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Abstract
Rumor detection on social media has become
an emerging topic. Traditional deep learning-
based methods model rumors based on con-
tent, propagation structure, or user behavior,
but these approaches are constrained by lim-
ited modeling capacity and insufficient train-
ing corpora. Recent studies have explored
using LLMs for rumor detection through su-
pervised fine-tuning (SFT), but face two is-
sues: 1) unreliable samples sometimes mis-
lead the model learning; 2) the model only
learns the most salient input-output mapping
and skips in-depth analyses of the rumored con-
tent for convenience. To address these issues,
we propose an SFT-based LLM rumor detection
model with Influence guided Sample selection
and Game-based multi-perspective Analysis
(ISGA). Specifically, we first introduce the In-
fluence Score (IS) to assess the impact of sam-
ples on model predictions and select samples
for SFT. We also approximate IS via Taylor
expansion to reduce computational complexity.
Next, we use LLMs to generate in-depth analy-
ses of news content from multiple perspectives
and model their collaborative process for pre-
diction as a cooperative game. Then we utilize
the Shapley value to quantify the contribution
of each perspective for selecting informative
perspective analyses. Experiments show that
ISGA excels existing SOTA on three datasets.

1 Introduction

The wide and fast spread of rumors online has
posed real-world threats in critical domains like pol-
itics (Hartley and Vu, 2020), and economy (CHEQ,
2023). Rumor detection aims to automatically de-
tect inaccurate and intentionally misleading news
items, and deep learning-based rumor detection has
become the mainstream of this task.

Traditional deep learning-based rumor detection
methods can be divided into three categories. The
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first is the content-based method, which typically
employs the deep-learning model to model the tex-
tual content of rumors (Yu et al., 2017; Ma et al.,
2018a). This method is easy to implement but suf-
fers from unreliable content. The second is the
propagation structure-based method, which cap-
tures the presence of temporal shifts (Ma et al.,
2018b; Wu et al., 2020) and spatial structures (Bian
et al., 2020; Matheven and Kumar, 2022) in the
news propagation process to avoid being misled
by unreliable contents. However, the propagation
structure is usually simple and disorganized, thus
sometimes failing to carry sufficient information
for rumor detection. The third is the user-based
method, which models the users who participated
in rumor propagation since users with similar at-
tributes (Huang et al., 2022) and historical behav-
ior (Gao et al., 2022) tend to perform similarly in
the rumor propagation process. Given the preva-
lence of malicious users, such as social bots, in the
rumor propagation process, the inaccurate model-
ing of user relationships limits the effectiveness.
Though the above methods achieved desirable per-
formance, their ability to model the required fea-
tures (i.e. content, propagation structure, or user
behavior) is also limited by the model capability
and amount of training data.

To increase the model capability, some re-
searchers use large language models (LLMs) (Tou-
vron et al., 2023a) for rumor detections. LLMs
with many parameters, trained on extensive cor-
pora, achieved remarkable capabilities (Wei et al.,
2023). Some work (Chen et al., 2023; Wan et al.,
2024) prompts LLMs to detect the rumors with
the task-specific instruction and in-context learning
(ICL) examples. However, on the one hand, given
the prompt length limitations, only a few ICL ex-
amples can be provided. The limited quality and
quantity of ICL examples and their patterns weaken
the ability to detect rumors. On the other hand, it
is hard to acquire task-specific knowledge without
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supervised fine-tuning (SFT) in the given scenario.
Hence, some works (Yang et al., 2024; Wan et al.,

2024) apply SFT to LLMs on specific scenarios
to detect the rumors. LLMs acquire task-specific
knowledge via SFT and thus are quite sensitive to
the quality of SFT samples. The sample quality
in rumor detections has high variance since the
samples are usually collected from social media,
where the text is colloquial and informal. There-
fore, SFT for LLMs in rumor detection faces two
issues: (1) The unreliable training samples some-
times mislead the model learning, thus ensuring
the quality of SFT samples is crucial. (2) The cur-
rent SFT guides the LLMs in learning input-output
mapping to accomplish the tasks. It results in the
fine-tuned LLMs capturing only the most salient
and shallow characteristics from the limited SFT
samples, learning that end-to-end mapping tends to
skip the in-depth analyses of the rumored content
and ignore the specific reasons behind making the
final decision. Lacking the ability to analyze the in-
depth reasons results in failing to correctly detect
the cases unseen during the SFT.

In this paper, we propose an LLM-based rumor
detection method via SFT, which selects samples
via the influence of samples and conducts multi-
perspective analyses via a multiplayer game. Our
model aims to select reliable samples for SFT and
exploit in-depth analyses to avoid SFT capturing
only the salient and shallow characteristics in de-
tection. Firstly, we introduce the Influence Score
(IS) to assess the impact of training samples on
model predictions and select high-quality samples
for SFT. As directly calculating IS is complex and
time-consuming, we propose applying Taylor ex-
pansion with a chain rule to approximate it. Sec-
ondly, we use LLMs to generate in-depth analyses
of news content from multiple perspectives. Con-
sidering conflict and interference between different
perspective analyses, we model the collaborative
process of these perspective analyses for predict-
ing the news label as a cooperative game and each
perspective as a “player”. We further introduce the
PVI as the value function in the cooperative game
and utilize the Shapley value to quantify the contri-
bution of these perspectives to the game’s outcome.
Experiments on three public datasets show that our
model excels existing baselines in rumor detection
tasks and achieves SOTA results.

Our contributions are four-fold: (1) We propose
ISGA, a novel LLM-based rumor detection model
that first considers enhancing the LLMs with SFT

for rumor detection from both sample-level and
analysis-level. (2) We propose an influence-based
sample selection method to deal with the negative
impact of unreliable samples on SFT. (3) We pro-
pose a shapely value-based multi-perspective anal-
ysis selection approach to relieve the challenge that
the SFT-based LLM lacks in-depth analysis of ru-
mored content. (4) Experiments on three datasets
show that our model achieves SOTA performance.

2 Related Work

2.1 LLMs in Rumor Detection

Recently, Large Language Models (LLMs) have
demonstrated remarkable performance in various
text classification and reasoning tasks (Chang et al.,
2024; Achiam et al., 2023; Ouyang et al., 2022;
Touvron et al., 2023b). Existing studies have
proven that LLMs possess significant potential in
rumor detection (Hu et al., 2024; Wang et al., 2024;
Luo et al., 2024). Some works explore LLMs as ru-
mor detectors (Chen and Shu, 2023; Pelrine et al.,
2023), and use their commonsense reasoning to
provide supplementary explanations for rumor de-
tection. (Cheung and Lam, 2023) uses LoRA tun-
ing to train a LLama-based detector with external
retrieved knowledge. However, these methods fo-
cus on detecting rumors but fail to perform in-depth
analysis of rumored content.

On a related front, recent investigations have
found that LLMs can act as high-quality data gen-
erators (Su et al., 2023; Luo et al., 2024; Lucas
et al., 2023a; Pan et al., 2023; Huang et al., 2023;
Wang et al., 2024; Hu et al., 2024). (Luo et al.,
2024) utilizes LLMs to generate and inject mali-
cious messages into social media message propa-
gation trees. (Lucas et al., 2023b) uses LLMs to
generate authentic and deceptive content to create a
comprehensive dataset for rumor detection. (Huang
et al., 2023) generates training data by using an
LLM to replace a salient sentence in authentic news
articles with a plausible but fake piece of informa-
tion. (Wang et al., 2024) proposes a defense-based
explainable rumor detection framework leverag-
ing LLMs to generate justifications. In this work,
we use LLM as a rumor detector and enhance its
ability to learn task-specific knowledge via SFT.
Considering the contextual understanding and text
generation capabilities of LLMs, we also regard
them as analysis generators and conduct in-depth
multiple-perspective analyses of news content.
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Figure 1: The overview of our framework. The process begins with the left part, which evaluates samples using
IS and selects samples. Next, the right part generates multi-perspective analyses and models them as players in
a cooperative game. It then quantifies the contribution of perspective analysis using Shapley values and selects
informative analysis. Finally, the selected samples and analyses are utilized to conduct SFT on the LLM.

2.2 Influence-based Data Selection

The application of influence functions for data se-
lection in natural language processing has been
widely studied. (Koh and Liang, 2017) estimate
the marginal effect of a training example on the
loss of a validation example by influence functions,
which assess the impact of data points on mod-
els. (Pruthi et al., 2020) proposes a gradient-based
method, TracIn, to estimate influence by tracking
the change in loss on a validation example during
training, using the dot product of gradients at each
training step. (Akyürek et al., 2022) shows gradi-
ent info can trace knowledge back to training data,
but practical uses are still being explored. (Lam
et al., 2022) found vanilla influence functions in-
sufficient for optimal retrieval performance when
identifying erroneous training data with synthetic
noise. (Schioppa et al., 2022) and (Han et al., 2020)
proposed methods for scaling influence functions
and explaining the predictions of NLP models. Re-
cently, (Xia et al., 2024) selects influential data
for task-specific LLM fine-tuning by adapting in-
fluence formulations to work with the Adam op-
timizer and variable-length instruction data. (Pan
et al., 2024) utilizes the influence function to quan-
tify the impact of individual training examples on
the model during training and selects supervised
fine-tuning (SFT) data by analyzing these impacts.
In our work, we select representative and reliable
SFT training samples by introducing the influence
score to measure the sample-level impact on the
validation samples and performing a Taylor expan-
sion to simplify calculations.

3 Methods

3.1 Overview

Our model consists of three modules, as shown in
Fig. 1. (1) The influence-based sample selection
module (§ 3.2) utilizes the influence score (IS) to
quantify the impact of the individual SFT sample
on model prediction to select representative and
reliable training samples. (2) The estimating IS
via Taylor expansion module (§ 3.3) approximates
the IS via Taylor expansion with a chain rule to re-
duce the computational complexity. (3) The Shap-
ley value-based analysis selection via cooperative
game module (§3.4) conducts the multi-perspective
analysis of the news as a cooperative game and
utilizes the Shapley value as a criterion to select
informative analysis. After obtaining the training
samples and analysis, we use them to conduct SFT
on LLM for rumor detection, and the SFT details
are listed in the App. A.

3.2 Influence-based Sample Selection

To better select representative and reliable samples
for supervised fine-tuning (SFT), we use the influ-
ence score (IS) to measure the impact of the sam-
ples on the model prediction and select the samples
for SFT based on IS.

Existing rumor detection overlooks the quality
of SFT training samples, while unreliable training
samples sometimes mislead the model learning.
Thus ensuring the quality of SFT training samples
is crucial. Selecting high-quality samples for SFT
involves two steps as § 3.2.1 and § 3.2.2.
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3.2.1 Influence Score (IS) Calculation
We propose an influence score (IS) to help select
representative and reliable samples, which quanti-
fies the impact of the training sample on the model
prediction. For training samples {z1, z2, ..., zn},
as shown in Eq. 2, the optimization objective of
the rumor detection model is to find an optimal
model weight θ∗ that minimizes the loss R(θ) on
the training set:

R(θ) =
1

n

n∑

i=1

L(zi, θ) (1)

θ∗ := argmin
θ

R(θ) (2)

where θ denotes the model weight and L(zi, θ) is
the cross-entropy loss. When we perturb a training
sample zm (i.e. give a factor ϵ to perturb the loss
L(zm, θ)), the optimized model weight θ∗ after
perturbing changes accordingly as shown in Eq. 4:

R(θϵ) = R(θ) + ϵL(zm, θ) (3)

θ∗ϵ = argmin
θ

[R(θ) + ϵL(zm, θ)] (4)

The impact of training sample zm for model predic-
tion is evaluated on the validation set. That is, the
training sample zm should aid the model in accu-
rately predicting the label of the validation sample
zv. The influence score Iθ∗(zm, zv) is impact of
disturbing the training samples zm’s loss to val-
idation sample zv, i.e. the change of loss value
L(zv, θ∗ϵ ) compare to L(zv, θ∗) as Eq. 5:

Iθ∗(zm, zv) = L(zv, θ∗ϵ )− L(zv, θ∗) (5)

3.2.2 High-quality Sample Selection
We select samples based on IS obtained in § 3.2.1.
Specifically, we randomly extract a subset of sam-
ples from the training set as pseudo-validation set
Dpval, and the rest is the candidate set Dcan. For
each sample zm in Dcan, if the IS of the can-
didate sample zm for all samples in the pseudo-
verification set is negative (the loss of the pseudo-
validation sample zs decreases after disturbing
L(zm, θ)), we select zm as a training sample for
SFT as illustrated in Eq. 6:

∀zs ∈ Dpval, Iθ∗ϵ (zm, zs) < 0 (6)

where zs is the sample in Dpval, and Iθ∗ϵ (zm, zs) is
the IS of sample zm on sample zs.

3.3 Estimating IS via Taylor Expansion

As the calculation of influence score (IS) is com-
plex (with O(n2) complexity) 1, we propose to
approximate the IS (Eq. 5) via Taylor expansion.
In this way, we only need to calculate the gradi-
ent n times, reducing the complexity from O(n2)
to O(n). Specifically, we assume the factor ϵ
converges to zero in the limit and introduce the
marginal change variable ∆ϵ which is used to ap-
proximate the derivative of the optimized weight
θ∗ϵ for ϵ. Then we use the Taylor expansion to ap-
proximate ∆ϵ. Finally, we use the chain rule to
obtain IS. Detailed steps are as follows.

Step 1: Define marginal change variable ∆ϵ.
The marginal change variable ∆ϵ quantifies the
marginal change of the model weights while giv-
ing a factor ϵ to perturb the loss L(zm, θ). We
introduce ∆ϵ since the derivative of the optimized
model weight θ∗ϵ to the factor ϵ is hard to compute
directly. Therefore, we use a differential method to
approximate calculate IS.

We assume that the factor ϵ converges to zero
in the limit and define the marginal change ∆ϵ =
θ∗ϵ − θ∗ that is the difference of the model weights
between the model trained with and without disturb-
ing. Based on the differential method, ∆ϵ divided
by the ϵ can approximate the derivatives of θ∗ϵ for ϵ
when ϵ is zero as demonstrated in Eq. 7:

dθ∗ϵ
dϵ

=
θ∗ϵ − θ∗

ϵ− 0
(7)

where dθ∗ϵ
dϵ is used to obtain IS in step 3.

Step 2: Approximate marginal change vari-
able ∆ϵ via Taylor expansion. We use Taylor ex-
pansion to approximate ∆ϵ. The optimized model
weight θ∗ϵ obtained by minimizing the loss R(θϵ)
under the factor ϵ, thus the first derivative of the
loss R(θϵ) on θ∗ϵ is zero as shown in Eq. 8:

0 = ▽R(θ∗ϵ ) + ϵ▽L(zm, θ∗ϵ ). (8)

Then, we approximate ∆ϵ via Taylor expansion
based on Eq. 8: we first derive a first-order Tay-
lor expansion of Eq. 8 at θ∗, which provides an

1For each sample zm, we have to train the model twice
on the entire candidate sample set with and without sample
zm to compute IS. For n candidate samples, we need to train
the model for 2n times and calculate the gradient for 2n2

times. For example, calculating IS on Pheme datasets takes
over 40,000 hours.
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approximation for θ∗ϵ and contains ∆ϵ as Eq. 9 2:
0 ≈ [▽R(θ∗) + ϵ▽L(zm, θ∗)]

+ [▽2R(θ∗) + ϵ▽2 L(zm, θ∗)]∆ϵ+ o(∆ϵ)
(9)

After discarding the higher-order term o(∆ϵ) in
Eq. 9, we obtain ∆ϵ after a shift operation in Eq. 10,

∆ϵ ≈− [▽2R(θ∗) + ϵ▽2 L(zm, θ∗)]−1

× [▽R(θ∗) + ϵ▽L(zm, θ∗)]
(10)

Since θ∗ is the optimized model weight obtained by
minimizing the loss R(θ), we obtain ▽R(θ∗) = 0.
Then we substitute this into Eq.10 and remove the
higher order infinitesimal terms, i.e. retaining only
the o(ϵ) term, then obtain ∆ϵ as follows.

∆ϵ ≈ −▽2 R(θ∗)−1 ▽L(zm, θ∗)ϵ (11)

Step 3: Get IS Iθ∗(zm, zv) via chain rule.
Recall that Iθ∗(zm, zv) is IS of samples zm on
a validation sample zv, which is the change of
loss L(zv, θ∗ϵ ) compare to L(zv, θ∗) as defined in
§3.2.1 (Eq. 5). We evaluate the impact of disturb-
ing training sample zm for model prediction in the
validation sets and use the chain rule to calculate
IS Iθ∗(zm, zv). Considering directly calculating
the derivative of the loss L(zv, θ∗ϵ ) for the factor
ϵ is complex.3 To reduce complexity, we apply
the chain rule, which transforms complex deriva-
tive calculations into the product of two simple
derivative calculations. Specifically, we introduce
the intermediate variable θ∗ϵ and define the deriva-
tive dL(zv ,θ∗ϵ )

dϵ as the the product of dL(zv ,θ∗ϵ )
dθ∗ϵ

and
dθ∗ϵ
dϵ . The former is computed during the back-

propagation stage, while the latter is derived in Step
2 via Taylor expansion approximation as Eq. 12.

Iθ∗(zm, zv) =
dL(zv, θ∗ϵ )

dϵ
|ϵ=0

=
dL(zv, θ∗ϵ )

dθ∗ϵ

dθ∗ϵ
dϵ

|ϵ=0

= ▽θ|θ∗L(zv)
dθ∗ϵ
dϵ

|ϵ=0

= −▽θ|θ∗ L(zv)H−1
θ∗ ▽θ|θ∗ L(zm)

(12)

where H−1
θ∗ = ▽2 1

n

∑n
i=1 L(zi, θ∗) represents

the Hessian matrix, which is the second-order
partial derivative matrix indicating the impact of
all training samples on the model. The gradient
▽θ|θ∗L(zm) and ▽θ|θ∗L(zv) indicate the impact
of the training sample zm and the validation sample
zv on the model respectively.

2When ϵ in Eq. 7 converges to zero in the limit, the opti-
mized weight θ∗ϵ converges to θ∗.

3The calculation needs to obtain the optimized model
weight θ∗ and θ∗ϵ before and after the disturbing to compute
the marginal loss, then obtain the division of the marginal loss
and the factor ϵ as IS.

3.4 Shapley Value-based Analysis Selection
via Cooperative Game

To obtain the most informative analysis for rumor
detection, we first prompt LLMs to generate news
analysis from multiple perspectives. Subsequently,
we regard the multi-perspective analysis of the
news as a cooperative game and employ Shapley
values to quantify the contribution of individual per-
spective analysis to selecting informative analyses
for rumor detection.

Rather than existing methods (Wan et al., 2024)
that assume the equal contribution of all perspec-
tives for detecting rumors, our model considers the
different perspectives generate contradictory anal-
yses, and not all perspective analyses benefit the
prediction as some even introduce noise. Hence,
we construct a cooperative game to capture po-
tential relationships between multiple perspective
analyses and quantify the contribution of each per-
spective analysis to select informative perspective
analyses. Obtaining the informative analyses in-
volves two steps as § 3.4.1 and § 3.4.2.

3.4.1 Multi-Perspective Analysis Generation
To comprehensively analyze the news content, the
module emulates the conventional fact-checking
procedure (Tsang, 2023) to prompt LLMs for gen-
erating news analysis from multiple perspectives.

We emulate the standard fact-checking proce-
dure to select 10 perspective analyses. For each
sample, we obtain multiple perspectives analyses
set A = {a1, a2, ..., a10} by prompting LLMs with
different prompt templates, the complement de-
tail in App. B. Then we pass set A to the Shapley
value-based analysis selection module (§ 3.4.2) for
selecting the informative perspective analyses.

3.4.2 Shapley Value-based Analysis Selection
We utilize the Shapley value to quantify the con-
tribution of perspective analysis to rumor detec-
tion and select informative perspective analyses.
The Shapley value is a concept derived from co-
operative game theory. It measures each player’s
contribution to the coalition’s total value. In the ru-
mor detection task, the Shapley value evaluates the
contribution of each perspective analysis to predict
the news label, which helps select the informative
perspective analyses.

Inspired by cooperative game theory (Elkind and
Rothe, 2016), we regard the collaborative process
of multiple perspective analyses for predicting the
news label as a cooperative game and each per-
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spective analysis (i.e., emotion factor, background
information, logical consistency, etc.) as a “player”,
while the Shapley value measures the contribution
of each perspective analysis in this process. Specif-
ically, we first calculate the PVI, then regard PVI

as the value function to obtain Shapley value, and
finally select informative analyses. The detailed
process is as follows:

Step 1: Calculate PVI value. PVI quantifies the
input’s contribution to the model’s prediction by
comparing the difference of the model’s prediction
entropy with and without the input. Specifically,
for a given input x with its label y, where the input
x = {t, A} contains both news content t and the
perspective analyses set A, g and g′ are the models
after fine-tuning the rumor detection model with
and without the input respectively. The PVI(x → y)
is the difference in the log-probability assigned to
the ground truth by these models as Eq. 13:

PVI(x → y) = − log2 g[∅]y + log2 g
′[x](y) (13)

Step 2: Calculate the Shapley value. Given
a sample xi, we define a cooperative game with
a player set Ai = {a1i , a2i . . . , aji , . . . , ami } (i.e., a
set of perspective analysis as mentioned in § 3.4.1),
and a value function f measures the total value
obtained by the coalition (a set of perspective anal-
ysis) in the cooperative game. The value function
f(Ai) is the PVI for predicting the label yi given the
news content ti and the perspective analyses set
Ai, i.e. f(Ai) = PVI([ti : Ai] → yi). The Shap-
ley value of perspective analysis aji represents its
average marginal contribution across all possible
combinations of perspective analysis. Specifically,
we iterate all subsets A′

i ⊆ Ai and compute the
marginal contribution of aji when it is added to A′

i.
For each subset A′

i, the number of all perspective
analysis arrangements in A′

i is |A′
i|! and the num-

ber of remaining perspective arrangements after
excluding |A′

i|! and aji is (|Ai|−|A′
i|−1)!, thereby

the probability P(aji , A
′
i) of aji joins A′

i as shown
in Eq. 14:

P(a
j
i , A

′
i) =

|A′
i|!(|Ai| − |A′

i| − 1)!

|Ai|!
(14)

we consider P(aji , A
′
i) as the weight and the

Shapley value ϕij(f) is the weighted sum of the
marginal contributions as Eq. 15:

ϕij(f) =
∑

A′
i
⊆Ai,aj /∈A′

i

p(a
j
i , A

′
i) × [f(A

′
i ∪ {aj

i}) − f(A
′
i)] (15)

where |Ai| is the number of perspective analysis
in set Ai, and the f(A′

i ∪ {aji}) − f(A′
i) is the

marginal contribution of aji joins A′
i.

Step 3: Select the informative perspective
analysis. We select the informative analysis per-
spectives based on the Shapley value calculated in
Step 2. Specifically, for each perspective analysis
aj , we obtain the mean value of the Shapley value
for aj in the validation set Dval. If this mean value
is positive, i.e. 1

m

∑m
v=1 ϕvj(f) > 0, indicting aj

is useful for rumor detection, we select aj as the
informative perspective analyses for SFT.

4 Experiment

4.1 Experiment Setting

Datasets. We conduct experiments on three pub-
lic datasets, including human-written Pheme (Bun-
tain and Golbeck, 2017), Weibo21 (Nan et al.,
2021), and the LLM-generated LLM-mis (Chen
and Shu, 2022). Following the existing work (Yuan
et al., 2019), we select 20% of samples as the vali-
dation set, and the rest of the samples are split into
the training set and testing set with a ratio of 3:1.
The detail of Datasets in App. C.1

Baselines. We compare our model with three
types of state-of-the-art baselines: (1) LLM-based
w/o SFT: Zero-shot, Few-shot, Zero-shot CoT, and
Few-shot CoT. (2) SLMs-based: RvNN (Ma et al.,
2018b), DEFEND (Shu et al., 2019), GLAN(Yuan
et al., 2019), QSAN (Tian et al., 2020), EBGCN
(Wei et al., 2021), and WSDNS (Wu et al., 2023);
(3) LLM-based: DELL (Wan et al., 2024) and
GenFEND (Nan et al., 2024). We provide more
details about baselines in the App. C.2.

Implementation Details. We leverage LLama2-
7B (Touvron et al., 2023a) as the base LLMs for su-
pervised fine-tuning and prompt learning. It should
be noted that instead of performing full parame-
ter fine-tuning, we use Lora (Hu et al., 2021) to
fine-tune LLama2. The batch size is 128, the learn-
ing rate is 1e-4, and the maximum length is 512;
for the configuration of Lora, where the dimension
lora_r of the LoRA low-rank matrix is 64, the
scaling factor lora_alpha of the LoRA low-rank
matrix is 128. See more details of experimental
implementations in App. C.3

Metric. For evaluation metrics, we follow the
existing works (Wan et al., 2024; Nan et al., 2024)
and adopt macro F1 score (macF1) and accuracy
(Acc.) to evaluate the performance.

28407



Category Method Pheme Weibo21 LLM-mis
macF1 Acc. macF1 Acc. macF1 Acc.

LLMs-based w/o SFT

Zero-shot 0.459 0.460 0.580 0.570 0.597 0.600
Few-shot 0.490 0.500 0.610 0.622 0.565 0.567
Zero-shot CoT 0.499 0.470 0.635 0.644 0.566 0.570
Few-shot CoT 0.510 0.508 0.650 0.665 0.620 0.610

SLMs-based Methods

QSAN 0.668 0.751 0.675 0.710 - -
EBGCN 0.800 0.850 0.815 0.832 - -
GLAN 0.785 0.832 0.814 0.824 - -
RvNN 0.791 0.790 0.918 0.921 0.888 0.892
ENDEF 0.775 0.762 0.770 0.772 0.860 0.862
DEFEND 0.727 0.751 0.800 0.800 0.823 0.84
WSDMS 0.810 0.805 0.912 0.923 0.862 0.873

LLMs-based Methods
DELL 0.820 0.852 0.858 0.862 0.897 0.906
GenFEND 0.832 0.837 0.810 0.818 0.879 0.883
ISGA(Ours) 0.939 0.944 0.980 0.980 0.932 0.940

Table 1: Rumor detection experiment results. “-” indicates that the LLM-mis datasets do not have a propagation
structure, so the method based on the propagation structure cannot be used directly. “Bold” indicates optimal results,
and “underline” indicates sub-optimal results. Our improvements are significant under the t-test with p < 0.0025
(See details in App. D.1).

4.2 Main Result

Tab. 1 shows the results of ISGA and the compared
methods on three datasets. The results show that
ISGA surpasses all baselines across three datasets.
Noticeably, we achieved an accuracy improvement
of over 10% compared with the second-best base-
line on the Pheme dataset, and the accuracy ex-
ceeded 98% on the Weibo21 dataset. We also con-
duct an additional experiment about ISGA on dif-
ferent series and scales LLMs in App. D.2.

Specifically, the performance of LLMs-based
and SLMs-based methods significantly outper-
forms the LLMs-based w/o SFT on all datasets.
This indicates the LLMs-based w/o SFT lacks ru-
mor detection task-specific knowledge, while the
LLMs-based and SLMs-based methods learn this
during fine-tuning. Furthermore, our model outper-
forms all baselines and achieves the most improve-
ment on the Pheme. This superiority is attributed
to two factors: first, the influence-based sample
selection module utilizes sample selection to en-
hance the LLMs’ ability to acquire task-specific
knowledge for rumor detection via SFT; second,
the Shapley value-based analysis selection module
designs the multiple perspective analysis collabo-
rative process to make the model capture in-depth
analysis of news content for prediction.

4.3 Ablation Study
To demonstrate the effectiveness of the proposed
component, we conduct ablation study: w/o SSM:
the variant without Influence-based Sample Selec-
tion module (§ 3.2); w/o MPAM: the variant with-
out Multi-Perspective Analysis Generation module
(§ 3.4.1); w/o ASM: the variant without Shapley
Value-based Analytical Selection module (§ 3.4.2).

As shown in Tab. 2, each component is essential
for the effectiveness of our method. Specifically,
the performance of both variants w/o SSM and w/o
ASM drops significantly. This indicates that the
quality of the samples and the generated analyses
substantially impact the effectiveness of SFT on
LLMs. Furthermore, the variant w/o MPAM shows
the largest decrease in performance, suggesting
that incorporating multi-perspective analyses into
SFT enables LLMs to conduct a more in-depth and
comprehensive analysis of news content.

4.4 Analysis experiment of sample selection
To validate the effectiveness of the Influence-based
Sample Selection module in improving SFT, we
compared our proposed sample selection method
with the random sampling method. Specifically, we
set the ratio of the training samples in the dataset
to 10%, 20%, 30%, 40%, and 50%4, and compare

4Since we split 60% of the dataset as the training set, the
training sample ratio cannot exceed 60%.
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(c) LLM-mis dataset

Figure 2: IS experiment results under different training sample ratios. “Random” indicates that selecting the training
samples from the candidate set randomly.

Method Pheme Weibo LLM-mis

Ours 0.944 0.980 0.940
w/o SSM 0.932 0.965 0.930

w/o MPAM 0.902 0.943 0.910
w/o ASM 0.920 0.962 0.923

Table 2: Ablation study (Acc.). w/o SSM: remove
Influence-based Sample Selection module; w/o MPAM:
remove Multi-Perspective Analysis Generation module;
w/o ASM: remove Shapley Value-based Analytical Se-
lection module.

accuracy (Acc.) between these two methods.
As shown in Fig. 2, the results indicate that

our method consistently outperforms the random
method across all scenarios. As the number of
training samples increases, the performance gap
between our method and the random method nar-
rows. This highlights the stronger generalization
ability of our method in scenarios with fewer sam-
ples. Additionally, it underscores the importance of
sample quality for SFT, especially when the num-
ber of samples is limited.

4.5 Analysis experiment of analysis selection

To confirm that our Shapley Value-based Analytical
Selection via Cooperative Game module provides
more informative analyses, we conducted an exper-
iment comparing accuracy (Acc.) between our pro-
posed multi-perspective analysis selection method
and other analysis selection variants. Specifically,
we designed the following variants: All: the variant
selects all perspective analysis; One: the variant se-
lects one perspective analysis randomly; Two: the
variant selects two perspective analysis randomly.

As shown in Tab. 3, Variant All significantly
outperforms variants One and Two, indicating that

incorporating more perspective analysis provides
more information for rumor detection. However,
our method outperforms Variant All, suggesting
that our analytical selection strategy can effectively
choose perspectives with high information content
by leveraging the Shapley value.

Method Pheme Weibo LLM-mis

All 0.920 0.962 0.923
One 0.912 0.942 0.906
Two 0.908 0.939 0.902
Ours 0.944 0.980 0.940

Table 3: The analysis experiment of the perspective
analysis quantity (Acc.). “All” means selecting all per-
spective analysis, “one” means selecting one perspective
analysis randomly, and "two" means selecting two per-
spective analyses randomly.

5 Conclusion

In summary, we propose an LLM-based rumor de-
tection method via SFT, which selects samples
based on the influence of samples and conducts
multi-perspective analyses via a multiplayer game.
Firstly, we employ the IS to evaluate the impact of
training samples on model predictions for selecting
reliable samples, where we utilize the Taylor ex-
pansion with a chain rule to approximate IS for re-
ducing computation cost. Secondly, we use LLMs
to generate an in-depth multi-perspective analysis
of new content, model each perspective analysis
as a player in a cooperative game, and measure
each perspective analysis’s contribution to rumor
detection using the Shapley value to obtain infor-
mative perspective analyses for SFT. Finally, we
conduct experiments on three real-world datasets to
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show the superiority of our approach over existing
methods in rumor detection.

6 Limitation

Although our method produces promising results
on three datasets, it has certain limitations. We will
continue to investigate these concerns in the future.

Firstly, We only used text content for rumor
detection, ignoring multimodal information like
images. In real world social media, news often
combines text and images, with images providing
additional clues for rumor detection. Thus, relying
solely on text may be insufficient for comprehen-
sive detection. However, it is worth noting that in
the field of rumor detection, many existing studies
also focus only on text. Our future research will
consider incorporating multimodal information to
further enhance the practicality of rumor detection.

Secondly, this work lacked explanations for the
model’s prediction results. In practice, many rumor
detection scenarios require explanations to enhance
the credibility of the model’s predictions. However,
most studies in this field only provide results with-
out explanations. Future research will introduce
interpretability mechanisms to enhance the credi-
bility of the model’s predictions.
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A Rumor Detection Module

In this module, we use the news text xi and the set
of informative perspective analyses to determine
whether the news is a rumor or not. We have de-
signed the following supervised fine-tuning (SFT)
template:

• Instruction: Next, I will give you a news
story and an analysis of the veracity of the
news; please combine the analysis of the news
to ultimately determine whether the news is a
rumor or not.

• Input: News: {news text}; analysis:{analysis
text}.

• Output: The news label.

B The Detail of Multi-perspective
Analysis Generation

We design the following prompt set P =
{p1, p2, ..., p10}, as illustrated in Tab. 4, where 10
denote the number of perspective analysis. For a
given news xi and prompt pj , the prompt template
T as:

You are a professional fact-checker, and you
have been tasked with verifying the authenticity
of news to determine whether it is a rumor. Given
a news: {xi}, and your verification content will be:
{pj}.
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Num. Prompt Template
1 Does the news contain sufficient background information?
2 Is the background information in the news accurate and objective?
3 Is there any content deliberately omitted that distorts the meaning?
4 Is there any improper intent in the news (political motives, commercial purposes, etc.)?
5 Is the news report based on facts, or does it mainly rely on speculation or opinions?
6 Are there any logical fallacies or misleading arguments in the news report?
7 Does the news exhibit bias?
8 Are there any grammatical or spelling errors in the news report that might indicate a lack of professional editing?
9 Does the news report use inflammatory language or engage in personal attacks?

10 Is the news purely an expression of emotion without involving judgments of truthfulness?

Table 4: Prompt Learning Template

Dataset Train Validation Test TotolFake Real Fake Real Fake Real

Weibo21 2,883 2,179 540 702 539 724 7,567
LLM-mis 410 289 118 82 53 42 1,000

Pheme 1,153 2,298 384 766 384 766 5,802

Table 5: Datasets statistic.

C Experiment Setting Details

C.1 Dataset Details
We evaluate ISGA and baselines on three public
datasets on the rumor detection task, and the dataset
statistics are shown in Tab. 5.

• Pheme (Buntain and Golbeck, 2017) is a
dataset of potential rumors on Twitter and
journalistic assessments of their accuracies.

• LLM-mis (Chen and Shu, 2022) is an LLM-
generated misinformation dataset with dif-
ferent LLM generators and generation ap-
proaches.

• Weibo21 (Nan et al., 2021) is a comprehen-
sive dataset that encompasses news from nine
domains, namely science, military, education,
disaster, politics, health, finance, entertain-
ment, and society. Each domain contains news
content, publication timestamps, correspond-
ing images, and comments. In total, Weibo21
comprises 4,488 instances of false news and
4,640 instances of true news.

C.2 Baseline Details
We compare our method with several methods, the
details are described as follows:

• Zero-Shot asks LLMs to conduct detection.

• Few-shot first provides LLMs with some pairs
of news instances and labels and then asks
LLMs to conduct detection.

• Zero-shot CoT uniquely leverages LLMs’ self-
formulated rationales by integrating a stan-
dard instruction with the simple phrase, “Let’s
think step by step known as Chain of Thoughts
(CoT).

• Few-shot Cot is based on the Zero-shot CoT
with extra pairs of news instances and labels.

• RvNN (Ma et al., 2018b) proposes two recur-
sive neural models based on bottom-up and
top-down tree-structured neural networks for
rumor representation learning and classifica-
tion.

• DEFEND (Shu et al., 2019) conducts explain-
able detection by the attention weights; we set
the maximum sentence length and maximum
comment length as 96, the maximum sentence
count as 64, and the maximum comment count
as 10 to reproduce so that the approach is ap-
plicable to our tasks and datasets.

• GLAN (Yuan et al., 2019) is designed for
rumor detection on social media by jointly
encoding local semantic relations between
tweets and retweets and global structural in-
formation of the heterogeneous propagation
graph to improve classification accuracy and
early detection performance.

• QSAN (Tian et al., 2020) is a quantum-based
signed attention network that uses a quantum-
inspired textual representation to model tex-
tual semantics and captures post-commentary
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Dataset pheme Weibo LLM-mis
macF1 Acc. macF1 Acc. macF1 Acc.

Bartlett’s Test 2.6128× 10−5 0.000114843 2.78354× 10−7 9.96033× 10−5 0.002388062 0.000599668

Table 6: The p values of t-test on our method. The p values are all smaller than 0.025.

Method Pheme Weibo21 LLM-mis
macF1 Acc. macF1 Acc. macF1 Acc.

LLaMA2-13B 0.942 0.948 0.982 0.984 0.936 0.945
LLaMA2-7B 0.939 0.944 0.980 0.980 0.932 0.940
LLaMA3-8B 0.945 0.940 0.972 0.972 0.937 0.942
Qwen2.5-7B 0.932 0.935 0.985 0.984 0.928 0.935

Table 7: Different LLMs’ results on our method, “Bold” indicates optimal results, and “underline” indicates
sub-optimal results

relations through a new symbolic attention
mechanism

• EBGCN (Wei et al., 2021) is a novel model
for rumor detection on social media that ad-
dresses the uncertainty in propagation struc-
tures by using a Bayesian approach to adap-
tively adjust edge weights and an edge-wise
consistency training framework to optimize
the model, achieving improved performance
in both rumor detection and early rumor de-
tection tasks.

• WSDMS (Wu et al., 2023) needs bag-level
labels for training but possesses the capability
to infer both sentence-level misinformation
and article-level veracity, facilitated by perti-
nent social media conversations meticulously
contextualized with news sentences.

• DELL (Wan et al., 2024) is a model that lever-
ages large language models (LLMs) to gener-
ate diverse user reactions, create explainable
proxy tasks, and ensemble expert predictions
to enhance the detection of misinformation in
news articles.

• GenFEND (Nan et al., 2024) enhances fake
news detection by generating diverse user
comments through large language models
(LLMs) and analyzing these comments from
multiple demographic subpopulations to pro-
vide comprehensive feedback.

C.3 Implementation Details
In our implementation of the Influence-based Sam-
ple Selection Module in §3.2, we use the gradients

of the model’s Multilayer Perceptron (MLP) pa-
rameters in {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}-th
layers to speed up calculate the influence score.

D Additional Experiment Results

D.1 T-test
To substantiate the efficacy of our proposed model,
we conducted a series of experiments, each involv-
ing the replacement of the seed across ten distinct
runs of fake news detection on various datasets. For
each iteration, we calculate the t-test confidence
interval P to statistically assess the comparative
metrics of our model against the established base-
line in each metric. We consider P < 0.025 as
a significant enhancement and P > 0.025 as an
insignificant enhancement. As presented in Tab. 6,
the empirical findings reveal that, across all three
datasets, our model has achieved a significant en-
hancement in most metrics when compared to the
baseline.

D.2 Experiment on Different LLMs
We have selected LLaMA2-13B, LLaMA3-8B, and
Qwen2.5-7B as the base models for experiments.
As shown in Tab.7, our method performs well
across different series and scales of LLMs, showing
its effectiveness and generalizability.
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