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Abstract

How can we quantize large language models
while preserving accuracy? Quantization is
essential for deploying large language mod-
els (LLMs) efficiently. Binary-coding quan-
tization (BCQ) and uniform quantization (UQ)
are promising quantization schemes that have
strong expressiveness and optimizability, re-
spectively. However, neither scheme lever-
ages both advantages. In this paper, we pro-
pose UniQuanF (Unified Quantization with
Flexible Mapping), an accurate quantization
method for LLMs. UniQuanF harnesses both
strong expressiveness and optimizability by uni-
fying the flexible mapping technique in UQ
and BCQ’s non-uniform quantization levels.
We propose unified initialization, and local and
periodic mapping techniques to optimize the
parameters in UniQuanF precisely. After op-
timization, our unification theorem removes
computational and memory overhead, allowing
us to utilize the superior accuracy of UniQuanF
without extra deployment costs induced by the
unification. Experimental results demonstrate
that UniQuanF outperforms existing UQ and
BCQ methods, achieving up to 4.60% higher
accuracy on GSM8K benchmark.

1 Introduction

How can we compress large language models with-
out compromising accuracy? Reducing the size of
large language models (LLMs) (Brown et al., 2020;
Touvron et al., 2023; Dubey et al., 2024) is cru-
cial for deploying them in real-world applications
since they require expensive computational and
memory costs. Quantization algorithms (Xu et al.,
2018; Kwon et al., 2022; Dettmers et al., 2022;
Xiao et al., 2023; Lin et al., 2024) efficiently com-
press LLMs via bit-width reduction of weights by
encoding them with a small set of values, namely,
quantization levels. Each quantization scheme has
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its own quantization parameters that determine the
quantization levels; accurately optimizing these pa-
rameters is important because it guarantees that
the quantization levels are well aligned with the
model’s weight distribution.

Uniform quantization (UQ) (Lee et al., 2023; Lin
et al., 2024; Shao et al., 2024) and binary-coding
quantization (BCQ) (Xu et al., 2018; Kwon et al.,
2022) are promising quantization schemes that en-
sure fast inference of quantized LLMs. While UQ
divides its quantization levels uniformly, BCQ re-
sults in non-uniform quantization levels through
the addition and subtraction of values assigned per
each bit. Research on quantizing LLMs with UQ
is actively ongoing, but no study has yet explored
BCQ on LLMs as fast acceleration kernels (Park
et al., 2024a; You et al., 2024) that support BCQ
scheme have been released recently.

We compare the expressiveness and optimizabil-
ity of quantization schemes for LLMs in Figure 1.
UQ demonstrates strong optimizability, efficiently
reducing quantization errors, by leveraging various
advanced methods such as FlexRound (Lee et al.,
2023) and OmniQuant (Shao et al., 2024). How-
ever, its expressiveness is constrained, failing to
adapt its quantization levels to the weight distribu-
tion due to their uniform spacing. Conversely, BCQ
offers strong expressiveness through non-uniform
quantization levels, but its optimizability is limited
due to the absence of precise quantization tech-
niques. ALTERNATING (Xu et al., 2018) is the only
BCQ method applicable to LLMs, but its major
drawback is that it does not consider the input distri-
bution. In summary, neither scheme fully achieves
both strong expressiveness and optimizability.

In this paper, we propose UniQuanF (Unified
Quantization with Flexible Mapping), an accu-
rate quantization method for LLMs. We find that
the strong optimizability of UQ originates from
its transformation process, and the strong expres-
siveness of BCQ originates from its generalized
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Figure 1: A comparison of (a) uniform, (b) binary-coding, and (c) unified quantization schemes. UQ has strong
optimizability swiftly reducing errors during optimization, and BCQ has strong expressiveness adapting its non-
linear quantization levels (q, bar) according to the distribution of weights (w, circle). UniQuan combines the
advantages of both schemes by unifying UQ and BCQ.

mapping process that maps weights to non-uniform
quantization levels (see Section 3.1). Building
on this observation, we define UniQuan (Unified
Quantization) which unifies UQ and BCQ schemes
by integrating UQ’s transformation process into
BCQ’s mapping process, thereby harnessing both
strong optimizability and expressiveness as shown
in Figure 1(c). In UniQuanF , we unify FlexRound
and ALTERNATING, the best-performing UQ and
BCQ methods, respectively, following the quantiza-
tion process of UniQuan. We improve the accuracy
of UniQuanF with two main ideas: 1) unified ini-
tialization for joint initialization of quantization
parameters from FlexRound and ALTERNATING,
and 2) local and periodic mapping to accelerate the
slow mapping process of BCQ. We further remove
the extra deployment cost caused from the unifica-
tion by integrating the two-step inference process
into a single step with unification theorem (see The-
orem 1). As a result, UniQuanF exhibits the best
performance without any additional memory and
computational costs at deployment.

Our main contributions are as follows:

• Algorithm. We propose UniQuanF , an accurate
quantization method for LLMs. UniQuanF uni-
fies the best-performing UQ and BCQ methods
to leverage both of their advantages.

• Analysis. We analyze that UniQuanF exhibits
both strong expressiveness and optimizability.

• Experiments. We show that UniQuanF outper-
forms UQ and BCQ methods on various bench-
marks, showing up to 4.60% higher accuracy.

The source code for implementing UniQuanF
is publicly available at https://github.com/
snudm-starlab/UniQuanF.

The rest of this paper is organized as follows.
Section 2 defines LLM quantization problem and
provides preliminaries. We propose UniQuanF
in Section 3. Section 4 presents the experimental
results, followed by a discussion of related works
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Figure 2: Illustrations of quantization levels (q) as-
signed for a weight group w under (a) UQ and (b) BCQ
schemes, where wm and wM are the minimum and the
maximum weights in w, respectively. UQ has evenly-
spaced quantization levels within a clipping range while
BCQ has non-uniform quantization levels determined
by its scale factors α and a shifting factor zB .

in Section 5. Finally, we conclude the paper with a
summary of our findings.

2 Preliminary

We introduce the LLM quantization problem and
describe preliminaries. We describe the frequently
used terminologies in Appendix A.

2.1 LLM Quantization Problem

We have a pre-trained LLM F , a desired bit-width
k, and a sample dataset D. Our objective is to
find an accurate k-bit quantized model F̂ . The tar-
get model is a Transformer-based (Vaswani et al.,
2017) LLM (Jiang et al., 2023; Dubey et al., 2024)
with N blocks, where quantization is applied to
the weight matrices in each block. We divide
each weight matrix into multiple weight groups
that share quantization parameters. Given a group
w ∈ Rg of g weight values and a desired bit-width
k, a quantizer Q quantizes w into ŵ = Q(w, k; Θ)
where Θ is a set of quantization parameters. In this
paper, we focus on two quantization schemes: uni-
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Figure 3: Quantization processes for a weight w in (a) UQ, (b) BCQ, and (c) UniQuan schemes. Blue-colored
processes are parameterized functions which are the source of UQ’s strong optimizability and BCQ’s powerful
expressiveness, respectively. UniQuan takes the advantages of both UQ and BCQ schemes by combining the
parameterized functions in both schemes. See Section 3.1 for details.

form quantization (UQ) and binary-coding quan-
tization (BCQ) which are supported by the state-
of-the-art inference kernel (Park et al., 2024a). We
directly compare their accuracy since they require
the same memory and computational costs.

2.2 Uniform Quantization (UQ)
Uniform quantization (UQ) (Lee et al., 2023; Shao
et al., 2024) is a quantization scheme that has uni-
formly spaced quantization levels. We explain UQ
using Round-to-nearest (RTN) (Gupta et al., 2015),
a representative method of UQ. Figure 2(a) illus-
trates the quantization levels in UQ that are evenly
distributed in a clipping range [wm,c, wM,c], where
wm,c and wM,c are the minimum and maximum
values in the clipping range, respectively. RTN be-
gins with a grid search to find the proper wm,c and
wM,c to precisely approximate the original weights.
The quantization parameters ΘR = {∆, zU} of
RTN are derived based on its clipping range; scale
factor ∆ = (wM,c−wm,c)/(2

k−1) and zero-point
zU = ⌊−wm,c/∆⌉, where ⌊·⌉ is the rounding func-
tion. Then, RTN quantizer QR quantizes w ∈ Rg

into ŵ = QR(w, k; ΘR) as follows:

w̃ = Clip
(
⌊w/∆+ zU1g⌉, 0, 2k − 1

)
,

ŵ = ∆(w̃ − zU1g),

where Clip(·,m,M) is an element-wise clipping
function with a min-max range [m,M ], and w̃ is a
vector of low-bit integers assigned for each weight.
1g is a vector of size g filled with ones.

2.3 Binary-coding Quantization (BCQ)
Binary-coding quantization (BCQ) is a non-
uniform quantization scheme with adaptive quan-
tization levels. Its quantization parameters ΘB =
{α, zB} consists of a vector α ∈ Rk of scale fac-
tors and a shifting factor zB ∈ R. Figure 2(b)
illustrates the quantization levels in BCQ that are
determined through the summation and subtraction

of scale factors α after shifting with zB . In this
example, BCQ quantizer defines the set {zB+α1+
α2, zB + α1 − α2, zB − α1 + α2, zB − α1 − α2}
of four quantization levels forming a binary tree
centered at zB with widths α1 and α2.

We assign a binary code c ∈ {−1,+1}k for each
weight w, indicating whether the weight selects the
positive or negative value for each scale factor in
α. Then, BCQ quantizer QB quantizes a weight
group w ∈ Rg into ŵ = QB(w; ΘB) as follows:

ŵ = Cα+ zB1g,

where C =argmin
C′

||w − (C ′α+ zB1g)||22.

C ∈ {−1,+1}g×k is the binary code matrix for w
where its ith row contains the binary code for the
ith weight in w. Existing works (Xu et al., 2018)
first set zB as 0, then search the scale factors α
and binary codes C through an alternating update
process (see Algorithm 2 in Xu et al. (2018)).

The main advantage of BCQ is its strong ex-
pressiveness; any UQ is representable in the form
of BCQ (see Appendix C in Park et al. (2024a)).
However, BCQ methods are far less accurate in
quantizing LLMs than UQ methods due to the lack
of accurate BCQ-based quantization methods. In
this paper, we propose UniQuanF which transfers
UQ’s accurate quantization methods to BCQ to
fully exploit BCQ’s strong expressiveness.

3 Proposed Method

We propose UniQuanF (Unified Quantization
with Flexible Mapping), an accurate quantization
method for LLMs. We first propose UniQuan
(Unified Quantization), a framework unifying the
quantization processes of UQ and BCQ schemes to
exploit their strong expressiveness and optimizabil-
ity. Then, we present UniQuanF -0, a naïve method
that unifies FlexRound and ALTERNATING follow-
ing UniQuan, but with several limitations. Finally,
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Table 1: Comparison of quantization methods. UniQuanF incorporates the advantages of FlexRound and ALTER-
NATING by exploiting TF , DR, andM∗

B , overcoming the challenges in UniQuanF -0. ◦ is a function composition
operator. See Sections 3.2 for details.

Method
Optimization Deployment

Initialization Quantization Parameters Inference

FlexRound Grid search DR ◦MU ◦ TF w̃, ΘR DR(w̃; ΘR)
ALTERNATING Alternating update MB C, ΘB RB(C; ΘB)
UniQuanF -0 - DR ◦MB ◦ TF C, ΘB , ΘR DR(RB(C; ΘB); ΘR)

UniQuanF (Proposed) Unified initialization DR ◦M∗
B ◦ TF C, Θ∗

B RB(C; Θ∗
B)

we propose UniQuanF which achieves high accu-
racy without requiring extra costs at deployment,
by addressing the limitations in UniQuanF -0.

3.1 Unification of UQ and BCQ
We define a general representation of the quantiza-
tion processes in UQ and BCQ schemes to clarify
the source of their superior capabilities. Given a
quantizer Q with quantization parameters Θ, the
general representation is defined as follows:

ŵ = Q(w; Θ) = D(M(T (w; Θ);Θ);Θ),

where T is a transformation process which trans-
forms weights w to transformed weights w̄,M is a
mapping process which maps transformed weights
w̄ to the corresponding quantization levels, and D
is a detransformation process which reverts mapped
weights w̃ to the original weight space, yielding
quantized weights ŵ. We illustrate the quantiza-
tion processes in diverse quantization schemes in
Figure 3 following this general representation.
Optimizability of UQ. As shown in Figure 3(a),
we formulate the quantizer QU of UQ as follows:

QU (w, k; ΘU ) = DU (MU (TU (w; ΘU ), k); ΘU ),

where MU (w, k) = Clip(⌊w⌉, 0, 2k − 1) is a
uniform mapping function that maps transformed
weights w̃ to uniform quantization levels. TU and
DU are affine transformation functions with quan-
tization parameters ΘU . There are two main meth-
ods belonging to UQ: RTN and FlexRound. In
RTN, the quantizer QR is formulated as follows:

QR(w, k; ΘR) = DR(MU (TR(w; ΘR), k); ΘR),

where ΘR = {∆, zU}, TR(w; ΘR) = w/∆ +
zU1g and DR(w; ΘR) = ∆(w − zU1g). In
FlexRound, the main idea is to allow each weight
to explore diverse quantization levels to find the
optimal one. This is achieved by replacing the

transformation function TR with TF defined as fol-
lows:

TF (w; ΘF ) = w ⊘ (∆ · s · sr) + zU1g, (1)

where ΘF = {∆, zU , s, sr} is a set of quantiza-
tion parameters of FlexRound, and ⊘ denotes an
element-wise division. s ∈ Rg and sr ∈ R are
element-wise and row-wise scale factors to pro-
mote the exploration of weights, respectively.

In summary, each quantization method has its
own ΘU , TU , and DU , and they are the origin of
strong optimizability. We formulate the quantizers
of various UQ methods in Appendix E.6.
Expressiveness of BCQ. As shown in Figure 3(b),
we formulate the quantizer QB of BCQ as follows:

QB(w; ΘB) = DB(MB(TB(w); ΘB)),

where TB(w) = DB(w) = w are identity func-
tions. MB(w; ΘB) = QB(w; ΘB) is a non-
uniform mapping function that maps transformed
weights w̃ to the nearest non-uniform quantiza-
tion levels. MB enables the mapping between
weights and non-uniform quantization levels, en-
abling strong expressiveness. ALTERNATING (Xu
et al., 2018) is the only quantization method in
BCQ scheme applicable for LLMs with the same
quantizer QB defined above.
UniQuan (Unified Quantization). We propose
UniQuan, a framework unifying the quantization
processes of UQ and BCQ schemes. UniQuan for-
mulates the unified quantizer QI with quantization
parameters ΘI = {ΘB,ΘU} as follows (see Fig-
ure 3(c)):

QI(w; ΘI) = DU (MB(TU (w; ΘU ); ΘB); ΘU ).

QI has strong expressiveness by mapping weights
to the non-uniform quantization levels usingMB .
Also, QI has strong optimizability by incorporating
useful methods in UQ by replacing ΘU , TU , and
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DU with those of the method to incorporate. We
elaborate on incorporating FlexRound (Lee et al.,
2023), the best-performing UQ method, into BCQ
in Sections 3.2 and 3.3. We cover the incorporation
of AWQ (Lin et al., 2024), OmniQuant (Shao et al.,
2024), and GPTQ (Frantar et al., 2023) into BCQ
in Section E.6.

3.2 UniQuanF -0
We introduce a basic method UniQuanF -0 which
naively unifies the best-performing UQ and BCQ
methods, FlexRound (Lee et al., 2023) and AL-
TERNATING (Xu et al., 2018), respectively. The
quantizer QIF of UniQuanF -0 is defined as fol-
lows:

QIF (w; ΘIF )

= DR(MB(TF (w; ΘF ); ΘB); ΘR).
(2)

Note that FlexRound begins its optimization pro-
cess by initializing its quantization parameters with
a grid search process to find a proper clipping range.
FlexRound enhances its optimizability by utilizing
TF in Equation 1 and optimizes its quantization
parameters ΘF using stochastic gradient descent
(SGD). After optimization, FlexRound stores low-
bit weights w̃ = MU (TF (w; ΘF ), k) and quan-
tization parameters ΘR = {∆, zU}, and approxi-
mates the original weights w as ŵ = DR(w̃; ΘR)
in the detransformation step; s and sr in ΘF are
used only for transformation. On the other hand,
ALTERNATING initializes its quantization parame-
ters in ΘB = {α, zB} with alternating update (Xu
et al., 2018). Then, it stores the binary code ma-
trix C and quantization parameters ΘB . It ap-
proximates weights w as ŵ = RB(C; ΘB) =
Cα+ zB1g for inference.

UniQuanF -0 inherits the strong optimizability
from FlexRound’s TF and DR, and the strong ex-
pressiveness from ALTERNATING’s MB . How-
ever, UniQuanF -0 has three points of improve-
ments as follows:
C1. Joint initialization. FlexRound and ALTER-

NATING are based on different initialization
methods which seem incompatible. How can
we jointly initialize the quantization parame-
ters considering their dependency?

C2. Slow mapping process. The quantization lev-
els of UniQuanF -0 are changed during opti-
mization process where its quantization param-
eters are updated. Therefore, it is crucial to up-
date the mappings between weights and quan-
tization levels during optimization usingMB .

Algorithm 1 UniQuanF for a block f

Input: A Transformer block f , f ’s input X , a
set Φ of weight groups in f , the input X̂ of a
quantized f obtained by preceding quantized
blocks, number E of epochs, and number |D|
of data points

Output: Optimized quantization parameters Θ∗
B

and a binary-code matrix C for each group
1: Initialize ΘIF for each weight group

▷ (I1) Unified Initialization
2: for epoch e in 1, 2, ..., E do
3: for s in 1, 2, ..., |D| do
4: Quantize Φ into Φ̂ using Equation 2

▷ (I2) Local and periodic mapping
5: L← ||f(Xs; Φ)− f(X̂s; Φ̂)||2F
6: Perform backpropagation using L
7: Update ΘIF for each group
8: end for
9: end for

10: Convert each ΘIF into Θ∗
B = {α∗, z∗B}

▷ (I3) Unification Theorem
11: Find C using Equation 4 for each group

However, existing method (Xu et al., 2018)
exploits a binary search tree (BST) to imple-
mentMB which finds the mappings through a
GPU-unfriendly sequential process, and it re-
quires intractable time for updating mappings
during optimization. How can we expedite the
mapping process?

C3. Expensive deployment cost. UniQuanF -0
suffers from memory and computational over-
heads at deployment, since UniQuanF -0 re-
quire executing both inference procedures DR

and RB (see Table 1).How can we decrease
the inference cost?

3.3 UniQuanF

We propose UniQuanF (Unified Quantization
with Flexible Mapping), which improves
UniQuanF -0 with the following main ideas.
I1. Unified initialization. We unify the initial-

ization algorithms in FlexRound and ALTER-
NATING to jointly initialize the quantization
parameters, considering their dependency.

I2. Local and periodic mapping. We efficiently
update mappings by exploiting the locality and
the temporal sparsity of changes in mappings.

I3. Unification theorem. We unify the inference
process of UniQuanF -0 into a single BCQ’s in-
ference process, removing additional memory
and computational costs at deployment.
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UniQuanF quantizes an LLM through a block-
wise optimization strategy, quantizing sequentially
from the bottom-most Transformer block upwards.
Algorithm 1 details the process of quantizing a
Transformer block f with a set Φ of weight groups,
to obtain a binary-code C and optimized quantiza-
tion parameters Θ∗

B for each group. We provide
inputs X and X̂ of unquantized and quantized
blocks, respectively. We iterate the optimization
process for E epochs using |D| data points.

First, for each weight group, we initialize the
quantization parameters ΘIF = ΘB ∪ ΘF using
the unified initialization technique (line 1) which
we describe later in this subsection. Subsequently,
we iteratively optimize the quantization parameters
to minimize the distance between the outputs of
the quantized and unquantized blocks (lines 2-9).
In each optimization step, we quantize the weight
groups in Φ using UniQuanF ’s quantizer Q∗

IF
with

its quantization parameters ΘIF as follows:

Q∗
IF
(w; ΘIF )

= DR(M∗
B(TF (w; ΘF ); ΘB); ΘR),

(3)

whereM∗
B represents the local and periodic map-

ping technique, which we describe later in this
subsection, to accelerate mappings to non-uniform
quantization levels. TF is the transformation func-
tion of FlexRound in Equation 1. We quantize
each weight group in parallel, and the quantized
weight groups are stored in Φ̂ (line 4). We mea-
sure the reconstruction loss L which represents the
distance between the outputs of the original and
quantized blocks, and then optimize the quanti-
zation parameters ΘIF via stochastic gradient de-
scent (lines 5-7). After the iterative optimization
process, we have the optimized quantization pa-
rameters ΘIF = ΘB ∪ΘF which generate the out-
puts closely resembling those of the original block.
We leverage the unification theorem (Theorem 1)
to merge the optimized quantization parameters
into a single set of BCQ’s quantization parameters
Θ∗

B = {α∗, z∗B} (line 10). Finally, we obtain a
binary-code matrix C using Θ∗

B for each weight
group as follows:

C = argmin
C′

||w − (C ′α∗ + z∗B1g)||22. (4)

Then, the quantization process for a block is com-
pleted (line 11). We obtain an entirely quantized
model by sequentially applying Algorithm 1 from
the bottom to the top blocks.

Table 2: The percentage of index changes per opti-
mization step and throughout all 2,560 steps. Minimal
changes in each step add up to substantial shifts overall.

Step size
Index change

0 1 2 >2

Single step 99.97% 0.01% 0.00% 0.01%
All steps (2,560) 89.30% 8.37% 1.36% 0.97%

Unified Initialization. How can we jointly initial-
ize the quantization parameters of FlexRound and
ALTERNATING? FlexRound initializes ∆ and zU
through a grid search process, and ALTERNATING

utilizes an alternating update process to find α, fix-
ing zB as 0. We propose a unified initialization
process which initializes the quantization parame-
ters ΘIF = {∆, zU , s, sr,α, zB} by unifying both
techniques, considering their dependency.

In unified initialization, we perform alternating
updates to find α and zB in each iteration of a grid
search process for ∆ and zU . As a result, we find
α and zB according to the ∆ and zU during the
grid search process. As in FlexRound, we initialize
s and sr as 1g and 1, respectively. We detail the
unified initialization algorithm in Appendix E.1.

Local and Periodic Mapping. How can the map-
pings between weights and quantization levels
be swiftly updated during optimization? Table 2
shows that while over 8% of weights change in-
dices of the mapped quantization levels during
the full optimization, 99.97% remain stable at
each step, and most changes involve adjacent lev-
els. Hence, we propose a local and periodic map-
ping which evaluates only neighboring levels and
remaps periodically. We set a hyperparameter p as
a remapping period, and in every p steps, we find
the closest quantization level among the previous
level and its two neighbors. We detail the process
of local and periodic mapping in Appendix E.4.

Unification Theorem. How can we eliminate the
memory and computational overheads at deploy-
ment induced by the unification? The deployment
cost of UniQuan is expensive since the unified
quantization process in Equation 3 requires two-
step inference procedures with DR and RB . We
propose a unification theorem that integrates the
two-step inference process of UniQuanF -0 into a
single BCQ inference process as follows:

Theorem 1 (Unification Theorem). Given a re-
construction functionRB(C; ΘB) and a detrans-
formation function DR(w̃; ΘR) where w̃ =
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Table 3: Comparison of the average accuracy of 0-shot and 5-shot on MMLU, and the perplexity on WikiText2
(Wiki) benchmarks. Higher accuracies and lower perplexities indicate better performance. Bold and underlined texts
indicate the best and second-best performance, respectively. UniQuanF shows the best performance in most cases.

Mistral 7B Llama-3 8B Llama-3 70B
# Bits Scheme† Method MMLU

Avg. (↑)
Wiki
(↓)

MMLU
Avg. (↑)

Wiki
(↓)

MMLU
Avg. (↑)

Wiki
(↓)

Full precision 61.40 5.25 62.77 6.14 77.52 2.86

RTN 55.20 6.04 54.67 7.80 67.74 3.85
OmniQuant 56.28 5.67 56.02 7.37 76.62 3.34UQ
FlexRound 58.60 5.52 58.59 8.22 77.24 3.31
ALTERNATING 24.65 9.8e4 22.95 1.3e5 44.07 11.06

4

BCQ UniQuanF 59.22 5.51 61.43 7.01 76.97 3.19

RTN 28.59 36.07 24.35 120.50 40.61 24.42
OmniQuant 32.82 9.24 26.34 42.06 71.13 5.23UQ
FlexRound 53.45 6.41 50.22 10.11 72.44 5.81
ALTERNATING 24.19 1.1e4 25.51 8.4e4 24.06 1.5e3

3

BCQ UniQuanF 53.68 6.20 53.46 8.75 74.79 4.24
† UQ and BCQ methods have the same costs when using BCQ kernels (Park et al., 2024a)

RB(C; ΘB), there is a set Θ∗
B of unified quan-

tization parameters such that RB(C; Θ∗
B) =

DR(RB(C; ΘB); ΘR) for any C, ΘB , and ΘR.

Proof. See Appendix E.5.

As a result, UniQuanF exploits the UQ’s opti-
mizability without any extra memory and computa-
tional costs at deployment.

Discussion. UniQuanF is interpreted as a quantiza-
tion framework that augments the BCQ’s quantiza-
tion process with the linear transformation process
of UQ. By defining the transformation function
in UniQuanF as a linear function, several key ad-
vantages emerge. First, it enables the seamless
integration of well-established UQ methods (Lee
et al., 2023; Lin et al., 2024; Shao et al., 2024) into
the BCQ framework, thereby reducing the time and
effort required to develop new methods. Second,
through the unification theorem, the inference pro-
cess is consolidated into a single step, allowing the
system to benefit from the improved accuracy of the
unified approach without incurring additional mem-
ory or computational costs at deployment. One
might consider introducing non-linear transforma-
tion functions to further enhance the expressive-
ness of the unified quantization process. However,
this approach presents notable drawbacks since the
aforementioned two key advantages do not hold
for non-linear transformation functions; we cannot
exploit existing UQ methods and unification theo-
rem. Therefore, we incorporate linear transforma-

tion processes into the BCQ’s quantization process,
rather than non-linear transformation processes, to
enhance efficiencies in method development and
deployment.

4 Experiments

We perform experiments to answer the following
questions. Additional analyses on UniQuanF are
discussed in Appendix F.
Q1. General knowledge evaluation. How accu-

rately does UniQuanF quantize LLMs on gen-
eral knowledge benchmarks?

Q2. Task-specific knowledge evaluation. How
accurately does UniQuanF quantize LLMs on
task-specific knowledge benchmarks?

Q3. Ablation study. Do all ideas in UniQuanF
improve the accuracy of quantized LLMs?

Q4. Case study. Does UniQuanF effectively uti-
lize BCQ’s expressiveness and UQ’s optimiz-
ability as we intended?

4.1 Experimental Setup
We briefly introduce the experimental setup. Refer
to Appendix C for further details.
Setup. We evaluate the quantized performance
of Llama-3 8B, Llama-3 70B (Dubey et al.,
2024), and Mistral 7B (Jiang et al., 2023) mod-
els on MMLU (Hendrycks et al., 2021) and Wiki-
Text2 (Merity et al., 2017) benchmarks. For task-
specific experiment, we quantize Llama-3 8B In-
struct (Dubey et al., 2024) model and evaluate on
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Table 4: Accuracies (%) of quantized Llama-3 Instruct
8B models on GSM8K benchmark. UniQuanF outper-
forms the competitors in all cases.

Scheme Method 4bit 3bit

Full precision 76.12

UQ
RTN 49.43 0.08
OmniQuant 59.16 2.78
FlexRound 70.66 54.13

BCQ
ALTERNATING 0.00 0.00
UniQuanF 72.38 58.73

GSM8K (Cobbe et al., 2021). We sample 128 to-
ken sequences of length 2048 from C4 (Raffel et al.,
2020) and GSM8K (Cobbe et al., 2021) for general
and task-specific benchmarks, respectively. All
experiments are done with a single A100 GPU.

Baselines. We compare UniQuanF with the four
UQ and BCQ methods: RTN (Gupta et al., 2015),
OmniQuant (Shao et al., 2024), FlexRound (Lee
et al., 2023), and ALTERNATING (Xu et al., 2018).

Hyperparameters. We set each row of weight ma-
trices as a single weight group except for Llama-3
70B where we divide each row into small weight
groups of size 128 to prevent severe accuracy loss.
Note that each row has at least 1024 weights. Hy-
perparameters of UniQuanF is in Appendix C.1.
We provide a thorough and detailed analysis of
UniQuanF by altering its hyperparameters to guide
hyperparameter search processes in Section F.

4.2 General Knowledge Evaluation

We evaluate the amount of general knowledge re-
tained in quantized models. Table 3 summarizes
the average accuracies of 5-shot and 0-shot MMLU,
and perplexity on WikiText2 (Wiki). UniQuanF
achieves the highest performance in almost all
cases, outperforming the second-best method by
up to 3.24% in average MMLU accuracy. In
Llama-3 70B, a small group size of 128 makes
a small number of weights sharing their quantiza-
tion parameters, reducing the difficulty of quantiza-
tion; competitors show comparative performance
to UniQuanF in both 3- and 4-bit cases.

4.3 Task-specific Knowledge Evaluation

Table 4 summarizes the accuracies of a quantized
Llama-3 8B Instruct model evaluated on GSM8K
benchmark, which focuses exclusively on mathe-
matical problems. Note that GSM8K is a difficult
task in which models should generate the exact

Table 5: Ablation study results on MMLU benchmark.
All ideas contribute to improving accuracies.

Method 4bit 3bit

UniQuanF 61.43 53.46
- remapping 56.89 47.83
- unified init. (ΘF ) 24.70 22.87
- unified init. (ΘB) 60.84 52.14

answer, while general knowledge benchmarks re-
quire only selecting correct answers among multi-
ple choices, or evaluating given texts. UniQuanF
achieves the highest performance, outperforming
the second-best competitor by 4.60% and 1.72% in
the 3-bit and 4-bit experiments, respectively. No-
tably, UniQuanF significantly improves the perfor-
mance of FlexRound by utilizing ALTERNATING

even when ALTERNATING exhibits zero accuracy.
This demonstrates that UniQuanF effectively uni-
fies UQ and BCQ methods, leading to achieving
previously unattainable performance.

4.4 Ablation Study
Table 5 summarizes the result of an ablation study
using a Llama-3 8B model to show the effective-
ness of our main ideas. “-remapping” refers to
the case where we do not apply local and periodic
mapping, thus mappings are not updated during
optimization. “-unified init. (ΘF )" and “-unified
init. (ΘB)" denote the cases when we do not use
unified initialization. In “-unified init. (ΘF )", we
do not perform a grid search process to initialize
quantization parameters in ΘF , i.e. we initialize
∆, zU , s, and sr in ΘF as 1, 0, 1g, and 1, respec-
tively. In “-unified init. (ΘB)", we do not perform
an alternating update process to initialize quanti-
zation parameters in ΘB , i.e. we initialize α and
zB in ΘB to have uniformly spaced quantization
levels in the space transformed by TF . As a result,
UniQuanF outperforms all of its variants, showing
the effectiveness of our main ideas. Specifically,
precisely initializing ΘF is crucial to exploit the
strong optimizability of ΘF .

4.5 Case Study
We conduct a case study on a Llama-3 8B model
quantized with UniQuanF to verify whether the
intended mechanisms function properly.
Expressiveness. Figure 4(a) visualizes the distri-
bution of weights (green bars) within a weight
group and the assigned quantization levels (red
triangles) following UniQuanF . As shown in the
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Figure 4: (a) Quantization levels learned by UniQuanF
and (b) changes of reconstruction error during optimiza-
tion. UniQuanF assigns quantization levels that align
closely with the weight distribution, and effectively re-
duces the reconstruction error during optimization.

figure, UniQuanF assigns dense quantization lev-
els near zero, where most weights are concentrated,
and sparse levels in regions with fewer weights.
This demonstrates that UniQuanF effectively learns
non-linear quantization levels aligned to the weight
distribution, harnessing the strong expressiveness
of BCQ scheme.

Optimizability. Figure 4(b) shows the changes of
reconstruction error during optimization for a block
when using FlexRound (green), ALTERNATING∗

(brown), and UniQuanF (blue); ALTERNATING∗ is
a modification of ALTERNATING that optimizes α
using a block-wise output reconstruction process
in UniQuanF devised for comparing optimizability.
Compared to the baselines, UniQuanF achieves the
least error at the end with a steep decrease at the
early stage of optimization. This demonstrates that
UniQuanF effectively minimizes the reconstruc-
tion error, harnessing the strong optimizability of
UQ scheme.

In summary, UniQuanF successfully unifies UQ
and BCQ schemes, harnessing their strong expres-
siveness and optimizability, as we intended. We
further verify that UniQuanF effectively leverages
flexible mapping, the main optimization technique
of FlexRoud, in Appendix F.6.

5 Related Work

Quantization. Quantization (Lin et al., 2024;
Ashkboos et al., 2024; Piao et al., 2022; Liu et al.,
2024b) has gained great attention since it effec-
tively speeds up LLM inference by minimizing the
cost of memory operations. The majority of quan-
tization approaches rely on uniform quantization
(UQ) (Shao et al., 2024; Lee et al., 2023) due to
its hardware-friendly nature, benefiting from pre-
existing acceleration kernels. Some works (Ashk-

boos et al., 2024; Liu et al., 2024b) even quantize
activation by mitigating outliers through weight ro-
tation, which is orthogonal to our approach. Other
approaches, such as vector (Kim et al., 2024; Tseng
et al., 2024; Liu et al., 2024a) and additive quan-
tization (Egiazarian et al., 2024) suffer from slow
inference since they lack of acceleration kernels.
Binary-coding quantization (BCQ) (Xu et al., 2018;
Kwon et al., 2022) also has been underexplored
due to its missing kernels even with broader ex-
pressiveness over UQ (see Section 2.3). However,
recent studies (Park et al., 2024a; You et al., 2024)
have proposed kernels leveraging look-up tables,
enabling BCQ to achieve the same speed as UQ.
Taking advantage of them, UniQuan unlocks the
superior expressiveness of BCQ by unifying it with
the UQ scheme.
Other compression methods. Pruning (Men et al.,
2024; Frantar and Alistarh, 2023; Ma et al., 2023;
Park et al., 2025, 2024b; Zhong et al., 2024) and
knowledge distillation (Gu et al., 2024; Wang et al.,
2020; Jeon et al., 2023; Jang et al., 2023; Lee et al.,
2021; Cho and Kang, 2022; Yoo et al., 2019; Kim
et al., 2021) are compatible techniques that im-
prove the accuracy of compressed models when
used with quantization (Park et al., 2024c). Prun-
ing improves the accuracy of quantized models by
allowing us to utilize more bit-widths for the nec-
essary weights under memory constraints through
explicitly removing unnecessary weights. Knowl-
edge distillation boosts the accuracy of quantized
models by transferring the useful knowledge of
uncompressed models to quantized models during
quantization.

6 Conclusion

We propose UniQuanF , an accurate quantization
method for LLMs. We unify the best-performing
uniform quantization (UQ) and binary-coding quan-
tization (BCQ) methods to leverage their strong op-
timizability and expressiveness concurrently. We
propose local and periodic mapping, unified ini-
tialization, and unification theorem to improve the
accuracies of quantized models without introduc-
ing additional memory and computational costs at
deployment. As a result, UniQuanF achieves the
best performance, demonstrating the effectiveness
of the unification. Incorporating diverse UQ meth-
ods into BCQ, and integrating UQ methods with
other non-uniform quantization schemes beyond
BCQ are our promising future works.
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In this paper, we define UniQuan which is a
quantization scheme that unifies uniform quanti-
zation (UQ) and binary-coding quantization (BCQ)
schemes. We verify the effectiveness of Uni-
Quan with only UniQuanF which unifies the best-
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A Terminology

We summarize the definitions of terminologies fre-
quently used in this paper to promote clarity.

A.1 Units in LLMs

We summarize the definitions of the units in Large
Language Models (LLMs) from a weight to a
model. Figure 5 illustrates an example of a
Transformer-based LLM with N blocks.

Input token ids

Multi-head Attention
(4 linear layers)

RMSNorm

×𝑵 Blocks

Multi-layer Perceptron
(3 linear layers)

MLP Module

MHA Module

Classifier

RMSNorm

Embedding

Output token id

: A delay of a single iteration

Figure 5: An illustration of a Transformer architecture
with L blocks.

• Weight: the smallest unit, representing an indi-
vidual numerical weight value. The quantization
bit width represents the number of bits to repre-
sent each weight.

• Weight group: a collection of weights grouped
by a specified group size, all of which share the
same quantization parameters. It is easy to quan-
tize models when we have small group sizes since
we have plenty of quantization parameters.

• Weight matrix: a two-dimensional matrix com-
posed of weights, containing multiple weight
groups.

• Layer: a component that performs affine trans-
formations with a weight matrix and a bias vector.

• Module: a collection of layers that performs a
specific functionality. In Transformers, modules
include Multi-Head Attention (MHA) and Multi-
Layer Perceptron (MLP).

• Block: a fundamental unit of a Transformer, con-
sisting of one MHA module and one MLP mod-
ule. FlexRound (Lee et al., 2023) and UniQuanF

Table 6: Symbols and their definitions.

Symbol Definition

w Weight
w Group of weights
w̄ Group of transformed weights
w̃ Group of mapped weights
ŵ Group of quantized weights
Φ Set of weight groups
g The size of a weight group
k Quantization bit-width
f Transformer block
|D| Number of data points

1g Vector of size g filled with ones
⌊·⌉ Rounding function

Clip(·,m,M) Clipping function with range [m,M ]
⊘ Element-wise division

∆ Scale factor of UQ
zU Zero-point of UQ
C Binary-code matrix of BCQ
α Scale factors of BCQ
zB Shifting factor of BCQ
s Element-wise scale factor of FlexRound
sr Row-wise scale factor of FlexRound
G Grid search iterations
T Alternating update iterations
p Remapping period

sequentially quantize each block from the bottom
to top to reduce the cost of quantization.

• Model: a complete language model consisting
of multiple blocks. An LLM refers to a model.

A.2 Error Types

In this paper, we mention two types of errors: quan-
tization error and output reconstruction error. Quan-
tization error represents the error before and after
quantization at the weight level without considering
the model’s input. If we quantize a weight group
w into ŵ, then the quantization error is ||w− ŵ||22.
On the other hand, output reconstruction error mea-
sures how the quantized model’s outputs are close
to those before quantization. We measure the re-
construction error at block level. Assume that we
have a block f with parameters Φ, quantized into
f̂ with parameters Φ̂. The reconstruction error is
||f(X; Φ)− f̂(X̂; Φ̂)||2F , where X and X̂ are the
inputs of the block f and the quantized block f̂ ,
respectively.

We first initialize the quantization parameters to
minimize quantization errors at the weight level.
Then, we optimize the quantization parameters to
minimize the output reconstruction errors at the
block level to take account of the input distribution.
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Table 7: A summary of terminologies regarding different quantization methods. ⇒ represents the application of
the unification theorem (see Theorem 1). UniQuan’s quantization parameters ΘU , transformation function TU and
detransformation function DU are determined according to the UQ method unified into the BCQ scheme.

Method Quantizer
Quantization Transformation Mapping Detransformation Reconstruction
Parameters Function Function Function Function

General form Q Θ T (w; Θ) M(w; Θ) D(w; Θ) RB(C; Θ)

RTN QR ΘR = {∆, zU} TR(w; ΘR) MU (w, k) DR(w; ΘR) -
FlexRound QF ΘF = {∆, zU , s, sr} TF (w; ΘF )

ALTERNATING QB ΘB = {α, zB} TB(w) MB(w; ΘB) DB(w) RB(C; ΘB)

UniQuan QI ΘI = ΘU ∪ΘB ⇒ Θ∗
B TU (w; ΘU ) M∗

B(w; ΘB)
DU (w; ΘU ) RB(C; Θ∗

B)UniQuanF QIF ΘIF = ΘF ∪ΘB ⇒ Θ∗
B TF (w; ΘF ) DF (w; ΘF )

A.3 Symbols and Definitions

We summarize the frequently used symbols and
their definitions in Tables 6 and 7.

B Inference Speed of BCQ Kernels

In this paper, we propose UniQuan which unifies
UQ (Lee et al., 2023; Lin et al., 2024; Shao et al.,
2024; Kim et al., 2025a,b) and BCQ (Xu et al.,
2018; Kwon et al., 2022) schemes, and the resulting
models are represented in a BCQ scheme. The
effectiveness of UniQuan depends on the inference
speed of BCQ kernels (Park et al., 2024a; You et al.,
2024). Thus, we summarize the inference speed of
LUT-GEMM (Park et al., 2024a), the state-of-the-
art BCQ kernel, for completeness.

Table 8: Latency comparison of the first FFN layer on
OPT-175B model with various precision and kernels on
A100-80GB-GPU.

Kernel Schemes # Bits Latency (ms)

cuBLAS - 16 0.7256
GPTQ UQ 3 0.3599
AWQ UQ 4 0.3238

LUT-GEMM UQ, BCQ 4 0.2688
LUT-GEMM UQ, BCQ 3 0.2250

Table 8 summarizes the main results of Table 1
in LUT-GEMM (Park et al., 2024a). In this table,
latency represents the time for inferencing the first
FFN layer in OPT-175B (Zhang et al., 2022) with
various precision, and LUT-GEMM shows faster
inference speeds than GPTQ (Frantar et al., 2023)
and AWQ (Lin et al., 2024) kernels, which support
only a UQ scheme.

Table 9 summarizes the main results of Table 6 in
LUT-GEMM (Park et al., 2024a), reporting the end-
to-end latency per token for OPT family models. k
and g represent the bit width and group size, respec-

Table 9: Comparison of end-to-end latency per token
for OPT-30B models on a A100-80GB-GPU.

Model Kernel-k-g Latency (ms)

OPT
-30B

cuBLAS-16-N/A 40.5
LUT-GEMM-4-32 18.5
LUT-GEMM-4-64 17.8
LUT-GEMM-3-32 16.7
LUT-GEMM-3-64 15.7

tively. As summarized in the table, LUT-GEMM
provides end-to-end inference speedup with diverse
bit-widths and group sizes.

In summary, LUT-GEMM provides faster in-
ference speed for quantized models than exist-
ing UQ kernels and speeds up end-to-end infer-
ence. Therefore, UniQuanF , which is supported by
LUT-GEMM, is an essential method for quantizing
LLMs. Note that we need to convert quantized
models using a UQ scheme into a BCQ scheme to
use LUT-GEMM which provides a faster inference
speed than existing UQ kernels as shown in Table 8.
Therefore, quantized models in both schemes re-
quire the same memory and computational costs
when they have the same bit width.

C Implementation Details

We use PyTorch (Paszke et al., 2019) and Hugging
Face (Wolf et al., 2019) libraries for implemen-
tation. We use the pretrained weights of Llama-
3 (Dubey et al., 2024) and Mistral (Jiang et al.,
2023) models from the Hugging Face library. We
discuss the implementation details of UniQuanF
and competitors to reproduce the performance re-
ported in this paper.

C.1 Implementation Details of UniQuanF

Hyperparameter settings. Our objective is to
demonstrate that the outstanding performance of
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Table 10: Hyperparameter settings of UniQuanF

Hyperparameter Setting

Learning rate for ΘF 0.005
Learning rate for ΘB 0.0005

Grid search iterations (G) 1, 30
Alternating update iterations (T ) 15

Remapping Period (p) 2
Epochs 20

Batch size 1
Clipping strategy Fixed-minimum

UniQuanF is achieved without expensive hyper-
parameter tuning although UniQuanF employs a
block-wise output reconstruction process that re-
quires many hyperparameters. To this end, we fix
all hyperparameters except for the grid size G for
unified initialization and utilize only two combi-
nations of hyperparameters across all cases. We
outline these combinations in Table 10.

Gradient filtering. We utilize a straight-through
estimator (STE) (Bengio et al., 2013) to update
UniQuanF ’s quantization parameters since its map-
ping functionM∗

B is not differentiable. We filter
the gradient of the weights that have large mapping
errors |w̄ − w̃| to stabilize the optimization pro-
cess of UniQuanF , where w̄ and w̃ represent trans-
formed and mapped weights, respectively. STE hy-
pothesizes that the gradient of a transformed weight
w̄ and mapped weight w̃ have the same gradients.
However, if the difference between transformed
and mapped weight is significant, the hypothesis
does not hold which degrades the accuracy of quan-
tized models. Therefore, we set the hyperparameter
τ as a gradient filtering threshold, and zero out the
gradients of weights whose mapping error is larger
than τ .

We mimic the quantization process in the UQ
scheme to determine τ . In UQ, weights within the
clipping range [wm,c, wM,c] are transformed to the
values in the range [0, 2k−1], while weights out-
side the clipping range, such as wm and wM , are
transformed into values outside the range [0, 2k−1].
These out-of-range weights cause significant map-
ping errors. In the transformed space, the interval
between quantization levels is 1, and each level has
a range of 0.5 on either side. Thus, it is reasonable
to allow a margin of 0.5 even for the smallest and
largest quantization levels 0 and 2k−1.

For UniQuanF , every quantization level has a
potential risk of significant mapping errors, and

the value of 0.5 is replaced with the smallest scale
factor min(α) which is the smallest width in the bi-
nary tree constructed by BCQ’s quantization levels
(see Figure 2 (b)). Therefore, we set the gradient
filtering threshold τ as min(α).

C.2 Implementation Details of Competitors

RTN (Gupta et al., 2015). We search the clipping
range with 100 iterations, which is larger than the
number of iterations used in unified initialization.
We execute the same source code for clipping range
search in UniQuanF .

ALTERNATING (Xu et al., 2018). We imple-
ment ALTERNATING based on the original pa-
per (Xu et al., 2018). We use an alternating update
with 15 iterations which is the same as the number
of iterations used in unified initialization. We use
the same source code for the alternating update in
UniQuanF .

FlexRound (Lee et al., 2023). We implement
the FlexRound following the original paper (Lee
et al., 2023).

OmniQuant (Shao et al., 2024). We refer to
the official implementation2 of OmniQuant and
report the results following the best hyperparameter
settings reported in the paper.

D Evaluation Protocol

We report the average performance using random
seeds 0, 1, and 2 except for Llama-3 70B which
uses only 0 because of its long quantization time.
We sample 128 token sequences of length 2048
from C4 (Raffel et al., 2020) and GSM8K (Cobbe
et al., 2021) for general and task-specific knowl-
edge evaluations, respectively. We detail the evalu-
ation protocols for general and task-specific knowl-
edge evaluation as follows.

General knowledge evaluation. We use
MMLU (Hendrycks et al., 2021) and Wiki-
Text2 (Merity et al., 2017) benchmarks for general
knowledge evaluation. MMLU consists of multiple-
choice problems across 57 subjects. We evaluate
the 0-shot and 5-shot accuracies on MMLU to eval-
uate the amount of general knowledge in the quan-
tized models. 0-shot and 5-shot refer to settings
with 0 and 5 examples provided in the prompt, re-
spectively. We follow the evaluation protocol in
the official code repository1 for the MMLU bench-
mark. WikiText2 consists of tokens within a set of

1https://github.com/hendrycks/test
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verified articles from Wikipedia. We report the per-
plexity of quantized models on WikiText2 bench-
mark to evaluate the language modeling capabili-
ties of quantized models. We follow the evaluation
protocol used in OmniQuant (Shao et al., 2024)
according to its official implementation2.

Task-specific knowledge evaluation. We use
GSM8K (Cobbe et al., 2021) benchmark for task-
specific knowledge evaluation. GSM8K consists
of high-quality grade school math problems that
require multi-step reasoning, and we use GSM8K
to evaluate the amount of Mathematical knowledge
in the quantized models. We implement our eval-
uation code using the language model evaluation
harness (Gao et al., 2023) package3.

We summarize the properties of benchmarks in
Table 11.

Table 11: Properties of benchmarks

Benchmark Subject Instance Metric

MMLU General 14,042 Accuracy
WikiText2 General 141 Perplexity
GSM8K Math 1,319 Accuracy

E Theoretical Details

We explain the theoretical details on clipping strat-
egy, general alternating update, local and periodic
mapping, unification theorem, and extensibility of
UniQuan.

E.1 Algorithm of Unified Initialization
Algorithm 2 outlines the overall process of uni-

fied initialization which initializes the quantization
parameters in the set ΘIF = {∆, zU , s, sr,α, zB}
for each weight group. Following FlexRound (Lee
et al., 2023), we initialize s and sr as 1g and 1,
respectively. We initialize the center zB of BCQ’s
quantization levels to (2k − 1)/2 since TF trans-
forms weights w into the range [0, 2k − 1] (line 2).
Then, we conduct a grid search by adjusting the
scale ratio γ to find the optimal quantization param-
eters (lines 3-13). We explore diverse values for the
center of BCQ’s quantization levels in the original
weight space, by adjusting candidate scale factor
∆′ and candidate zero-point z′U according to γ; the
weight transformed into zB changes as the adjusted

2https://github.com/OpenGVLab/OmniQuant/tree/
main

3https://github.com/EleutherAI/
lm-evaluation-harness/tree/main/lm_eval/tasks/
gsm8k

Algorithm 2 Unified Initialization
Input: Weights w, grid search iterations G, alter-

nating update iterations T , and a bit-width k
Output: Initialized quantization parameters ΘIF

1: wm, wM ← min(w),max(w)
2: zB , s, sr, e← (2k− 1)/2, 1g, 1, MAX_NUM
3: for γ in 1/G, 2/G, ..., 1 do
4: ∆′, z′U ← adjust-clipping(wm,wM ,γ,k)

▷ Appendix E.2
5: w̄ ← TF (w; ∆′, z′U , s, sr) ▷ Equation 1
6: α′, z′B ←general-alternating(w̄, zB , G, T )

▷ Algorithm 3 in Appendix E.3
7: Θ′

IF
← {∆′, z′U , s, sr,α

′, z′B}
8: ŵ← Q∗

IF
(w; Θ′

IF
) ▷ Equation 2

9: e′ ← ||w − ŵ||22 ▷ Quantization error
10: if e′ < e then
11: ∆, zU , α, zB , e←∆′, z′U , α′, z′B , e′

12: end if
13: end for
14: ΘIF ← {∆, zU , s, sr,α, zB}

∆′ and z′U modify the transformation function TF .
There are Fixed-minimum, Fixed-maximum, and
Balanced strategies for adjusting ∆′ and z′U . The
selection of a clipping strategy is a hyperparameter
and we detail those strategies in Appendix E.2 (line
4). Then, we transform w into w̄ using Equation 1
(line 5). We find α′ and z′B through a general alter-
nating update in Algorithm 3 which is the improved
version of alternating update (Xu et al., 2018) to
find zB (line 6). After obtaining the candidate quan-
tization parameters in Θ′

IF
, we quantize w into ŵ

and evaluate the quantization error e′ (lines 7-9).
We update the quantization parameters using the
candidate ones only if the evaluated error e′ is lower
than the previous minimum error e (lines 10-12).
After the grid search process over G iterations, we
obtain the initialized quantization parameters (line
14).

E.2 Details of Clipping Strategies

In unified initialization, we find the optimal quanti-
zation parameters by adjusting the clipping range
[wm,c, wM,c] from altering a hyperparameter γ.
The length of the clipping range is adjusted as
γ(wM−wm) by setting scale factor ∆′ = γ(wM−
wm)/(2k − 1), and the clipping range is shifted
according to the definition of the zero-point z′U .
There are three strategies to define z′U as follows:
• Fixed-minimum. wm is fixed at wm,c so that

the wm is always included in the clipping range.
In this case, we find z′U = −wm/∆′ by solving
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Algorithm 3 General alternating update

Input: A weight group w of size g. Numbers G
and T of iterations for grid search and alternat-
ing update, respectively

Output: Updated α and zB
1: Greedily initialize α and C

▷ Equation 4 in Xu et al. (2018)
2: for t in 1, 2, ..., T do
3: α← (CTC)−1CT (w − zB1g)
4: C ← argminC′ ||w − (C ′α+ zB1g)||22
5: if G = 1 then

▷ Update zB only if not grid search
6: zB ←

∑g
i=1(wi −Ci,:α)/g

7: end if
8: end for

TF (wm) = 0.

• Fixed-maximum. wM is fixed at wM,c so that
the wM is always included in the clipping range.
In this case, we find z′U = 2k − 1− wM/∆′ by
solving TF (wM ) = 2k − 1.

• Balanced. wm,c and wM,c are adjusted as γwm

and γwM , respectively, so that the minimum and
maximum clipped values are adjusted in balance.
In this case, we find z′U = −γwm/∆′ by solving
TF (γwm) = 0.

The center of BCQ’s quantization levels explores
more diverse values during grid search when we
use Fixed-maximum or Fixed-minimum strategies
than Balanced strategy; the clipping range is asym-
metrically adjusted in Fixed-maximum and Fixed-
minimum strategies.

E.3 Algorithm of General Alternating Update

Algorithm 3 details the general alternating up-
date process employed in line 6 of Algorithm 2
which is an improved version of alternating update
in Xu et al. (2018) to find proper zB . We initial-
ize α and C using a greedy initialization strategy
(Equation (4) in Xu et al. (2018)), where we deter-
mine α and C for each bit-width one by one (line
1). Then, we iteratively minimize the quantization
error e = ||w − (C ′α+ zB1g)||22 for T iterations
to find the optimal quantization parameters (lines
2-8). In each iteration, we optimize for α, C, and
zB sequentially while keeping the others fixed. For
α and zB , we find the values where the derivatives
∂e
∂α and ∂e

∂zB
equal to zero, respectively, where Ci,:

represents the ith row of C (lines 3 and 6). For C,
we find the optimal binary codes for each weight
by comparing errors obtained using all possible

Algorithm 4 Local and periodic mapping (M∗
B)

Input: A transformed weight group w̄ of size g,
iteration step s, a remapping period p, BCQ’s
quantization parameter ΘB = {α, zB}, and
mapping indices d and mapped weights w̃ in
the previous step

Output: Updated mapping indices d and mapped
weights w̃

1: if s ≡ 0 (mod p) then ▷ Periodic mapping
2: q← compute-quantization-levels(α, zB)
3: for i in {1, 2, ..., g} do
4: l, r←max(di − 1, 1), min(di + 1, 2k)
5: N ← {l, di, r}

▷ Neighbor quantization levels’ indices
6: di← argmind′∈N |w̄i − qd′ |

▷ Local mapping
7: w̃i← qdi
8: end for
9: end if

binary codes (line 4). After completing these iter-
ations, we obtain the optimized values for α and
zB . We do not update zB when G is greater than 1
since diverse values for zB are explored during the
iterative grid search process (line 5).

E.4 Algorithm of Local and Periodic Mapping

Algorithm 4 describes the overall process of lo-
cal and periodic mapping which swiftly updates
the mapping between weights and quantization
levels during optimization. In the beginning, we
initialize the mapping by calculating distances to
all quantization levels. Then, we begin local and
periodic mapping using the resulting mapping d
and mapped weights w̃ where d contains the in-
dices of quantization levels that the weights are
mapped. We periodically update the mappings be-
tween weights and quantization levels in every p
optimization step (line 1). We compute quanti-
zation levels using α and zB , and store them in
q ∈ R2k (line 2). Then, we find the closest quanti-
zation level among its previously mapped level and
its neighboring levels (lines 4-6). We also update
the mapped weight value to use them for the succes-
sive steps before the next update (line 7). Local and
periodic mapping is efficient, updating 1/p times
less often than non-periodic algorithms and using
only 3 among 2k quantization levels for computing
the distance between weights.
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E.5 Proof of Theorem 1

Proof. By the definitions of RB(C; ΘB) and
DR(w̃; ΘR), we reduce DR(RB(C; ΘB); ΘR) as
follows.

DR(RB(C; ΘB); ΘR)

= ∆((Cα+ zB1g)− zU1g)

= C(∆α) + ∆(zB − zU )1g.

Thus, α∗ = ∆α, z∗B = ∆(zB − zU ), and
RB(C; Θ∗

B) = Cα∗ + z∗B1g where Θ∗
B =

{α∗, z∗B}.

E.6 Extensibility of UniQuan

In the main text, we employ UniQuanF which uni-
fies FlexRound (Lee et al., 2023) and ALTERNAT-
ING, the best-performing UQ and BCQ methods, re-
spectively. We cover the unification between other
quantization methods to explain the extensibility of
UniQuan. The main idea of UniQuan is to utilize
the unified quantization process with quantization
parameters ΘI = ΘU ∪ΘB as follows:

QI(w; ΘI) = DU (MB(TU (w; ΘU ); ΘB); ΘU ).

Considering the lack of accurate BCQ methods,
we focus on replacing TU and DU with method-
specific ones to unify UQ methods into the BCQ
scheme.

AWQ (Lin et al., 2024) reduces output recon-
struction error by scaling weights based on their
importance before quantization. This is accom-
plished by using TA and DA defined as follows:

TA(w; ΘA) = (w ⊙ sA)/∆A + zA1g,

DA(w̃; ΘA) = ∆A(w̃ − zO1g)⊘ sA,

where sA ∈ Rg is a column-wise scale factor
to reflect the importance of each column of the
weight matrix where the weight group w is located.
∆A ∈ R and zA ∈ R represent the new scale fac-
tor and zero-point after applying sA, respectively.
ΘA = {∆A, zA, sA} is a set of quantization param-
eters for AWQ. ⊙ and ⊘ represent element-wise
multiplication and division, respectively.

OmniQuant (Shao et al., 2024) parameterizes
the clipping range with parameters β and γ to find
the best one through optimization. This is accom-
plished by using TO and DO as follows:

TO(w; ΘO) = w/∆O + zO1g,

DO(w̃; ΘO) = ∆O(w̃ − zO1g),

where ∆O = (γwM − βwm)/(2k − 1) and zO =
−⌊βwm/∆O⌉ are the parameterized scale factor
and zero-point, respectively. wm and wM are the
minimum and maximum weights in a weight group
w. ΘO = {β, γ} is the set of quantization parame-
ters of OmniQuant.

GPTQ (Frantar et al., 2023) is widely used in
a UQ scheme, but it is a general error compensa-
tion technique which covers even pruning (Frantar
and Alistarh, 2023). Thus, GPTQ is able to be uni-
fied into a BCQ scheme by applying GPTQ’s error
compensation strategy to BCQ methods.

In summary, it is able to unify diverse UQ
methods into a BCQ scheme following UniQuan’s
framework in theory. Extending the coverage of
unification to other quantization schemes beyond
UQ and BCQ, and validating with experiments is
one of our promising future works.

F Additional Analyses

We analyze the memory usage, quantization time,
hyperparameter sensitivity, and the effect of sample
dataset size on UniQuanF . We also validate that
UniQuanF effectively leverages the optimization
technique in FlexRound.

F.1 Memory Usage of UniQuanF

We analyze the memory usage of quantized mod-
els using UniQuanF . As summarized in Table 1,
UniQuanF requires the same amount of memory
at inference time as existing BCQ methods (Xu
et al., 2018; Kwon et al., 2022) since we convert
the inference process of the unified quantization
process into a single BCQ’s inference process us-
ing the unification theorem. When we quantize a
weight group w ∈ Rg of size g into k bits, we need
to store a binary code matrix C ∈ {−1,+1}g×k,
BCQ’s scale factors α ∈ Rk, and BCQ’s shifting
factor zB ∈ R. Each binary code requires 1 bit and
each real number requires 16 bits for saving, thus
we require gk + 16(k + 1) bits in total. The mem-
ory overhead due to the quantization parameters
is 16(k + 1)/g bits per weight, and if we assume
channel-wise quantization where g is larger than
4000 for LLMs (Jiang et al., 2023; Dubey et al.,
2024), the memory overhead is negligible.

F.2 Quantization Time of UniQuanF

We compare the running time for quantizing Llama-
3 8B into 3 bits and the accuracy of the quantized
model, using UniQuanF and FlexRound to evalu-
ate the efficiency of UniQuanF . We compare them
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Figure 6: Change of average accuracy on 0-shot and 5-shot MMLU benchmarks with regard to the change
of remapping period p, grid search iterations G, and alternating update iterations T . Blue stars represent the
hyperparameters used in the main text and black stars represent the others.

across different epoch settings since the quantiza-
tion time varies depending on the number of epochs.
We do not include the time for unified initialization
in UniQuanF since it is performed as a preprocess-
ing before quantization; the initialized quantization
parameters are reused in different hyperparameter
settings when the alternating update iteration T and
the grid search iteration G are not changed.

Table 12: Comparison of average accuracies (%) on 0-
shot and 5-shot MMLU benchmarks, and quantization
time (s) when quantizing Llama-3 8B into 3bit using
UniQuanF and FlexRound, respectively. Bold and un-
derlined texts represent the best and second-best results
in each method, respectively.

UniQuanF FlexRoundEpochs Accuracy Time Accuracy Time

5 47.97 5,089 46.71 4,239
10 51.04 10,022 47.97 8,350
15 52.08 15,905 51.08 12,405
20 53.46 20,403 51.19 16,868
25 54.23 25,884 48.19 21,970
30 53.86 28,521 51.09 25,139

Table 12 shows that UniQuanF requires about
20% longer time for quantization than FlexRound,
but it achieves higher accuracy than FlexRound
across all epoch settings. Especially, UniQuanF
requires a shorter time of 15,905 seconds to outper-
form the highest accuracy of FlexRound which re-
quires 16,868 seconds, demonstrating its efficiency.

The running time for the unified initialization
process depends on G and T . When G = 30 and
T = 15, as used in this experiment, it takes approx-
imately 6,700 seconds and UniQuanF takes longer
than FlexRound if we include this. However, con-
sidering that the quantization time only needs to be
performed once for deployment, the initialization

results are reusable, and FlexRound cannot reach
the high performance of UniQuanF even though
we invest more time.

F.3 Sensitivity Analysis on p, G, and T

We report the change in the performance of
quantized models according to the variation of
UniQuanF ’s hyperparameters G, T , and p to pro-
mote reproducibility. We report the average accu-
racy of 0-shot and 5-shot MMLU benchmarks of
the 3-bit quantized Llama-3 8B models.

Remapping period (p). Figure 6(a) shows the
change in the quantized models’ accuracy with re-
gard to the change of remapping period p. We use
p ∈ {1, 2, 4, 8, 16, 32} where a higher p represents
the sparse update of mapping between weights
and quantization levels. As a result, we find that
the quantized model achieves the highest accuracy
when p ∈ {2, 4}, outperforming the case of p = 1
where we update the mapping in every step. This
result indicates that periodic mapping not only im-
proves the efficiency of UniQuanF but also im-
proves the accuracy of the quantized models. We
recommend using p = {2, 4} and we use only
p = 2 in this paper since they exhibit similar accu-
racies.

Grid search iterations (G). Figure 6(b) shows
the change in the quantized models’ accuracy with
regard to the change of grid search iterations G.
We use G ∈ {1, 10, 20, 30, 40, 50} where a higher
G represents the exhaustive search for unified ini-
tialization. We also include G = 1 which indicates
the case that we find the center of BCQ’s quanti-
zation levels using the general alternating update
in Algorithm 3, unlike the other cases that use grid
search. As a result, we find that G ∈ {1, 30, 40}
shows the highest accuracy and we recommend us-
ing G = {1, 30} to efficiently explore two different
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Table 13: The average accuracies on 0-shot and 5-shot
MMLU benchmarks of 3-bit Llama-3 8B models with
various clipping strategies.

Strategy Accuracy

Fixed-minimum 53.46
Fixed-maximum 54.34

Balanced 53.21

Table 14: The average accuracies on 0-shot and 5-shot
MMLU benchmarks of 3-bit Llama-3 8B models on
various sizes of sample datasets.

Sample Size 32 64 128 256

Accuracy 47.72 50.71 53.46 53.86

strategies for searching the BCQ’s center.
Alternating update iterations (T ). Figure 6(c)

shows the change in the quantized models’ accu-
racy with regard to the change of alternating update
iterations G. We use T ∈ {5, 10, 15, 20} where a
higher T represents the more iterations for alter-
nating update. As a result, we find that UniQuanF
achieves high accuracy when T is equal to or higher
than 10. Thus, we recommend using T = {10, 15}
which shows the highest accuracy.

F.4 Sensitivity on the Clipping Strategies

We compare the performance of three clipping
strategies in unified initialization. Table 13 summa-
rizes the comparison of the performance of Llama-
3 8B models quantized using the three clipping
strategies.

Fixed-maximum and Fixed-minimum strategies
outperform the Balanced strategy. This is because
the center of BCQ’s quantization level explores
more diverse values in Fixed minimum and Fixed
maximum strategies than Balanced strategy, result-
ing in better quantization levels. Therefore, we
recommend evaluating Fixed minimum and Fixed
maximum strategies and using the better one ac-
cording to the experimental settings.

F.5 Sensitivity on the Size of Sample Dataset

To illustrate the effect of sample dataset size on
the performance of UniQuanF , we quantize the
Llama-3 8B model to 3 bits using sample datasets
of varying sizes. We evaluate the performance of
quantized models on 0-shot and 5-shot MMLU
benchmarks. We use sample datasets ranging in
size from 32 to 256, where 128 is the size used in
the main text. We summarize the result in Table 14.
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Figure 7: Index difference of mapped quantization lev-
els per weight before and after applying s and sr. Flexi-
ble mappings occur sufficiently in UniQuanF compared
to FlexRound.

Experimental results show that the accuracy of
the quantized models increases as the sample size
grows. This is attributed to the fact a large num-
ber of data points promote the distillation of the
general knowledge in the unquantized model to the
quantized model. Therefore, UniQuanF achieves
higher performance than that reported in the main
text by providing enough data points.

F.6 Flexible Mappings in UniQuanF

UniQuanF unifies FlexRound (Lee et al., 2023)
and ALTERNATING. We perform an in-depth anal-
ysis to verify that UniQuanF effectively leverages
the main optimization technique of FlexRound.
The main idea of FlexRound is “flexible mapping"
which introduces additional scale factors s and sr
to make weights explore diverse quantization levels,
and selects the best one. We compare the amount
of flexible mapping occurred in UniQuanF and
FlexRound for validation. We use a 3-bit quantized
Llama-3 8B model for analysis.

Case study. We analyze the amount of flexible
mappings in a weight group of quantized models
and visualize the results. Figure 7 represents the
index difference of mapped quantization levels for
each weight before and after applying scale fac-
tors s and sr when quantizing Llama-3 8B models
into 3-bit using UniQuanF and FlexRound. An
index difference equal to or larger than 1 repre-
sents that the weight experiences the flexible map-
ping through s and sr. Note that plenty of flexi-
ble mappings occur in the quantization process of
UniQuanF similarly in FlexRound.

Global pattern. We analyze the proportion of
flexible mapping applied across all model weights
to examine that flexible mappings occur globally.
Table 15 illustrates the proportion of the flexibly
mapped weights in the entire model. The column
names in the tables indicate the amount of changes
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Table 15: Proportion of weights exhibiting flexible map-
ping across the entire model. Each column indicates
the index difference of the mapped quantization level
resulting from flexible mapping.

Method
Index Difference

0 1 2 >2

FlexRound 95.4132 4.5862 5.00e-04 1.30e-05
UniQuanF 96.0395 3.8619 9.85e-02 7.62e-05

in indices of weights’ mapped quantization lev-
els resulting from flexible mapping. Across the
entire model, UniQuanF demonstrates a similar
level of flexible mapping as FlexRound. There-
fore, UniQuanF effectively utilizes flexible map-
ping across the entire model as we intended.

G Use of AI Assistant

We use ChatGPT4 and Gemini5 only for grammar
checking and sentence re-wording purposes. We do
not use them for research purposes such as develop-
ing our main ideas or analyzing our experimental
results.

H Potential Risks

In this paper, we propose UniQuanF , a quantiza-
tion method for large language models (LLMs),
and there is a potential risk of losing the models’
knowledge during quantization. In experiments, we
rigorously validate the amount of knowledge loss
in both general and task-specific aspects to verify
whether the risk occurs. As a result, we demon-
strate that UniQuanF results in significantly less
knowledge loss than other methods, confirming its
low risk.

4https://chatgpt.com/
5https://gemini.google.com/
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