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Abstract

Large Language Models (LLMs) have achieved
impressive accomplishments in recent years.
However, the increasing memory consump-
tion of KV cache has possessed a significant
challenge to the inference system. Eviction
methods have revealed the inherent redundancy
within the KV cache, demonstrating its poten-
tial for reduction, particularly in deeper layers.
However, KV cache reduction for shallower
layers has been found to be insufficient. Based
on our observation that, the KV cache exhibits
a high degree of similarity. Based on this ob-
servation, we proposed a novel KV cache re-
duction method, SpindleKV, which balances
both shallow and deep layers. For deep layers,
we employ an attention weight based eviction
method, while for shallow layers, we apply a
codebook based replacement approach which is
learnt by similarity and merging policy. More-
over, SpindleKV addressed the Grouped-Query
Attention (GQA) dilemma faced by other atten-
tion based eviction methods. Experiments on
two common benchmarks with three different
LLMs shown that SpindleKV obtained better
KV cache reduction effect compared to base-
line methods, while preserving similar or even
better model performance.Our code is available
in https://github.com/tyxqc/SpindleKV.

1 Introduction

Large language models (LLMs) (OpenAI, 2023;
Touvron et al., 2023; Yang et al., 2024d), demon-
strate impressive capabilities across various fields,
such as machine translation (Koshkin et al., 2024),
content generation (Yuan et al., 2022), and harder
tasks like coding (Rozière et al., 2023) and reason-
ing (Wei et al., 2022; Yao et al., 2024b). LLMs’
excellency in generating coherent text makes them
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Figure 1: A quick illustration for how SpindleKV works
on LLaMA-3-8b-instruct.

useful tools in a wide range of industries. However,
their more widespread and comprehensive use is
facing a severe and realistic challenge, which is
their high demand for GPU memory (Yao et al.,
2024a). When using large models for inference,
the memory overhead primarily consists of two
parts: the model parameters and the context. The
context exists in the form of Key-Value cache (KV
cache), in order to reduce redundant computations
during the autoregressive decoding (Zhang et al.,
2022; Touvron et al., 2023; Shi et al., 2024; Ma
et al., 2025; Yao et al., 2024c; Shi et al., 2025).

With an increase in context length, the memory
footprint for the KV cache increases proportionally.
Occasionally, it can exceed the memory occupied
by the model’s parameters. As the context of LLMs
getting longer, KV cache has become a new bottle-
neck that limits the deployment and application of
LLMs (Bai et al., 2024).

Previous research has identified significant re-
dundancy within KV cache, facilitating potential
cache compression. Token eviction (Zhang et al.,
2023; Xiao et al., 2024; Li et al., 2024; Yang et al.,
2024b; Cai et al., 2024) is one of the prevailing
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methods. It reduces the size of the cache by elim-
inating tokens with smaller contribution in the at-
tention mechanism. Token merging (Zhang et al.,
2024; Wan et al., 2024; Wang et al., 2024) goes
a step further by merging tokens based on their
relevance, thereby compressing the information
at a finer granularity. Another approach is quan-
tization (He et al., 2024; Liu et al., 2024a; Tao
et al., 2024), which provides a low-precision ap-
proximation of the KV cache without removing any
information. However, these works indicate that
the reduction effectiveness is generally better for
deeper layers than for shallower layers with token
eviction, merging or quantization. Consequently,
research on KV cache reduction methods for shal-
low layers has been largely overlooked in previous
studies.

KV cache reduction methods work better in
deeper layers for two key reasons: (1) attention
patterns in deeper layers naturally concentrate on
fewer tokens, exhibiting low-rank characteristics;
(2) deeper layers are more robust to modifications
due to the shallow-to-deep propagation of changes
through the network. We argue that shallow layers
also exhibit notable redundancy, primarily because
tokens in these layers undergo fewer Transformer
encoding iterations and thus receive limited con-
textual influence. This indicates the existence of
an additional form of redundancy beyond inter-
token redundancy: tokens can be decomposed into
smaller, redundant basis vectors that form their
fundamental constituents. By leveraging both inter-
token redundancy in deeper layers and inner-token
compositional redundancy in shallow layers, we
propose SpindleKV to balance both deep and shal-
low layers KV cache reduction as illustrated in Fig-
ure 1. Specifically, we employ token eviction mech-
anisms to eliminate redundancy in deeper layers,
while adopting a Just-in-Time (JIT) learned basis
vector codebook to reduce redundancy in shallow
layers.

We conducted comprehensive evaluations across
multiple models and datasets. The experimental re-
sults demonstrate that our approach achieves higher
KV cache reduction rates while maintaining com-
parable performance, and delivers superior per-
formance at equivalent reduction rates, compared
to existing state-of-the-art (SOTA) methods. No-
tably, in some settings, our approach enables a
50% reduction in KV cache size without compro-
mising model performance metrics. Evaluations
on long-text knowledge-intensive datasets demon-

strate that SpindleKV preserves the model’s knowl-
edge retention and reasoning capabilities, even with
significant KV cache reduction. Further evalua-
tions on the Needle-in-a-Haystack task confirm that
SpindleKV maintains the model’s long-sequence
retrieval efficacy, which is essential for efficient
large-scale document processing. Under identical
KV cache compression ratios, SpindleKV demon-
strates enhanced retrieval recall metrics, outper-
forming both PyramidInfer and PyramidKV. Lastly,
the comparative experiments conducted on the use
of GQA-based models indicate that SpindleKV
has superior compression capability on the GQA
model, thereby validating that our approach is
highly compatible with the new paradigms of
LLMs.

2 Related Works

2.1 KV Head Reuse

The concept of KV head reuse has been introduced
in Multi-Query Attention (MQA, Shazeer, 2019),
where a single set of KV heads is retained to serve
all Q heads. Even when sharing the same KV, dif-
ferent Q heads focus on different aspects of K,
resulting in diverse combinations. The subsequent
Grouped-Query Attention (GQA, Ainslie et al.,
2023) method introduced a new balance by group-
ing Q heads and sharing a single KV head within
each group, offering a finer-grained approach to bal-
ancing performance and efficiency. However, de-
spite GQA becoming the gold standard for LLMs,
further compression of the KV cache presents chal-
lenges: (1) KV heads now possess higher informa-
tion density; (2) KV head reuse restricts decisions
to be made across all heads within the same group,
limiting the potential for fine-grained methods.

2.2 Token Eviction

Earlier works discovered that tokens at the be-
ginning and end of the sequence tend to be the
most important in KV cache. These findings in-
spired several KV cache eviction methods like
StreamingLLM (Xiao et al., 2024). Recent work
has introduced eviction methods based on the con-
tribution of attention scores, such as H2O (Zhang
et al., 2023) and SnapKV (Li et al., 2024). Build-
ing on this, some approaches no longer simply re-
move unimportant tokens, but instead merge them
into the tokens that are retained, represented by
CaM (Zhang et al., 2024), D2O (Wan et al., 2024),
and KVMerger (Wang et al., 2024). Latest re-
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Figure 2: Comparison of major eviction methods.

searches, PyramidInfer (Yang et al., 2024b) and
PyramidKV (Cai et al., 2024), show that the cost of
evicting tokens from deeper layers is often lower,
and the evicted KV cache exhibits a triangular pat-
tern. However, these methods are difficult to inte-
grate with GQA, as they require evaluating token
acceptance or eviction for an entire group of Q
heads, rather than for each individual Q head.

Quantization is also an important method to
reduce KV cache though less relative with our
method, detailed in Appendix A.

In summary, existing KV cache reduction meth-
ods face challenges in compressing shallower lay-
ers. Moreover, attention score-based eviction meth-
ods exhibit poor compatibility with GQA.

3 Method

3.1 Notations
SpindleKV does not involve information interac-
tion between layers; therefore, we focus solely on
the attention component within a single decoder
layer. Let d represent the hidden dimension of the
model, dh the size of each attention head, and h the
total number of attention heads, hg as the number
of KV heads for GQA models, and the amount of
Q heads per KV head hn = h/hg correspondingly.
We denote l as the length of the input sequence
X ∈ Rl×d. We firstly acquire the attention score
Ai of the i-th head through the equation:

Ai = softmax

(
mask

(
Qi ·K⊤

i√
dh

))

Qi = X ·WQ,i · R, Ki = X ·WK,i · R
, (1)

in which W{Q,K},i denotes the parameters of the
LLM andR as rotary position embedding matrix.
Then, the output of the masked multi-head self-
attention is given out as follows.

O =
h−1∑

i=0

Ai · Vi ·WO,i

Vi = X ·WV,i

Additionally, W{V,O},i denotes the other two pa-
rameter matrices. We define Γ ∈ {K,V } as a
unified representation for K and V . Lastly we
use {x, ki, vi, γ}a to represent the a-th entry of
{X,Ki, Vi,Γ}.
Ai ∈ Rl×l is the critical standard for evaluat-

ing the contribution of each token to the attention.
We typically use the accumulated attention scores,
which represent the average attention score in a
window lw for each query from a given token’s key,
as an indicator of the importance of a token. The
accumulated attention score aci,a for the a-th token
in the sequence is calculated as shown in equation:

aci,a =

∑l−1
b=l−lw

Ai,a,b

l − a
. (2)

Additionally, for models that utilize GQA, the same
K would serves multiple Q. We’ve also have to
take the average across all hn heads (Yang et al.,
2024b), as equation:

ac′i,a =
1

hn

hn∑

g=0

∑l−1
b=l−lw

Ahn·i+g,a,b

n− a
. (3)

For SpindleKV, we also focused on the similarity
S{K,V } within the KV cache, measured in cosine
similarity as equation:

cos_sim (γa, γb) =
a · b⊤
|a| · |b|

SΓ,i,a,b = cos_sim(γi,a, γi,b).

(4)

3.2 Preliminary Experiment

We investigated the distributional characteristics of
the KV cache components. To this end, we exam-
ined the attention distributions and the similarity
of KV caches in the LLaMA2-7B-chat model on
the 2WikiMQA dataset.

Attention Sparsity We calculated the accumu-
lated attention scores ac for each token and each
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(b) High cosine similarity in shallower layers

Figure 3: The distribution of attention weight and cosine similarity in token level cross different layers of LLaMA2-
7b-chat with a prompt sampling from 2WikiMQA.

attention head across all layers, and then aggre-
gated these scores in ascending order. As shown in
Figure 3a, we observed that as the layer depth in-
creases, the number of tokens with lower attention
scores also increases, reflecting the concentration
of attention scores on a few specific tokens. This
phenomenon reveals the attention sparsity in deeper
layers and provides evidence for the feasibility of
token eviction in these layers.

KV Constitutional Similarity We measured the
number of token pairs in different layers whose
similarity S exceeds a threshold θ. The compo-
sition of the KV cache exhibits a high degree of
similarity in the shallower layers, as depicted in
Figure 3b. This suggests that, in the shallower
layers, although many tokens receive high atten-
tion scores, their constituent components are highly
similar. More details are avaiable in Appendix B.
This observation leads us to consider the potential
of managing large numbers of similar KV caches
using a codebook-based approach.

3.3 Attention Weight Based Token Eviction

We apply token eviction majorly for reducing the
redundancy in deeper layers. Following Pyra-
midKV (Cai et al., 2024), a simple linear interpola-
tion works on the layer-wise KV cache allocation.
We define r as the total reserve ratio the KV cache.
Following SnapKV (Li et al., 2024), we apply an
observation window with length lw to calculate ac,
in which all the tokens are reserved. The reserve
ratio of the context, whose length lc = l − lw, is
consistent across all decoding request. We first cal-

culate the reserve ratio of context rc by equation:

rc =
r · l − lw

lc
.

Moreover, we define the minimal preserve ratio for
any layer as β. And we define α = 1

2(1+β). Then
we can define the maximal and minimal retain ratio
for context for a model with m layers, used by layer
0 and m− 1, in the equation:

rc(0)=

{
2× rc − 0.05, β < rc ≤ α

1, α < rc ≤ 1
,

rc(m− 1)=

{
0.05, β < rc ≤ α

1− 2× rc, α < rc ≤ 1
.

(5)

Finally, the retain ratio of λ-th layer rc(λ) can be
determined by equation:

rc(λ) = rc(0) +
rc(m− 1)− rc(0)

m− 1
· λ. (6)

At inference time, we dynamically select the
preserved KV cache of i-th head by aci:

ηi = argTopK (aci, k = ⌊rc(λ)× lc⌋)
Γr,i = Γi[ηi]

. (7)

For models utilizing GQA, we can employ the
ac′ designed for GQA in the previous section to
complete this step. However, an alternative ap-
proach is to directly repeat these KV vectors hn
times, effectively fully unfolding the GQA, then
decision can then be made regarding whether to
retain them. This step will increase the size of the
KV vectors by several times, but we will address
this overhead in the next subsection, ensuring that
it does not require any additional storage space.
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Figure 4: An overview of SpindleKV

3.4 Similarity Based Token Replacement

The redundancy that the Eviction method cannot
address arises from the high similarity between the
constituent of the KV cache in shallower layers.
Meanwhile, the operation of unfolding GQA in the
previous section also increases this redundancy, as
the cosine similarity of the unfolded components
is clearly 1. Therefore, we can approximate the
KV cache by constructing a CodeBook from the
similarity of the KV cache and retaining only the
indices pointing to the CodeBook entries, thereby
reducing its size.

In the prefilling stage, our goal is to create two
CodeBooks C{K,V } that satisfies the following con-
ditions:

• min(|CK ∪ CV |)

• ∀γ ∈ Γr,i, ∃j ∈ [0, |CΓ| − 1] ,
s.t. cos_sim(k,CΓ,j) > θΓ,

where θ{K,V } are the similarity threshold for K
and V .

However, we noted that cosine similarity only
measures the direction of a vector and does not
effectively capture its magnitude. This implies that
we must also record the magnitude to minimize
information loss as much as possible. Formally,
this involves recording the magnitude m{K,V } of
each KV cache, as shown in the equation:

mΓ =
√
Γ · Γ⊤, Γr ←−

Γr

mΓ
. (8)

Then we construct a binary matrix G{K,V },
where GΓ,a,b indicates whether the a-th and b-th
tokens can be merged, determined by:

GΓ = where(SΓ > θΓ, 1, 0). (9)

This matrix also represents the adjacency matrix
of an undirected graph. What we need to identify
is the node with the highest degree in this graph, as
the vector corresponding to this node can represent
the greatest number of other vectors. The degree of
each node is computed as shown in the equation:

sΓ,a =

N−1∑

b=0

GΓ,a,b. (10)

We greedily choose the token with the highest de-
gree and add it to the C. Then we delete this vertex
and the vertices that are directly adjacent to this
vertex from the graph through a simple mask op-
eration. Formally, each round of the CodeBook
building process is given by:

ι = argmax(sΓ)

CΓ ←− CΓ + [Γr,ι]
, (11)

then, we build the reference r{K,V } of each token
to the corresponding vector in the CodeBook:

ηι = argwhere(GΓ,ι == 1)

rΓ[ηι] = |CΓ| − 1
. (12)

The mask{K,V } and the clean up to the graph is
given by:

maskΓ = ¬G⊤
Γ,ι · ¬GΓ,ι

GΓ ←− GΓ & maskΓ
. (13)

We firstly execute equation 8, 9, then execute equa-
tion 10, 11, 12, 13 repetitively until GΓ == 0.
Then we finished the construction of CodeBook
CΓ, magnitudes mΓ and the reference to Code-
Book for every token rΓ. The process is illustrated
in Algorithm 1.

At inference time, we can reconstruct KV cache
efficiently through the equation:

Γr = CΓ[rΓ]⊗mΓ (14)

During inference, we generate a large number
of new KV cache entries. We first search for suit-
able CodeBook entries for merging, using θ as the
threshold. If such entries are found, we merge
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(c) LongBench results of Mistral-7b

Figure 5: LongBench result on three models cross different reserve ratios.

Algorithm 1 CodeBook Generate of Γ ∈ {K,V }
Input: Cached Γr, Threshold θΓ.
Output: CodeBook CΓ, References rΓ,

Magnitudes mΓ

CΓ ← ∅
rΓ ← [−1,−1, . . . ,−1] ▷ Initialization
mΓ ← L2Norm(Γ,dim = −1)
Γr ← Γr/mΓ ▷ Normalize Γ to 1
SΓ ← cos_sim(Γ, Γ)
GΓ ← where(SΓ > θΓ, 1, 0)
while GΓ! = 0 do

sΓ ← sum(SΓ, dim = 1)
ι← argmax(sΓ)
CΓ ← CΓ + [Γr,ι] ▷ New entry
ηι ← argwhere(GΓ,ι == 1)
rΓ[ηι]← |CΓ| − 1 ▷ Inserted to the end
maskΓ ← matmul(¬G⊤

Γ,ι,¬GΓ,ι)
GΓ ← GΓ & maskΓ ▷ Clean up

return CΓ, rΓ, mΓ

them; otherwise, we repeat the process of building
the CodeBook for the remaining tokens.

It is important to note that although this search
process has a slightly higher time complexity, it
does not result in a significant additional time over-
head. Furthermore, our method operates on the
pre-RoPE K, meaning that after reconstruction, the
RoPE operation must be re-applied. However, due
to limitations imposed by memory bandwidth and
the inherent sparsity of RoPE as a sparse matrix
multiplication, this step does not introduce sub-
stantial time overhead (Liu et al., 2024b). This is
because, while the computational workload is in-
creased, the corresponding increase in arithmetic
intensity enhances the peak FLOPS achievable by
the chip (Williams et al., 2009).

4 Experiments

4.1 Experimental Setup
We conducted our experiments on three models,
including LLaMA2-7b-chat (Touvron et al., 2023),
LLaMA3-8b-instruct (Dubey et al., 2024) and
Mistral-7b-instruct-v0.2 (Jiang et al., 2023). Their
maximum context length ranges from 4k to 32k.
LLaMA2-7b employs MHA, while LLaMA3-8b
and Mistral-7b utilize GQA with hn = 8, hg = 4.
All models’ h = 32.

We evaluate the model’s knowledge and rea-
soning capabilities on LongBench (Bai et al.,
2024), which contains 16 long-context knowl-
edge intensive subsets covering 6 tasks including
multi-document question answering (QA), single-
document QA, summarization, few-show learning,
synthetic tasks and code, with the length of most
tasks ranging from 5k to 15k. We also evaluate
our method on Needle-in-a-Haystack task (Briakou
et al., 2023) to test the long-context retrieval ability.

We select Pyramidinfer (Yang et al., 2024b) and
PyramidKV (Cai et al., 2024) as baselines, both
of which compress the KV cache based on token
eviction method and allocate pyramid shaped KV
cache cross layers.





rλ1 =

∑hg−1
j=0 (|Kj,r

λ |+ |V
j,r
λ |)∑hg−1

j=0 (|Ki
j |+ |V i

j |)

rλ2 =
|Cλ

K ∪ Cλ
V |∑hg

j=0(|Kλ
j,r|+ |V λ

j,r|)

rλ3 =
1

dh

(
dh +

int_bit
key_bit + 1

)

rλ = rλ1 × rλ2 × rλ3

r =
1

m

m−1∑

λ=0

rλ

(15)

We use the reserve ratio r to measure the com-
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Methods Ratio
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

AVG.

Na.QA Qasp Mu.QA Ho.QA Wi.QA Musq Gv.Rp QMSm M.New TREC Tr.QA SASm PCnt Pa.Rt Lcc RB.P

FullKV 100% 25.70 29.75 41.12 45.55 35.87 22.35 25.63 23.03 26.21 73.00 90.56 41.88 4.67 69.25 58.05 50.77 41.46

PyramidInfer 39.3% 23.75 17.46 29.97 35.08 23.92 16.90 28.08 21.26 24.42 62.00 85.06 41.45 1.04 41.23 50.95 52.86 34.71

PyramidKV 40.5% 26.31 28.64 49.12 41.66 25.98 19.02 26.38 23.91 22.66 70.00 85.88 42.53 2.69 86.32 54.04 53.36 41.16

SpindleKV 40.1% 26.95 31.23 49.01 41.89 26.90 18.60 29.92 24.56 24.89 71.50 85.98 43.39 2.74 86.18 56.39 54.13 42.14

PyramidInfer 30.7% 22.65 14.57 30.14 33.87 23.52 15.59 26.82 21.1 23.1 61 84.18 40.57 1.85 32.25 50.64 53.02 33.43

PyramidKV 31.4% 26.12 27.31 48.31 41.44 25.14 18.72 25.28 23.61 21.99 69.00 86.27 42.65 2.53 84.81 53.71 52.77 40.60

SpindleKV 30.2% 26.69 30.19 49.32 42.09 27.23 18.69 28.52 24.19 24.02 71.00 86.38 43.54 3.03 87.18 55.19 53.62 41.93

PyramidInfer 25.1% 21.43 13.49 25.88 31.92 20.44 14.83 25.27 20.57 22.06 58 82.16 40.77 1.45 27.93 52.53 52.55 32.00

PyramidKV 25.7% 25.14 26.11 46.97 40.56 25.46 19.06 25.00 23.32 21.55 70.50 86.41 41.92 3.26 84.56 51.95 52.23 40.25

SpindleKV 25.2% 25.97 30.34 49.17 42.06 27.35 18.22 27.99 24.25 23.19 70.00 86.22 42.96 2.74 87.26 54.69 53.77 41.64

PyramidInfer 20.3% 18.73 11.96 24.34 27.1 15.87 11.98 24.89 20.07 21.19 54.00 76.19 39.92 2.06 20.83 51.83 52.50 29.59

PyramidKV 20.5% 24.96 25.19 47.12 39.94 25.45 18.63 24.05 23.35 20.71 69.50 85.48 41.87 2.48 83.56 52.02 51.35 39.73

SpindleKV 20.0% 26.03 29.49 49.61 41.87 26.50 17.98 27.01 23.73 22.73 70.00 86.28 43.59 2.29 86.99 53.81 53.57 41.34

PyramidInfer 15.4% 17.28 11.52 23.41 26.38 16.72 11.98 24.49 19.41 20.77 53.00 68.87 39.78 3.53 11.88 54.48 52.72 28.51

PyramidKV 15.0% 24.36 24.66 45.85 40.67 24.81 17.83 23.29 23.41 20.53 70.00 86.09 40.74 3.27 81.84 51.54 50.60 39.34

SpindleKV 14.8% 26.02 28.05 48.84 40.74 25.45 19.05 25.51 23.72 21.95 69.50 86.13 42.47 2.70 85.65 53.89 52.48 40.76

Table 1: LongBench results for Mistral-7b-instruct-v0.2. The correspondence between abbreviations and datasets is
provided in Appendix C. We ensure that the reserve ratio r of SpindleKV is slightly lower than the baselines, with
the deviation kept within 2%, as our method cannot precisely control the KV cache size.

Methods Ratio Na.QA Wi.QA QMSm Tr.QA PCnt Lcc AVG.

FullKV 100% 24.5 36.23 23.40 90.48 4.77 59.21 39.77

w/o. repeat 39.1% 24.00 28.02 22.64 89.05 4.95 58.24 37.82
w/. repeat 39.1% 23.87 36.02 23.28 90.43 5.23 59.37 39.70

w/o. repeat 30.4% 21.47 24.00 22.21 89.47 4.70 57.63 36.58
w/. repeat 29.3% 24.18 34.95 23.52 90.43 5.24 59.24 39.59

w/o. repeat 21.3% 21.21 24.91 22.30 89.95 4.75 55.86 36.50
w/. repeat 21.2% 23.92 33.90 22.66 90.56 5.58 58.26 39.15

Table 2: Comparison between SpindleKV with and without repeating on LLaMA3-8b-instruct when handling GQA.

pression intensity. We define rλ as the reserve ratio
for λ-th layer, which is co-determined by rλ1 , the
reserve ratio of eviction method, rλ2 , the reserve
ratio of replacement method, and ri,3, serves as the
dtype convert ratio since we store int type index
and float type magnitude for each key and value.
The calculation is given by Formura 15. rλ = rλ1
for pyramidinfer and PyramidKV, and hg = h if a
repeat operation is conducted before eviction. We
record r1 and r2 for every input when evaluating
on LongBench to ensure their precision.

Hyper-parameters including α, β and θ, are
given in Table 3.

4.2 Accuracy on Long Context Tasks

LongBench Result We evaluate SpindleKV on
three models mentioned above and the result are

Hyper-parameter Value

Key Threshold (θK) 0.98
Value Threshold (θV ) 0.95

β 0.05
α 0.525

Table 3: Hyper-parameters Used in Experiments

Methods LLaMA3-8b Mistral-7b

PyramidInfer 0.615 0.621
PyramidKV 0.938 0.962
SpindleKV 0.979 0.975

Table 4: Accuracy of Needle-in-a-Haystack on
LLaMA3-8b-instruct and Mistral-7b-instruct-v0.2 with
15% KV cache reserved.

28434



40
0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00
31

00
32

00
33

00
34

00
35

00
36

00
37

00
38

00
39

00
40

00
41

00
42

00
43

00
44

00
45

00
46

00
47

00
48

00
49

00
50

00
51

00
52

00
53

00
54

00
55

00
56

00
57

00
58

00
59

00
60

00
61

00
62

00
63

00
64

00
65

00
66

00
67

00
68

00
69

00
70

00
71

00
72

00
73

00
74

00
75

00
76

00
77

00
78

00
79

00
80

00

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h 
Pe

rc
en

t

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) PyramidInfer on LLaMA3-8b.
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(b) PyramidInfer on Mistral-7b.
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(c) PyramidKV on LLaMA3-8b.
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(d) PyramidKV on Mistral-7b.

40
0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00
31

00
32

00
33

00
34

00
35

00
36

00
37

00
38

00
39

00
40

00
41

00
42

00
43

00
44

00
45

00
46

00
47

00
48

00
49

00
50

00
51

00
52

00
53

00
54

00
55

00
56

00
57

00
58

00
59

00
60

00
61

00
62

00
63

00
64

00
65

00
66

00
67

00
68

00
69

00
70

00
71

00
72

00
73

00
74

00
75

00
76

00
77

00
78

00
79

00
80

00

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h 
Pe

rc
en

t

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(e) SpindleKV on LLaMA3-8b.
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(f) SpindleKV on Mistral-7b.

Figure 6: Visualization of Needle-in-a-Haystack. The vertical axis of the table represents the depth percentage, and
the horizontal axis represents the token length.

Ratio Na.QA Wi.QA QMSm Tr.QA PCnt Lcc AVG.

100% 18.40 25.73 20.97 83.38 5.5 60.7 35.78
47.8% 18.57 25.51 21.05 84.40 6.0 60.54 36.01
29.4% 15.99 24.26 19.68 80.62 6.0 53.2 33.29

Table 5: Accuracy of 6 datasets on SpindleKV without eviction on LLaMA2-7b-chat.

illustrated in Figure 5 and Table 1. Figure 5 shows
that our method can further compress KV cache
while retaining model’s capability. Our method
outperforms the two baselines on both models with
and without GQA, showing that our method ef-
fectively reduced the constituent redundancy in
shallower layers. In models with GQA structure,
we surpass baselines with only half of the KV
cache compared with them, which indicates that
SpindleKV has a better compatibility with GQA.
Table 1 shows results of Mistral-7b on different
datasets in LongBench, more results are avaiable
in Appendix D.1. We report that our method fur-
ther surpasses Pyramidinfer on average score and
outperforms PyramidKV on 13 datasets between
different reserve ratios on Mistral-7b. The results
on LongBench show that our method can further
reserve model’s knowledge retention and reasoning
capabilities with the same KV cache budget.

Needle-in-a-Haystack Result Following Pyra-
midKV, we use LLaMA3-8b-isntruct and Mistral-
7b-instruct-v0.2 for this task. The results are dis-
played in Table 4 and more details are available
in Figure 6. In our experiment, models reserve

only 15% KV cache then retrieve a special "nee-
dle" from the context. The results in Table 4
indicate that, compared with PyramidInfer and
PyramidKV, SpindleKV significantly maintains the
model’s long-sequence retrieval efficacy with the
same KV cache budget. As illustrated in Figure 6,
PyramidInfer, which apply a mean operation on
attention weight before eviction raise significantly
context loss. And for PyramidKV, also raise no-
ticeable context loss when reserve only 15% KV
cache. But SpindleKV saves more context with the
same KV cache budget, significantly improved the
quality of after-compress retrieval.

4.3 Ablation Study

We investigate the correctness of the settings and
the effectiveness of every component in SpindleKV.

Integrating GQA We discussed two approaches
of how eviction methods integrate with GQA in
Section 3.3. We conduct an experiment with
LLaMA3-8b-instruct on the other approach follow-
ing PyramidInfer, which applies the same averaged
attention weight on different heads to conduct the
eviction. The results in Table 2 indicate that our
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Methods Ratio Na.QA Wi.QA QMSm Tr.QA PCnt Lcc AVG.

FullKV 100% 18.4 25.73 20.97 83.38 5.5 60.7 35.78

w/o. reconstruct 19.7% 17.17 25.64 20.73 84.15 5.5 59.34 35.42
w/. reconstruct 20.5% 17.34 25.64 20.64 84.15 6 60.31 35.68

w/o. reconstruct 28.3% 18.06 25.7 20.76 84.04 5.5 59.06 35.52
w/. reconstruct 29.1% 18.13 26.1 20.95 83.69 6 59.85 35.79

w/o. reconstruct 39.4% 18.47 25.77 20.81 83.89 5.56 59.41 35.65
w/. reconstruct 40.2% 18.45 25.74 20.66 84.31 6 60.45 35.94

Table 6: Accuracy of 6 datasets on SpindleKV with and without reocnstruct opearation on LLaMA2-7b-chat.

method further outperforms this approach, signifi-
cantly addressed the GQA dilemma.

CodeBook Works Without Eviction We re-
move the eviction part of SpindleKV and compress
KV cache with only the cosine similarity based
replacement method. We evaluate this method on
6 datasets of LongBench with 50% and 30% KV
cache reserve ratio for LLaMA2-7b-chat. The re-
sults in Table 5 indicates that this method com-
presses half of KV cache without any impact on
accuracy and reserves most of model’s capabilities
with 30% KV cache, Which confirms that there
is a significant amount of constituent redundancy
in the KV cache, which appears in the form of
Constitutional cosine similarity.

Effectiveness of reconstruction Via magnitude
In SpindleKV, we record the magnitude for each
key and value, and reconstruct them to their origi-
nal magnitude after indexing them from the Code-
Book. We compare the performance of SpindleKV
with and without the reconstruction operation on
LLaMA2-7b-chat. The results in Table 6 indi-
cate reconstruct operation can effectively reserve
model’s capability with only a slight memory con-
sumption of the magnitude.

5 Conclusion

In this study, we find the constituent redundancy
of KV cache in shallower layers and develop
SpindleKV. It addresses the GQA dilemma faced
by other attention weight based eviction methods
and balances both shallow and deep layers with
an attention weight based eviction method and a
CodeBook based replacement approach. Experi-
mental results present SpindleKV is a promising
solution on long-context inference with constrained
memory for KV cache.

Limitations

In this work, we develop SpindleKV, which
achieves a balance in KV cache compression across
shallow and deep layers. Experiments conducted
on two long-context benchmarks and three models
demonstrate the effectiveness of our method.

While our current approach shows promising re-
sults, future work will focus on further refining the
control over KV cache size to achieve more precise
management. Additionally, although we have vali-
dated the effectiveness of our method on LLaMA2-
7b-chat, LLaMA3-8b-instruct, and Mistral-7b-
instruct-v0.2, we plan to extend our evaluation to
additional models such as Qwen2.5-7b (Yang et al.,
2024a), LLaMA2-13b, and LLaMA3-70b. This
will allow us to further demonstrate the generality
of our approach across a broader range of settings.

References
Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury

Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
2023. GQA: training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023, pages 4895–4901.
Association for Computational Linguistics.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 3119–3137. Association for
Computational Linguistics.

Eleftheria Briakou, Colin Cherry, and George F. Foster.
2023. Searching for needles in a haystack: On the
role of incidental bilingualism in palm’s translation

28436

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2024.ACL-LONG.172
https://doi.org/10.18653/V1/2024.ACL-LONG.172
https://doi.org/10.18653/V1/2023.ACL-LONG.524
https://doi.org/10.18653/V1/2023.ACL-LONG.524


capability. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 9432–9452. Associa-
tion for Computational Linguistics.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, and Wen Xiao. 2024. Pyramidkv:
Dynamic KV cache compression based on pyramidal
information funneling. CoRR, abs/2406.02069.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong
Zhou, and Bohan Zhuang. 2024. Zipcache: Accu-
rate and efficient KV cache quantization with salient
token identification. CoRR, abs/2405.14256.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Roman Koshkin, Katsuhito Sudoh, and Satoshi Naka-
mura. 2024. TransLLaMa: LLM-based simultaneous
translation system. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages

461–476, Miami, Florida, USA. Association for Com-
putational Linguistics.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
LLM knows what you are looking for before genera-
tion. CoRR, abs/2404.14469.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam-
reza Haffari, and Bohan Zhuang. 2024a. Minicache:
KV cache compression in depth dimension for large
language models. CoRR, abs/2405.14366.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024b. KIVI: A tuning-free asymmetric 2bit
quantization for KV cache. In Proceedings of the
41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning
Research, pages 32332–32344. PMLR.

Ziyang Ma, Zuchao Li, Lefei Zhang, Gui-Song Xia,
Bo Du, Liangpei Zhang, and Dacheng Tao. 2025.
Model hemorrhage and the robustness limits of large
language models. CoRR, abs/2503.23924.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Noam Shazeer. 2019. Fast transformer decoding: One
write-head is all you need. CoRR, abs/1911.02150.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:
High-throughput generative inference of large lan-
guage models with a single GPU. In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
31094–31116. PMLR.

Luohe Shi, Zuchao Li, Lefei Zhang, Baoyuan
Qi, Guoming Liu, and Hai Zhao. 2025. KV-
latent: Dimensional-level KV cache reduction with
frequency-aware rotary positional embedding. In The
63rd Annual Meeting of the Association for Compu-
tational Linguistics.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and
Hai Zhao. 2024. Keep the cost down: A review on
methods to optimize llm’ s kv-cache consumption.
CoRR, abs/2407.18003.

28437

https://doi.org/10.18653/V1/2023.ACL-LONG.524
https://doi.org/10.48550/ARXIV.2406.02069
https://doi.org/10.48550/ARXIV.2406.02069
https://doi.org/10.48550/ARXIV.2406.02069
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2405.14256
https://doi.org/10.48550/ARXIV.2405.14256
https://doi.org/10.48550/ARXIV.2405.14256
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.18653/v1/2024.findings-emnlp.27
https://doi.org/10.18653/v1/2024.findings-emnlp.27
https://doi.org/10.48550/ARXIV.2404.14469
https://doi.org/10.48550/ARXIV.2404.14469
https://doi.org/10.48550/ARXIV.2404.14469
https://doi.org/10.48550/ARXIV.2405.14366
https://doi.org/10.48550/ARXIV.2405.14366
https://doi.org/10.48550/ARXIV.2405.14366
https://proceedings.mlr.press/v235/liu24bz.html
https://proceedings.mlr.press/v235/liu24bz.html
https://doi.org/10.48550/ARXIV.2503.23924
https://doi.org/10.48550/ARXIV.2503.23924
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2308.12950
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://openreview.net/forum?id=vQvZQ1wDVN
https://openreview.net/forum?id=vQvZQ1wDVN
https://openreview.net/forum?id=vQvZQ1wDVN
https://doi.org/10.48550/ARXIV.2407.18003
https://doi.org/10.48550/ARXIV.2407.18003


Qian Tao, Wenyuan Yu, and Jingren Zhou. 2024.
Asymkv: Enabling 1-bit quantization of KV cache
with layer-wise asymmetric quantization configura-
tions. CoRR, abs/2410.13212.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan
Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing Xiong,
and Mi Zhang. 2024. D2O: dynamic discriminative
operations for efficient generative inference of large
language models. CoRR, abs/2406.13035.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia
Zhang. 2024. Model tells you where to merge: Adap-
tive KV cache merging for llms on long-context tasks.
CoRR, abs/2407.08454.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Samuel Williams, Andrew Waterman, and David Pat-
terson. 2009. Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun.
ACM, 52(4):65âĂŞ76.
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A Quantization

Quantization is the most straightforward method
for providing a low-precision approximation of
the KV cache. FlexGen (Sheng et al., 2023) and
KIVI (Liu et al., 2024b), as prior works, have
proved the capability of quantization. Indeed, as
the bit-width decreases, uniform quantization of
the entire KV cache quickly encounters limitations,
prompting the development of more fine-grained
approaches (Yang et al., 2024c). One such ap-
proach, AsymKV (Tao et al., 2024), identifies a sim-
ilar pattern observed in eviction methods, namely,
that quantization compression becomes easier for
deeper layers of the cache. However, similarly, it
has significant limitations when it comes to com-
pressing the KV cache in shallower layers.

B More Observation Results

We conducted observations of cosine similarity on
Key and Values, and the results are showed in Fig-
ure 7 and Figure 8. We set θ = 0.9 for Key and
θ = 0.6 for Value as the token level cosine simi-
larity is more obvious in Key. Different with the
past study (Wang et al., 2024), we also observed the
layer level decrease of cosine similarity in Value. In
the shallower layers, the highly similar constituent
components is consistent in Key and Value.

C Abbreviation-Dataset Mapping

Due to space constraints, we use abbreviations for
datasets in Table 1, 10 and 11. Below 7, we provide
a detailed mapping between the abbreviations and
their corresponding full names for clarity and ease
of reference.

D More Experiment Results

D.1 Accuracy on Long Context Tasks

The detail LongBench results of LLaMA2-7b-chat
and LLaMA3-8b-instruct are depicted in Table 10
and Table 11. Overall, SpindleKV outperforms
baselines cross various reserve ratio of KV cache.

D.2 LongBench Results On More Baselines

We also compared SpindleKV with three additional
KV cache compression techniques on LongBench:
H2O, SnapKV, and StreamingLLM. The average
scores across 16 datasets for LLaMA3-8B-Instruct
are showed in Table 8, which demonstrate the su-
periority of SpindleKV as a promising solution for
KV cache compression compared to other method.
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Figure 7: Cosine similarity in Key.(θ = 0.9)
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Figure 8: Cosine similarity in Value.(θ = 0.6)

Abbreviation Full Name

Na.QA narrativeqa
Qasp qasper
Mu.QA multifieldqa_en
Ho.QA hotpotqa
Wi.QA 2wikimqa
Musq musique
Gv.Rp gov_report
QMSm qmsum
M.New multi_news
TREC trec
Tr.QA triviaqa
SASm samsum
PCnt passage_count
Pa.Rt passage_retrieval_en
Lcc lcc
RB.P repobench-p

Table 7: Abbreviation to Dataset Mapping
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Reserve Ratio H2O SnapKV StreamingLLM SpindleKV

20.0% 36.12 39.56 37.46 40.10
40.1% 37.34 40.48 39.29 41.13

Table 8: Accuracy of LongBench on LLaMA3-8b-instruct with more baselines.

Model FullKV SpindleKV with 40% Cache

LLaMA3-8B-Instruct 22.16 token/s 18.39 token/s
Mistral-7B 22.48 token/s 18.47 token/s

Table 9: Decoding speed (token/s) comparison between FullKV and SpindleKV with 40% cache.

D.3 Inference Speed
We measured the latency on LLaMA3-8B-Instruct
and Mistral-7B using a context length of 4096 and
a generation length of 1000 on a signal 3090 GPU.
The inference speed (token/s) are showed in Ta-
ble 9, our method does not introduce significant
additional time overhead during inference, which
is consistent with the analysis presented in our pa-
per.
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Methods Ratio
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

AVG.

Na.QA Qasp Mu.QA Ho.QA Wi.QA Musq Gv.Rp QMSm M.New TREC Tr.QA SASm PCnt Pa.Rt Lcc RB.P

FullKV 100% 24.50 31.50 39.36 43.70 36.23 21.60 28.50 23.40 26.39 74.00 90.48 42.82 4.77 69.50 59.21 54.02 41.87

PyramidInfer 39.3% 19.18 26.47 22.67 38.92 27.64 18.25 25.02 21.52 24.05 66.50 90.38 40.68 1.58 49.50 48.88 48.78 35.62

PyramidKV 40.6% 24.73 20.75 35.56 44.00 32.74 20.77 23.47 22.62 22.10 72.00 90.33 40.61 5.77 69.25 58.28 54.85 39.86

SpindleKV 39.1% 23.87 26.40 39.02 44.38 36.02 22.12 26.10 23.28 24.24 72.00 90.43 41.49 5.23 69.50 59.37 54.68 41.13

PyramidInfer 31.3% 19.58 23.23 21.60 36.24 24.45 16.79 24.31 21.31 22.78 62.50 89.74 40.17 2.20 49.00 48.04 49.43 34.46

PyramidKV 30.5% 23.02 20.24 33.66 44.50 30.27 20.95 22.60 22.77 21.40 71.50 90.24 40.47 5.83 69.50 58.94 54.69 39.41

SpindleKV 29.3% 24.18 25.71 37.44 43.42 34.95 21.97 25.13 23.52 23.13 72.00 90.43 41.47 5.24 69.50 59.24 60.04 41.08

PyramidInfer 26.0% 18.80 21.61 17.34 33.47 22.29 13.95 23.32 21.08 22.01 61.00 87.85 40.28 2.25 32.50 49.57 50.83 32.38

PyramidKV 24.2% 24.13 19.70 33.08 43.32 30.86 21.08 22.16 23.02 20.59 72.00 90.16 40.00 5.37 69.50 58.48 53.92 39.21

SpindleKV 23.6% 24.66 23.73 34.65 43.54 33.74 22.15 24.44 23.11 22.92 71.50 90.56 41.38 5.58 69.50 58.57 54.13 40.26

PyramidInfer 21.7% 16.98 15.74 17.47 31.30 22.74 14.68 23.09 20.72 21.31 54.50 84.45 40.32 2.36 21.00 53.22 51.01 30.68

PyramidKV 21.6% 23.77 18.77 34.46 42.84 30.46 21.00 22.19 22.98 20.23 72.50 90.18 40.05 5.70 69.50 57.33 53.83 39.11

SpindleKV 21.2% 23.92 23.16 35.87 43.52 33.90 21.20 24.27 22.66 22.46 71.50 90.56 41.37 5.58 69.50 58.26 53.93 40.10

PyramidInfer 16.6% 15.60 16.31 15.89 30.04 20.58 10.43 22.55 20.03 21.10 52.00 78.46 39.50 1.30 13.03 56.74 51.28 29.05

PyramidKV 16.1% 22.73 17.58 34.83 43.86 27.50 21.66 21.44 22.47 19.28 71.00 88.93 39.88 5.59 69.50 56.62 53.39 38.51

SpindleKV 16.0% 24.34 20.99 35.72 44.06 31.29 20.52 23.22 22.79 21.90 71.50 90.33 40.60 5.52 69.50 57.94 53.93 39.63

Table 10: LongBench Results of LLaMA3-8b-instruct.

Methods Ratio
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

AVG.

Na.QA Qasp Mu.QA Ho.QA Wi.QA Musq Gv.Rp QMSm M.New TREC Tr.QA SASm PCnt Pa.Rt Lcc RB.P

FullKV 100% 18.39 20.14 35.67 30.92 25.73 10.64 25.58 20.98 26.43 64.00 83.38 41.02 5.50 10.00 60.81 55.12 33.39

PyramidInfer 40.7% 15.36 15.40 19.23 29.14 24.53 7.49 21.64 19.66 22.70 54.00 81.79 40.71 4.00 3.50 54.29 51.98 29.09

PyramidKV 41.3% 18.38 20.99 35.98 30.76 25.45 10.79 23.73 20.88 25.08 64.00 83.75 41.17 6.00 10.50 60.58 54.93 33.31

SpindleKV 41.1% 18.45 21.23 36.67 30.80 25.74 10.62 24.49 20.66 25.18 64.00 84.31 41.11 6.00 10.00 60.45 54.92 33.41

PyramidInfer 31.2% 13.80 15.27 17.69 27.69 26.10 7.27 20.53 19.42 22.04 53.50 77.06 40.50 2.00 6.50 52.69 50.46 28.28

PyramidKV 30.8% 17.78 20.49 36.86 30.55 26.04 9.93 22.92 20.97 24.13 64.00 83.59 41.06 6.00 11.00 60.74 54.15 33.13

SpindleKV 30.8% 18.13 19.95 36.91 30.77 26.10 9.91 23.19 20.95 24.35 64.00 83.69 41.37 6.00 9.00 59.85 53.77 33.00

PyramidInfer 25.9% 14.85 15.19 15.41 26.82 24.95 5.67 19.96 18.66 21.34 49.00 76.22 38.83 4.50 5.00 51.87 51.71 27.50

PyramidKV 26.3% 17.32 20.99 36.37 30.86 25.62 9.80 22.38 20.57 23.24 64.00 83.81 40.82 6.00 10.50 59.95 54.40 32.91

SpindleKV 26.0% 17.31 20.72 36.86 31.09 25.80 10.00 22.93 21.32 23.94 64.00 84.00 40.97 6.00 10.00 60.92 53.70 33.10

PyramidInfer 21.1% 13.39 14.44 13.23 30.97 27.24 8.27 19.67 18.71 20.49 43.50 70.34 37.94 3.00 2.00 52.44 51.41 26.69

PyramidKV 22.3% 17.77 21.77 35.70 30.78 25.96 9.99 21.74 20.50 23.48 64.00 83.80 40.33 6.00 10.00 59.69 53.83 32.83

SpindleKV 22.1% 17.34 21.20 35.81 30.69 25.64 9.90 22.31 20.64 23.17 64.00 84.15 40.65 6.00 10.00 60.31 54.49 32.89

PyramidInfer 15.9% 12.11 14.49 14.25 26.98 27.30 6.76 19.28 18.33 19.78 38.00 61.76 38.84 2.00 6.00 52.35 50.78 25.56

PyramidKV 16.8% 16.95 20.81 36.05 31.22 25.50 9.69 20.77 20.52 22.53 64.00 83.72 40.09 6.00 10.00 58.36 53.33 32.47

SpindleKV 16.7% 17.33 20.64 35.04 31.01 25.88 9.72 21.28 20.15 22.67 64.00 87.84 39.81 5.50 11.00 59.60 54.34 32.86

Table 11: LongBench Results of LLaMA2-7b-chat.
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