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Abstract

We introduce Agentic Reasoning, a framework
that enhances large language model (LLM) rea-
soning by integrating external tool-using agents.
Agentic Reasoning dynamically leverages web
search, code execution, and structured memory
to address complex problems requiring deep
research. A key innovation in our framework is
the Mind-Map agent, which constructs a struc-
tured knowledge graph to store reasoning con-
text and track logical relationships, ensuring co-
herence in long reasoning chains with extensive
tool usage. Additionally, we conduct a compre-
hensive exploration of the Web-Search agent,
leading to a highly effective search mechanism
that surpasses all prior approaches. When de-
ployed on DeepSeek-R1, our method achieves
a new state-of-the-art (SOTA) among public
models and delivers performance comparable
to OpenAI Deep Research, the leading propri-
etary model in this domain. Extensive ablation
studies validate the optimal selection of agen-
tic tools and confirm the effectiveness of our
Mind-Map and Web-Search agents in enhanc-
ing LLM reasoning. Our code and data are
publicly available.

1 Introduction

Recently, large reasoning models, such as Ope-
nAI’s o1 (Jaech et al., 2024), Qwen-QwQ (Team),
and DeepSeek-R1 (Team, 2024), have demon-
strated impressive stepwise reasoning capabili-
ties over long sequences through large-scale re-
inforcement learning. These advancements provide
promising solutions to complex reasoning tasks
(Wei et al., 2022; Lewkowycz et al., 2022; Ope-
nAI) and have inspired foundational efforts to repli-
cate o1-like reasoning patterns across a broader
range of models (Qin et al., 2024; Huang et al.,
2024; Zhang et al., 2024). It is recently revealed by
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Model Accuracy (%)

GPT-4o† 3.3
Grok-2† 3.8
Claude 3.5 Sonnet† 4.3
Gemini Thinking† 6.2
OpenAI o1† 9.1
DeepSeek-R1 9.4
OpenAI o3-mini (medium)† 10.5
OpenAI o3-mini (high)† 13.0
Agentic Reasoning w/ R1 23.8 (+14.4)
Perplexity deep research † 21.1
OpenAI deep research † 26.6
† denotes proprietary models.

Table 1: On Humanity’s Last Exam, we achieved a
remarkable 23.8% with DeepSeek-R1, marking a 14.4%
improvement over the base model. This narrows the gap
to the proprietary OpenAI Deep Research to just 2.8%,
which depends on a stronger internal reasoning model.

DeepSeek-R1 that applying rule-based outcome re-
wards during training, such as evaluating whether a
piece of code executes successfully, could yield re-
markable reasoning capabilities equaling o1-level
math and coding performance.

Although current reasoning methods excel in
structured domains like math and code—where out-
comes are easily verifiable—applying these tech-
niques to less structured or knowledge-intensive
tasks remains a significant challenge. As men-
tioned in DeepSeek-R1 (Team, 2024), not all prob-
lems benefit from formal reasoning approaches.
Many fields, such as social sciences, ethics, or
experiential disciplines, rely on abstract concepts,
conventional wisdom, factual verification, under-
standing complex logical relationships, or moral
reasoning. When models attempt to impose math-
or coding-style reasoning onto such areas, they
often produce flawed or overly rigid results. De-
veloping approaches that account for these unique
requirements is essential for advancing the appli-
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cability of reasoning model beyond their current
domains.

Deep, thoughtful answers to open-ended ques-
tions often require extensive research, repeated ver-
ification, information retrieval, computational anal-
ysis, and the organization of complex logical rela-
tionships—steps fundamental to human reasoning.
In this process, humans rely heavily on external
tools, such as internet searches for gathering infor-
mation, computational tools for quantitative analy-
sis, or whiteboards and mind maps for organizing
thoughts. This raises an intriguing question: can
reasoning LLMs similarly leverage external tools to
enhance their reasoning and tackle intensive knowl-
edge work across diverse domains?

Previous efforts have attempted to integrate
search or retrieval-augmented generation (RAG)
into the reasoning process (Shao et al., 2024;
Khaliq et al., 2024; Islam et al., 2024; Li et al.,
2025), with notable examples including Gemini’s
and OpenAI’s Deep Research. However, these
models are proprietary, and their exact methodolo-
gies remain undisclosed. In contrast, open-source
models primarily focus on retrieval and web-search
integration during reasoning but still exhibit a no-
table performance gap compared to their closed-
source counterparts.

We introduce Agentic Reasoning, a framework
that enhances reasoning by integrating external
LLM-based agents as tools. This approach allows
LLMs to delegate specific tasks to auxiliary agents
during the reasoning process, thereby improving
their overall problem-solving capabilities. Through
extensive experimentation with integrating various
agents into the reasoning process, we identified
three essential agents that prove highly effective
for general reasoning across diverse problems. The
Web-Search agent, which retrieves relevant infor-
mation from the internet to supplement the model’s
knowledge. The Code agent, capable of performing
computational analyses and coding tasks to support
quantitative reasoning. Finally, the memory agent,
which we call Mind-Map, constructs knowledge
graphs based on the reasoning context, enabling
the organization of complex logical relationships
in a manner similar to human mind mapping. To-
gether, these agents enhance the model’s ability
to tackle complex problems and do deep research
with greater efficiency and precision.

We evaluated our model on general knowledge-
intensive benchmarks requiring complex reason-
ing capabilities, categorized into two key areas:

(1) solving expert-level questions and (2) conduct-
ing deep research on real-world expert-level tasks.
For expert-level questions, we evaluate the model
on Humanity’s Last Exam (Phan et al., 2025), a
recently released benchmark assessing AI perfor-
mance across a broad range of subjects. As shown
in Table 1, we achieves a new high of 23.8% accu-
racy, marking a 14.4% improvement over the raw
model and narrowing the open-source vs. closed-
source gap to just 2.8% compared to the propri-
etary OpenAI Deep Research, which benefits from
a stronger internal reasoning model. For real-world
expert-level tasks, Agentic Reasoning was assessed
by domain experts, who found that it effectively
automated complex manual investigation. This un-
derscores its potential to streamline labor-intensive
processes and boost productivity in knowledge-
intensive domains.

In brief, our contribution can be concluded as:

• We propose Agentic Reasoning, a streamlined
framework that enhances reasoning by inte-
grating external LLM-based agentic tools. We
experimentally identify web-search, coding,
and Mind-Map agents as three universally ef-
fective tools.

• We explore the design of the Web-Search
agent and identify a strategy that outperforms
previous search or RAG approaches.

• We develop a knowledge-graph-based Mind-
Map to assist reasoning, improving the
model’s ability to handle complex logic and
maintain coherence in long reasoning chains.

• We evaluate our approach on expert-level
problem-solving and deep research tasks,
achieving new SOTA results across several
benchmarks and surpassing prior methods in
human evaluations.

2 Method

2.1 Agentic Reasoning Pipeline

Our core idea is to enhance LLM reasoning by inte-
grating external LLM-based agents into the process.
During reasoning, the model can call these agents
as tools to assist in problem-solving while main-
taining a structured memory to store its reasoning
context. In the overall process, we deploy a Web-
Search agent and a Code agent as problem-solving
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Figure 1: The overall workflow of Agentic Reasoning. Given a question, the reasoning LLM can invoke the
Web-Search agent to retrieve external information, the Coding agent to perform quantitative computations, and the
Mind-Map agent to structurally memorize the reasoning context, to provide a comprehensive solution.

tools, along with a knowledge-graph agent, called
Mind-Map, to serve as memory.

Specifically, the reasoning LLM can dynami-
cally determine when to call external agentic tools
during its reasoning process. As shown in Figure
1, when needed, it embeds specialized tokens into
its reasoning sequence, categorizing them as web-
search tokens, coding tokens, or Mind-Map call-
ing tokens. Alongside these tokens, the reasoning
LLM generates a query as a message to the external
agents. Upon detecting such a token, the reason-
ing process temporarily halts to extract the query
and its reasoning context. These queries are then
dispatched to the corresponding external agents.
The agents would consider both the received query
and the reasoning context to ensure the most per-
tinent results are returned to the main reasoning
chain. These results are then reintegrated into the
reasoning chain, allowing the model to continue
its inference with an updated knowledge. This it-
erative retrieval-and-reasoning cycle continues as
needed, enabling the model to dynamically refine
its reasoning until it reaches a fully reasoned final
answer.

2.2 Mind-Map Agent

We construct a Mind-Map to store and structure
the real-time reasoning context of the reasoning
model. This Mind-Map is built by transforming

raw reasoning chains into a structured knowledge
graph. Specifically, we use a graph-construction
LLM to extract entities from the reasoning chain
and identify semantic relationships between related
entities, following a process similar to that used in
GraphRAG (Edge et al., 2024).

The Mind-Map serves two primary functions.
First, it clusters reasoning context into distinct
groups and summarizes each of them. This is
achieved by applying community clustering (Traag
et al., 2019) on the knowledge graph and using an
LLM to generate concise summaries for each group.
Second, the knowledge graph can be queried with
specific questions, such as “Who was Jason’s mater-
nal great-grandfather?” Using standard RAG on the
knowledge graph (Edge et al., 2024), we retrieve
and return the relevant information to response the
query.

These functions integrate the Mind-Map into
two key aspects of the Agentic Reasoning process.
First, it provides reasoning context to external tools,
enabling them to generate more context-aware re-
sponses. The context is generated by synthesiz-
ing the summaries of each clustered group, per-
formed by an LLM. Additionally, when the rea-
soning model encounters uncertainty or loses track
in an extended reasoning process, it can query the
Mind-Map as an external memory to retrieve rel-
evant information and continue reasoning seam-
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lessly. This ensures the model maintains a long
reasoning chain across multiple breakdown tasks
and tool calls without missing critical information.

2.3 Web-Search agent
A search agent is invoked to retrieve the most rel-
evant documents from the web. It consists of four
key components: query breakdown, a search ser-
vice, a re-ranking service, and RAG.

When the reasoning model generates a web-
search query, it is sent to the Web-Search agent,
which first reorganizes it into one or more search-
optimized queries suitable for search engines like
Google or Bing. The process involves sending the
LLM the original query along with the reasoning
context retrieved from the Mind-Map, prompting it
to generate suitable refined search queries. For ex-
ample, given the original query "Search the external
economic indicators" and the context "We are look-
ing for the optimal investing strategy for a retailer
in the U.S. in Q4 2024", the Web-Search agent
would break it down into more specific queries
such as "U.S. Q4 2024 inflation rate" and "U.S.
Q4 2024 CCI". These queries are then sequentially
sent to the search engine, which returns related web
pages.

After we retrieved the web pages for each refined
query, we apply a re-ranking model to rank web
pages based on their alignment with the original
query and context. The average relevance score of
the top 10 pages is computed, and if it falls below
a predefined threshold, the Web-Search agent will
iterate back to the last step and further refine the
search query.

Once reranking is complete, web pages with
relevance scores above the threshold are stored,
and RAG is applied on them to extract meaning-
ful insights. Each refined query undergoes RAG
to generate a natural language response. Finally,
an LLM synthesizes these responses into a cohe-
sive final snippet, based on both the original query
and reasoning context. This processed snippet is
then integrated into the main reasoning process,
ensuring that external insights enhance logical flow
without causing disruption.

2.4 Coding Agent
Instead of prompting the reasoning model to gen-
erate code directly, we find it more efficient to del-
egate coding tasks to a specialized coding LLM.
The reasoning model sends the relevant context
and query message to the coding LLM, which then

writes the required code, executes it via a compiler,
and returns the results. This approach ensures that
the reasoning model remains focused on its core
reasoning process without being disrupted by cod-
ing tasks, allowing for longer and more coherent
reasoning chains. Specifically, we format the cod-
ing request as follows: "Write code to perform
<code message from reasoning model> given the
context <reasoning context from Mind-Map> to
answer the query <user query>." The coding LLM
is instructed to always return its output in natural
language, ensuring seamless integration with the
reasoning model.

Figure 2: Case study on a complex medical decision-
making problem.
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Table 2: Performance comparison on GPQA dataset
across Physics, Chemistry, and Biology.

Method Phy. Chem. Bio. All
Direct Reasoning
QwQ-32B 75.6 39.8 68.4 58.1
Llama3.3-70B 54.7 31.2 52.6 43.4
DeepSeek-R1 86.8 56.1 63.8 71.5
GPT-4o† 59.5 40.2 61.6 50.0
o1† 92.8 64.7 69.2 78.0
o3-mini-low† - - - 70.6
o3-mini-mid† - - - 76.8
o3-mini-high† - - - 79.7
Retrieve/Search in Reasoning
RAgent w/QwQ-32B 76.7 46.2 68.4 61.6
RAgent w/DeepSeek-R1 87.7 58.2 65.7 72.9
SearchO1 w/QwQ-32B 77.9 47.3 78.9 63.6
SearchO1 w/DeepSeek-R1 90.2 61.3 71.4 74.6
Agentic Reasoning
Ours w/QwQ-32B 88.1 58.3 79.6 69.7
Ours w/DeepSeekR1 94.5 73.7 80.5 81.2

3 Experiments

3.1 Implementation Details

In our experiments, we use DeepSeek-R1 as the
primary reasoning models by default. For the Web-
Search agent, query breakdown and RAG are han-
dled by DeepSeek-V3 (Liu et al., 2024). We use
a maximum of 32,768 tokens, temperature of 0.7,
top_p of 0.8, top_k of 20, and a repetition penalty
of 1.05 across all models for generation. We use
Bing as the search engine, retrieving the top 20
most relevant pages. The re-ranking model is Co-
here Rerank 3.5, with a top-10 average relevance
score threshold of 0.7 to determine if iterative query
refinement is needed, allowing a maximum of three
iterations. Additionally, web pages with a rele-
vance score above 0.7 are selected for RAG pro-
cessing. For the Mind-Map agent, both knowledge
graph construction and Graph-RAG retrieval are
also performed using DeepSeek-V3. For the cod-
ing agent, we use claude-3.5-sonnet to generate
code and Python 3.11 for execution. We report
pass1 results by default.

3.2 Solving Expert-level Problems

Agentic Reasoning model is able to call external
tools in its reasoning to solve expert-level prob-
lems, except Humanity’s Last Exam we previously
mentioned, we further evaluate it on two datasets:
GPQA dataset (Rein et al., 2023), a PhD-level
multiple-choice science QA benchmark, and GAIA
(Mialon et al., 2023), a benchmark for AI agents
that requires a set of abilities such as reasoning,
web browsing, and tool-use proficiency.

As shown in Table 2, applying Agentic Reason-
ing to a strong reasoning model like DeepSeek-R1
achieves a new SOTA, surpassing even the best
proprietary model, o3-mini-high. Compared to the
base model DeepSeek-R1, our method boosts over-
all performance by nearly 10%. Compared to previ-
ous search-in-reasoning approaches (Li et al., 2025;
Islam et al., 2024), Agentic Reasoning demon-
strates superior reasoning enhancement, outper-
forming Search-O1 by approximately 5% overall.
Furthermore, we show that this method is generally
effective across different reasoning models, such as
QwQ (Yang et al., 2024), where it improves base
model accuracy by over 10%.

On GAIA (as shown in Table 3), Agentic Rea-
soning establishes a new SOTA among all pub-
licly available methods. Compared to OpenAI’s
Deep Research, which leverages its proprietary
high-performance reasoning models, our approach
surpasses it on Level 1 and Level 2 tasks while
narrowing the gap to 2.26% on Level 3. GAIA
requires a combination of advanced reasoning, web
browsing, and tool-use proficiency for successful
completion. Our results demonstrate that Agentic
Reasoning excels in handling complex tasks while
maintaining strong generalization across diverse
problem domains.

We also present a case study on a complex medi-
cal decision-making problem, as shown in Figure 2
The model autonomously executes code to compute
the optimal FiO2 (Fraction of Inspired Oxygen)
for a patient, performs a web search to retrieve
the most accurate PEEP (Positive End-Expiratory
Pressure) value, and synthesizes both results to de-
termine the best treatment plan.

GAIA Level 1 Level 2 Level 3 Avg.

Langfun 58.06 51.57 24.49 49.17
InspectReAct 67.92 59.30 30.77 57.58
h2oGPTe 78.49 64.78 40.82 65.12

AgenticReasoning 74.36 69.21 45.46 66.13
Open AI Deep Research † 74.29 69.06 47.60 67.36

Table 3: Performance comparison on GAIA across dif-
ferent levels.

3.3 Deep Research
We evaluate the deep research capability of
our approach using the FreshWiki dataset (Shao
et al., 2024), which curates high-quality, recent
Wikipedia articles. The model is prompted di-
rectly with the topic and asked to generate the ar-
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Table 4: Comparison with Human-Written Articles

ROUGE-1 ROUGE-L Entity Recall

Direct Gen 27.32 13.13 6.11
RAG 29.14 14.23 8.84
RAgent 30.04 14.21 9.08
Search-O1 41.56 16.08 12.88
STORM 47.93 17.42 15.43

Ours 54.10 19.62 18.77

Table 5: Human Evaluation on Deep Research arti-
cles (Rate Range: 1-5).

Interest Level Organization Relevance Coverage

Direct Gen 1.2 1.6 1.2 1.7
RAG 1.4 2.1 1.9 2.3
RAgent 1.6 2.3 1.6 2.6
Search-O1 2.5 2.8 2.1 3.2
STORM 2.9 3.2 2.9 3.7
Gemini-DR† 2.7 2.5 2.3 3.0

Ours 3.7 4.6 4.2 4.1

ticle. Evaluation covers article quality, assessed
via ROUGE and entity recall. This task needs a
comprehensive analysis of long-form generation
while highlighting key challenges like bias transfer
and factual consistency.

We also conduct an evaluation of Agentic Rea-
soning for deep research in open deep research
tasks. A group of PhD-level experts in finance,
medicine, and law were asked to formulate 15 to
30 professional research questions closely related
to their respective fields. These questions were de-
signed to require at least 20 minutes of in-depth re-
search to answer comprehensively. There are in to-
tal 56 questions were collected. The experts would
review the generated articles on interest level, orga-
nization, relevance, and coverage. More details are
in the appendix.

We evaluate our method using the same underly-
ing reasoning model, DeepSeek-R1, and compare
it against various search-enhanced reasoning ap-
proaches, including RAG, RAgent (Islam et al.,
2024), and Search-O1 (Li et al., 2025), as well as
STORM (Shao et al., 2024), which employs a more
complex agent-based workflow. Additionally, we
benchmark our approach against the proprietary
Gemini Deep Research 1 on deep research tasks.
As shown in Tables 4 and 5, our results demonstrate
that Agentic Reasoning consistently outperforms
all RAG and search-based methods, as well as Gem-
ini Deep Research, across all benchmarks. These
findings highlight the effectiveness of structured
reasoning and tool-augmented frameworks in en-
abling more advanced and efficient deep research.

3.4 Analysis

3.4.1 Ablation on Toolbox
We conduct experiments to explore the impact of
integrating different tools in Agentic Reasoning
and find that tool quality is far more important

1OpenAI Deep Research experiments are currently re-
stricted by a high paywall.

than quantity. Specifically, the combination of web
search, coding, and Mind-Map agents proves to
be the most effective across various tasks, includ-
ing those requiring expert-level proficiency. As
shown in Figure 3, we evaluated performance on
GPQA using Hugging Face’s default agent toolbox
with seven tools and LangChain with 109 tools.
Surprisingly, adding more tools often degraded per-
formance by increasing the risk of inappropriate
tool selection. Many capabilities, such as transla-
tion or code interpretation, are already embedded
within the reasoning model, making their external
integration redundant. Moreover, inaccuracies in
external tool outputs can negatively affect overall
response quality.

Figure 3 also presents an ablation study on the
three proposed tools in this paper. We tested dif-
ferent tool combinations to assess their individual
contributions to agentic reasoning. Among single-
tool deployments, web search performed the best,
while coding and Mind-Map achieved comparable
results. Notably, combining tools yielded a syn-
ergistic effect—web search + Mind-Map or web
search + coding provided greater improvements
than the sum of their individual gains. The best per-
formance was achieved when integrating all three:
web search, Mind-Map, and coding.

3.4.2 Ablation on Web-Search agent Design
Integrating web search into LLMs has been widely
explored in recent research (Li et al., 2025; Lewis
et al., 2020; Islam et al., 2024). In Agentic Reason-
ing, we investigate various web-search strategies
to determine the most effective approach. Our ab-
lation study primarily considers standard RAG and
Knowledge Refinement, where retrieved sources
are summarized for the response. Additionally,
we incorporate Query Breakdown, Rerank, and
Mind-Map Reasoning Context, key components
in our Web-Search agent. Our findings reveal that
Query Breakdown, Rerank, and Mind-Map Reason-
ing Context incrementally improve performance.
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Figure 3: The ablation study examines the impact of different tools in reasoning. Green ones represent external
toolboxes, red ones are combinations of our proposed tools. The blue line is the overall performance of the base
reasoning model.

Surprisingly, Knowledge Refinement, which is ef-
fective when used solely with RAG, becomes in-
effective when combined with our three adopted
components. This decline is primarily due to its
redundancy with Rerank, which serves a similar
role but proves more effective in most cases. As a
result, our final Web-Search agent includes RAG,
Query Breakdown, Rerank, and Mind-Map Rea-
soning Context for optimal performance.

RAG Knowledge Query Rerank Mind-Map GAPA
Refinement Breakdown Reasoning Context

Search-O1 ✓ ✓ 74.6
Storm ✓ 72.7

✓ ✓ 73.3
✓ ✓ ✓ 75.2
✓ ✓ ✓ ✓ ✓ 76.2
✓ ✓ ✓ ✓ 75.8

Agentic
Reasoning ✓ ✓ ✓ ✓ 76.4

Table 6: Comparison of different web-search ap-
proaches.

3.4.3 The Effect of Mind-Map
We have shown in Figure 3 that our quantitative
results demonstrate that Mind-Map significantly
enhances performance. In this section, we analyze
its impact on reasoning in detail. Mind-Map proves
particularly effective in maintaining long reasoning
with tools and clarifying complex logical relation-
ships.

We find that questions needs longer reasoning
chains and more tool calls tend to be inherently
more difficult, leading to lower accuracy, as shown
in Figure 5. Examining the model’s reasoning pro-
cess, we find that LLMs often struggle to maintain
coherence over long reasoning with massive tool
calls. They may deviate from user queries, repeat-

edly call tools in the same way, or revisit previous
errors, all of which negatively impact performance.

Figure 4: A tricky question that misleads most LLMs is
correctly answered by us.

We introduced the Mind-Map agent to help the
model manage its reasoning memory, ensuring co-
herent long reasoning and reducing errors. As
shown in Figure 5, this mechanism significantly
improves performance, particularly on questions
requiring long reasoning chains and more tool calls.
The structured memory provided by the Mind-Map
agent preserves prior reasoning steps, mitigating
common pitfalls in extended reasoning tasks.

Mind-Map is also especially helpful for the tasks
heavily rely on logic relationships. We find it helps
to correctly answer tricky logic-based questions
that frequently fool LLMs. A well-known example
is a modified riddle: "The surgeon, who is the boy’s
father, says ’I can’t operate on this child, he’s my
son!’ Who is the surgeon to the boy?" As shown in
Figure 4, DeepSeek-R1 took 17 seconds to process
this question but still produced the wrong answer, a
failure also observed in models from the GPT and
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Gemini series models. These models often fall for
a political-correct corpus contaminated response,
failing to recognize the obvious logical structure.
However, in our Agentic Reasoning framework, the
use of a Mind-Map allows the model to explicitly
analyze the logical relationships between the enti-
ties [surgeon], [boy], and [father], leading to the
correct answer.

This property also enables Mind-Maps to en-
hance deductive reasoning in strategic games. We
tested our approach in Werewolf, a classic social
deduction game where players assume hidden roles
as either villagers or werewolves. Villagers aim to
identify the werewolves through discussion, while
werewolves deceive the group and eliminate play-
ers without being caught. To evaluate performance,
we invited seven experienced Werewolf players,
each with over five years of experience, to compete
against our Agentic Reasoning model. The results
show that our model achieved an impressive 72%
win rate, significantly surpassing both the expected
statistical win rate and human performance in our
experiment. In contrast, without Mind-Map, the
model’s win rate dropped to 36%. As the Mind-
Map of the model’s reasoning process shown in
Figure 6, Mind-Map proved crucial in helping the
model track relationships between players based
on their spoken arguments. By maintaining a struc-
tured memory of interactions, it more effectively
identified deception strategies, anticipated voting
behaviors, and optimized its own disguise tactics.
This result highlights that Mind-Map is not only
a tool for structured logic but also a powerful en-
abler of strategic reasoning in dynamic, high-stakes
environments.

Figure 5: Mind-Map improves performance on ques-
tions need long reasoning.

4 Related Work

The concept of multi-agent collaboration in LLMs
has gained attention with frameworks like Auto-
GPT (Yang et al., 2023) and LangChain Agents

Figure 6: Mind-Map in playing werewolf game. The
first round and the second round. Player8 is the model.

(Pandya and Holia, 2023), allowing models to in-
teract with external APIs, search engines, and com-
putational environments. While these frameworks
introduce modular reasoning, they often lack op-
timized task delegation and structured integration,
reducing their effectiveness in long-chain reasoning
tasks. Recent research on Hierarchical Planning
with LLMs (Luo et al., 2023) and Task-Specific AI
Agents (Wu et al., 2024) explores structured agent
cooperation for problem-solving. However, these
approaches still do not deeply integrate agent tools
within reasoning chains and fail to systematically
explore optimal agent combinations that maximize
reasoning performance.

Previous studies focus a lot on integrating the
search capability into LLMs. Recent agentic RAG
systems(Khaliq et al., 2024; Islam et al., 2024; Li
et al., 2025) have enabled models to autonomously
determine when and what knowledge to retrieve,
enhancing their planning and problem-solving ca-
pabilities. Additionally, research has explored (Li
et al., 2025) integrating Web-Search agent into the
reasoning model, like QwQ (Team) demonstrating
the potential of search augmentation in structured
reasoning. However, existing approaches have pri-
marily focused on single-agent enhancements, ne-
glecting the potential synergy of multiple agentic
tools. Moreover, prior works have yet to integrate
such tools with state-of-the-art reasoning models
like DeepSeek-R1 or OpenAI-O1, limiting their
effectiveness in solving highly complex tasks.

5 Conclusion

We introduced Agentic Reasoning, a framework
that enhances LLM reasoning by integrating Mind-
Map, web search, and coding. Our approach im-
proves problem-solving and deep research capa-
bilities, outperforming existing models in expert-
level QA and real-world research tasks. Agentic
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Reasoning outperforms existing methods in both
quantitative benchmarks and human evaluations.
Future work will explore task-specific tools inte-
gration and test-time computing to further enhance
AI’s reasoning capabilities.
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6 Limitations

Despite the strong performance of Agentic Reason-
ing, several limitations remain that warrant further
research and refinement.

Computational Overhead and Efficiency. In-
tegrating multiple external agents, including web
search, Mind-Map, and code execution, signifi-
cantly increases computational costs and inference
latency. While these components enhance reason-
ing depth, their sequential invocation introduces
bottlenecks, limiting real-time applicability. Fu-
ture work would explore techniques such as agent
prioritization, caching strategies, or adaptive invo-
cation mechanisms to optimize efficiency without
sacrificing accuracy.

Reliance on External Knowledge Sources. The
effectiveness of Agentic Reasoning depends on the
quality of retrieved knowledge, particularly in web
search. The system lacks built-in verification mech-
anisms to assess the credibility of sources, making
it susceptible to misinformation or biased content.
Developing trust-aware retrieval mechanisms, such
as fact-checking agents or weighted source relia-
bility scores, could mitigate this risk and improve
robustness in knowledge-intensive domains.

Interpretability and Trustworthiness. While
the Mind-Map agent provides structured reasoning
memory, the overall decision-making process re-
mains highly dependent on LLMs. This reliance in-
troduces the risk of hallucinations, which can derail
the entire reasoning process, especially in complex,
multi-step tasks. In high-stakes domains such as
medical AI or legal reasoning, even minor inaccura-
cies can lead to significant consequences. Ensuring
reliability requires additional safeguards, such as
fact-verification mechanisms, confidence estima-
tion, or human-in-the-loop oversight, to mitigate
the risks associated with LLM-driven reasoning.
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7 Appendix

7.1 Human Evaluation Survey
Please assess each response generated by the model
based on the following criteria. Provide your rating
on a scale from 1 to 5, where 1 is the lowest and 5 is
the highest. You may also leave optional comments
to clarify your reasoning.

1. Interest Level (Int.)

• How engaging and intellectually stimu-
lating is the generated response?

• Rating Scale: 1: Not engaging - fails to
capture interest. 2: Somewhat uninterest-
ing - lacks depth or novelty. 3: Neutral
- informative but not particularly engag-
ing. 4: Engaging - provides depth and
insight. 5: Highly engaging - deep and
thought-provoking.

• Optional Comment: What aspects of
the response contributed to or detracted
from its interest level?

2. Organization (Org.)

• How well-structured and logically orga-
nized is the response?

• Rating Scale: 1: Very disorganized -
hard to follow. 2: Somewhat disorga-
nized - requires effort to understand. 3:
Neutral - moderately structured but could
be clearer. 4: Well-organized - logical
and easy to follow. 5: Exceptionally
structured - very clear and logically or-
dered.

• Optional Comment: Are there any ar-
eas where the response could be better
structured?

3. Relevance (Rel.)

• How relevant is the response to the re-
search question posed?

• Rating Scale: 1: Not relevant - off-topic
or misleading. 2: Somewhat relevant -
partially addresses the question. 3: Neu-
tral - addresses the question but with
some tangents. 4: Mostly relevant - mi-
nor deviations but generally on point.
5: Highly relevant - fully addresses the
question.

• Optional Comment: Did the response
stay on topic? If not, how did it deviate?

4. Coverage (Cov.)

• How comprehensively does the response
cover the question?

• Rating Scale: 1: Superficial - lacks depth
and critical information. 2: Somewhat
incomplete - covers only basic aspects. 3:
Neutral - adequate coverage but missing
key details. 4: Mostly complete - only
minor gaps. 5: Fully comprehensive -
deeply covers all necessary aspects.

• Optional Comment: Are there any ar-
eas where additional information would
improve the response?

Thank you for your participation!

7.2 Additional Experiments
7.2.1 Ablation Study on Memory Strategies
We have conducted a comparison of several alterna-
tive memory strategies within our agentic reasoning
framework to replace the Mind-Map module (Table
7). These include: no memory (None Mem), using
raw reasoning content as memory (Raw Mem), as
well as integrating existing methods such as Read-
Agent (Lee et al., 2024), MemoryBank (Zhong
et al., 2024), and MemGPT (Packer et al., 2023).
We evaluated all approaches on the GAIA bench-
mark and found that our Mind-Map strategy con-
sistently achieved the highest performance across
all settings.

Table 7: Compare to alternative memory strategies.
Level 1 Level 2 Level 3 Avg.

None Mem 62.37 46.54 24.49 46.18
Raw Mem 62.37 47.80 26.53 47.84
Read-agent 64.28 51.57 27.70 49.83

MemoryBank 68.41 55.18 32.65 53.49
MemGPT 72.04 66.70 42.11 65.12

Mind-Map (ours) 74.36 69.21 45.46 66.13

7.2.2 Efficiency Analysis
We conducted a comparison on 56 deep research
questions, measuring both performance and time
consumed. We compared our model against three
related proprietary systems: Perplexity-Deep Re-
search, Gemini-Deep Research, and GPT-Deep
Research. As shown in Table 8, we can see our
model achieves substantially better performance
than Perplexity-Deep Research while being faster,
and it outperforms Gemini-Deep Research with
comparable latency. While slightly behind GPT-
Deep Research in performance, our model runs sig-
nificantly faster, and we believe the performance
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Table 8: Compare performance and time consumed on 56 deep research questions.
Avg. time consumed / per question Interest Level Organization Relevance Coverage

Perplexity-deep research 3.1 mins 2.0 2.1 1.6 2.1
Gemini-deep research 7.7 mins 2.7 2.5 2.3 3.0

Ours 6.8 mins 3.7 4.6 4.2 4.1
GPT-deep research 17.8 mins 4.1 4.8 4.2 4.5

Human w/ DeepSeek R1,
Cursor and Web-Search (6 questions)

1h 48 mins 4.5 4.8 4.8 4.5

gap is likely attributable to GPT-Deep Research be-
ing built on a more advanced underlying reasoning
model.

7.2.3 Websearch and Coding as Agent
Using agentic tool calls rather than direct API calls
offers several advantages:

1. Overcoming single-model token limitations:
By structuring the workflow agentically, the
system can break free from the token gener-
ation limits of a single LLM. This enables it
to produce longer, higher-quality reasoning
chains than would be possible within the to-
ken budget of a single model call.

2. Managing uncertainty and reducing error
propagation: Agents can self-monitor and as-
sign varying levels of confidence to their out-
puts. As noted earlier, this mechanism helps
the reasoning model treat low-confidence out-
puts as tentative, thereby mitigating cascading
errors across components.

For example, in the web-search agent, if insuffi-
cient information is retrieved to confidently answer
a query, the agent may respond with something like:

“Given the limited knowledge retrieved, a possible
answer might be... However, due to the lack of suffi-
cient source information, additional data is needed
to provide a more accurate response.”

This uncertainty is explicitly communicated
back to the reasoning model, allowing it to treat
the response as tentative, rather than relying on it
as a final answer. In our experiments, we found
that this self-awareness and feedback mechanism
helps reduce cascading errors and improves overall
robustness. We support this claim with an abla-
tion study on the GAIA benchmark, comparing
our agent-based system with a version that uses di-
rect API calls for coding and web-search. Table 9
shows that the agent-based design significantly re-
duces errors and improves performance, especially
on level-3 hard problems, validating our approach.

3. Task-specific model modularity: The agen-
tic design allows us to assign different LLMs

Table 9: Compare with a version that uses direct API
calls for coding and web-search.

Level 1 Level 2 Level 3 Avg.
API Calling 60.22 46.54 24.49 47.18

Agentic Tools 74.36 69.21 45.46 66.13

to different tasks. For example, Claude-
Sonnet tends to perform better on coding tasks,
so we route the coding agent to use it specif-
ically. Similarly, for tasks like summarizing
web search results, we can use a lightweight,
non-reasoning model to preserve efficiency.
This modular setup allows for both improved
performance and optimized resource usage by
matching the best model to each subtask.
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