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Abstract
We introduce MedGraphRAG, a novel graph-
based Retrieval-Augmented Generation (RAG)
framework designed to enhance LLMs in gen-
erating evidence-based medical responses, im-
proving safety and reliability with private med-
ical data. We introduce Triple Graph Construc-
tion and U-Retrieval to enhance GraphRAG,
enabling holistic insights and evidence-based
response generation for medical applications.
Specifically, we connect user documents to
credible medical sources and integrate Top-
down Precise Retrieval with Bottom-up Re-
sponse Refinement for balanced context aware-
ness and precise indexing. Validated on 9 med-
ical Q&A benchmarks, 2 health fact-checking
datasets, and a long-form generation test set,
MedGraphRAG outperforms state-of-the-art
models while ensuring credible sourcing. Our
code is publicly available.

1 Introduction

The rapid advancement of large language mod-
els (LLMs), such as OpenAI’s GPT-4 (OpenAI,
2023a), has accelerated research in natural lan-
guage processing and driven numerous AI applica-
tions. However, these models still face significant
challenges in specialized fields like medicine (Hadi
et al., 2024; Williams et al., 2024; Xie et al., 2024).
The first challenge is that these domains rely on
vast knowledge bases -principles and notions dis-
covered and accumulated over thousands of years;
fitting such knowledge into the finite context win-
dow of current LLMs is a hopeless task. Supervised
Fine-Tuning (SFT) provides an alternative to us-
ing the context window, but it is often prohibitively
expensive or unfeasible due to the closed-source na-
ture of most commercial models. Second, medicine
is a specialized field that relies on a precise termi-
nology system and numerous established truths,
such as specific disease symptoms or drug side ef-
fects. In this domain, it is essential that LLMs do

not distort, modify, or introduce creative elements
into the data. Unfortunately, verifying the accuracy
of responses in medicine is particularly challeng-
ing for non-expert users. Therefore, the ability to
perform complex reasoning using large external
datasets, while generating accurate and credible
responses backed by verifiable sources, is crucial
in medical applications of LLMs.

Retrieval-augmented generation (RAG) (Lewis
et al., 2021) is a technique that answers user queries
using specific and private datasets without requir-
ing further training of the model. However, RAG
struggles to synthesize new insights and underper-
forms in tasks requiring a holistic understanding
across extensive documents. GraphRAG (Hu et al.,
2024) has been recently introduced to overcome
these limitations. GraphRAG constructs a knowl-
edge graph from raw documents using an LLM, and
retrieves knowledge from the graph to enhance re-
sponses. By representing clear conceptual relation-
ships across the data, it significantly outperforms
classic RAG, especially for complex reasoning (Hu
et al., 2024). However, its graph construction lacks
a specific design to ensure response authentication
and credibility, and its hierarchical community con-
struction process is costly, as it is designed to han-
dle various cases for general-purpose use. We find
that specific effort is required to apply it effectively
in the medical domain.

In this paper, we introduce a novel graph-based
RAG method for medical domain, which we refer
to as Medical GraphRAG (MedGraphRAG). This
technique enhances LLM performance in the medi-
cal domain by generating evidence-based responses
and official medical term explanation, which not
only increases their credibility but also significantly
improves their overall quality. Our method builds
on GraphRAG with a more sophisticated graph con-
struction technique, called Triple Graph Construc-
tion, to generate evidence-based responses, and an
efficient retrieval method, U-Retrieval, which im-
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proves response quality with few costs. In Triple
Graph Construction, we design a mechanism to
link user RAG data to credible medical papers and
foundational medical dictionaries. This process
generates triples [RAG data, source, definition]
to construct a comprehensive graph of user doc-
uments. It enhances LLM reasoning and ensures
responses are traceable to their sources and defi-
nitions, guaranteeing reliability and explainability.
We also developed a unique U-Retrieval strategy to
respond to user queries. Instead of building costly
graph communities, we streamline the process by
summarizing each graph using predefined medical
tags, then iteratively clustering similar graphs to
form a multi-layer hierarchical tag structure, from
broad to detailed tags. The LLM generates tags for
the user query and indexes the most relevant graph
based on tag similarity in a top-down approach,
using it to formulate the initial response. Then it
refines the response by progressively integrating
back the higher-level tags in a bottom-up manner
until the final answer is generated. This U-Retrieval
technique strikes a balance between global context
awareness and the retrieval efficiency.

To evaluate our MedGraphRAG method, we
implemented it on several popular open-source
and commercial LLMs, including GPT (OpenAI,
2023b), Gemini(Team et al., 2023) and LLaMA
(Touvron et al., 2023). The results evaluated
across 9 medical Q&A benchmarks show that Med-
GraphRAG yields materially better results than
classic RAG and GraphRAG. Our final results even
surpass many specifically trained LLMs on medi-
cal corpora, setting a new state-of-the-art (SOTA)
across all benchmarks. To verify its evidence-based
response capability, we quantitatively tested Med-
GraphRAG on 2 health fact-checking benchmarks
and conducted a human evaluation by experienced
clinicians. Both evaluations strongly support that
our responses are more source-based and reliable
than previous methods.

Our contributions are as follows:
1. We are the first to propose a specialized frame-

work for introducing graph-based RAG in the med-
ical domain, which we named MedGraphRAG.

2. We have developed unique Triple Graph
Construction and U-Retrieval methods that enable
LLMs to efficiently generate evidence-based re-
sponses utilizing holistic RAG data.

3. MedGraphRAG outperforms other retrieval
methods and extensively fine-tuned Medical LLMs
across a wide range of medical Q&A benchmarks,

establishing the new SOTAs.
4. Validated by human evaluations, Med-

GraphRAG is able to generate more understand-
able and evidence-based responses in the medical
domain.

2 Method

The overall workflow of MedGraphRAG is shown
in Fig. 1. We first construct the knowledge graphs
from the documents by using Triple Graph Con-
struction (Section 2.1), then tag the graphs for U-
Retrieval to response the user queries (Section 2.2).

2.1 Triple Graph Construction
2.1.1 Preliminary: Document Chunking &

Entities Extraction
Large medical documents often contain diverse
content. We segment them into chunks respect-
ing LLMs’ context limits. We adopt the semantic
chunking function implemented in LangChain to
chunk the documents(langchain, 2024). Specifi-
cally, we isolate paragraphs Pi within the document
D = {P1, P2, . . . , PNp} using a text embedding
model. We then set a buffer size of 5 and enforce
the token limit according to the graph construction
LLM LG.

We then extract entities from each chunk through
graph construction LLM LG. We prompt LG to
identify all relevant entities E = {e1, e2, . . . , eN1

e
}

in each chunk and generate a structured output
with name, type, and a description of the context:
e = {na, ty, cx}, as the examples shown in the
Step2 in Fig. 1. We set name be the text from the
document, type selected from the UMLS semantic
types (Bodenreider, 2004), and context a few sen-
tences generated by LG contextualized within the
document.

2.1.2 Triple Linking
Medicine relies on precise terminology and estab-
lished facts, making it essential for LLMs to pro-
duce responses grounded in established facts. To
achieve this, we introduced Triple Graph Construc-
tion, linking user documents to credible sources
and professional definitions. Specifically, we build
repository graph (RepoGraph), which is intended
to be fixed across different users, providing estab-
lished sources and controlled vocabulary defini-
tions for user RAG documents. We construct Re-
poGraph under user RAG graph with two layers:
one based on medical papers/books and another
based on medical dictionaries. We build the bottom
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Figure 1: The overall workflow of MedGraphRAG begins with Triple Graph Construction, where documents are
chunked, and entities are extracted. Triple linking then connects user entities to referenced papers and vocabulary
graph layers, forming the Med-MetaGraph. In the subsequent U-Retrieval phase, graphs are tagged to enable
top-down precise retrieval and bottom-up response refinement, ensuring graph-enhanced query responses.

layer of RepoGraph as UMLS (Bodenreider, 2004)
graph, which consist comprehensive, well-defined
medical vocabularies and their relationships. The
upper layer of RepoGraph is constructed from med-
ical textbooks and scholarly articles using the same
graph construction method described here.

The entities of all three tiers of graphs are
hierarchically linked through semantic rela-
tionships. Let us denoted entities extracted
from RAG documents as E1. We link them to
entities extracted from medical books/papers,
denoted as E2, based on their relevance, which
is determined by computing the cosine similarity
between their content embeddings ϕ(Ce). The
content of an entity Ce is the concatenation
of its name, type, and context, represented
as: Ce = Text[name: na; type: ty; context: cx].
This directed linking is annotated as the
reference of, indicating the reference rela-
tionship between entities in the two layers:

Re1

e2 =

{
(e1i , TheReferenceOf, e2j )

∣∣∣∣
ϕ(C

e1
i
)·ϕ(C

e2
j
)

∥ϕ(C
e1
i
)∥ ∥ϕ(C

e2
j
)∥ ≥ δr

}
,

where δr is the pre-defined threshold. Entities
e2 ∈ E2 are linked to e3 ∈ E3 through the same
way with relationships annotated as the definition
of . Thus, RAG entities are constructed as triples
[RAG entity, source, definition].

We then instruct LG to identify the relationships
among RAG entities in each chunk, which we
noted as e1 ∈ Em. This relationship is a concise
phrase generated by LG based on the content
of the entity Ce1 and associated references
{Ce2 |Re1

e2 = the reference of}. The identified
relationships specify the source and target enti-
ties, provide a description of their relationship:
R

e1j
e1i

=
{
(e1i , rij , e

1
j )

∣∣∣ rij = LG
rel(Ce1i

;Ce2i
, Ce1j

;Ce2j
)
}
,

where LG
rel is LG with relationship identification

and generation prompt. We show an example of
relationship linking in the Step4 of Fig. 1. After
performing this analysis, we have generated a di-
rected graph for each data chunk, which is referred
to as Meta-MedGraphs Gm = {Em, R(Em)}.

2.2 U-Retrieval

2.2.1 Preliminary: Graph Tagging
Organizing and summarizing the graphs in ad-
vance is intuitive and has proven to facilitate ef-
ficient retrieval (Hu et al., 2024). However, unlike
GraphRAG, we avoid constructing costly graph
communities. We observe that, unlike general lan-
guage content, medical text is often structured and
can be summarized effectively using predefined
tags. Motivated by this, we simply summarize
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each Meta-MedGraph Gm with several predefined
tags T , and iteratively generate more abstract tag
summaries for clusters of closely-related graphs.
Specifically, LLM LG first summarises the con-
tent of each Meta-MedGraph {Ce | e ∈ Gm}
given a set of given tags T . The tags T consist of
multiple medical categories following Society for
Testing and Materials (ASTM) standards for con-
tent of electronic health records, mainly including
Symptoms, Patient History, Body Functions, and
Medication. This process generates a structured
tag-summary for each Gm, denoted as Tm.

We then apply a variant agglomerative hierarchi-
cal clustering method with dynamic thresholding
based on tag similarity, to group the graphs and
generate synthesized tag summaries. Initially, each
graph begins as its own group. At each iteration,
we compute the tag similarity between all pairs
of clusters and dynamically set the threshold δt to
merge the top 20% most similar pairs. The graphs
will be merged if all pairwise similarities within the
group exceed δt. Note that we don’t really link the
nodes across different graphs, but generate a syn-
thesized tag-summary for each group. Specifically,
we calculate the similarity of pairs by measuring
the average cosine similarity of all their tag em-
beddings. Let ϕ(t) denote the embedding of a tag
t ∈ Tm. Taking two Meta-MedGraphs Gmi and
Gmj with tag sets Tmi and Tmj as an example, we
generate the abstract tag summery Tmij if their co-
sine similarity of tag embeddings ϕ(t) and ϕ(t′)
higher than the threshold δt

Tmij = LG(Tmi , Tmj ), if

1

|Tmi | · |Tmj |
∑

t∈Tmi

∑

t′∈Tmj

ϕ(t)⊤ϕ(t′)
∥ϕ(t)∥ ∥ϕ(t′)∥ ≥ δt;

These newly merged tag-summary, along with
those that remain unmerged, form a new layer of
tags. As tag-summaries become less detailed at
higher layers, there is a trade-off between precision
and efficiency. In practice, we limit the process
to 12 layers, as this is sufficient for most model
variants (detailed in Fig. 5).

2.2.2 Top-down Precise Retrieval
After constructing the graph, we use response LLM
LR efficiently retrieves information to respond to
user queries. We begin by generating tag-summary
on the user query TQ = LR(Q), and use these
to identify the most relevant graph through a Top-
down Precise Retrieval. Let’s indicate the jth tags

at layer i summarised tag T i as T i[j], it starts from
the top layer: T 0, progressively indexing down by
selecting the most similar tag in each layer:

T i+1 = argmax
T i[j]∈T i

sim(TQ, T
i[j])

until we reach the tag for the target Meta-
MedGraph Gmt . We then retrieve Top Nu

entities based on the embedding similarity
between the query and the entity content:
Er = {e | TopNu(sim(ϕ(Q), ϕ(Ce))), e ∈ Mt},
and gather all their Top ku nearest triple neighbours
Tri≤ku(e) as Eku

r =
{
e, Tri≤ku(e), | e ∈ Er

}
.

2.2.3 Bottom-up Response Refinement
By using all these entities and their relationships
Gr = {Eku

r , R(Eku
r )}, we prompt LR to an-

swer the question given the concatenated entity
names and relationships in Gr: Given QUESTION:
{Q}. GRAPH: {ei[na]+Rej

ei +ej [na], ...}. Answer
the user question: QUESTION using the graph:
GRAPH... as LR

Gr
.

In the Bottom-up Response Refinement step, we
then move back to the higher-level tag retrieved in
the previous step T i−1, in a bottom-up manner. We
provide LR QUESTION: {Q}, LAST RESPONSE:
..., and SUMMARY: {T i−1}, and ask it to Adjust
the response:RESPONSE of the question: QUES-
TION using the updated information: SUMMARY.
LR continues refining its responses until it reaches
the target layer. In practice, we retrieve 4-6 layers
depends on the baseline LLM, a detailed experi-
ment about it is shown in Fig. 5. It ultimately
generate a final response after scanning all indexed
graphs along the trajectory. This method enables
the LLM to gain a comprehensive overview by in-
teracting with all relevant data in the graph, while
remaining efficient by accessing less relevant data
in summarized form.

3 Experiment

3.1 Dataset
3.1.1 RAG data
We anticipate that users will use frequently-updated
private data as RAG data, such as patient electronic
medical records. Thus, we employ MIMIC-IV
(Johnson et al., 2023), a publicly available elec-
tronic health record dataset, as RAG data.

3.1.2 Repository data
We provide repository data to support LLM re-
sponses with credible sources and authoritative vo-
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Figure 2: Example responses from GraphRAG and MedGraphRAG, with abstracted graphs. MedGraphRAG
provides more detailed explanations and more complex reasoning with evidences. Full results are in the appendix.

cabulary definitions. We use MedC-K (Wu et al.,
2023), a corpus containing 4.8 million biomedical
academic papers and 30,000 textbooks, along with
all evidence publications from FakeHealth (Dai
et al., 2020) and PubHealth (Kotonya and Toni,
2020), as the upper repository data, and UMLS
graph, which includes authoritative medical vo-
cabularis and semantic relationships as the bottom
repository data.

3.1.3 Test Data
Our test set are the test split of 9 multiple-choice
biomedical datasets from the MultiMedQA suite,
2 fact verification datasets about public health,
i.e., FakeHealth (Dai et al., 2020) and PubHealth
(Kotonya and Toni, 2020), and 1 test set we col-
lected, called DiverseHealth. MultiMedQA in-
cludes MedQA (Jin et al., 2021), MedMCQA (Pal
et al., 2022) PubMedQA (Jin et al., 2019) and
MMLU clinic topics (Hendrycks et al., 2020). We
also collected the DiverseHealth test set, focused
on health equity, consisting of 50 real-world clin-
ical questions that cover a wide range of topics,
including rare diseases, minority health, comorbidi-
ties, drug use, alcohol, COVID-19, obesity, suicide,
and chronic disease management.

3.2 Experiment Setting

We compare different RAG methods across 6 lan-
guage models as LR: Llama2 (13B, 70B), Llama3
(8B, 70B), Gemini-pro, and GPT-4. The Llama
models were obtained from their official Hugging-

Face page. We used gemini-1.0-pro for Gemini-
pro and gpt-4-0613 for GPT-4. We primarily com-
pare our approach with standard RAG implemented
by LangChain(langchain, 2024) and GraphRAG
(Edge et al., 2024a) implemented by Microsoft
Azure (microsoft, 2024). All retrieval methods
are compared under same RAG data and test data.

We deploy LG as Llama3-70B to construct the
graph. For text embeddings, we utilize OpenAI’s
text-embedding-3-large model. Model comparison
is performed using a 5-shot response ensemble (Li
et al., 2024). MedGraphRAG used U-Retrieval
with 4 levels on GPT-4, and 5 levels for the oth-
ers. In the retrieval, we picked top 60 entities with
their 16-hop neighbors. Unless otherwise noted, all
thresholds are set as 0.5. We use the same query
prompt for all models to generate responses.

3.3 Results

3.3.1 Multi-Choice Evaluation

Baselines with different retrievals First, we con-
ducted experiments to evaluate retrieval methods
on various LLM baselines, with the results shown
in Table 1. We compared MedGraphRAG against
baselines without retrieval, standard RAG, and
GraphRAG. Performance is measured by the ac-
curacy of selecting the correct option. The results
show that MedGraphRAG significantly enhances
LLM performance on both health fact-checking
and medical Q&A benchmarks. Compared to base-
lines without retrieval, MedGraphRAG achieves
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an average improvement of nearly 10% in fact-
checking and 8% in medical Q&A. When com-
pared to baselines using GraphRAG, it demon-
strates an average improvement of around 8% in
fact-checking and 5% in medical Q&A Notably,
MedGraphRAG yields more pronounced improve-
ments in smaller LLMs, such as Llama213B and
Llama28B . This suggests that MedGraphRAG ef-
fectively utilizes the models’ own reasoning capa-
bilities while providing them with additional knowl-
edge beyond their parameters, serving as an exter-
nal memory for information.

Comparing with SOTA Medical LLMs When
applied MedGraphRAG to larger models, like
Llama70B or GPT, it resulted in new SOTA across
all 11 datasets. This result also outperforms in-
tensively fine-tuning based medical large language
models like Med-PaLM 2 (Singhal et al., 2023b)
and Med-Gemini (Saab et al., 2024), establishing
a new SOTA on the medical LLM leaderboard. A
detailed comparison is shown in Fig. 6.

Figure 3: Impact of Repository Data on RAG,
GraphRAG, and MedGraphRAG with GPT-4. Line
chart: performance with incremental data inclusion;
bar chart: performance with individual data inclusion.

3.3.2 Long-form Generation Evaluation
Human Evaluation We conducted human evalu-
ations of long-form model generation on the Mul-
tiMedQA and DiverseHealth benchmarks, com-
paring our method to SOTA models that generate
citation-backed responses, including Inline Search
in (Gao et al., 2023b), ATTR-FIRST (Slobodkin
et al., 2024), and MIRAGE (Qi et al., 2024). Our
evaluation panel consisted of 7 certified clinicians
and 5 laypersons to ensure feedback from both pro-
fessional and general users. Raters completed a
five-level rating survey for each model’s response,
assessing responses across five dimensions: perti-
nence (Pert.), correctness (Cor.), citation precision

(CP), citation recall (CR), and understandability
(Und.). As shown in Table 2, MedGraphRAG con-
sistently received higher ratings across all metrics.
Notably, it showed a significant advantage in CP,
CR and Und., indicating that its responses were
more often backed by accurate sources and were
easier to understand, even for laypersons, thanks to
evidence-backed responses and clear explanations
of complex medical terms.

Case Study As illustrated in Fig. 7, we com-
pare the responses from GraphRAG and Med-
GraphRAG for a complex case involving pa-
tients with both chronic obstructive pulmonary
disease (COPD) and heart failure (left plot).
GraphRAG suggested general COPD treatments
like bronchodilators and pulmonary rehabilita-
tion but overlooked that certain bronchodilators
may worsen heart failure symptoms. In contrast,
MedGraphRAG provided a more comprehensive
answer by recommending cardioselective beta-
blockers—such as bisoprolol or metoprolol—that
safely manage both conditions without adverse ef-
fects. As we can see from the graph abstracted,
this superiority stems from MedGraphRAG’s ar-
chitecture, where entities are directly linked to key
information in references, allowing retrieval of spe-
cific evidence. Conversely, GraphRAG struggles
to retrieve specific information since its reference
and user data are intertwined within the same layer
of the graph, which leads to missing key informa-
tion under the same number of nearest neighbors.
And its retrieval based purely on graph summaries
results in a lack of detailed insights.

3.4 Ablation and Analysis

3.4.1 Overall Ablation Study
We conducted a comprehensive ablation study to
validate the effectiveness of our proposed mod-
ules, with the results presented in Table 3. Starting
with GraphRAG (Hu et al., 2024) as the baseline,
we incrementally incorporated our unique compo-
nents, including Triple Graph Construction, and
U-Retrieval. Notably, both experiments were con-
ducted on the same RAG dataset, eliminating data-
related improvements. The results show a gradual
performance improvement as more of our modules
are added, with significant gains observed when
replacing GraphRAG graph construction with our
Triple Graph Construction. Additionally, by replac-
ing the summary-based retrieval(Edge et al., 2024b)
in GraphRAG with our U-Retrieval method, we
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Table 1: Accuracy(%) of LLMs using different retrieval methods. Columns with a blue background represent
health fact-checking benchmarks, while the others correspond to medical Q&A benchmarks. The best results are
highlighted in bold.

Model
Fake

Health
Pub

Health
MedQA

Med
MCQA

Pub
MedQA

MMLU
Col-Med

MMLU
Col-Bio

MMLU
Pro-Med

MMLU
Anatomy

MMLU
Gene

MMLU
Clinic

Baselines without retrieval
Llama2-13B 53.8 49.4 42.7 37.4 68.0 60.7 69.4 60.3 52.6 66.0 63.8
Llama2-70B 58.9 56.7 43.7 35.0 74.3 64.2 84.7 75.0 62.3 74.0 71.7
Llama3-8B 51.1 53.2 59.8 57.3 75.2 61.9 78.5 70.2 68.9 83.0 74.7

Llama3-70B 64.2 61.0 72.1 65.5 77.5 72.3 92.5 86.7 72.5 83.9 82.7
Gemini-pro 60.6 63.7 59.0 54.8 69.8 69.2 88.0 77.7 66.7 75.8 76.7

GPT-4 71.4 70.9 78.2 72.6 75.3 76.7 95.3 93.8 81.3 90.4 86.2
Baselines with RAG

Llama2-13B 56.2 54.3 48.1 42.0 68.6 62.5 68.3 63.7 51.0 64.5 67.4
Llama2-70B 64.6 63.2 56.2 49.8 75.2 69.6 85.8 77.4 63.0 75.8 73.3
Llama3-8B 60.5 59.6 64.3 58.2 76.0 68.6 84.9 73.2 72.1 85.2 77.8

Llama3-70B 76.2 72.1 82.3 72.5 80.6 86.8 94.4 89.7 84.3 87.1 87.6
Gemini-pro 72.5 68.4 64.5 57.3 76.9 79.0 91.3 86.4 79.5 80.4 83.9

GPT-4 78.6 77.3 88.1 76.3 77.6 81.2 95.5 94.3 83.1 92.9 93.1
Baselines with GraphRAG

Llama2-13B 58.7 57.5 52.3 44.6 72.8 64.1 73.0 64.6 52.1 66.2 67.9
Llama2-70B 65.7 63.8 55.1 52.4 74.6 68.0 86.4 79.2 64.6 73.9 75.8
Llama3-8B 61.7 61.0 64.8 58.7 76.6 69.2 84.3 73.9 72.8 85.5 77.4

Llama3-70B 77.7 74.5 84.1 73.2 81.2 87.4 94.8 89.8 85.2 87.9 88.5
Gemini-pro 73.8 70.6 65.1 59.1 75.2 79.8 90.8 85.8 80.7 81.5 84.7

GPT-4 78.4 77.8 88.9 77.2 77.9 82.1 95.1 94.8 82.6 92.5 94.0
Baselines with MedGraphRAG

Llama2-13B 64.1 61.2 65.5 51.4 73.2 68.4 76.5 67.2 56.0 67.3 69.5
Llama2-70B 69.3 68.6 69.2 58.7 76.0 73.3 88.6 84.5 68.9 76.0 77.3
Llama3-8B 79.9 77.6 74.2 61.6 77.8 89.2 95.4 91.6 85.9 89.3 89.7

Llama3-70B 81.2 79.2 88.4 79.1 83.8 91.4 96.5 93.2 89.8 91.0 94.1
Gemini-pro 79.2 76.4 71.8 62.0 76.2 86.3 92.9 89.7 85.0 87.1 89.3

GPT-4 86.5 83.4 91.3 81.5 83.3 91.5 98.1 95.8 93.2 98.5 96.4

Table 2: Human evaluation on MedQA and Diverse-
Health samples.

Data Methods Pert. Cor. CP CR Und.

MultiMedQA

INLINE 91 88 80 74 85
ATTR.FIRST 93 91 86 77 93

MIRAGE 95 90 84 75 91
MedGrapgRAG 97 94 92 86 95

Diverse Health

INLINE 95 84 78 71 81
ATTR.FIRST 96 91 81 78 85

MIRAGE 97 89 83 76 87
MedGrapgRAG 97 96 89 84 93

Table 3: An ablation study of MedGraphRAG, starting
from GraphRAG, evaluated using accuracy (%) on Q&A
datasets.

MedQA PubMedQA MedMCQA
GraphRAG 88.9 77.9 77.2

+Triple Graph Construction 91.1 81.8 80.9
+U-Retrieval 91.3 83.3 81.5

achieved further improvements, setting new state-
of-the-art results across all three benchmarks.

3.4.2 Detailed Ablation on Triple Linking
To assess the individual effects of external RAG
data and retrieval technologies, we conducted ex-
periments comparing retrieval methods: RAG,
GraphRAG, and MedGraphRAG under two set-
tings: (1) retrieving each tier of data separately (bar

chart in Fig. 3), and (2) incrementally adding all
three tiers (line chart in Fig. 3). The results show
that both the data and the right retrieval method
must work together to unlock the full potential.
When retrieving data by standard RAG, Med-Paper
data individually improves performance by less
than 2%, and Med-Dictionary data by less than 1%.
Accumulating three tier data also leads to mediocre
improvements. GraphRAG shows improvement in
retrieving individual data but has minimal gains
when incrementally adding more data, likely due
to superficiality from linking trivial entities, as dis-
cussed in the previous case study. In contrast, Med-
GraphRAG efficiently handles the additional data,
using its hierarchical structure to clarify relation-
ships and show strong improvements as more data
is added. With MedGraphRAG, we see significant
improvements of over 6% and 8% for Med-Paper
and Med-Dictionary data, respectively, highlight-
ing the importance of the retrieval method in maxi-
mizing the impact of the data.

3.5 Detailed Ablation on U-Retrieval

In U-Retrieval, we set the retrieval depth to 4-5
layers, the number of retrieval entities to 60, and
entity neighbors to 16. These settings were de-
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termined through comprehensive trials. First, we
examine the impact of the retrieval range, i.e. the
number of entities and neighbors, using GPT-4 with
MedGraphRAG on MedQA, as shown in Fig. 4.
Our findings show that retrieving more data does
not necessarily lead to better performance. In fact,
more data can introduce noise and exacerbate LLM
performance issues with long contexts. The peak
performance occurs when the retrieval size reaches
approximately 120 entities with 4-hop neighbors
or 60 entities with 16-hop neighbors. The 16-hop
neighbors setting performed slightly better, likely
due to the robustness of graph-based linking com-
pared to vector-similarity-based retrieval.

As previously mentioned, there is also a trade-off
between model accuracy and response time with
retrieval layer increases. This relationship is ex-
plored in Fig. 5. The figure compares the cost time
and MedQA accuracy across retrieval depths from
0 to 9 layers. We observe that both performance
and response time increase as the retrieval layer
increases initially. However, performance begins to
degrade when retrieving more layers, as higher lay-
ers often contain less relevant information, which
can interfere with refining the response. The opti-
mal retrieval depth is 4 layers for the GPT-4 model
and 5 layers for others, which we use as the default
setting in our experiments.

Figure 4: The effect of retrieving different number of
entities and neighbourhoods. Performance evaluated by
GPT-4 (MedGraphRAG) on MedQA.

Figure 5: The relationship between U-retrieval level and
time cost.

4 Related Work

Large language models (LLMs) built on Trans-
former architectures have advanced rapidly, lead-
ing to specialized medical LLMs such as BioGPT
(Luo et al., 2022), PMC-LLaMA (Wu et al., 2023),
BioMedLM (Bolton et al., 2022), and Med-PaLM 2
(Singhal et al., 2023b). While many are fine-tuned
by large organizations, recent research has focused
on cost-efficient, non-fine-tuned approaches, pri-
marily using prompt engineering (Saab et al., 2024;
Wang et al., 2023; Savage et al., 2024). RAG, as
another non-finetuning approach, is rarely explored
for medical applications (Miao et al., 2024; Xiong
et al., 2024; Long et al., 2024) and lacks support for
evidence-based responses and term explanations
required in clinical settings.

RAG (Lewis et al., 2021) enables models to use
specific datasets without additional training, im-
proving response accuracy and reducing hallucina-
tions (Guu et al., 2020). RAG has shown strong
results across various tasks, including generating
responses with citations (Gao et al., 2023b; Slobod-
kin et al., 2024; Qi et al., 2024; Nakano et al., 2021;
Bohnet et al., 2022; Gao et al., 2023a,c; Schiman-
ski et al., 2024; Zhang et al., 2024). GraphRAG
(Hu et al., 2024) further enhances complex reason-
ing by constructing knowledge graphs, but lacks
specific design features for generating attributed
responses, and its application in medical special-
ization remains limited.

5 Conclusion

MedGraphRAG improves the reliability of medi-
cal response generation with its graph-based RAG
framework, using Triple Graph Construction and
U-Retrieval to enhance evidence-based, context-
aware responses. Future work will focus on real-
time data updates and validation on real-world clin-
ical data.
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6 Limitation

Despite the strong capabilities demonstrated by
MedGraphRAG, the graph construction step incurs
significant computational costs. In the retrieval and
response stage, although the costs are lower than
graph construction, they remain higher than stan-
dard large language model (LLM) calls, with each
question taking around 70 seconds to process (see
Figure 6 for details). Future efforts should explore
methods to transfer pre-constructed graphs or ac-
celerate the graph construction process to mitigate
these computational costs.

Additionally, the scale of experimental data and
the expensive nature of graph construction make
it challenging to conduct comprehensive compar-
isons of hyper-parameter settings and technology
choices. For instance, factors such as the number of
paragraphs in the context window during document
chunking, the use of alternative RAG datasets, and
the impact of different prompts for graph construc-
tion were selected empirically based on limited
data. A more rigorous and comprehensive compar-
ison of these factors is needed in future work to
identify the optimal configurations that maximize
the method’s potential.

For latency, while our method introduces addi-
tional computational overhead, we believe that in
critical fields like medicine, users are often will-
ing to trade speed for precision. As demonstrated
in our manuscript, our approach delivers signifi-
cantly more accurate and evidence-based responses.
A useful analogy is the increasing popularity of
GPT-based deep research assistants, which users
accept despite longer response times in exchange
for higher-quality, more professional outputs. On
the graph updating side, we designed the graph
structure with hierarchical modularity to accom-
modate different update frequencies: The bottom
layer contains foundational medical dictionaries
and terminology, which change infrequently and
can be treated as static. The middle layer integrates
moderately updated sources like medical literature.
The top layer includes frequently changing sources
such as clinical reports. Since updates to the lower
layers are more costly while the upper layers are
more lightweight and cost-efficient to update, the
differing update frequencies across layers naturally
align with this structure—thereby helping to reduce
the overall update cost to some extent. In the future
work, to address the remaining challenge of expen-
sive updates even at the top layer, we can propose

a local update strategy. Specifically, we can com-
pute the semantic distance between newly inserted
knowledge and existing Meta-Graphs, and apply
updates only to relevant subgraphs that exceed a de-
fined threshold. This selective updating approach
balances both efficiency and accuracy. We recog-
nize these as practical and important limitations,
and we plan to supply more detailed discussion on
them as part of our future work in this research
direction.

Finally, regarding human evaluation, while we
made efforts to ensure diversity and expertise
among our raters, the evaluation may still carry
biases due to the limited sample size (120 ques-
tions on MultiMedQA and 50 questions on Diverse-
Health). Future research should include larger-
scale and better-designed human evaluations to
thoroughly assess the model’s performance.
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A Detailed Implementation

In the semantic document chunking process, we
apply proposition transfer (Chen et al., 2023) to
each paragraph before semantic validation to ex-
tract standalone statements that are self-contained
and unambiguous (e.g., transforming "It prevents
respiratory disease" to "Remdesivir prevents res-
piratory disease"). Through proposition transfer,
each paragraph is transformed into independent,
clear statements. For semantic validation, we uti-
lize an LLM to first generate a short summary and
a title for the current chunk. The LLM then de-
termines if the current paragraph belongs to this
chunk based on the title and summary. If it belongs,
the LLM updates the title and summary accord-
ingly. If not, the current chunk is finalized, and the
LLM generates a title and summary for the new
paragraph, treating it as the start of a new chunk.
If the scan reaches the end of the document, the
current chunk is automatically finalized to ensure
no chunk spans across multiple documents.

In the entity extraction, we include unique IDs
to trace their source document. In practice, for the
user privacy data, we generate a universally unique
identifier (UUID) for each document as their IDs.
For the medical papers and books, we use their Dig-
ital object identifier (DOI) as their IDs, and for the
medical dictionaries, we use their UMLS Concept
Unique Identifiers (CUI) as their IDs. This identi-
fier is crucial for retrieving information from the
source, enabling the generation of evidence-based
responses later. For tag-based summary generation
and merging, we insert ten tags into the prompt at
a time to iteratively generate the response.

For the standard LangChain RAG baseline, we
followed the official implementation, which uses
similarity search based on cosine similarity be-
tween the embedded query and the embedded doc-
uments in a vector store. In our experiments, we
used this default setup to ensure a fair and repro-
ducible comparison. Since in MedGraphRAG, be-
sides the contributed U-Retrieval, we also relied on
cosine similarity to retrieve the final bottom-level
Meta-Graph. This design choice ensures consis-
tency across all baselines and isolates the impact
of our proposed retrieval strategy.

For testing the models on MultiMedQA, we eval-
uate their zero-shot performance using only the
test set of each dataset, without utilizing the train-
ing data for fine-tuning or including it in the RAG
data for retrieval. For evaluating accuracy on Fake-
Health, we incorporate its news content into the
Medical-Papers-tier graph of MedGraphRAG and
into RAG data of the others, then use the criteria
questions from the news content to prompt the mod-
els to respond with ’Satisfactory’ or ’Not Satisfac-
tory.’ For PubHealth, we integrate its news/reviews
into Medical-Papers-tier graph of MedGraphRAG
and into RAG data of the others, and prompt the
models to classify each claim as ’True,’ ’False,’
’Unproven,’ or a ’Mixture.’

B Additional Results and Analysis

B.1 Compare to SOTA Medical LLM Models

We also evaluated MedGraphRAG against a range
of previous SOTA medical large language models
on these benchmarks, including both intensively
fine-tuned models (Gu et al., 2022)(Yasunaga
et al., 2022a)(Yasunaga et al., 2022b)(Bolton
et al., 2022)(Singhal et al., 2022)(Singhal et al.,
2023a)(Wu et al., 2023) and non-fine-tuned mod-
els (Nori et al., 2023)(OpenAI, 2023b)(OpenAI,
2023a)(Saab et al., 2024). The results, depicted
in Fig. 6, show that when combined with GPT-4,
our MedGraphRAG surpasses the previous SOTA
model, Medprompt (Nori et al., 2023), by a no-
table 1.1% on the MedQA benchmark, and also
outperforms it across all 9 datasets, establishing
a new SOTA on the medical LLM leaderboard.
It’s important to note that while Medprompt re-
trieves training data with similar questions and
correct answers as examples for prompting, our
model operates with a simple prompt containing
only the original question. This improvement fur-
ther demonstrates MedGraphRAG’s superior capa-
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Table 4: Compare to several specialized medical retrievers across nine medical Q&A benchmarks.
MedQA MedMCQA PubMedQA MMLU-Col-Med MMLU-Col-Bio MMLU-Pro-Med MMLU-Anatomy MMLU-Gene MMLU-Clinic

MedCPT 79.6 74.9 76.8 77.8 95.4 93.9 82.6 90.9 88.3
MedRAG 88.5 78.1 78.9 85.5 96.8 94.8 84.5 93.6 94.5

RAG2 85.2 76.2 79.3 83.4 96.1 94.8 83.9 91.0 93.2
Self-BioRAG 81.1 73.5 76.2 84.1 95.7 94.2 82.1 92.8 92.7

Ours 91.3 81.5 83.8 91.5 98.1 95.8 93.2 98.5 96.4

bility, even when retrieving from data with a dif-
ferent distribution. Furthermore, when compared
to intensive fine-tuning methods on these medi-
cal datasets, MedGraphRAG outperforms strong
models like Med-PaLM 2 (Singhal et al., 2023b)
and Med-Gemini (Saab et al., 2024), establishing a
new SOTA. This superior performance highlights
MedGraphRAG’s ability to efficiently leverage the
inherent capabilities of LLMs and enhance their
performance with additional data, without the need
for fine-tuning.

B.2 Case study: GPT4 with and without
MedGraphRAG

As shown in Fig. 7, we compare the responses
generated by vanilla GPT-4 and MedGraphRAG
for a misleading case where a patient presents with
symptoms commonly associated with Alzheimer’s
but is actually Vascular Dementia. GPT-4 was
misled, returning an incorrect diagnosis. In con-
trast, MedGraphRAG notes the details like that the
MRI showed moderate vascular changes and white
matter lesions, which are indicative of chronic
ischemic damage—typical of vascular dementia
rather than Alzheimer’s, through retrieving the
findings in (Smith and Beaudin, 2018), "CBF and
WMH that...causing ical impairments,". With de-
tailed definitions of medical terms and source
knowledge retrieved to assist the reasoning pro-
cess, MedGraphRAG chose the correct answer and
provided a detailed, easily understandable expla-
nation with citation, enabling users to verify the
response.

In Table 4, we compared MedGraphRAG with
several specialized medical retrievers, including
MedCPT (Jin et al., 2023), MedRAG (Zhao et al.,
2025), RAG2 (Sohn et al., 2024), and Self-BioRAG
(Jeong et al., 2024), across nine medical Q&A
benchmarks. All methods were evaluated under
the same RAG corpus and experimental settings,
as described in the manuscript. The results show
that MedGraphRAG consistently outperforms all
other specialized retrievers across all datasets, with
significant performance gains. We attribute this im-
provement to our method’s ability to semantically
organize large-scale medical corpora, enabling pre-

cise and context-aware retrieval even in complex
and long-range RAG corpora.

B.3 Case study: Long-form generation of
MedGraphRAG

We provided four examples of MedGraphRAG
Long-form response generation. We include the
diverse cases across Comorbidity Fig. 8, 9, Rare
Disease Fig. 10,11, Minority Health Fig. 12,13,
and Chornic Disease Managment Fig. 14,15. We
can see the unique responses provided by Med-
GraphRAG combining citations with clear term
explanations in medical responses ensures both
credibility and understanding. Citations provide
a foundation of evidence, reassuring patients and
professionals that recommendations are grounded
in research. For example, in the hormone replace-
ment therapy answer, the association between HRT
and increased risks of cardiovascular events and
thromboembolic complications is backed by "Dhe-
jne et al., 2011," which provides long-term follow-
up data on health outcomes in transgender individ-
uals undergoing hormone therapy. This level of
transparency is particularly important in healthcare,
where trust is critical for patient compliance and
effective care.

Clear term explanations help bridge the gap for
those who might struggle with medical jargon. By
explaining complex terms like cardioselective beta-
blockers or hypoglycemia in simple language, pa-
tients better understand their condition and the ra-
tionale behind their treatment. This not only em-
powers them but also helps in preventing misunder-
standings that could lead to improper management
of their health. Altogether, using citations for ev-
idence and plain language for explanation strikes
the right balance between trust, safety, and accessi-
bility in medical communication.

B.4 Case study: Abstracted Graph
comparison between GraphRAG and
MedGraphRAG

We conducted a closer examination of the ab-
stracted graphs of GraphRAG (Fig. 16 a) and Med-
GraphRAG (Fig. 16 b) for the case study shown in
the left plot of Fig. 7. By abstracting similar near-
est neighbors of the retrieved entities (COPD and
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Figure 6: Compare to SOTA Medical LLM Models on MedQA benchmark.

Heart Failure), we observed that MedGraphRAG
accessed more detailed and specific entities, such as
beta-1 receptors and Cardioselective Beta-Blockers,
by linking to relevant references. While these enti-
ties are also present in the GraphRAG graph, they
were not retrieved under the same number of near-
est neighbors due to their indirect linkage with the
retrieved entities. GraphRAG lacks a hierarchical
graph that directly links these entities through an
"is reference of" relationship, leading them to be
overshadowed by more general neighbors at the
same tier, ultimately missing retrieval.

Moreover, MedGraphRAG’s approach to linking
Heart Failure with Cardioselective Beta-Blockers
enables further connections through beta-1 recep-
tors in the second-tier graph, eventually linking
back to Non-selective Beta-Blockers. It helps to
link Heart Failure and Non-selective Beta-Blockers
as neighbors in the first-tier graph relationship link-
ing stage, which significantly enhances the LLM’s
ability to generate specific and accurate responses.
Such an observation demonstrates the importance
of including triple linking relationships when con-
structing the first-tier graph. MedGraphRAG lever-
ages this unique design to build a more detailed
and professional knowledge graph, resulting in bet-
ter entity retrieval and richer context for accurate
generation.

C Boarder Impact

Our MedGraphRAG enhances LLMs by provid-
ing intrinsic source citations, significantly improv-

ing transparency, interpretability, and verifiability.
This tool ensures that each response generated by
the LLM is accompanied by provenance or source
grounding information, clearly demonstrating that
answers are rooted in the dataset. The availability
of cited sources for each assertion allows users, es-
pecially in the critical field of medicine, to swiftly
and accurately audit the LLM’s output against the
original source material. This feature is crucial
where (a) a trustworthy relationship -based on trans-
parency of reasoning, needs to exist between hu-
man experts and LLM agents and (b) where the
security/privacy of the information shared with
the agent is mission critical. By employing this
method, we have developed an Evidence-based
Medical LLM. Clinicians can easily verify the
source of the reasoning and adjust the model’s re-
sponses, ensuring the safe use of LLMs in clinical
scenarios.
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Figure 7: Example case shows MedGraphRAG generating evidence-based responses with grounded citations and
terminology explanations.
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Figure 8: MedGraphRAG long-form generation response on Comorbidity example-part1.
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Figure 9: MedGraphRAG long-form generation response on Comorbidity example-part2.
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Figure 10: MedGraphRAG long-form generation response on Minority Health example-part1.
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Figure 11: MedGraphRAG long-form generation response on Minority Health example-part2.
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Figure 12: MedGraphRAG long-form generation response on Rare Disease example1.
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Figure 13: MedGraphRAG long-form generation response on Rare Disease example-part2.
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Figure 14: MedGraphRAG long-form generation response on Chornic Disease Managment example-part1.
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Figure 15: MedGraphRAG long-form generation response on Chornic Disease Managment example-part2.
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Figure 16: The comparison of abstracted graph between
GraphRAG and MedGraphRAG.
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