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Abstract

Multi-modal entity alignment aims to iden-
tify equivalent entities between two different
multi-modal knowledge graphs. Current meth-
ods have made significant progress by im-
proving embedding and cross-modal fusion.
However, most of them depend on using loss
functions to capture the relationship between
modalities or adopt a one-time strategy to di-
rectly compute modality weights using atten-
tion mechanisms, which overlooks the relative
interactions between modalities at the entity
level and the accuracy of modality weights,
thereby hindering the generalization to diverse
entities. To address this challenge, we pro-
pose RICEA, a relative interaction and cali-
bration framework for multi-modal entity align-
ment, which dynamically computes weights
based on the relative interaction and recali-
brates the weights according to their uncertain-
ties. Among these, we propose a novel method
called ADC that utilizes attention mechanisms
to perceive the uncertainty of the weight for
each modality, rather than directly calculat-
ing the weight of each modality as in previous
works. Across 5 datasets and 23 settings, our
proposed framework significantly outperforms
other baselines. Our code and data are available
at https://github.com/ChenxiaoLi-Joe/RICEA.

1 Introduction

Multi-modal knowledge graphs (MMKGs) orga-
nize real-world knowledge across modalities such
as text and vision, have drawn massive attention in
various scenarios, and supported numerous Al ap-
plications (Zhu et al., 2015; Yang et al., 2021Db).
Due to the increasing need for comprehensive
multi-modal knowledge integration, multi-modal
entity alignment (MMEA) (Chen et al., 2020; Liu
et al., 2019) has emerged as a significant task in
this field.

*Corresponding author.

Entity: Thomas_D._Jones

N
1
|

‘ 5
! Attribute S
RO z
o eeegiag
; Ea 2
Relation s
Graph
S ] ) Good job! That's right!
d ' Attribute | £
___, : el
2 =) A

Relation % 'gl

Vision ;

Figure 1: (a) Existing dynamic fusion methods neglect
the relative interaction between modalities of each en-
tity and the accuracy of weights, resulting in incorrect
alignment results and (b) our calibration strategy dy-
namically adjusts the modality weights, improving the
generalization.

Current MMEA methods focus primarily on
improving embeddings and cross-modal fusion.
Specifically, Chen et al. (2022) integrate visual fea-
tures to guide relational feature learning, thereby
fully utilizing multi-modal knowledge. Lin et al.
(2022) propose two novel losses to obtain effective
joint representations, ensuring that to-be-aligned
entities between different KGs are semantically
close with minimum gaps between modalities.
Chen et al. (2023a) dynamically generate the entity-
level meta weight for each modality inspired by
the vanilla transformer (Vaswani, 2017). Li et al.
(2025) independently obtain embeddings for each
modality and select the optimal fusion strategy for
the entity.

Previous works primarily utilize loss functions
to model the relationship between modalities or use
attention mechanisms to generate weights for each
modality at one time. However, this task-oriented
modeling is coarse-grained and often cannot reflect
the actual importance level of modalities. They fail
to fully capture the relative interactions between
modalities at the entity level, leading to an over-
emphasis on one modality and thus struggling to
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generalize to diverse real-world entities. For in-
stance, the ablation study in (Chen et al., 2023a)
suggests adopting only the intra-modal loss but ex-
cluding inter-modal loss (Lin et al., 2022) results
in the best performance. Their analysis reveals
that inter-modal loss did not significantly enhance
model performance and even resulted in perfor-
mance degradation. As shown in Figure 1 (a), the
diversity of entities in the real world limits the
generalization ability of task-oriented models to a
certain extent. Additionally, in (Serrano and Smith,
2019; Jain and Wallace, 2019), similar conclusions
are drawn that while attention mechanisms can pre-
dict the importance of input components, in many
cases, this association does not hold. Given that the
importance of different modalities is relative, the
importance of each modality should be dynamically
adjusted according to the changing importance of
other modalities. In other words, the importance of
different modalities affects each other.

Therefore, to address the above issues, we pro-
pose a Relative Interaction and Calibration frame-
work for multi-modal entity alignment named
RICEA. We elucidate the computation of each
modality weight through the lens of relative
modality interaction. Additionally, we refine
modal weights by introducing an Attention-Driven
Distribution Calibration (ADC) mechanism. In
contrast to previous efforts that directly ascer-
tain the weight for each modality, ADC' adopts
a two-phase strategy to perceive the uncertainty
of modality weights and adjust them accordingly.
RICEA shows improved performance compared
to the direct use of attention mechanisms (Chen
et al., 2023a; Li et al., 2023a), particularly in low-
resource scenarios, and provides new insights.

In summary, our main contributions are three-
fold:

* We propose a relative interaction and calibra-
tion framework for multi-modal entity align-
ment called RICEA. We are the first to identify
the uncertainty issue of modality weights in
multi-modal entity alignment and propose a
calibration strategy to dynamically adjust the
weights of each modality to ensure accuracy
and stability.

¢ We propose IntrA-modal Weight (/ AW) and
IntEr-modal Weight (/ EW) to enhance the
relative interaction between modalities. We
also propose a dynamic weight calibration for
computing Calibration Joint Weight (CJW),

which significantly improves generalization
by calibrating weights with high uncertainty.
To the best of our knowledge, we are the first
to use attention mechanisms to perceive un-
certainty in the weights for each modality.

* Extensive experiments verify the effective-
ness of our proposed framework, especially its
strong generalization ability in low-resource
scenarios.

2 Related Work

Generally, the related work can be classified into
two perspectives, i.e., typical entity alignment and
multi-modal entity alignment.

2.1 Typical Entity Alignment

Embedding-based approaches for entity alignment
(EA) can be generally divided into two categories:
those that solely leverage graph structures and
those that incorporate additional side information
about entities (Zhang et al., 2020, 2021). Sun et al.
(2018) iteratively labels likely entity alignment as
training data for learning alignment-oriented KG
embeddings. Wang et al. (2018) train GCNs to em-
bed entities of each language into a unified vector
space. To exploit the literal descriptions of enti-
ties expressed in different languages, Yang et al.
(2019) integrate GCN-based and BERT-based mod-
ules to boost performance. Zhao et al. (2022) offer
an unsupervised framework that performs entity
alignment in the open world. A detailed survey
for typical entity alignment can be found in (Zeng
et al., 2021).

2.2 Multi-modal Entity Alignment

Beyond text and structured data, visual and au-
ditory data, such as pictures, videos, and audio,
also contain rich knowledge. Previous multi-modal
entity alignment methods can be categorized into
two types: (i) Utilizing the relationships between
modalities to enhance alignment. Lin et al. (2022)
utilize a multi-modal contrastive learning model
to obtain effective joint representations for multi-
modal entity alignment. Chen et al. (2022) employ
inter-modal enhancement mechanisms to integrate
visual features to guide relational feature learning
to fully utilize multi-modal knowledge. Li et al.
(2024) propose triplet-aware graph neural networks
to aggregate multi-relational features. (ii) Apply-
ing attention mechanisms to enhance alignment.
Chen et al. (2023a) provide a multi-modal entity
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alignment transformer for meta-modality hybrid,
which dynamically predicts entity-level modality
weights for feature aggregation. Li et al. (2023a)
propose a novel MMEA transformer, that hierar-
chically introduces neighbor features, multi-modal
attributes, and entity types to enhance the align-
ment task. Fang and Yan (2024) use Transformer
to obtain encoded representations of knowledge
graph entities and make similar entities closer in
the subspace. In addition, some methods enhance
the alignment by completing the modality informa-
tion. Li et al. (2023b) use attention mechanisms
so that the entity embeddings can incorporate mul-
tiple images with different emphases. Chen et al.
(2023b) address the issue of missing modality in-
formation to alleviate the impact of incompleteness
on the alignment process.

However, all these methods overlook the rela-
tive interaction between modalities as well as the
accuracy and stability of weights, resulting in over-
emphasis on one modality, which affects the gener-
alization to diverse entities.

3 Methodology

3.1 Problem Formulation

Multi-modal Knowledge Graph. A multi-
modal knowledge graph is formalized as G =
(E,R,A,T,I,P). Here, E, R, A, T, and I are the
sets of entities, relations, attributes, triples, and im-
ages, respectively. P = {(e,i) | e € E,i € I} is
the set of entity-image pairs. Each entity is associ-
ated to multiple attributes and 0 ~ 1 image.

Multi-modal Entity Alignment. Given
two multi-modal knowledge graphs G =
(E,R,A,T,I,P) and G = (E ,R AT, I,

P'), the set of seed alignments across two multi-
modal knowledge graphs is defined as H =
{(e,e) | e € E,¢ € E';e = €'}, where =
represents the equivalence of two entities. A set
of pre-aligned entity pairs are offered for training
guidance. The task of multi-modal entity align-
ment targets to match the counterpart entities e and
e’ describing the same concepts in the real world
from distinct multi-modal knowledge graphs.

3.2 Framework Overview

We propose a relative interaction and calibra-
tion framework for multi-modal entity alignment
(RICEA), which comprises three major compo-
nents: 1) Multi-modal Knowledge Embedding
module extracts visual, structural, relational, and at-

tribute features, and integrates them into holistic en-
tity representations; 2) Cross-Modal Interaction
Joint Weighting (C'/JW) module measures the
relative interaction between modalities and gener-
ates the Joint Weight (JWW); 3) Dynamic Weight
Calibration (DW (') module further dynamically
adjusts the entity-level weight of each modality by
calculating the uniformity of modality distribution
and perceiving the uncertainty of modality weights.
The framework overview is illustrated in Figure 2,
and its primary components will be detailed in the
following sections.

3.3 Multi-modal Knowledge Embedding

This section elaborates on how we embed the graph
structure (h9), relations (h"), attributes (h®), sur-
face (h®), and visual (hV) modalities of entities into
low-dimensional vectors.

Graph Structure Embedding. The graph atten-
tion network (GAT) is a typical neural network that
deals with structured data (Velickovié et al., 2018).
We leverage GAT with two attention heads and two
layers to capture the structural information. The
structural feature embedding of the ¢-th entity e; is:

hi = GAT (Wy,My; ) , (1

where g represents graph structure modality, 27 €
R? represents the randomly initialized graph em-
bedding of entity e;, d is the predetermined hid-
den dimension, W, € R?*4 represents a diagonal
weight matrix (Yang et al., 2015) used for linear
transformation, M, represents the graph adjacency
matrix.

Relation, Attribute, and Surface Embedding.
Following Yang et al. (2019) and Chen et al.
(2023a), we use bag-of-words features to represent
relations x”, attributes x®, and surfaces x°, and
employ separate fully connected layers (£'C') to al-
leviate the information pollution caused by mixed
relation/attribute representations in GNN-like net-
works (Liu et al., 2021). We represent the feature
embedding of the m-th modality of the ¢-th entity
€; as:

hi* = FC(x("),m € {r,a,s}, ()

where 7, a, s represent the relation, attribute, and
surface (a.k.a. entity name) modality, respectively.

Visual Embedding. We employ the pre-trained
vision model as the encoder (Enc,) to get the vi-
sual embeddings x; for each available image of
the entity e;. Following Chen et al. (2020); Liu
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(a) CLJW: Cross-Modal Interaction Joint Weighting

(b) DWC: Dynamic Weight Calibration
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Figure 2: The overall framework of RICEA (down) and the implementation details of (a) Cross-Modal Interaction
Joint Weighting (C'1JW) and (b) Dynamic Weight Calibration (DW C).

et al. (2021); Lin et al. (2022), we utilize the VGG-
16 (Simonyan and Zisserman, 2015) on FB15K-
DBI15K/YAGO15K and the ResNet-152 (He et al.,
2016) on DBP15K. To alleviate information pollu-
tion, we also employ a fully connected layer. De-
tails of the settings will be provided in Section 4.1.
For entities lacking image data, we create random
image features by utilizing a normal distribution,
which is defined by the mean and standard devi-
ation of the existing images (Chen et al., 2022,
2023a; Lin et al., 2022; Liu et al., 2021). Image
embedding is calculated as:

hi = FCy(z7).  (3)

xy = Ency(v;),

3.4 Cross-Modal Interaction Joint Weighting

The Cross-Modal Interaction Joint Weighting
(CIJW) module aims to enhance the relative inter-
action between modalities and combines the IntrA-
modal Weight (/ AW) and IntEr-modal Weight
(IEW) of the current modality to generate the
Joint Weight (JW). By considering the IAW s
of all modalities, we can more comprehensively
evaluate the importance of the current modality in
the i-th entity.

Specifically, to ensure high precision, stability,
and efficient processing of input features, we de-
signed a Bottleneck Layer (B L), which is a fully
connected module consisting of three linear layers

and one nonlinear mapping. The first layer expands
the input features to a higher dimensional space to
increase the feature expression capability, and the
second layer compresses the features back to the
original dimension to improve the feature process-
ing efficiency. The last layer is reduced to a single
dimension, and finally, the nonlinear mapping fixes
it between 0 and 1 as the credibility of the uni-
modality. The I AW of the m-th modality can be
calculated as:

TAW™ =g - (W3 - (Wy - (W7 - B

4
+ b1) + ba) + b3), @)

where weight matrices are represented as W; €
[R300X600 1y7, < R600x300 7. ¢ R300X1  The
activation function employed is Sigmoid.

To consider the importance of all modalities and
smooth out small numerical differences to enhance
computational stability, we take the natural loga-
rithm of the I AW for the m-th modality and divide
it by the natural logarithm of the product of the
I AW s across all modalities M. The I EW of the
m-th modality can be calculated as:

—In(JAW™)

IEW™ =
—In| [] TAWJ | +1x 108
JjEM

)

where M denotes the set of available modalities.
To prevent zero division errors or numerical insta-
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bility in mathematical operations, we add a small
constant of 1le — 8 to ensure smooth transitions,
avoid abrupt changes under boundary conditions,
maintain the value positive for logarithm calcula-
tions, and preserve the stability of the computa-
tional process, thus preventing numerical overflow
or underflow. To improve collaborative interac-
tion between modalities, we define JIV as a linear
combination of /AW and I EW and use it as the
temporary weight for the m-th modality. JW is
defined as:

JW™ = TAW™ + TEW™, 6)

where TAW™, IEW™, and JW™ represent the
intra-modal weight, inter-modal weight, and joint
weight of the m-th modality respectively.

3.5 Dynamic Weight Calibration

Inspired by Cao et al. (2024), we proposed the
Dynamic Weight Calibration (DW C) to ensure
that the output weights are more accurate and reli-
able. DW(C aims to use the weights obtained by
the attention mechanisms to calculate distribution
uniformity to perceive the uncertainty of modality
and use it as a calibration standard to dynamically
adjust the JW s. It is worth noting that the uncer-
tainty of the modality means that some modalities
may have uncertain missingness and ambiguity,
which is also observed by Chen et al. (2023b). The
experimental results in Section 4.3 show that our
method improves the performance, surpassing the
methods that directly use the attention mechanisms
(Chen et al., 2023a; Li et al., 2023a).

DWC contains four sub-layers: 1) In Entity-
level Modality Weighted Attention, we use the
prediction weights obtained by attention mecha-
nisms to assess the importance of each modality
at the entity level, which provides a basis for the
next sub-layer; 2) In Attention-Driven Distribu-
tion Calibration, we use the prediction weights to
calculate the uniformity of the modality distribu-
tion and evaluate the uncertainty of its prediction
weights. We then calibrate weights with high un-
certainty and recalculate new joint weights; 3) In
Modality Fusion, we fuse all weighted modalities.
4) In Alignment Learning and Inference, we use
the cosine similarity to measure the alignment prob-
ability.

Entity-level Modality Weighted Attention. In-
spired by Chen et al. (2023a), we introduce at-
tention mechanisms to predict entity-level modal-

ity weights to avoid over-emphasizing one modal-
ity, instead of using the same approach as C'1JW.
Specifically, the multi-head cross-modal attention
(MHCA) block performs the attention function
in parallel over Ny heads where the i-th head is
parameterized by modally shared weight matrix

W((Ii),Wg),Wi(,i) € R¥™9 to project the multi-
modal input 2™ into modal-aware query Q%) €
Rén, key Kr(,? € R and value Vn(f ) € R,

QWL KD V) = WE R WO WD (7)
For the feature of modality m, its output is:

MHCA (h;") = [head]" @ - - - @ heady;, | Wo,  (8)

head” = 3 sV ©)
JjEM
The attention weight 3,,,; between entity’s modality
m and j in each head is formulated as:

exp(Q K /V'dn)
> exp(QLKn/Vdp)

neM

ij =

(10)

where dj, = d/Ny,. Besides, layer normalization is
used to stabilize the training:

h* = LayerNorm(MHCA(h") + h]").  (11)

Then the fully connected feed-forward network
(FEN) consists of two linear transformation lay-
ers and a ReLLU as the activation function:

FEN(h") = ReLU(h"W1 + b1)Wo + by, (12)

A < LayerNorm(FFN(h™) + i), (13)

where Wy € R%*din and W, € R%n*d  The
weight of the m-th modality (w™) is defined as:

Ny .
exp( Y2 S A% \/IM[ x Np)
m JEM i=0

w' = N . (14)
> exp( Y > B /IM[ % Ny)

keM JEM i=0

Attention-Driven Distribution Calibration
(ADC). A uniform distribution typically suggests
high uncertainty, whereas a peaked distribution
implies low uncertainty in predictions (Huang
et al., 2021). We apply the aforementioned
attention mechanism to determine the prediction
weights for each modality, treating them as
prediction probabilities of the classification. This
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classification method serves as an implicit label
for categorizing based on modality uncertainty.
Subsequently, we compute the mean p of these
probability distributions. Hence, we define the
Distribution Uniformity (DU) of m-th modality
as:

M
1
DU™ = ol Z |Softmax(w;"™ - hi"*) — |, (15)

where | M| is the number of available modalities,
w;" is the weight of the m-th modality of the i-th
entity.

Taking into account the dynamic environ-
ment, the uncertainty of different modalities
should be relative. In other words, the uncer-
tainty of each modality should adjust dynamically
in response to changes in the uncertainty of other
modalities. The Relative Variance (RV') of m-th
modality is defined as:

m\| M|
RV™ = 7(DU ) —,
[ DUJ
jeEM

(16)

Specifically, we assume that the quality of the
modality with RV™ < 1 has a larger uncertainty,
and it tends to produce relatively unreliable pre-
dictions, so the weight of the current modality has
potential risks in terms of accuracy. Therefore, we
reduce the contribution of such modalities by mul-
tiplying their predicted JW by RV™ (RV™ < 1).
On the contrary, the quality of the modality with
RV™ > 1 is considered to have a smaller uncer-
tainty, so the contribution of these modalities can
be retained to reduce the consumption of comput-
ing resources.

JEM a7

RV™ if (DU™M! < [T DU,
k™ =
1 otherwise.

The Calibration Joint Weight (C' JW) can be cal-
culated as follows and used as the final weight of
the m-th modality:

CIW™ = JW™ . k™. (18)

Modality Fusion. We use the CJW of each
modality as its fusion weight and assign it to each
entity e;.

hi= @ [caw - nyy,

meM

19)

where h; is defined as the fusion embedding.

Alignment Learning and Inference. We use the
cosine similarity (Sim) to measure the alignment
probability. The similarity matrix of source entity
set F and target entity set E' can be denoted as
Sim(E, E').

4 Experiments

4.1 Experiment Setup

Datasets. To verify the effectiveness of our pro-
posed framework in practical applications, we con-
ducted experiments using two cross-KG datasets
FB15K-DB15K/YAGO15K (Liu et al., 2019) and
three bilingual datasets ZH/JA/FR-EN versions of
DBP15K (Sun et al., 2017). Appendix A depicts
the statistics of multi-modal datasets. Following
conventions, we used 30% reference entity align-
ments as pre-aligned entity pairs (seeds alignments)
for DBP15K. For FB15K-DB15K/YAGO15K, we
used 20%, 50%, and 80% reference entity align-
ments.

Evaluation Metrics. We employ Hits@n and
MRR as metrics to evaluate all the methods.
Hits@n means the rate correct entities rank in the
top n according to similarity computing. MRR de-
notes the mean reciprocal rank of correct entities.
The higher values of Hits@n and MRR explain the
better performance of the method.

Implementation Details. For a fair comparison,
we kept all the settings of Chen et al. (2023a). The
hidden layer dimensions d for all networks are stan-
dardized to 300. The total number of epochs is set
to 500, with an optional iterative training strategy
applied for an additional 500 epochs. The AdamW
optimizer (81 = 0.9, B2 = 0.999) is used, with a
fixed batch size of 3500.

We adopt the approach of Mao et al. (2021), uti-
lizing pre-trained 300-d GloVe vectors along with
character bigrams for surface representation after
applying machine translations for entity names.
The vision encoders FEnc, are configured as
ResNet-152 (He et al., 2016) for DBP15K, follow-
ing EVA/MCLEA, with a vision feature dimension
of d, = 2048. For FB15K-DB15K/YAGO15K,
the encoders are set to VGG-16 (Simonyan and
Zisserman, 2015), with d, = 4096. Specifically,
for entity-level modality weighted attention, the
intermediate dimension d;;, is set to 400. -y is set to
0.1, and the head number N}, in MHCA is set to 1.
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Seeds ‘ Models ‘

FB15K-DB15K

| FB15K-YAGO15K

| | Hits@l Hits@10 MRR | Hits@l Hits@10 MRR
MMEA (Chen et al., 2020) 0.265 0.541 0.357 0.234 0.480 0.317
EVA (Liu et al., 2021) 0.199 0.448 0.283 0.153 0.361 0.224
MSNEA (Chen et al., 2022) 0.114 0.296 0.175 0.103 0.249 0.153
MCLEA (Lin et al., 2022) 0.295 0.582 0.393 0.254 0.484 0.332
20% MoAlign (Li et al., 2023a) 0.318 0.564 0.409 | 0.296 0.525 0.378
MEAformer (Chen et al., 2023a) | 0.417 0.715 0.518 0.327 0.595 0417
TriFac (Li et al., 2024) 0.318 0.559 0.389 | 0.290 0.508 0.371
RICEA (Ours) 0.471 0.720 0.557 | 0.411 0.658 0.497
Improv. best% 54 0.5 3.9 8.4 6.3 8.0
MMEA (Chen et al., 2020) 0.417 0.703 0.512 | 0.403 0.645 0.486
EVA (Liu et al., 2021) 0.334 0.589 0422 | 0.311 0.534 0.388
MSNEA (Chen et al., 2022) 0.288 0.590 0.388 0.320 0.589 0.413
MCLEA (Lin et al., 2022) 0.555 0.784 0.637 0.501 0.705 0.574
50% MoAlign (Li et al., 2023a) 0.576 0.749 0.634 | 0.550 0.713 0.617
MEAformer (Chen et al., 2023a) | 0.619 0.843 0.698 0.560 0.778 0.639
TriFac (Lietal., 2024) 0.554 0.750 0.607 0.546 0.694 0.579
RICEA (Ours) 0.648 0.852 0.721 | 0.617 0.811 0.687
Improv. best% 2.9 0.9 2.3 5.7 3.3 4.8
MMEA (Chen et al., 2020) 0.590 0.869 0.685 0.598 0.839 0.682
EVA (Liu et al., 2021) 0.484 0.696 0.563 0.491 0.692 0.565
MSNEA (Chen et al., 2022) 0.518 0.779 0.613 0.531 0.778 0.620
MCLEA (Lin et al., 2022) 0.735 0.890 0.790 | 0.667 0.824 0.722
80% MoAlign (Li et al., 2023a) 0.699 0.882 0.773 0.689 0.884 0.769
MEAformer (Chen et al., 2023a) | 0.765 0.916 0.820 | 0.703 0.873 0.766
TriFac (Li et al., 2024) 0.697 0.882 0.761 0.669 0.865 0.736
RICEA (Ours) 0.776 0.916 0.829 | 0.734 0.892 0.792
Improv. best% 1.1 0.0 0.9 3.1 0.8 2.3

Table 1: Non-iterative results on two cross-KG datasets are presented. The variable X% indicates the percentage of
reference entity alignments used for training. The best results are shown in bold.

4.2 Comparative Methods

To comprehensively verify the effectiveness of our
framework, we selected 20 prominent EA algo-
rithms proposed in recent years as benchmarks and
validated them on 5 real-world datasets and 23 set-
tings.

The recent multi-modal entity alignment method
LODEME (Li et al., 2023b) and UMAEA (Chen
et al., 2023b) primarily enhances the accuracy of
entity alignment by completing missing modali-
ties, thereby increasing the available information.
Meanwhile, PMF (Huang et al., 2024) enhances
the training strategy to mitigate the noise caused
by modality inconsistency. Our research aims to
identify the relative interaction between modalities
and adjust incorrect modal weights. This enhance-
ment aims to improve generalization capabilities,
enabling adaptation to variations in modal quality
in real-world scenarios. For a fair comparison, we

did not include them.

4.3 Overall Results

The results of the monolingual datasets are shown
in Table 1 (non-iterative) and Appendix B (itera-
tive), and the results of the bilingual datasets are
shown in Appendix C. Our framework outperforms
the baselines on almost all datasets under all met-
rics. Especially on FB15K-DB15K/YAGO15K
with 20% and 50% data splits (non-iterative),
Hits@1 increased by 5.4%, 2.9%, 8.4% and 5.7%,
and MRR increases by 3.9%, 2.3%, 8.0%, and
4.8%, respectively. This phenomenon confirms
the strong generalization ability of our framework
when learning with fewer samples, addressing the
aforementioned issues.

4.4 Ablation Studies and Analysis

We conducted a series of experiments to thoroughly
investigate the effectiveness of RICEA and whether
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it addresses the issues we identified. The experi-
ments were designed to address three primary ques-
tions:

* Does our RICEA framework have better gen-
eralization ability than its counterparts?

In Section 4.4.1, we conducted compara-
tive experiments on 2 datasets with 12 data
splits in low-resource scenarios. Our frame-
work demonstrated the capability to use a
small number of samples as training data and
achieve better performance than baselines, ver-
ifying RICEA’s strong generalization ability.

Do our proposed components really work?

In Section 4.4.2, we performed an ablation
study to verify the effectiveness of each com-
ponent of our framework. In addition, we visu-
ally demonstrate the effectiveness of C'1JW
module and DW C module, as well as the
importance of each modality in multi-modal
entity alignment.

* How does our RICEA framework perform in
terms of computational efficiency and unsu-
pervised training?

In Sections 4.4.3 and 4.4.4, we present statis-
tics of learnable parameters and experimen-
tal results on unsupervised training. Experi-
mental results demonstrate that our framework
not only substantially enhances performance
while preserving computational efficiency but
also outperforms other baselines on unsuper-
vised training.

4.4.1 Low Resource

To discuss that our framework has better general-
ization than similar baselines, we conducted com-
parative experiments in low-resource scenarios.
Following the method of Chen et al. (2023a),
in FB15K-DB15K, we chose the seed alignment
ratio Ry, = {0.01,0.03,0.07,0.11,0.14,0.18},
in DBP15Kpg gy, we chose the seed alignment
ratio Ry, = {0.01,0.05,0.11,0.16,0.22,0.28}.
As shown in Figure 3, as the seed alignment
ratio increases, the performance of our frame-
work improves more significantly. When R, =
{0.11,0.14}, our framework surpasses the perfor-
mance of MEAformer (Chen et al., 2023a) on
Rso = {0.14,0.18} respectively. Furthermore,
when Rz, = 0.01, our framework outperforms

EVA e MSNEA

MCLEA v

'

* RICEA
MEAformer

(NA-¥:4) YSI1ddd ()
H
NSIGa-NS184 (@)

Figure 3: Generalization and low Resource. Model’s
Hits@1 performance with fewer seed alignments on (a)
DBP15Kg.gy and (b) FB15K-DB15K.

all baselines. This not only verifies the strong gen-
eralization ability of our framework but also offers
new insights into research on low-resource commu-
nities.

4.4.2 Component Analysis

We developed different variants of RICEA to evalu-
ate the optimal combination and explore the impact
of various modalities on multi-modal entity align-
ment. The results are shown in Figure 4. We found
that performance drops most significantly when the
visual modality is removed, indicating that the vi-
sual modality is more important than the other two
modalities. This result also verifies the conclusion
of Chen et al. (2023a).

B ricE4 [ w/o Rel [ w/o Arr W w/o Vis o CLm. wlo DWC |

(a) DBP15K (FR-EN)

B
-
il

(b) DBP15K (JA-EN)

M

Figure 4: Component analysis for RICEA on (a)
DBP15KFR_EN and (b) DBP15KJAEN

When the DW ' module is removed, perfor-
mance drops significantly, indicating that our pro-
posed dynamic weight calibration module effec-
tively calibrates erroneous modality weights. Nev-
ertheless, our framework still outperforms methods
that explore the impact of the relationships between
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modalities on alignment results (Chen et al., 2022;
Lin et al., 2022). Interestingly, we found that per-
formance degradation when removing the proposed
components is much greater than when removing
modalities. This shows that our framework is al-
most unaffected by other information reduction,
further verifying the framework’s strong general-
ization capabilities. Moreover, we performed ex-
periments to show that B L surpasses the attention
mechanism in evaluating relative interaction, with
more details provided in Appendix D.

4.4.3 Statistics of Learnable Parameters

In Table 2, we present the number of learnable
parameters for the baselines on DBP15K. While
MEAformer demonstrates improved performance
compared to MCLEA, it increases the number
of learnable parameters by 0.5 M. Compared to
MEAformer, our framework not only enhances per-
formance but also increases the number of learn-
able parameters by only 0.2 M, representing a re-
duction of 0.2 M compared to MSNEA.

Models Paras.
EVA (Liu et al., 2021) 13.3 M
MSNEA (Chen et al., 2022) 141 M
MCLEA (Lin et al., 2022) 132M
MEAformer (Chen et al., 2023a) 13.7M
RICEA (Ours) 139M

Table 2: Statistics of learnable parameters on DBP15K,
using a non-iterative method without (w/o) surface form
(SF).

This highlights the potential of our framework
for few-sample data training and generalization,
as well as its advantage in lightweight computing.
Moreover, reducing the consumption of computing
resources will be a focus of our future research.

4.4.4 Unsupervised Training

Unsupervised training was initially introduced by
Liu et al. (2021) to mitigate dependence on gold
labels.

Models Hits@1l Hits@10 MRR
EVA 0.891 0.961 0.917
MSNEA 0.859 0.936 0.887
MCLEA 0.860 0.950 0.893
MEAformer 0.909 0.974 0.933
RICEA(Ours) 0.944 0.991 0.962
Improv. best% 3.5 1.7 2.9

Table 3: Unsupervised results on bilingual datasets.

However, this approach may lead to inconsisten-
cies across modalities. Nevertheless, the results in
Table 3 show that RICEA still outperforms other
baselines in this setting.

5 Conclusion

In this work, we present a new framework called
RICEA for multi-modal entity alignment. RICEA
explains the weight calculation process for each
modality from the perspective of relative interac-
tion, encouraging the development of low-resource
communities. Additionally, our weight calculation
is more precise and meticulous than all previous
MMEA methods. We are the first to propose Dy-
namic Weight Calibration to further improve the
framework’s generalization to new data in the real
world. Our research shows that RICEA can outper-
form all the recent methods across 5 datasets and
23 settings without increasing computational costs,
especially in low-resource scenarios.

Limitations

In the efficiency analysis, we use the number of
learnable parameters for evaluation. In the four
settings on DBP15K, the number of learnable pa-
rameters of MEAformer is approximately 13.7 M
to 14.2 M, while our framework is about 13.9 M
to 14.5 M. The very small increase in the num-
ber of parameters is understandable because our
framework indirectly uses attention mechanisms.
In future work, we will find a better calibration
standard than the attention mechanisms, so that the
number of learnable parameters in our framework
will be even smaller. We believe that the confi-
dence obtained using a single-modal classifier will
be more effective than the attention mechanisms
and may outperform the attention mechanism in
computing the uniformity of single-modal distri-
bution. However, similar methods have not yet
appeared in multi-modal knowledge graphs, mak-
ing this our future research focus.
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A Appendix: Datasets Statistics

Table 4 shows the statistics of datasets, including
the number of entities (Ent.), relations (Rel.), at-
tributes (Attr.), number of relation triples (Rel Tr.)
and attribute triples (Attr Tr.), number of images
(Image), and number of the reference entity pairs
(EA pairs). Each entity is associated to multiple
attributes and O ~ 1 image.

B Appendix: Iterative Results on Two
Cross-KG Datasets

Table 5 shows the iterative results on two cross-
KG datasets. On the FB15K-DB15K with a 20%
data split, Hits@1 dropped by 1.1%. We attribute
this to substantial noise in the attribute modal-
ity. According to the statistics of datasets in Ap-
pendix A, FB15K-DB15K contains significantly
more attribute information than FB15K-YAGO15K.
This observation also supports the conclusions of
Zhang et al. (2023) and Shi et al. (2022). On the
FB15K-DB15K with 50% and 80% data splits,
Hits@10 is also affected by this interference. Even
so, our framework can still obtain correct alignment
results from it. However, on the FB15K-YAGO15K
dataset with less available information, our frame-
work once again demonstrates strong generaliza-
tion capabilities, especially in the 20% data split

setting, where Hits@1 and MRR increase by 7.2%
and 6.4% respectively.

C Appendix: Non-iterative and Iterative
Results on Three Bilingual Datasets

Table 6 shows the non-iterative and iterative results
on three bilingual datasets. The slight increase on
the DBP15K is primarily due to the cross-lingual
nature of the data, which tends to be more sparse
and unbalanced. This makes it challenging to en-
sure alignment and consistency between different
languages. In some settings, our framework still
maintains the SOTA performance (1.000). Experi-
mental results show that surface information (e.g.,
entity names) still plays a very positive role in
entity alignment. However, we recommend that
future studies use more visual information and dis-
card entity names, considering the name bias.

D Appendix: Is Attention Mechanism
Better than Bottleneck Layer?

In Section 3.4, we employ the Bottleneck Layer
(BL) to calculate the Intra-modal Weight (I AW).
An important question arises: does the attention
mechanism outperform BL in computing [ AW?
Our experimental results demonstrate otherwise.
When we replaced B L with the attention mecha-
nism on the DBP15Kgg gy, Hits@1 achieved only
0.744, indicating a 3.5% decrease compared to us-
ing BL. MRR achieved only 0.816, indicating a
2.8% decrease compared to using BL. Addition-
ally, the training time was tripled compared to B L.

Dataset KG ‘ Ent. ‘ Rel. ‘ Attr. ‘Rel. Tr. | Attr. Tr. | Image | EA pairs
porisi e |G| | 1 S o e e
s | B e e e e
oorisken e ||| 2 e s o T
rovscomis | BT e e | |
rovscvscon | Lo | 1 1 e [ T

Table 4: Statistics of multi-modal datasets, with EA pairs representing the reference entity alignments.
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Seeds | Models \ FB15K-DB15K \ FB15K-YAGO15K

| | Hits@l Hits@10 MRR | Hits@l Hits@10 MRR
EVA (Liu et al., 2021) 0.231 0.488 0.318 0.188 0.403 0.260
MSNEA (Chen et al., 2022) 0.149 0.392 0.232 0.138 0.346 0.210
20% MCLEA (Lin et al., 2022) 0.395 0.656 0.487 0.322 0.546 0.400
MEAformer (Chen et al., 2023a) 0.578 0.812 0.661 0.444 0.692 0.529
RICEA (Ours) 0.567 0.804 0.652 | 0.516 0.733 0.593

Improv. best% -1.1 -0.8 -0.9 7.2 4.1 6.4
EVA (Liu et al., 2021) 0.364 0.606 0.449 0.325 0.560 0.404
MSNEA (Chen et al., 2022) 0.358 0.656 0.459 0.376 0.646 0.472

50% MCLEA (Lin et al., 2022) 0.620 0.832 0.696 0.563 0.751 0.631
MEAformer (Chen et al., 2023a) | 0.690 0.871 0.755 0.612 0.808 0.682
RICEA (Ours) 0.692 0.869 0.757 | 0.658 0.827 0.720

Improv. best% 0.2 -0.2 0.2 4.6 1.9 3.8
EVA (Liu et al., 2021) 0.491 0.711 0.573 0.493 0.695 0.572
MSNEA (Chen et al., 2022) 0.565 0.810 0.651 | 0.593 0.806 0.668
80% MCLEA (Lin et al., 2022) 0.741 0.900 0.802 0.681 0.837 0.737
MEAformer (Chen et al., 2023a) | 0.784 0.921 0.834 0.724 0.880 0.783
RICEA (Ours) 0.787 0.919 0.838 | 0.752 0.899 0.804

Improv. best% 0.3 -0.2 0.4 2.8 1.9 2.1

Table 5: Iterative results on two cross-KG datasets are presented.

Models \ DBP15Kzn.en | DBP15K a-n \ DBP15Krr.en

| Hits@1l Hits@10 MRR | Hits@l Hits@l10 MRR | Hits@1 Hits@10 MRR

w/o SF and Non-iterative

AlignEA (Sun et al., 2018) 0.472 0.792 0.581 0.448 0.789 0.563 | 0.481 0.824 0.599

KECG (Li et al., 2019) 0.478 0.835 0.598 | 0.490 0.844 0.610 | 0.486 0.851 0.610
MUGNN (Cao et al., 2019) 0.494 0.844 0.611 | 0.501 0.857 0.621 | 0.495 0.870 0.621
AliNet (Sun et al., 2020) 0.539 0.826 0.628 | 0.549 0.831 0.645 | 0.552 0.852 0.657
EVA (Liu et al., 2021) 0.680 0.910 0.762 | 0.673 0.908 0.757 | 0.683 0.923 0.767
MSNEA (Chen et al., 2022) 0.601 0.830 0.684 | 0.535 0.775 0.617 | 0.543 0.801 0.630
MCLEA (Lin et al., 2022) 0.715 0.923 0.788 | 0.715 0.909 0.785 | 0.711 0.909 0.782

MEAformer (Chen et al., 2023a) | 0.771 0.951 0.835 0.764 0.959 0.834 | 0.770 0.961 0.841
MDSEA (Fang and Yan, 2024) 0.768 0.904 0.814 | 0.769 0.946 0.832 | 0.765 0.947 0.834

RICEA (Ours) 0.774 0.954 0.840 | 0.770 0.953 0.837 | 0.779 0.961 0.844
Improv. best% 0.3 0.3 0.5 0.1 -0.6 0.3 0.9 0.0 0.3
w/ SF and Non-iterative
RDGCN (Wu et al., 2019) 0.708 0.846 - 0.767 0.895 - 0.886 0.957 -
AttrGNN (Liu et al., 2020) 0.777 0.920 0.829 0.763 0.909 0.816 0.942 0.987 0.959
RNM (Zhu et al., 2021) 0.840 0.919 0.870 | 0.872 0.944 0.899 0.938 0.981 0.954
CLEM (Wu et al., 2022) 0.854 0.935 0.879 0.885 0.958 0.904 0.936 0.977 0.952

RPR-RHGT (Cai et al., 2022) 0.693 - 0.754 | 0.886 - 0912 | 0.889 - 0.919
ERMC (Yang et al., 2021a) 0.903 0.946 0.899 | 0.942 0.944 0.925 0.962 0.982 0.973

EVA (Liu et al., 2021) 0.929 0.986 0.951 0.964 0.997 0.976 | 0.990 0.999 0.994
MSNEA (Chen et al., 2022) 0.887 0.961 0.913 0.938 0.983 0.955 0.969 0.997 0.980
MCLEA (Lin et al., 2022) 0.926 0.983 0.946 | 0.961 0.994 0.973 0.987 0.999 0.992
MEAformer (Chen et al., 2023a) | 0.948 0.993 0.965 0.977 0.999 0.986 | 0.991 1.000 0.995
RICEA (Ours) 0.950 0.993 0.967 | 0.978 0.998 0.988 | 0.991 1.000 0.995

Improv. best% 0.2 0.0 0.2 0.1 -0.1 0.2 0.0 0.0 0.0

w/o SF and Iterative

BootEA (Sun et al., 2018) 0.629 0.847 0.703 0.622 0.854 0.701 0.653 0.874 0.731
NAEA (Zhu et al., 2019) 0.650 0.867 0.720 | 0.641 0.873 0.718 0.673 0.894 0.752
EVA (Liu et al., 2021) 0.746 0.910 0.807 | 0.741 0.918 0.805 0.767 0.939 0.831
MSNEA (Chen et al., 2022) 0.643 0.865 0.719 | 0.572 0.832 0.660 | 0.584 0.841 0.671
MCLEA (Lin et al., 2022) 0.811 0.954 0.865 0.806 0.953 0.861 0.811 0.954 0.865
MEAformer (Chen et al., 2023a) | 0.847 0.970 0.892 | 0.842 0.974 0.892 | 0.845 0.976 0.894
RICEA (Ours) 0.858 0.971 0.896 | 0.843 0.976 0.896 | 0.847 0.979 0.898

Improv. best% 1.1 0.1 0.4 0.1 0.2 0.4 0.2 0.3 0.4

w/ SF and Iterative

EVA (Liu et al., 2021) 0.956 0.993 0.969 | 0.979 0.998 0.987 0.995 0.999 0.997
MSNEA (Chen et al., 2022) 0.896 0.969 0.922 | 0.942 0.986 0.958 0.971 0.998 0.982
MCLEA (Lin et al., 2022) 0.964 0.996 0.977 | 0.986 0.999 0.992 | 0.995 1.000 0.997
MEAformer (Chen et al., 2023a) | 0.973 0.998 0.983 0.991 1.000 0.995 | 0.996 1.000 0.998
RICEA (Ours) 0.977 0.998 0.989 | 0.996 1.000 0.992 | 0.997 1.000 0.997

Improv. best% 0.4 0.0 0.6 0.5 0.0 -0.3 0.1 0.0 -0.1

Table 6: Non-iterative and iterative results on three bilingual datasets, with (w/) and without (w/o) surface forms
(SF) are presented.
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