these challenges, we propose BITE,
which tackles both the training data and methodol-
ogy issues. At the data level, BITE uses bidirec-
tional tree editing to automatically generate high-
quality CA data with clear acceleration patterns
and significant speedup. This process simulates a
scenario where developers iteratively modify the
code to explore efficient and inefficient code ver-
sions. At the method level, we introduce progres-
sive code acceleration learning, which leverages
multi-level CA data from the bidirectional tree to
help models gradually master increasingly sophis-
ticated acceleration patterns while consolidating
basic optimization knowledge.

In addition to the training data and methodolog-
ical study, we develop a new CA benchmark and
propose a metric. The benchmark encompasses
five programming languages, up-to-date code col-
lection, efficiency-sensitive code inputs, and expert-
optimized fast code. Our proposed metric mea-
sures the gap between model-optimized and expert-
optimized code, serving as a progress indicator
for code acceleration. Extensive experiments on
our benchmark and others demonstrate the effec-
tiveness of our approach across LLMs of vary-
ing types and scales, including StarCoder3B and
Qwen1.5−3B . Notably, BITE enables Qwen1.5B to
outperform prompt-enhanced GPT-4 and a variety
of training-based LLMs in the CA tasks. Addition-

ally, we conduct detailed experiments to further
analyze the effectiveness of our approach.

We summarize the key contributions of our work
as follows:

• We propose BITE to automate the generation
of high-quality CA data and enable LLMs to
fully adapt to CA tasks through progressive
learning.

• We create a new evaluation benchmark and
metric to evaluate the performance of models
in automatically accelerating code.

• BITE significantly improves the performance
of LLMs of different sizes and types on CA
tasks across five programming languages.

2 Background

Instruction Fine-tuning (IFT). IFT (Zhang
et al., 2024) is a classic fine-tuning paradigm for
LLMs, aimed at enhancing their ability to follow
instructions and enabling efficient adaptation to a
variety of tasks. This approach involves training
the LLM on instruction-output pairs, with the ob-
jective of minimizing the discrepancy between the
model’s predicted output and the ground-truth se-
quence through a next-token prediction task. The
training objective is expressed as follows:

Lift(in, out) = −
∑

i

log p (outi | in, out<i) ,

(1)
where in is the instruction input to the LLMs, out
denotes the corresponding output, outi stands for
the i-th token of out, and out<i represents the se-
quence of tokens preceding the i-th token in out.

Typical Code Acceleration Learning. A com-
mon approach to adapting LLMs to CA tasks (Shy-
pula et al., 2024; Ye et al., 2024) involves collecting
code pairs that exhibit the most significant speedup
for the same programming problem from online
coding platforms. These pairs are then used to
fine-tune the LLMs using Eq. 1. Platforms like
Codeforces, which host numerous programming
problems along with test cases and code solutions
submitted by developers worldwide, make this ap-
proach feasible.

3 Methodology

Our BITE consists of three stages, as shown in
Figure 2. We first train bidirectional code editors,

28564

(I) Bidirectional Code

Editors Training
(II) Bidirectional Tree Editing

(III) Progressive Code

Acceleration Learning

Optimization-Tree Editing

Degradation-Tree Editing

fast

slow

slow→fast (Hard)

src→fast (Medium)

slow→src (Easy)

Multi-Level Data Construction

Progressive Knowledge

Acquisition and Consolidation

Code Optimizer Training

Code Degrader Training

IFT(codeslow→codefast)

IFT(codefast→codeslow)

Mbase

MdegrMbase

Mopti

Mdegr

source
(src)

Mopti

Figure 2: Overview of our BITE approach. BITE employs the trained bidirectional code editors for bidirectional tree
editing, exploring both optimized and degraded code variants. Using the multi-level data from the bidirectional tree,
LLMs undergo a three-stage learning pipeline to progressively master acceleration patterns of varying complexity.

which include both a code optimizer and a code
degrader. These two editors are then applied in bidi-
rectional tree editing to generate the corresponding
optimized and degraded trees for the given code
snippets. Finally, we employ progressive code ac-
celeration learning to leverage multi-level training
data derived from bidirectional trees for progres-
sive knowledge acquisition and consolidation.

3.1 Bidirectional Code Editors Training

Our bidirectional editor consists of two compo-
nents: the code optimizer, which is designed to
enhance code efficiency, and the code degrader,
which intentionally degrades code performance.

Code Optimizer Training. The training of the
code optimizer Mopti follows the traditional ap-
proach outlined in Section 2, where code pairs
from online programming platforms are used to
fine-tune the base LLM Mbase. Specifically, for a
slow code snippet codeslow, and a fast code snippet
codefast, we provide a code optimization prompt
Popti(codeslow) to Mbase and minimize the IFT
loss Lift(Popti(codeslow), codefast).

Code Degrader Training. The training process
for the code degrader Mdegr is identical to that
of the optimizer Mopti, but with the reversed
input-output pair and corresponding prompt. In
this case, we input the degradation task prompt
Pdegr(codefast) into Mbase and minimize the IFT
loss Lift(Pdegr(codefast), codeslow).

3.2 Bidirectional Tree Editing

We propose bidirectional tree editing, which in-
cludes optimization-tree editing and degradation-
tree editing, to explore the most efficient and least

efficient code versions corresponding to a given
code snippet, respectively. For example, for source
code with a time complexity of O(n log n), the
optimization-tree editing yields a faster O(n) im-
plementation, while the degradation-tree editing
results in a slower O(n2) implementation. This
process emulates how developers modify code: in-
creasing tree depth reflects iterative code modifica-
tions, while expanding tree width generates diverse
code versions. Each node in the tree represents
a distinct solution to the same programming prob-
lem, with child nodes corresponding to improved or
degraded versions of their parent node’s solution.

Optimization-Tree Editing. Starting with the
source code src from an online programming plat-
form as the root node, Mopti generates m opti-
mized code versions corresponding to the root node,
which serve as child nodes. Each child node is
subsequently treated as a new root for further op-
timization, with each node having a degree of m.
This process continues until the optimization tree
reaches a predetermined height of h.

During the optimization tree generation, we ap-
ply pruning to avoid incorrect or inefficient opti-
mizations. Specifically, if a child node’s code is
incorrect or its speedup relative to the parent node
is less than 10%, further optimization of that node
is terminated.

Degradation-Tree Editing. The degradation tree
shares a structure similar to the optimization tree,
with each child node representing a degraded ver-
sion of its parent node’s code. In this case, Mdegr

is used to generate less efficient code versions for
the parent node. Similar to optimization-tree edit-
ing, we prune nodes that contain errors or have a

28565

slowdown ratio less than 10% compared to their
parent node. Appendix A offers an algorithmic de-
scription of our bidirectional tree editing process.

3.3 Progressive Code Acceleration Learning

We obtain multi-level CA code pairs from the con-
structed bidirectional tree. Using this data, we
adapt the LLMs to the CA task through progressive
knowledge acquisition and consolidation.

Multi-Level Data Construction. Given the opti-
mization tree and the degradation tree with source
code as the root node, we first derive three ver-
sions of the code: the least efficient code from the
degradation tree (denoted as slow), the source code
(denoted as src), and the most efficient code from
the optimization tree (denoted as fast). Using
these three code versions, we construct IFT data
of CA tasks at three difficulty levels: (1) Easy:
(Popti(slow), src), i.e., optimization from slow
to src; (2) Medium: (Popti(src), fast), i.e., opti-
mization from src to fast; (3) Hard: (Popti(slow),
fast), i.e., direct optimization from slow to fast.

Progressive Knowledge Acquisition and Consol-
idation (PKAC). Inspired by curriculum learn-
ing (Bengio et al., 2009), we propose PKAC, which
enables LLMs to gradually acquire more advanced
CA knowledge through a three-stage training pro-
cess of increasing difficulty. Additionally, to pre-
vent forgetting previously acquired knowledge,
each stage incorporates re-training on a subset of
data from previous stages. All three stages utilize
the IFT training strategy, yet with differentiated
training data. Specifically, in the first stage, all
easy-level data is used; the second stage includes
the top 50% of the easy-level data with the highest
speedup, along with all medium-level data; and the
third stage incorporates the top 50% of the medium-
level data with the highest speedup, along with all
hard-level data.

4 A New CA Benchmark and Metric

4.1 Benchmark Construction

Existing CA benchmarks, while capable of evaluat-
ing LLMs’ CA performance, exhibit several limita-
tions:

(1) Limited Language Coverage. Current
benchmarks (Shypula et al., 2024; Waghjale et al.,
2024) typically focus on optimizing single pro-
gramming languages like C++ or Python, neglect-
ing the support for more programming languages.

(2) Data Leakage Risks in Source Code. The
construction of current CA benchmarks often
rely on traditional datasets, such as the CodeNet
dataset (Puri et al., 2021) used in benchmarks
like PIE (Shypula et al., 2024) and ECCO (Wagh-
jale et al., 2024), which includes data only up to
2020 (Puri et al., 2021). If the LLM has access to
this data during pre-training, it will lead to inaccu-
rate evaluation (Xu et al., 2024).

(3) Oversimplified Code Input. Algorithmic
efficiency gains are typically more pronounced in
complex scenarios. For example, O(n2) and O(n)
implementations usually show negligible runtime
differences when n is 1. This issue is overlooked in
existing benchmarks, resulting in unstable runtime
measurements where random time fluctuations may
obscure actual optimization gains (Shypula et al.,
2024).

(4) Lack of Expert-Optimized References. A
significant deficiency in current CA benchmarks is
their omission of reference points for achievable
optimization ceilings. For example, reducing the
time complexity of list summation from O(n) to
O(1) is theoretically infeasible. Without references
to expert-optimized code, there is a risk of pursuing
unrealistic optimization targets.

To address these issues, we present a novel
benchmark with four key enhancements:

(1) Multi-lingual Support. This benchmark
covers 5 languages: C++, C, Go, Java, and Python.

(2) Up-to-date Code Collection. Source code
is drawn from the latest programming problems on
Codeforces, specifically those published after May
2024. For each problem, up to two accepted code
submissions are selected.

(3) Efficiency-Sensitive Code Inputs. To under-
score differences in efficiency, ten graduate stu-
dents in computer science annotated 200 corre-
sponding inputs for each code snippet, with each
input requiring a minimum execution time of 5 ms
on a single-core CPU.

(4) Expert-Optimized Fast Code. To establish
realistic and achievable optimization targets, fifty
algorithm competition experts provide at least 3
optimized versions for each code snippet, with the
most efficient implementation selected as optimal
target.

The specific statistics are shown in Table 1.

4.2 Metric Design
Traditional evaluation metrics (Shypula et al., 2024)
for the CA task include: (1) Percent Optimized

28566

Lang. # Code Code Date # Input Avg. Run Time Expert Optimization

ECCO[EMNLP2024] 1 794 × 1 Pre-2020 100 76ms ✗
Mercury[NeurIPS2024] 1 256 × 1 Pre-2020 8 64ms ✗
PIE[ICLR2024] 1 978 × 1 Pre-2020 100 22ms ✗
BITE (Ours) 5 1000 × 5 Post-2024 200 220ms ✓

Table 1: Comparison between existing CA evaluation benchmarks and our benchmark. Our benchmark surpasses
these benchmarks in terms of broader programming language coverage (Lang), larger-scale and up-to-date codebase
(Code and Code Date), comprehensive time-sensitive code inputs (Input and Avg. Run Time), and expert-annotated
optimized implementations (Expert Optimization).

(OPT). The proportion of successful code acceler-
ations. (2) Speedup (SP). The acceleration ratio
of the optimized code. (3) Percent Correct (COR).
The proportion of generated code that is function-
ally correct, regardless of its time efficiency.

Although these metrics are widely used, they
do not account for the optimal efficiency, which
may encourage models to pursue unrealistic opti-
mizations. Therefore, we introduce a new metric
Acceleration Progress, denoted as AP, to measure
the gap between the generated code and the optimal
code, as follows:

AP(old, new, opti) =
max(0, old− new)

old− opti
, (2)

where old, new, and opti represent the execution
times of the original code, the model-generated
code, and the optimal code, respectively. AP ∈
[0, 1], with a value closer to 1 indicating that the
new code is nearing optimal performance. If the
model generates code with functional errors, we
set new equal to old.

5 Experiments

5.1 Experimental Settings

Implementation Details. In the bidirectional
tree editing, the height h is 5 and the node de-
gree m is 10. During model training, we combine
training data from C++, C, Go, Java, and Python,
enabling a single model to handle all the investi-
gated languages. During evaluation, we employ the
code evaluation platform developed by Waghjale
et al. (2024) to accurately assess the runtime of the
generated code. The prompts used by BITE are
presented in Appendix B. More detailed implemen-
tation details can be found in Appendix C.

Baselines. Our baselines are categorized into
prompt-based and training-based methods. The
prompt-based baselines include direct instructions

for LLMs to perform the CA task, denoted as “Di-
rect” (Shypula et al., 2024), a RAG-based strat-
egy (Shypula et al., 2024), CodeRefine (Waghjale
et al., 2024), and SBLLM (Gao et al., 2024). The
training-based baselines comprise PIE-IFT, PIE-
PerfCond (Shypula et al., 2024), ECCO-Execution,
ECCO-Trajectory (Waghjale et al., 2024), Mercury-
DPO (Du et al., 2024c), and Supersonic (Chen
et al., 2024).

Benchmark and Metrics. Our experiments uti-
lize our benchmark and three existing ones:
ECCO (Waghjale et al., 2024), Mercury (Du et al.,
2024c), and PIE (Shypula et al., 2024). In addition
to our designed AP, we also follow the standard
practice (Shypula et al., 2024) and use three other
metrics: OPT, SP, and COR, which are detailed in
Section 4.2.

5.2 Main Results
To verify the broad applicability of BITE, our ex-
periments involve various types and sizes of LLMs,
including Qwen1.5−3B (Qwen et al., 2025) and
StarCoder3B (Lozhkov et al., 2024). Evaluation
results based on our benchmark and existing ones
are shown in Table 2 and Table 3, respectively.

Evaluation on Our BITE Benchmark. Table 2
demonstrates the significant potential of BITE. A
compelling piece of evidence is that BITE enables
Qwen1.5B to outperform prompt-enhanced GPT-4
and training-based Qwen3B across most program-
ming languages and metrics. Using larger LLMs
like Qwen3B and StarCoder3B further amplifies
these improvements. Comparing different types
of LLMs, we find that Qwen3B demonstrates bet-
ter average performance than StarCoder3B , though
StarCoder3B exhibits a more pronounced advan-
tage in Java across all metrics, highlighting the
language-specific strengths of different LLMs.

Evaluation on Existing Benchmarks. Table 3
shows that BITE consistently delivers impressive

28567

Method LLM
C++ C Go Java Python

AP OPT SP COR AP OPT SP COR AP OPT SP COR AP OPT SP COR AP OPT SP COR

(I) Prompt Learning-Based Methods

Direct[ICLR2024]

GPT-4

10.2 8.2 27.4 35.6 11.6 6.7 105.6 38.5 9.6 3.2 104.3 17.4 13.4 12.0 103.8 28.7 12.4 5.0 101.3 34.5
RAG[ICLR2024] 10.6 12.3 151.3 24.8 13.5 8.1 125.7 32.8 12.5 6.7 136.8 13.5 14.3 18.7 111.2 20.5 13.8 8.1 108.8 27.6

CodeRefine[EMNLP2024] 33.2 24.7 174.3 56.8 35.2 16.4 213.6 54.6 39.7 18.7 294.6 37.4 43.4 34.2 154.8 56.4 43.4 14.5 134.4 47.5
SBLLM[ICSE2025] 41.4 32.1 204.2 47.8 44.6 19.7 225.8 48.9 35.7 20.0 287.3 31.9 47.5 49.8 174.2 54.3 45.2 17.3 152.3 43.5

(II) Training-based Methods

PIE-IFT[ICLR2024]

Qwen3B

31.3 20.3 156.5 44.5 33.2 13.4 123.6 46.3 26.5 13.5 133.4 34.5 33.4 20.3 126.7 44.8 28.7 13.5 127.3 38.5
PIE-PerfCond[ICLR2024] 34.7 28.9 167.5 35.7 36.8 17.3 187.6 40.2 35.4 17.5 196.7 29.7 40.2 26.5 144.3 40.3 36.5 15.4 145.4 33.5

ECCO-Execution[EMNLP2024] 44.3 33.7 182.4 46.8 46.5 30.8 189.7 48.2 42.3 18.7 213.5 39.4 48.5 35.4 153.7 51.6 49.9 19.5 164.3 43.2
ECCO-Trajectory[EMNLP2024] 32.7 21.6 154.3 64.2 34.6 14.7 125.7 65.3 28.6 14.3 142.7 42.1 36.5 22.5 131.8 65.4 32.4 15.1 134.6 48.7

Mercury-DPO[NeurIPS2024] 45.3 34.5 193.2 45.7 47.9 23.3 219.8 47.8 44.7 25.7 294.3 36.7 52.3 53.2 167.7 60.5 49.7 18.7 166.7 40.3
Supersonic[IEEE TSE 2024] 43.2 31.1 177.8 50.6 43.4 20.5 222.5 54.6 - - - - - - - - - - - -

Qwen1.5B 59.7 37.8 219.4 59.1 60.4 26.2 265.5 60.8 56.2 29.3 350.0 44.3 58.2 66.4 198.1 68.4 51.2 22.4 169.7 45.8
Qwen3B 69.4 42.3 226.5 66.5 67.3 32.8 314.3 70.0 61.5 34.5 466.9 48.9 60.7 68.2 198.5 69.2 57.5 32.6 173.8 52.0BITE

(Ours)
StarCoder3B 64.5 41.2 224.5 62.7 65.7 30.0 336.0 69.2 58.7 29.9 375.5 46.0 63.5 71.2 200.6 72.4 55.2 24.2 179.9 46.2

Table 2: Model performance comparison on our BITE benchmark. The bold values represent the best results, while
the underlined values indicate the second-best.

Method LLM PIE (C++) ECCO (Python) Mercury (Python)

OPT SP COR OPT SP COR OPT SP COR
(I) Prompt Learning-Based Methods

Direct[ICLR2024]

GPT-4

8.5 115.3 80.2 12.4 132.5 43.5 13.4 125.2 74.1
RAG[ICLR2024] 43.2 232.6 66.4 21.7 154.3 35.4 18.2 126.5 53.1

CodeRefine[EMNLP2024] 54.3 289.4 85.3 22.4 185.7 61.2 24.3 144.3 81.1
SBLLM[ICSE2025] 52.1 293.4 72.3 26.5 176.4 54.2 32.0 176.8 76.5

(II) Training-based Methods
PIE-IFT[ICLR2024]

Qwen3B

34.6 223.7 43.5 21.1 165.4 47.1 23.4 113.4 51.2
PIE-PerfCond[ICLR2024] 37.4 273.5 40.3 32.4 178.5 46.3 25.6 122.3 44.3

ECCO-Execution[EMNLP2024] 38.7 254.5 51.2 27.8 177.6 54.3 31.4 144.2 55.4
ECCO-Trajectory[EMNLP2024] 31.5 204.2 66.4 23.4 143.2 64.2 25.4 121.8 73.2

Mercury-DPO[NeurIPS2024] 45.4 275.3 47.6 33.6 197.0 49.7 30.2 142.6 54.0
Supersonic[IEEE TSE 2024] 37.6 264.4 63.7 - - - - - -

Qwen1.5B 70.1 319.5 75.7 37.6 220.7 58.7 43.2 214.8 72.1
Qwen3B 77.9 370.6 81.4 41.5 257.4 66.5 44.3 236.8 76.5BITE

(Ours)
StarCoder3B 73.4 356.5 79.0 39.7 235.7 67.8 44.1 226.5 77.6

Table 3: Model performance comparison on traditional benchmarks. As shown in Table 1, these benchmarks lack
ground-truth optimized implementations and therefore do not support the calculation of the AP metric.

performance across most metrics and benchmarks,
reaffirming the strengths of our approach. However,
for the COR metric, which focuses on code correct-
ness, our models slightly lag behind CodeRefine-
enhanced GPT-4 on the PIE and Mercury bench-
marks. The PIE benchmark sources its code from
the traditional CodeNet dataset (Shypula et al.,
2024), and the Mercury benchmark consists of clas-
sic problems from LeetCode (Du et al., 2024c). It
is possible that GPT-4 had already encountered the
code from these two benchmarks during its pre-
training phase, making it less prone to errors when
optimizing such code. This also underscores the
necessity of building an up-to-date CA benchmark.

5.3 Analysis of Bidirectional Tree Editing

Our bidirectional tree explores improved and de-
graded versions of source code by increasing the

tree height h, while enhancing code diversity by
expanding the node degree m. Figure 3, based on
our benchmark, illustrates the average performance
of BITE across five programming languages under
varying values of h and m, from the perspectives
of both optimization and degradation trees.

Optimization Tree Editing. As shown in (a.1)
and (a.2) of Figure 3, increasing h and m signifi-
cantly enhances the model’s performance. An im-
portant observation is that when m is small, the
benefit of increasing h is limited. For instance,
when m = 1, increasing h from 1 to 5 results in an
AP gain of only 36.0−34.6 = 1.4 and an OPT gain
of just 23.1−21.8 = 1.3. However, when m = 10,
the same increase in h yields an AP improvement
of 57.1− 48.8 = 8.3 and an OPT improvement of
36.4 − 33.9 = 2.5. This pattern aligns with theo-
retical expectations, as a richer set of code variants

28568

2 1 . 8 2 2 . 6 2 3 . 1

2 7 . 8 3 1 . 5 3 3 . 6

3 3 . 9 3 5 . 1 3 6 . 4

3 4 . 6 3 5 . 5 3 6 . 0

4 6 . 3 4 7 . 6 4 9 . 7

4 8 . 8 5 3 . 9 5 7 . 1

2 6 . 7 2 7 . 3 2 7 . 5

3 1 . 2 3 3 . 5 3 4 . 8

3 4 . 3 3 5 . 8 3 6 . 4

4 0 . 4 4 1 . 0 4 1 . 4

5 1 . 8 5 3 . 4 5 5 . 3

5 5 . 2 5 6 . 4 5 7 . 1

1 3 5

1

5

1 0

(b . 2) O P T - D e g r a d a t i o n T r e e(b . 1) A P - D e g r a d a t i o n T r e e

De
gre

e (
)

1 3 5

1

5

1 0

1 3 5
1

5

1 0

De
gre

e (
)

H e i g h t ()
De

gre
e (

)
De

gre
e (

)

H e i g h t ()H e i g h t ()

1 3 5
1

5

1 0

(a . 2) O P T - O p t i m i z a t i o n T r e e

H e i g h t ()

(a . 1) A P - O p t i m i z a t i o n T r e e

Figure 3: Qwen1.5B-BITE performance across varying
tree heights h and node degrees m, illustrating average
results across five languages on our benchmark.

allows for more thorough exploration of optimal
code versions.

Degradation Tree Editing. The (b.1) and (b.2)
of Figure 3 illustrate the positive effects of increas-
ing the parameters h and m in the degradation tree.
This suggests that training data derived from less
efficient code variants can enhance model perfor-
mance on CA tasks more effectively than source
code from online programming platforms. How-
ever, we find limited benefits when increasing h
from 3 to 5 while holding m constant. This may
result from the introduction of numerous shallow
degradation patterns, such as redundant computa-
tions, as the degradation tree explores increasingly
suboptimal code states. Training on such simplis-
tic data may limit the model’s capacity for deeper
reasoning about the CA task.

5.4 Analysis of Progressive CA Learning

The CA learning process in BITE employs the
PKAC strategy based on multi-level training data.
PKAC enables the model to tackle challenging
code through progressive knowledge acquisition,
while continuously reinforcing foundational knowl-
edge through consolidation. We analyze this strat-
egy from the perspectives of progressive knowl-
edge acquisition and knowledge consolidation.

Progressive Knowledge Acquisition. Figure 4
illustrates the impact of different training stages
on the model. From the results, we draw two key

5 7 . 1 %
4 1 . 2 %
3 8 . 8 %

3 2 . 5 %
2 8 . 1 %

3 6 . 4 %
2 7 . 8 %

2 5 . 4 %
2 0 . 3 %

1 2 . 4 %

S t a g e 1 + 2 + 3
S t a g e 1 + 2

S t a g e 3
S t a g e 2
S t a g e 1

02 04 06 0
(a) T h e A P M e t r i c

S t a g e 1 + 2 + 3
(O u r s)

0 2 0 4 0 6 0
(b) T h e O P T M e t r i c

Figure 4: Impact of different stages in progressive code
acceleration learning on Qwen1.5B-BITE performance,
evaluated on our benchmark.

E a s y H a r d A l l3 0

3 5

4 0

5 . 4 %

3 . 3 %

3 . 9 %

(b) T h e O P T M e t r i c(a) T h e A P M e t r i c
E a s y H a r d A l l4 5

5 0

5 5

6 0

4 . 8 %

2 . 1 %

3 . 3 %

 w / o K n o w l e d g e C o n s o l i d a t i o n w / K n o w l e d g e C o n s o l i d a t i o n

Figure 5: Ablation study examining the effects of knowl-
edge consolidation in our progressive code acceleration
learning, based on Qwen1.5B-BITE and our benchmark.

observations: (1) The gains from training increase
progressively through stages 1, 2, and 3, likely due
to the increasing difficulty of training data in each
stage and a significantly higher acceleration ratio in
stage 3. (2) Continuous multi-stage training yields
further benefits. This indicates that initial learning
on simpler CA data aids LLMs in understanding
complex CA patterns, which aligns with human
learning processes (Sweller, 1988).

Knowledge Consolidation. We perform ablation
studies to underscore the importance of consistently
consolidating foundational knowledge in multi-
stage learning. In this experiment, we classify the
source code in our benchmark into “Easy” and
“Hard” categories based on cyclomatic complex-
ity (McCabe, 1976) and evaluate the performance
of various BITE variants on both categories. As il-
lustrated in Figure 5, our knowledge consolidation
strategy yields significant improvements for both
code types, with particularly pronounced gains on
simpler data. This finding suggests that focusing
exclusively on complex data may cause the model
to forget foundational CA knowledge.

28569

Method Similarity Speedup

PIE-User[ICLR2024] 55.3 158.6
PIE-Problem[ICLR2024] 20.6 261.5
BITE (Ours) 61.4 306.3

Table 4: Comparison of similarity and speedup ratios
between slow and fast code across different training
datasets—code pairs from the same users (PIE-User)
and the same programming problems (PIE-Problem)
sourced from the online platform.

5.5 Discussion

In this subsection, we comprehensively discuss our
approach around training data and methods.

Training Data. We compare the similarity (mea-
sured by CodeBLEU (Ren et al., 2020)) and
speedup ratios of slow-fast code pairs generated by
different training data construction methods. Be-
sides our approach, we also consider the approach
used by PIE (Shypula et al., 2024), which sources
slow-fast code pairs from online platforms. PIE’s
code pairs are further categorized into two sub-
types (Ye et al., 2024): (1) PIE-User (pairs from
the same user’s submissions) and (2) PIE-Problem
(pairs from solutions to the same programming
problem). As shown in Table 4, PIE-User pairs ex-
hibit higher code similarity but limited speedup
ratios, whereas PIE-Problem pairs demonstrate
the opposite trend. In contrast, our training data
achieves the best efficiency with the highest code
similarity. Learning from such similar code pairs
enables the model to precisely capture CA patterns.

Multilingual Training Strategies. BITE in-
volves training across five programming languages,
allowing for two strategies: (1) monolingual train-
ing, where separate models are trained for each
language, and (2) multilingual training, where a
single model is trained on data from all languages.
We evaluate these strategies, and the results are
presented in Figure 6. The results reveal that mul-
tilingual training consistently outperforms mono-
lingual training across all languages. We attribute
this success to the fundamental universality of CA
patterns across programming languages, despite
their syntactic differences. This finding suggests
that multilingual training facilitates cross-lingual
knowledge transfer, allowing the model to leverage
CA patterns learned from one language to enhance
performance in others.

3 6
3 7
3 8
3 9
4 0

2 4 2 5 2 6 2 7 2 8

2 6
2 7

2 8
2 9

3 0

6 4
6 5

6 6
6 7

6 8

2 02 12 22 32 45 8
5 9
6 0
6 1
6 2

5 8 5 9 6 0 6 1 6 2

5 3
5 4

5 5
5 6

5 7

5 5
5 6

5 7
5 8

5 9

4 84 95 05 15 2 P y

J a v a G o

C

C + +

(b) T h e O P T M e t r i c(a) T h e A P M e t r i c

 M o n o l i n g u a l T r a i n i n g
 M u l t i l i n g u a l T r a i n i n g (O u r s)

P y

J a v a G o

C

C + +

Figure 6: Comparison of Qwen1.5B-BITE under mono-
lingual training and multilingual training.

6 Related Work

Prompt Learning-Based CA Methods. The
prompt learning-based strategy enables training-
free acceleration by giving CA-related prompts to
LLMs. Shypula et al. (2024) shows that while
LLMs can perform basic CA tasks with simple
prompts, the performance, even with advanced
models like GPT-4, remains suboptimal. Tra-
ditional prompt optimization methods, such as
CoT (Wei et al., 2022), typically improve code
acceleration but at the cost of code correctness re-
duction (Waghjale et al., 2024). To address this
challenge, a CodeRefine strategy has been pro-
posed (Waghjale et al., 2024; Peng et al., 2024),
which uses important information generated by
compilers, such as error reports, runtime, and exe-
cution results, to guide LLMs in further code cor-
rection or optimization. Additionally, Gao et al.
(2024) emphasizes the significance of acceleration
patterns, extracting rich code acceleration patterns
from CA examples and using CoT to help models
generalize these patterns to source code.

Training-Based CA Methods. Due to the
scarcity of high-quality CA training data, re-
searchers have adopted weak supervision ap-
proaches, primarily drawing training data from on-
line programming platforms (Shypula et al., 2024).
Blot and Petke (2025) finds that fine-tuning LLMs
with CA data from these platforms leads to sig-
nificant performance improvements. Recognizing
that optimized code often preserves portions of
the original code and that LLMs struggle with
generating long outputs (Peng et al., 2023), Chen
et al. (2024) proposed fine-tuning LLMs to out-
put only the differences between the original and
optimized code. Furthermore, preference-based
learning strategies (Kaufmann et al., 2024), such
as DPO (Rafailov et al., 2024), yield stable im-
provements (Du et al., 2024c). Although weakly-

28570

supervised training data has proven effective, chal-
lenges like inconsistencies in coding style between
slow and fast code, coupled with limited speedup,
result in suboptimal training outcomes (Waghjale
et al., 2024; Blot and Petke, 2025).

7 Conclusion

In this study, we propose BITE, a novel bidi-
rectional tree-based progressive code acceleration
learning paradigm. This approach comprises two
key innovations: first, a bidirectional tree editing
mechanism that systematically explores both opti-
mized and degraded code variants; second, multi-
level training data that enables progressive knowl-
edge acquisition and consolidation through multi-
stage training. Additionally, we develop a compre-
hensive CA evaluation benchmark and introduce a
new metric that addresses the limitations of current
CA evaluations. Our experimental results demon-
strate that our approach significantly improves the
performance of LLMs on CA tasks.

Acknowledgements

This work was supported by National Sci-
ence Foundation of China (62476070, 62125201,
U24B20174), Shenzhen Science and Technology
Program (JCYJ20241202123503005, GXWD
20231128103232001, ZDSYS2023062609120
3008, KQTD2024072910215406) and Depart-
ment of Science and Technology of Guangdong
(2024A1515011540).

Limitations

While our BITE can effectively enhance LLMs’
code acceleration capabilities, there are several
limitations worth discussing. First, our work fo-
cuses exclusively on runtime optimization without
considering memory consumption. This single-
objective optimization may lead to solutions that
achieve speedup at the cost of increased memory us-
age. Future research should explore multi-objective
optimization strategies that balance both runtime ef-
ficiency and memory utilization. Second, although
our bidirectional code editor could benefit from
more powerful LLMs like GPT-4, the high compu-
tational cost of these models currently forces us to
rely on fine-tuning open-source LLMs. Third, our
study primarily focuses on conventional algorith-
mic code, leaving out other types such as neural
network code. We plan to address this limitation

by incorporating a broader range of training data in
future work.

Ethical Considerations

Code acceleration is a well-studied task. The data
and related resources used in our work are open
source and widely used in existing research. To
the best of our knowledge, our work fully complies
with the ACL Ethics Policy.

References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning (ICML), pages 41–48.

Aymeric Blot and Justyna Petke. 2025. A comprehen-
sive survey of benchmarks for improvement of soft-
ware’s non-functional properties. ACM Computing
Surveys.

Asma Charfi, Chokri Mraidha, Sébastien Gérard,
François Terrier, and Pierre Boulet. 2010. Does code
generation promote or prevent optimizations? pages
75–79.

Zimin Chen, Sen Fang, and Martin Monperrus. 2024.
Supersonic: Learning to generate source code opti-
mizations in c/c++. IEEE Transactions on Software
Engineering.

Guodong Du, Runhua Jiang, Senqiao Yang, Haoyang
Li, Wei Chen, Keren Li, Sim Kuan Goh, and Ho-
Kin Tang. 2024a. Impacts of darwinian evolution
on pre-trained deep neural networks. In 2024 IEEE
International Conference on Systems, Man, and Cy-
bernetics (SMC).

Guodong Du, Junlin Lee, Jing Li, Runhua Jiang, Yifei
Guo, Shuyang Yu, Hanting Liu, Sim Kuan Goh, Ho-
Kin Tang, Daojing He, and Min Zhang. 2024b. Pa-
rameter competition balancing for model merging.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems (NeurIPS).

Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, and
See-Kiong Ng. 2024c. Mercury: A code efficiency
benchmark for code large language models. In Pro-
ceedings of the Thirty-eight Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track (NeurIPS).

Shuzheng Gao, Cuiyun Gao, Wenchao Gu, and Michael
Lyu. 2024. Search-based llms for code optimization.
In Proceedings of the 2025 IEEE/ACM 47th Interna-
tional Conference on Software Engineering (ICSE),
pages 254–266.

Spandan Garg, Roshanak Zilouchian Moghaddam,
Colin B. Clement, Neel Sundaresan, and Chen Wu.
2022. Deepdev-perf: a deep learning-based approach

28571

for improving software performance. In Proceedings
of the 30th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 948–958.

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaed-
dine Abdessalem, Tanguy Abel, Mohammad Kalim
Akram, Susana Guzman, Georgios Mastrapas, Saba
Sturua, Bo Wang, Maximilian Werk, Nan Wang, and
Han Xiao. 2024. Jina embeddings 2: 8192-token
general-purpose text embeddings for long documents.
arXiv preprint arXiv:2310.19923.

ISO/IEC25010. 2011. Systems and software engineer-
ing – systems and software quality requirements and
evaluation (square).

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke
Hüllermeier. 2024. A survey of reinforcement
learning from human feedback. arXiv preprint
arXiv:2312.14925.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2024. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173.

Daniel J Mankowitz, Andrea Michi, Anton Zher-
nov, Marco Gelmi, Marco Selvi, Cosmin Padu-
raru, Edouard Leurent, Shariq Iqbal, Jean-Baptiste
Lespiau, Alex Ahern, et al. 2023. Faster sorting algo-
rithms discovered using deep reinforcement learning.
Nature, pages 257–263.

Thomas J McCabe. 1976. A complexity measure. IEEE
Transactions on software Engineering.

Adrian Nistor, Tian Jiang, and Lin Tan. 2013. Discov-
ering, reporting, and fixing performance bugs. In
Proceedings of the 10th Working Conference on Min-
ing Software Repositories (MSR), pages 237–246.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Ali Ouni, Marouane Kessentini, Mel Ó Cinnéide,
Houari Sahraoui, Kalyanmoy Deb, and Katsuro In-
oue. 2017. More: A multi-objective refactoring rec-

ommendation approach to introducing design pat-
terns and fixing code smells. Journal of Software:
Evolution and Process, page e1843.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models. arXiv preprint
arXiv:2309.00071.

Yun Peng, Akhilesh Deepak Gotmare, Michael Lyu,
Caiming Xiong, Silvio Savarese, and Doyen Sa-
hoo. 2024. Perfcodegen: Improving performance of
llm generated code with execution feedback. arXiv
preprint arXiv:2412.03578.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
et al. 2021. Codenet: A large-scale ai for code
dataset for learning a diversity of coding tasks. arXiv
preprint arXiv:2105.12655.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. arXiv preprint arXiv:2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Alexander G Shypula, Aman Madaan, Yimeng Zeng,
Uri Alon, Jacob R. Gardner, Yiming Yang, Mi-
lad Hashemi, Graham Neubig, Parthasarathy Ran-
ganathan, Osbert Bastani, and Amir Yazdanbakhsh.
2024. Learning performance-improving code edits.
In The Twelfth International Conference on Learning
Representations (ICLR).

John Sweller. 1988. Cognitive load during problem solv-
ing: Effects on learning. Cognitive science, pages
257–285.

Siddhant Waghjale, Vishruth Veerendranath, Zhiruo
Wang, and Daniel Fried. 2024. ECCO: Can we im-
prove model-generated code efficiency without sac-
rificing functional correctness? In Proceedings of
the 2024 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 15362–
15376.

28572

https://arxiv.org/abs/2303.08774

Feng Wang, Zesheng Shi, Bo Wang, Nan Wang, and
Han Xiao. 2025. Readerlm-v2: Small language
model for HTML to markdown and JSON. CoRR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. 35:24824–24837.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu.
2024. Benchmarking benchmark leakage in large
language models. arXiv preprint arXiv:2404.18824.

Tong Ye, Tengfei Ma, Lingfei Wu, Xuhong Zhang,
Shouling Ji, and Wenhai Wang. 2024. Iterative or
innovative? a problem-oriented perspective for code
optimization. arXiv preprint arXiv:2406.11935.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2024. In-
struction tuning for large language models: A survey.
arXiv preprint arXiv:2308.10792.

Lei Zhao, Junlin Li, Lianli Gao, Yunbo Rao, Jingkuan
Song, and Heng Tao Shen. 2022. Heterogeneous
knowledge network for visual dialog. IEEE Transac-
tions on Circuits and Systems for Video Technology,
33(2):861–871.

28573

A Algorithm Description for
Bidirectional Tree Editing

Algorithm 1 and 2 detail the optimization-tree edit-
ing and degradation-tree editing processes, respec-
tively. We construct bidirectional trees using the
breadth-first search algorithm. The two algorithms
are identical except for their code editors and prun-
ing strategies.

B Prompt Settings

Prompt Popti for the Code Optimizer and
BITE.

Below is a {LANGUAGE} program. Optimize the
program and provide a more efficient version.
{LANGUAGE} Code:
{CODE}
Optimized Version:

Prompt Pdegr for the Code Degrader.

Below is a {LANGUAGE} program. Degenerate the
program and provide a less efficient versions.
{LANGUAGE} Code:
{CODE}
Degraded Version:

C More Implementation Details

Our training encompasses five programming lan-
guages: C, C++, Go, Java, and Python. During
the bidirectional code editors training phase, we
collected approximately 5,000 slow-fast code pairs
per language from the CodeNet dataset (Puri et al.,
2021) as training data. The CodeNet provides ex-
tensive code submissions from online program-
ming platforms AIZU and AtCoder, along with
basic code inputs, offering essential data support
for our work. During the bidirectional tree editing,
we gathered 10,000 code snippets per language
from CodeNet to build bidirectional trees with a
height h = 5 and node degree m = 10. We set
the inference temperature of bidirectional editors
to 1.0 to promote code diversity. The training of
the bidirectional code editor and all stages of our
progressive code acceleration learning utilize the
same hyperparameters: 2 epochs with a learning
rate of 1e-5. All experiments are carried out on a
NVIDIA 8×A800-SXM4-80G machine.

D Baseline Details

Our baselines include both prompt-based and
training-based methods. The prompt-based meth-
ods involve:

• Direct (Shypula et al., 2024): LLMs are
prompted with source code and concise task
descriptions to perform CA. Owing to the
powerful instruction-following abilities of
LLMs, direct prompt learning has proven
highly effective across a broad range of
tasks (Zhao et al., 2022; Wang et al., 2025;
Du et al., 2024b,a).

• RAG (Shypula et al., 2024): Optimization ex-
amples similar to the input source code are
incorporated into prompts for LLMs to refer-
ence. We use the Jina (Günther et al., 2024)
retriever to select relevant CA data from the
training set used by our code optimizer Mopti.

• CodeRefine (Waghjale et al., 2024): This
method leverages a compiler to provide qual-
ity feedback on LLM-generated code, guiding
further code optimization.

• SBLLM (Gao et al., 2024): This multi-stage
prompting strategy first employs an execution-
based data selection method to choose the
top-k best responses from multiple optimized
code snippets generated by LLMs. These re-
sponses are then summarized into acceleration
patterns, which are used in conjunction with a
CoT strategy to generate better responses.

The training-based methods involve:

• PIE-IFT (Shypula et al., 2024): As described
in Section 2, this method uses instruction data
consisting of slow and fast code to fine-tune
the LLM.

• PIE-PerfCond (Shypula et al., 2024): Build-
ing on PIE-IFT, this method incorporates the
speedup ratio of slow-fast code pairs during
training, enabling the model to more accu-
rately capture the runtime efficiency of code.

• ECCO-Execution (Waghjale et al., 2024):
This strategy incorporates code execution in-
formation, such as runtime and output, into
the IFT data, to help the model accurately
identify efficiency bottlenecks in the code.

• ECCO-Trajectory (Waghjale et al., 2024):
This strategy provides multiple optimization
trajectories of the code during model training,
allowing the model to perform multi-stage
optimization on the source code during infer-
ence, rather than generating efficient code in
a single step.

28574

Algorithm 1 Optimization-Tree Editing
Input: The source code src, the code input x, the code optimizer Mopti, the maximum height of the tree

h and the maximum degree of the node m.
Output: The optimization tree Topti.
queue, Topti = [src], [src]
▷ The maximum height of the optimization tree is h.

while queue ̸= [] and len(Topti) < h do
current_level = []
queue_len = len(queue)
for i in {1, . . . , queue_len} do

parent = queue.pop()
▷ Generate m child nodes based on Mopti.

{child1, . . . , childm} = Mopti(parent)
for child in {child1, . . . , childm} do

▷ Prune invalid or non-improving nodes

if Exec(parent, x) == Exec(child, x) and Time(parent,x)
Time(child,x) > 1.1 then

queue.push(child)
current_level.append(child)

end
end

end
Topti.append(current_level)

end
return Topti

Algorithm 2 Degradation-Tree Editing
Input: The source code src, the code input x, the code degrader Mdegr, the maximum height of the tree

h and the maximum degree of the node m.
Output: The degradation tree Tdegr.
queue, Tdegr = [src], [src]
▷ The maximum height of the degradation tree is h.

while queue ̸= [] and len(Tdegr) < h do
current_level = []
queue_len = len(queue)
for i in {1, . . . , queue_len} do

parent = queue.pop()
▷ Generate m child nodes based on Mdegr.

{child1, . . . , childm} = Mdegr(parent)
for child in {child1, . . . , childm} do

▷ Prune invalid or non-degrading nodes

if Exec(parent, x) == Exec(child, x) and Time(child,x)
Time(parent,x) > 1.1 then

queue.push(child)
current_level.append(child)

end
end

end
Tdegr.append(current_level)

end
return Tdegr

28575

• Mercury-DPO (Du et al., 2024c): In addition
to collecting slow-fast code pairs, this method
selects sub-optimal acceleration code from
online platforms to construct preference data,
which is then used for LLM training via the
preference learning algorithm DPO.

• Supersonic (Chen et al., 2024): This strategy
uses IFT to help LLMs output only the differ-
ences between fast and slow code and omit
unchanged code sections, thus avoiding per-
formance degradation caused by long outputs.

28576

