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Abstract
Semiparametric language models (LMs) have
shown promise in various Natural Language
Processing (NLP) tasks. However, they uti-
lize non-parametric memory as static storage,
which lacks learning capability and remains dis-
connected from the internal information flow
of the parametric models, limiting scalability
and efficiency. Based on recent interpretabil-
ity theories of LMs, we reconceptualize the
non-parametric memory represented by kNN-
LM as a learnable Mixture-of-Neighbors Induc-
tion Memory (MoNIM), which synergizes the
induction capabilities of attention heads with
the memorization strength of feed-forward net-
works (FFN). By integrating into the model’s
information flow, MoNIM functions as an FFN-
like bypass layer within the Transformer ar-
chitecture, enabling effective learning of new
knowledge. Extensive experiments demon-
strate that MoNIM is a retentive and scalable
continual learner in both data- and model-wise,
enhancing the scalability and continual learn-
ing performance of semiparametric LMs.1

1 Introduction

Semiparametric language models (LMs) have
drawn increasing attention (Guu et al., 2020; Yo-
gatama et al., 2021; Ram et al., 2023) for their pho-
tographic memorization capabilities and in-domain
accuracy. Combining a parameterized neural model
with an extensible non-parametric memory, they
are skillful at aiding prediction with memorization.

However, current semiparametric LMs are un-
suitable for our fast-changing world because of in-
efficient memory management strategies (He et al.,
2021a). They typically record all training data in
the static memory, and the search for useful infor-
mation then relies on additional modules or tunable

*This work was done during the author’s internship at
Microsoft Research Asia.

†Corresponding author
1Code is publicly available at https://github.com/

viniferagy/MoNIM.

hyperparameters. A lack of learning ability hin-
ders memory compression, a process crucial for
efficient learning in LMs (Delétang et al., 2024),
and separates the memory component from the in-
formation flow of the model. As a result, these
models experience linear growth of memory us-
age and search time as data or model dimensions
increase. This inefficiency becomes especially im-
practical for large language models (LLMs), which
deal with huge volumes of training data.

In this paper, we deal with two questions about
semiparametric LMs: Why they are powerful but in-
efficient and can we build an efficient memory strat-
egy? Enlightened by research interpreting the learn-
ing abilities of LLMs (Elhage et al., 2021; Geva
et al., 2021; Olsson et al., 2022), we propose that
the non-parametric memory, specifically kNN-LM
(Khandelwal et al., 2020) inherently possesses abil-
ities akin to the induction heads in Multi-Headed
Self-Attention (MHSA) layers (Olsson et al., 2022).
Perfect memorization brings perfect local next-
token induction and good performance, but defi-
ciencies in global visions prevent the memory from
efficient reasoning.

To promote local advantages while avoiding
global weaknesses, we build a learnable Mixture-
of-Neighbor Induction Memory (MoNIM) based
on the components of concept promotion in Feed-
Forward Networks (FFN) (Geva et al., 2022). As an
FFN-like bypass layer, MoNIM can select and ab-
sorb knowledge with a gradually smaller memory
footprint, demonstrating its consistency with gra-
dient descent in parametric models, where the im-
pact of new information is lessened with more data
or larger model sizes (Kaplan et al., 2020). Con-
sequently, MoNIM’s memory grows sub-linearly
with the enhancement of the model’s capabilities,
resulting in a scalable continual learner free of train-
ing. In continual learning scenarios, MoNIM per-
forms comparably to vanilla models while consum-
ing only half the memory space.
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Figure 1: The learning mechanism of MoNIM. (a) The analogy between induction heads (up) and MoNIM (down).
The shades of lines indicate allocated attention scores. While induction heads assimilate related information in
context, MoNIM gathers similar samples memorized in learning history. (b) MoNIM as a learnable module. MoNIM
shares the same input, working flow, and output with the final FFN layer. While FFN utilizes parametric keys nL

to match the query x̃L for the promotion of learned concepts encoded in parametric values oL (green), MoNIM
promotes concept mixtures c (green with stripes) that are embedded in neighboring memorized values. The learning
process of MoNIM is controlled by a compressor M̂Θ(x) optimized for the model’s loss function.

Our contributions can be summarized as follows:

• We introduce Mixture-of-Neighbor Induction
Memory (MoNIM), a learnable memory in
semiparametric continual learning settings that
functions as an FFN-like bypass layer.

• MoNIM achieves its prowess by integrating
the inductive capabilities of Multi-Head Self-
Attention (MHSA) with the memorization func-
tions of Feed-Forward Networks (FFN).

• Extensive experiments in language modeling
and downstream tasks show that MoNIM ef-
fectively compresses seen information and is
both data- and model-wise scalable, thus suit-
able for continual learning over streaming data
with semiparametric LMs.

2 MoNIM: Mixture-of-Neighbor
Induction Memory

2.1 Preliminaries: kNN-LM

Formally, we use Θ = (θ,M) to denote a semi-
parametric LM, where θ stands for the parametric
LM andM for the non-parametric memory.

As a representative, kNN-LM (Khandelwal et al.,
2020) enhances the prediction of θ by leverag-
ing the information of k-nearest neighbors inM.

Given a leftward context x = (x1, . . . , xt), kNN-
LM uses the hidden states in the final position be-
fore an FFN layer l∈ {1, .., L} as the contextual-
ized representation x̃l ∈ Rd, and computes its next
word y’s probability as follows:

P (y|x; Θ) = f(P (y|x; θ)︸ ︷︷ ︸
Model

, P (y|x̃l;M)︸ ︷︷ ︸
Memory

, λ) (1)

where f represents the interpolation function to
weigh the predictions of the model and memory by
λ. kNN-LMs constructM by the training set D as
a key-value lookup, with an entry for each token in
the training set xt (as value) and the representation
of its context x̃<t

l (as key):

M = {(x̃<t
l→ xt)|x ∈ D}

During inference, we first use x̃l as a query to
retrieve k nearest neighbors from the memoryM:

N (x̃l) = {(k̃→ ỹ)i|i = 1, 2, . . . , k} ⊆ M

Then, we obtain the prediction fromM by com-
puting the weighted sum of retrieved targets:

P (y|x̃l;M) ∝
∑

N (x̃l)

1ỹ=y exp(−d(k̃, x̃l))

here d(., .) denotes the semantic similarity. Khan-
delwal et al. (2021) proved that l = L produces
the best retrieval quality.
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2.2 Induction Memory
Recent interpretability studies (Olsson et al., 2022;
Wang et al., 2023) have shown that induction heads,
namely attention heads that implement a simple
algorithm to complete sequences in the form of
[A][B] ... [A] -> [B], might constitute the funda-
mental abilities for in-context learning in LLMs.
Attention heads exhibit two typical properties: pre-
fix matching, to attend to the tokens with simi-
lar context; and copying, to increase the logit of
the output corresponding to the attended-to tokens
(Bansal et al., 2023).

Figure 1(a) demonstrates the reasoning mecha-
nisms between induction heads and the kNN mem-
ory. It is clear to observe their closeness: as induc-
tion heads assimilate related information scattered
in the contexts, kNN memory gathers similar in-
formation from N (x̃) memorized in history. The
memory encodes the prefix into the key vector,
uses it to match the query, and copies the memo-
rized value to the position to be predicted as the
function of induction heads. From this perspective,
kNN memory is an induction buffer, considering all
training data as neighbors, thus the name Mixture-
of-Neighbor Induction Memory (MoNIM).

While induction heads serve as basic compo-
nents in the early layers, transferring context infor-
mation in the model to implement more complex
global reasoning pathways, MoNIM, as a highly
localized source of information, only provides the
memorized labels. The capability to induce the
most similar tokens also suggests its inability to
perform efficient prediction. To make the best use
of MoNIM’s local precision, we move on to de-
velop a new conceptual architecture of MoNIM.

2.3 MoNIM for Local Concept Mixture
Promotion

According to previous work (Sukhbaatar et al.,
2015; Geva et al., 2021), FFN layers function as
key-value memory, and the value vectors can be
projected to vocabulary space to represent compre-
hensible concepts such as food or movie characters
(Geva et al., 2022). An FFN update F(x̃) thus can
be interpreted as successive concept promotions
towards the connotation of the target token:

F l(x̃l) =

dF∑

i=1

f(x̃l · nl
i )o

l
i =

dF∑

i=1

ml
io

l
i

nl
i ,o

l
i is the i-th column of WT

in,Wout ∈ RdF×d

in F , ml
i represents the weight of ol

i , where the

model stores its understanding of concepts. Simi-
larly, for the hidden state before an MHSA layer x̂,
given the attention pattern al ∈ RT for a context
of length T and corresponding vl

j , the j-th column
of WV ∈ RT×dA , an MHSA update A(x̂) is the
linear combination of vectors of the output matrix
WO ∈ RdA×d.

Al(x̂l) =

dA∑

j=1

(al · vl
j )o

l
j =

dA∑

i=j

ml
jo

l
j

Since Geva et al. (2022) has proved that the layer
normalization (LN) is almost linear and does not
affect the linear properties of MHSA and FFN out-
puts, we assert that the final prediction before the
unembedding matrix E ∈ R|V|×d can be decom-
posed to the reweighted sum of information gained
in MHSA and FFN layers, that

x̃l =

l·(dF+dA)∑

i=1

m̃<l
i o<l

i

ỹ = softmax(Ex̃L)

The prediction of ỹ is determined by the mixture
of concepts o<L in FFN. We define the best local
mixture of concepts c which outputs the golden
prediction y∗:

c =

L·(dF+dA)∑

i=1

m̃∗<L
i o<L

i

y∗ = softmax(Ec)

We can infer that in MoNIMM, the functioning
form of memory entries is (k̃ → c), while the
actual memory entries (k̃→ ỹ) can be explained as
economical and practicable appearance. MoNIM
update can be viewed as a collection of sub-updates,
each corresponding to a local mixture of concepts
in the MoNIM output:

M(x̃L) =
∑

N (x̃L)

fM(x̃L · k̃) · c =
∑

N (x̃L)

m̃c

(k̃→ ỹ) integrates into the information stream
of Transformer for sake of E to transform to (k̃→
c) to operate. Through E, MoNIM transforms into
the general form as in Eq 1.

logP (y|x; Θ) = log
exp((1− λ)eyo

L + λeyM(x̃L))

Z(E((1− λ)oL + λM(x̃L)))

∝log
exp((1− λ)eyo

L)

Z(EoL)

exp(λeyM(x̃L))

Z(EM(x̃L))

=(1− λ)logP (y|x; θ) + λlogP (y|x̃;M)
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where ey is the embedding of y, and Z(·) is the
constant softmax normalization factor. Figure 1(b)
demonstrates the equivalent working flows between
(k̃→ c) in MoNIM and (nl,ol) in FL, formaliz-
ing MoNIM as an FFN-like bypass layer. From this
perspective, MoNIM focuses on promoting local
mixtures of concepts induced by the memorized
neighbors, augmenting the induction abilities of
LMs in the final layers. The complicated reason-
ing tasks are left to the parametric model which
handles them better.

3 MoNIM is a Scalable Continual
Learner

MoNIM’s blend of memorization and induction
suggests its potential to adapt to new knowledge,
namely it can learn as induction heads and com-
press worthless data for its induction task (Jiang
et al., 2024; Delétang et al., 2024). When the model
confidently relies on global reasoning to tackle
problems, MoNIM should step back to avoid im-
pacting the model’s performance. However, when
the model lacks information for a decision, MoNIM
should step in, promoting memorized local concept
mixtures to help the model generate a more proba-
ble prediction.

3.1 Learning Strategies of MoNIM
We propose learning strategies for MoNIM that
adopt cross-entropy, the optimization objectives of
gradient descent.2

In gradient descent, the greater the cross entropy,
the greater the gradient and the impact of data on
parameter updates. For MoNIM learning, we indi-
cate the same effect of data on memory capacity.
The memory effect of a sample MΘ(x) can be ex-
pressed by its loss on model Θ:

MΘ(x) ∝ logP (xt|x<t; Θ)

To compress the data, rather than assign weights
to indicate the importance of data points, we trans-
form the weighted update into a "full-or-none" com-
pressor M̂Θ(x), namely only updates that weigh
above a threshold δ will be saved into memory.
Through this approximate method, we compress
the unimportant part of data to take up no space
and prove that the compressed part of data has very
little effect on results.

M̂Θ(x) =

{
1 if logP (xt|x<t; Θ) < δ

0 else
(2)

2Other possible strategies are discussed in Appendix C.1.

M←M ∪ {1M̂Θ(x)(x̃<t → xt)} (3)

3.2 Adaptive MoNIM weight

Instead of using a fixed threshold (δ in Eq 2), we
propose to use an adaptive memorization threshold
(AMT) to enhance the effect of MoNIM:3

δada =
δ

maxy log
P (y|x<t;Θ)
P (xt|x<t;Θ) + 0.5

The best form of threshold is not the focus
of this paper, however, we found that AMT-
like types of threshold boost the experimental re-
sults. The intuition of AMT is straightforward:
if maxy logP (y|x<t; Θ) == logP (xt|x<t; Θ),
then the memorization margin δada ← 2δ ( δ is the
base threshold), meaning we can relax the threshold
to 2δ since xt is already the top-1 prediction and
thus not urgent to be memorized. On the contrary,
if maxy logP (y|x<t; Θ) >> logP (xt|x<t; Θ),
then δada < δ, indicating we should aggressively
memorize this sample because of the large gap be-
tween it and the top-1 prediction.

AMT is simple yet effective in practice. It allows
us to skip many samples with the top rank, sub-
stantially reducing the memory size with marginal
generation quality loss; moreover, it alleviates over-
fitting top-ranked samples, playing a similar role as
label smoothing to avoid overconfident predictions.

Since MoNIM updates, unlike FFN layers (Geva
et al., 2022), always promote concepts rather than
eliminate or run shortcuts, if extracted neighbors
are so thin and scattered that there is no reliable
concept to promote, its weight λ should be pushed
down accordingly. Inspired by previous studies (He
et al., 2021a; Drozdov et al., 2022), we train a sim-
ple calibrator to inform the reliability of MoNIM
with three categories of features: distribution infor-
mation of the parametric LM, lexical information
of the training data, and density information of
MoNIM. Following He et al. (2021a), we use a
4-layer MLP network, optimized on a small subset
of the validation set.4

3.3 Scalability of MoNIM

Unlike the space-inefficient kNN-LM, MoNIM’s
learning capability allows it to compress and reduce
memory demand throughout the learning process.

3The ablation of AMT is placed in Appendix C.4.
4The detailed implementation of the calibrator is placed in

Appendix A.3, and the ablation study in Appendix C.3.
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We designed experiments in continual learning set-
tings showing that MoNIM can keep compressing
when updating. Further, we reveal that the features
of compression are consistent with those of updates
of model parameters and lead MoNIM to scalabil-
ity: (i) data scalability: In parametric models, as
learning progresses, the impact of data on parame-
ter updates diminishes; similarly, in MoNIM, as it
continues to learn, the influence of data on memory
capacity diminishes, meaning less new informa-
tion needs to be memorized. (ii) model scalability:
As parametric models grow in size, the impact of
data on parameter updates decreases; likewise, in
MoNIM, the impact of data on memory capacity
also diminishes with model growth.

4 Experiments

4.1 Experimental Setting

We use the news from December 2019 in the News
Crawl corpus (NC-19Dec) as pilot data, and apply
Newscrawl-20H1 (NC-20H1), the articles during
the first half of 2020 in the News Crawl, as our
streaming data for continual learning (CL). We ran-
domly select 1% data per day as the validation and
test set, and the rest 98% articles as the training set.
Table 1 shows the statistics of NC-20H1. We con-
tinually learn the streaming data in chronological
order and update the search index5 every day.

In addition, we construct WikiEvent-20H1
(WE-20H1), a Wikipedia event dataset6 describing
real-world events during 20H1, for testing our ap-
proach in domains other than news. WE-20H1 con-
tains, on average 10 Wikipedia articles per month
with ∼100k tokens in total.

We use GPT-2 (Radford et al., 2019) as the back-
bone LM to study CL over 20H1’s streaming data.
We experiment with the GPT-2 small (S, 123M),
medium (M, 355M), and large (L, 774M) variants7,
and GPT-2 small is assumed to be the default size
unless otherwise specified. All the experiments are
implemented using the Fairseq (Ott et al., 2019)
toolkit and run on 1 NVIDIA V100 GPU.

We define the memorization rate (MemRate) as
the percentage of key-value pairs stored in memory
compared to the FullMem baseline. MemRate is
utilized to measure the memory efficiency and scal-
ability of our method. It comes that for NC-19Dec,
when δ = −1.5, MoNIM can achieve comparable

5Implementation of search is included in Appendix A.2.
6An example event article is 2020 Caribbean earthquake.
7The detailed configurations are in Appendix A.1.

performance to FullMem with ∼60% MemRate.
Thus, we set δ = −1.58 throughout our following
experiments.

After CL, we conducted extensive experiments
in both language modeling and downstream tasks
to estimate MoNIM’s performance and scalability.
MoNIM is compared with the following baselines:

• Full memorization (FullMem): Conventional
memorization policy that memorizes every to-
ken in the training set.

• Random memorization (RandMem): Randomly
memorize data equal to MoNIM’s initial Mem-
Rate (60%). We conduct three runs with random
seeds and choose the best as the baseline.

Daily Monthly Total
#Train #Dev/Test #Train #Dev/Test #Train #Dev/Test

Articles 4.4K 46 133K 1.3K 796K 8.2K
Tokens 2.4M 24.7K 73.2M 741K 439M 4.5M

Table 1: Statistics of NC-20H1.

4.2 Results of language modeling
4.2.1 Data scalability
Table 2 compares between MoNIM and FullMem,
RandMem for CL with NC-20H1, showing sub-
stantial improvements for the bare GPT-2 small.
Among them, MoNIM achieves comparable (even
slightly better) language modeling performance to
FullMem but with only 50% MemRate, and largely
outperforms RandMem (60% MemRate), demon-
strating that MoNIM is a cost-effective memoriza-
tion policy for CL.

Methods PPL (↓) MemRate (↓)
Bare GPT-2 small 24.1 0%
+FullMem 9.0 100%
+RandMem 15.0 60%

+MoNIM 8.6 50%

Table 2: Perplexity (PPL) on the test set of NC-20H1 by
different memorization methods for CL over NC-20H1.

We look into the results by tracking MoNIM’s
monthly memorization throughout CL. The sub-
linear growth trend of MoNIM observed in Figure
2(a) indicates that the compression rate of MoNIM
gradually increases as it learns over time because

8We explored the effect of different choices of δ on perfor-
mance and memorization in Appendix C.2.
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the model size (from 123M to 3B). The red numbers below the MoNIM’s line indicate the memory consumption
reduced by MoNIM, showing that MoNIM’s effect is more remarkable in larger LMs.

Model
NC-20July

(same domain)
WE-20H1

(different domain)
MemRate PPL MemRate PPL

GPT-2 small 60% 8.8 62% 29.0
+CL w/ NC-20H1 44% 8.2 57% 27.5

Table 3: Comparison of memorization rate and perplex-
ity for new CL data – NC-20July and WE-20H1 before
and after CL with NC-20H1.

the model becomes increasingly knowledgeable
and skips more training cases that it already knows.

We further confirm MoNIM’s data-wise scalabil-
ity by comparing the MemRates of two additional
CL datasets — news data from July 2020 in the
News Crawl (NC-20July) and WE-20H1 — before
and after CL with NC-20H1. Following CL on
NC-20H1, we utilize MoNIM (equipped with the
memory acquired from NC-20H1) to continually
process NC-20July and WE-20H1. As shown in
Table 3, MoNIM’s MemRates for both datasets
are significantly lower than those of the models
without CL, while improving performance. This re-
duction in MemRates can be attributed to the prior
CL, which enables the model to avoid memoriz-
ing numerous instances learned previously, without
compromising performance.

4.2.2 Model scalability

Table 4 shows the model size’s effect on MoNIM.
In the premise of comparable results to FullMem,
the MoNIM’s effect becomes more significant as

Model Strategy PPL (↓) MemRate (↓)

S(123M)
FullMem 9.0 100%
MoNIM 8.6 50%

M(355M)
FullMem 7.0 100%
MoNIM 7.2 46%

L(774M)
FullMem 6.2 100%
MoNIM 6.3 40%

Table 4: MoNIM’s model-wise scalability for GPT-2
models of different sizes.

the parametric model becomes larger: its overall
MemRate drops from 50% (GPT-2 small) to 40%
(GPT-2 large). As we assumed, a larger LM tends
to skip more training cases than a smaller LM. The
reduced MemRate demonstrates the model-wise
scalability of MoNIM.

To test the generalizability of scalable memory
on larger LMs, we choose Meta’s Llama-3.2-1B
and 3B versions (Dubey et al., 2024) for a brief
evaluation of MoNIM’s performance9. As shown
in Figure 2(b), the total MemRate reduces from
GPT2-small’s 59.5% (123M) to Llama-3.2-3B’s
42.0% (3B). We assume that larger LMs have the
potential to achieve even more negligible memory
consumption, as long as MoNIM maintains both
data- and model-scalability.

9Since Llama-3.2 was released on September 25, 2024, we
extract news from the first week of October 2024 in the News
Crawl corpus to implement this experiment.
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Methods Wiki-103 1 (Jan) 2 (Feb) 3 (Mar) 4 (Apr) 5 (May) 6 (Jun)

Bare GPT-2 29.1 24.3 24.0 24.1 24.0 24.7 23.8

+Fine-tune 33.4 (+2.9) 20.4 (+2.4) 18.7 (+2.3) 17.3 (+1.3) 17.3 (+0.2) 16.2 (+0.8) 15.4 (+0.0)
(best) 30.6 18.2 16.4 16.0 17.1 15.4 15.4

+RecAdam 34.5 (+2.7) 19.6 (+0.7) 18.3 (+0.7) 17.3 (+0.2) 17.1 (+0.3) 16.8 (+0.3) 16.9 (+0.0)
(best) 31.8 18.9 17.6 17.1 16.8 16.5 16.9

+MixReview 33.6 (+3.0) 19.9 (+1.8) 18.5 (+2.1) 17.3 (+1.4) 17.2 (+0.1) 15.8 (+0.4) 15.6 (+0.0)
(best) 30.6 18.1 16.4 15.9 17.1 15.4 15.6

+Greedy Merging 35.2 (+5.9) 15.3 (+6.3) 15.5 (+5.2) 16.0 (+3.1) 15.9 (+2.8) 15.8 (+1.8) 14.6 (+0.0)
(best) 29.3 9.0 10.3 12.9 13.1 14.4 14.6

+MoNIM 29.9 (+0.5) 9.4 (+0.1) 7.6 (+0.2) 7.8 (+0.5) 6.9 (+0.1) 9.5 (+0.0) 8.8 (+0.0)
(best) 29.4 9.3 7.4 7.3 6.8 9.5 8.8

Table 5: PPL evaluated on the 7 test sets after CL over NC-20H1 between MoNIM and representative CL approaches.
The numbers in the second row of each cell denote the best result achieved during the process of CL.
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Figure 3: Language modeling performance on 7 test sets
(Wiki-103 and 6 subsets of Newcrawl-20H1’s test set
by month) throughout CL via MoNIM over NC-20H1.

Model (MemRate) Wiki-103 NC-20H1 ACL

Bare GPT-2 (0%) 29.1 24.1 40.5

+FullMem (100%) 30.1→ 31.0 9.0→ 10.0 22.5

+MoNIM (64%) 29.9→ 30.4 8.6→ 9.2 22.7

Table 6: CL performance over ACL papers after learning
NC-20H1. The numbers beside each arrow indicate the
PPL before/after studying the ACL papers.

4.2.3 Mitigation of forgetting
MoNIM’s learning against forgetting performance
is evaluated by tracking results on 7 test sets
throughout CL over the NC-20H1: 6 are each
month’s held-out data in NC-20H1, and the other
is the test set of Wiki-103 benchmark (Merity et al.,
2017) which does not overlap with the NC-20H1
training data. According to Figure 3, MoNIM
learns from the streaming data well, reflected by the
sharp decrease of PPL on a test set after learning its
corresponding month’s training data. More impor-
tantly, it does not suffer much from the catastrophic
forgetting issue (French, 1999). PPL scores of all
7 test sets do not significantly degrade throughout
CL, since MoNIM will never erase previous mem-

0 1 2 3 4 5 6
CL over month(s) of Newscrawl-20H1

38

39
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Figure 4: Next-word prediction accuracy on 6 subsets
(by month) of WE-20H1 throughout CL over NC-20H1.

Methods
Acc (↑) MemRate (↓)

S M L S M L

Bare GPT-2 39.5 41.2 44.6 0% 0% 0%
+FullMem 43.0 45.5 48.9 100% 100% 100%
+RandMem 40.3 41.3 45.5 60% 60% 60%

+MoNIM 43.8 45.4 48.5 50% 46% 40%

Table 7: Next-word prediction accuracy (Acc) on the
test set (WE-20H1) and MemRate by different memo-
rization methods and models after CL over NC-20H1.

ory or update the weights of LM.

The advantage can be better understood by com-
paring MoNIM with other CL baselines. We select
two popular CL methods, RecAdam (Chen et al.,
2020) and Mix-Review (He et al., 2021b), with
Greedy Merging, the most effective data compres-
sion approach in He et al. (2021a).10 As in Table
5, MoNIM not only achieves better results in learn-
ing from the new data but also suffers less from
catastrophic forgetting than other CL approaches
despite introducing additional memory.

10Details of CL baselines are included in Appendix B.
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4.2.4 Domain adaptation
After CL over the news streaming data, which is
not of great difference from the LM’s pretrain-
ing dataset (i.e., openwebtext for GPT-2), we test
MoNIM’s CL performance over data in another do-
main – the ACL paper dataset (Lo et al., 2020) with
42K ACL papers. We hold off 80 papers (∼200K
tokens) to construct the validation and test set, us-
ing the rest for training.11 Table 6 shows that utiliz-
ing less memory (64% compared with FullMem),
MoNIM consistently performs well in new data
(40.5→ 22.7 in PPL) with less forgetting degrada-
tion. Although FullMem is also relatively resilient
to catastrophic forgetting, it stores more noise from
in-domain samples, which can degrade retrieval
performance when applied to out-of-domain inputs.

4.3 Results of downstream tasks

4.3.1 Next-word prediction
For LLM, next-word prediction is the basic and
the most straightforward end task, especially im-
portant for AI applications (e.g., input methods,
Microsoft’s text predictions and ChatGPT).

To align this task with our CL setting, we test
the next-word prediction on the WE-20H1 to ver-
ify if CL over NC-20H1 can help write the cur-
rent event articles in Wikipedia. As in language
modeling, MoNIM consistently shows comparable
performance with better scalability than FullMem
as the model size increases (Table 7) and desirable
results with little forgetting (Figure 4).

4.3.2 Closed-book question answer
We use REALTIME QA (Kasai et al., 2023), a
multiple-choice question dataset about real-time
events, as our second testbed of downstream tasks.
To align with our streaming data, we use the sub-
set of news during 20H1 and evaluate it in the
closed-book Multiple Choice setting. As Kasai
et al. (2023) suggests, we evaluate GPT-2 large in
a zero-shot learning setting, in which GPT-2 small
and medium are too weak to perform.

Table 8 shows the results in REALTIME QA.
Compared with the bare GPT-2 large, CL through
MoNIM over NC-20H1 substantially improves QA
performance because it learns the world knowl-
edge during 20H1 from the news stream to answer
the questions. MoNIM again performs as well as
FullMem with less memory footprint and outper-

11We split the training data into 4 batches for CL and update
the index after finishing each batch.

Methods (MemRate) Acc (↑)
Bare GPT-2 large (0%) 29.8
+FullMem (100%) 36.3
+RandMem (60%) 30.7

+MoNIM (40%) 36.2

Table 8: Accuracy on REALTIME QA of GPT-2 large
with CL over NC-20H1 in zero-shot learning setting.

CL over
Test on

1-2 3-4 5-6

1-2 36.0 29.3 29.5
1-4 37.2 35.8 30.6
1-6 37.0 36.5 35.5

Table 9: Accuracy on every two months of GPT-2 large
of REALTIME QA throughout CL over NC-20H1.

forms RandMem. Moreover, little forgetting is
consistently observed, as shown in Table 9.

5 Related Work

Retrieval-augmented LMs Retrieval compo-
nents have been found beneficial for language tasks.
Unlike the explicit storage methods (Guu et al.,
2020; Borgeaud et al., 2022), semiparametric LMs
like kNN-LM (Khandelwal et al., 2020) store im-
plicit information as key-value pairs to assist predic-
tion, without the need for retraining. As a powerful
method to use the external data, many successive
works of kNN-LM have been proposed (Zheng
et al., 2021; Jin et al., 2022b; Trotta et al., 2022;
Bhardwaj et al., 2023). Among them, He et al.
(2021a) focuses on improving the efficiency, which
has similar applications as our work, but we fo-
cus more on interpretable scalability in CL over
streaming data with orthogonal contributions.

Interpretable LMs It remains obscure how
Transformer manages to understand and generate
natural languages. Among all the struggles to open
the black box, mechanistic interpretability (Elhage
et al., 2021; Olsson et al., 2022; Gurnee et al., 2023)
investigates neurons and their connections in terms
of circuits where information flows and transforms.
Previous works have found many components that
provide learning capabilities (Merullo et al., 2024;
Zhang and Nanda, 2024). We transplant these in-
terpretations that work for the parametric models
to non-parametric memory, which has not been
reasonably explained. Experiments prove the feasi-
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bility of our conceptual framework of MoNIM.

Continual learning LMs Continual learning
(CL) proposes to address the “new knowledge -
catastrophic forgetting” dilemma (French, 1999).
According to the taxology of Wang et al. (2024),
our method deals with catastrophic forgetting prob-
lems based on replay-based methods (Sun et al.,
2020; Qin et al., 2022; Scialom et al., 2022), de-
spite that we managed to build a learnable replay
memory. CL for LM is gaining traction (Ke et al.,
2022; Razdaibiedina et al., 2023), and the closest
works to us are Jang et al. (2022) and Jin et al.
(2022a), which adapt LMs to emerging corpora
across domains and timelines. However, we are
the first to explore the memory to deal with non-
parametric solutions for CL over streaming data.

6 Conclusion

We introduced Mixture-of-Neighbors Induction
Memory (MoNIM), a novel conceptual framework
that integrates dynamic induction memory into the
Transformer architecture to interpret and enhance
semiparametric LMs. Our experiments demon-
strate that MoNIM not only offers a fresh perspec-
tive on non-parametric memory but also sets a new
benchmark for scalable and efficient learning in
LLMs, giving insights for the evolution of LLMs
without the need for parameter adjustments.

Limitations

We construct the framework of MoNIM and thor-
oughly investigate its practicality and effectiveness
as a representative of semiparametric LMs in con-
tinual learning. However, MoNIM only formalizes
the interpretation of kNN-LM, while there are di-
verse models and implementations under semipara-
metric LMs. Specifically, besides auto-regressive
models, auto-encoder models like T5 (Jang et al.,
2022) also exhibit their potential for continual LM.
Although we have observed that T5s are empiri-
cally capable of continual learning, the framework
we constructed does not currently include them. In
the future, we intend to extend to varied models
and architectures and confirm the universal effec-
tiveness of our framework.

Due to resource constraints, we tested our
method on data within half a year (20H1) and on
models up to 3B in size. Stretching the time se-
ries and increasing the model size is urgent for ob-
serving a more prominent and convincing build-up
curve for a longer period.
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A Experiment details

A.1 Model configuration

We list the model configurations of the GPT-2 mod-
els (as the parametric LMs) in our experiments in
Table 10.

Model Layer Dim #Param

GPT-2 small 12 768 123M
GPT-2 medium 24 1024 355M

GPT-2 large 36 1280 774M

Table 10: Model configurations of the GPT-2 models
(as the parametric LMs) in our experiments.

A.2 Index building

We use the FAISS toolkit (Johnson et al., 2021) for
index building and searching. At each update, we
sampled 1M keys randomly from memory to train
4K cluster centroids, and then the whole keys in
memory are added to the trained index, all quan-
tized to 64-bytes.

A.3 NN calibrator training

We list the features we use in training the NN cali-
brator:

• Distribution information of the parametric LM

– x̃: contextualized representation of x by
the parameterized LM

– conf(x): maxy P (y|x; θ)
– ent(x): entropy of P (y|x; θ)

• Lexical information of the training data

– log freq(x−1): log of frequency of the
last token in the context

– log distinct(x−1): log of the number of
distinct values that succeed the last token
in the context

• Density information of the external memory

– d(k̃, x̃): L2 distance (semantic similar-
ity) between the query and the top-i re-
trieved neighbor, i = 1, 2, . . . , 10.

– log distinct(ỹ): log of the number of
distinct values of the top-i retrieved val-
ues, i = 1, 2, . . . , 10.

On each day during memorization, we extract
from the validation set 10 articles and update them
into the training set of the calibrator yesterday to
obtain the training set of the calibrator today. The
validation set of the calibrator is obtained as above,
except for it only needs 5 articles each day. Be-
cause the training set increases slowly every day,
we reduce the number of training epochs from 5
epochs to 1 epoch as time goes on, in case of over-
fitting.

Each feature is fed into a 1-layer LeakyReLU
network to be transformed into hidden states of
128-dimension equally. Then all the hidden states
are concatenated to a long vector and fed into a
4-layer MLP network to predict λ. We list the
hyperparameters of the NN calibrator in Table 11.

Hyperparameters Values

Layers 4
Dimension of hidden state 128
Learning rate 3e-4
Optimizer Adam
Activation function ReLU
Dropout 0.2

Table 11: Hyperparameters of the NN calibrator

A.4 Inference
During inference, we feed context into the parame-
terized LM, its contextualized representation into
the memory index, and its three types of features
into the calibrator. We search for top-1K nearest
neighbors from 32 nearest cluster centroids using
the memory index. The calibrator reweighs the dis-
tributions of the parameterized LM and the mem-
ory, and we use this calibrated distribution as the
final output of our model.
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B CL baselines

RecAdam (Chen et al., 2020) As a regularization-
based method, RecAdam recalls previously ac-
quired knowledge by retaining the pretraining ob-
ject through frozen parameters, and it continually
learns new information using a multi-task learning
object. As the learning process moves forwards, the
regularization is annealed to lessen the restriction.

Mix-Review (He et al., 2021b) Assuming that
the pretraining corpus is obtainable, Mix-Review
uses an empirical decreasing function to adjust the
quantity of the pretraining corpus mixed in the con-
tinued training data. As the learning process moves
forward, the quantity of the pretraining corpus ta-
pers off to 0, resulting in the remaining training
process being equivalent to fine-tuning.

Besides established CL baselines, those methods
aimed at data efficiency were also considered to be
adapted to CL settings, such as Greedy Merging
which performs the best in datastore pruning in He
et al. (2021a). However, while Greedy Merging
can be generalized for CL by pruning and merg-
ing memory greedily every certain number of steps
iteratively, this approach presents disastrous distri-
bution shifts. If we merge new memory into the old,
the new information distribution will continuously
shift towards the old distribution, finally destroying
the performance of new data; vice versa, the old
distribution will shift towards the new one, caus-
ing the catastrophic forgetting problem. It turns
out in Table 5 that Greedy Merging undergoes se-
vere catastrophic forgetting in the first 3 months of
NC-20H1.

We leave more dedicated and adapted CL ap-
proaches to be explored in the future.

C Analysis

C.1 Possible learning strategies for MoNIM

In addition to the intuitive cross-entropy loss, there
are reasonable methods to measure and control the
learning process. We also propose to rely on the
intrinsic information content within the memory to
assess the necessity of memorization.

Internal information based Since memorized
keys can be projected to vocabulary space to ana-
lyze the information hidden in keys, we can calcu-
late the internal distance from key to value, namely
the KL-divergence from key-projected token distri-
bution to the golden token distribution, which rep-
resents the amount of new information contained

Methods PPL (↓) MemRate (↓)
Bare GPT-2 small 24.1 0%
+MoNIM(loss) 8.6 50%
+MoNIM(KL) 9.5 54%

Table 12: Perplexity (PPL) on the test set of NC-20H1
by different learning strategies for MoNIM over NC-
20H1.

Methods PPL (↓) MemRate (↓)
Bare GPT-2 small 24.1 0%

+FullMem 9.0 100%

+MoNIM (δ = −1.0) 8.2 54%
+MoNIM (δ = −1.5) 8.6 50%
+MoNIM (δ = −2.0) 9.9 45%

Table 13: MoNIM with different memorization thresh-
old δ.

in the sample.

M̂Θ(x) =

{
1 if DKL(y || Ex<t) < δ

0 else

The preliminary results (Table 12) indicate the
dominance of cross-entropy loss over KL diver-
gence of internal information. Due to the resource
limitation, we stick to the learning strategy using
cross-entropy loss in the main experiments through-
out the rest of the paper.

C.2 Performance VS Memorization rate

We have confirmed that MoNIM can achieve per-
formance comparable to FullMem with a substan-
tially reduced memorization rate when δ = −1.5.
Intuitively, if δ increases, more cases will be mem-
orized and the performance will likely increase fur-
ther; on the contrary, if δ decreases, more cases will
be skipped, resulting in less memory but weaker
performance. Table 13 confirms this intuition,
demonstrating that we can obtain a trade-off be-
tween scalability and performance through the ma-
nipulation of δ.

C.3 NN calibrator

The NN calibrator plays an important role in cal-
ibrating the semiparametric LM’s prediction by
adapting λ at test time. Although such an adap-
tive method has been proven universally effective
in semiparametric LMs by previous work, we re-
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Methods FullMem RandMem MoNIM

Constant λ 9.0 15.0 14.3
NN calibrator 8.3 (-0.7) 12.5 (-2.5) 8.6 (-5.7)

Table 14: Perplexity results on the NC-20H1 test data
with and without the NN calibrator for FullMem, Rand-
Mem, and MoNIM.

Features PPL (↓)
All 8.6
-Density features 12.0
-Distribution features 9.9
-Lexical features 8.9

Table 15: The ablation study of features in the NN
calibrator.

veal in Table 14 that it benefits MoNIM most, sig-
nificantly more than RandMem and conventional
FullMem, which only introduces marginal improve-
ment as in previous work, demonstrating that cali-
bration is more compatible with MoNIM.

We ablate the features of the NN calibrator to
study their effects on the results. According to
Table 15, all our proposed features contribute pos-
itively to the calibrator, among which the density
information, especially the L2 distance, is the most
important one because it can directly reflect if
the non-parametric memory has much relevant in-
formation given a test case, providing the most
straightforward evidence to the calibrator.

C.4 Adaptive memorization threshold (AMT)

We test MoNIM’s MemRate with/without AMT,
since it serves as a measure of AMT’s performance
in handling memory overfitting. It reveals in Fig-
ure 5 that after adding AMT the downward trend is
largely enhanced, while the performance is nearly
untouched despite the reduced memory. We claim
that the overfitting causes the predictions to fa-
vor the neighboring overconfident wrong answers,
damaging the generalization of new data. Thus, the
alleviation of overfitting is helpful with respect to
both performance and scalability.

C.5 In-context learning

We test if the in-context learning capability of a
language model is affected by CL through MoNIM.
We present the in-context learning result in the
REALTIME QA benchmark that the memory can
benefit in Table 16, showing that MoNIM is not in
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Figure 5: MoNIM’s memorization rate with CL over
months.

Methods (MemRate) 0-shot 1-shot 2-shot

Bare GPT-2 large (0%) 29.8 31.5 32.5
+FullMem (100%) 36.3 36.9 37.2
+RandMem (60%) 30.7 32.1 33.0

+MoNIM (40%) 36.3 36.7 37.7

Table 16: In-context learning accuracy of the GPT-2
large with CL over NC-20H1 on the REALTIME QA in
0-, 1- and 2-shot learning.

conflict with in-context learning and that the LM
can still benefit from more examples shown in the
context.

Also, we evaluate MoNIM’s effect on in-context
learning for general tasks collected by Shi et al.
(2022) that cannot benefit from its memory. Ac-
cording to Table 17, despite no improvement ob-
served, MoNIM does not affect the results in these
tasks, demonstrating its robustness.

C.6 Time efficiency
We analyze the time consumption of MoNIM with
vanilla kNN-LMs.

• Index Building: In this process, the whole
computational overhead is equal to conduct-
ing a full forward pass over the training data
to extract representations as keys, which is the
same as a vanilla kNN-LM.

• Retrieval Process: We have measured that
MoNIM’s inference time is approximately
0.9–1.1x that of vanilla kNNs. For time-
sensitive tasks, we have also explored a simple
modification to accelerate inference without
significantly hurting performance. We intro-
duce a confidence threshold θ after the cali-
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Methods (MemRate) RTE CB RT SST-2 CR MR HYP

Bare GPT-2 large (0%) 53.1 39.3 49.5 51.4 50.5 50.8 60.0
FullMem (100%) 50.3 35.5 49.0 49.8 48.6 47.5 60.0
FullMem (100%) w/ NN calibrator 52.8 41.1 49.5 51.8 50.8 50.9 60.0

MoNIM (40%) 53.1 41.1 49.5 51.5 50.8 50.0 60.0

Table 17: 0-shot learning accuracy of the GPT-2 large with CL over NC-20H1 on general NLP tasks.

brator of λ in Section 3.2, so that if λ < θ, we
simply skip the retrieval step and rely solely
on the LM output. This is intuitive since a
low λ indicates that memory contributes little
useful information. In our experiments with
GPT-2 small, when θ = 0.3, the inference la-
tency is reduced to 0.8x that of vanilla kNNs,
while the PPL in Table 2 increases slightly
from 8.6 to 8.9, while FullMem PPL is 9.0.
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