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Abstract

Recent research in retrieval-augmented gen-
eration (RAG) has concentrated on retrieving
useful information from candidate documents.
However, numerous methodologies frequently
neglect the calibration capabilities of large lan-
guage models (LLMs), which capitalize on
their robust in-context reasoning prowess. This
work illustrates that providing LLMs with spe-
cific cues substantially improves their calibra-
tion efficacy, especially in multi-round calibra-
tions. We present a new SGIC: Self-Guided
Iterative Calibration Framework that employs
uncertainty scores as a tool. Initially, this
framework calculates uncertainty scores to de-
termine both the relevance of each document
to the query and the confidence level in the re-
sponses produced by the LLMs. Subsequently,
it reevaluates these scores iteratively, amalga-
mating them with prior responses to refine cal-
ibration. Furthermore, we introduce an inno-
vative approach for constructing an iterative
self-calibration training set, which optimizes
LLMs to efficiently harness uncertainty scores
for capturing critical information and enhanc-
ing response accuracy. Our proposed frame-
work significantly improves performance on
both closed-source and open-weight LLMs.

1 Introduction

Retrieval-augmented generation (RAG) necessi-
tates intricate reasoning across various candidate-
retrieved documents with more than one hop. The
advent of exceptionally large language models
(LLMSs) such as GPT-3.5 and Claude has markedly
augmented the capabilities of robust in-context rea-
soning prowess, enabling significant advances in
RAG performance via in-context learning or multi-
step reasoning (Wang et al., 2023a; Khalifa et al.,
2023), without additional training. Despite these
enhancements, the deployment of such LLMs in
local settings is frequently impractical, because of
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their proprietary nature and voluminous parame-
ter sets. Consequently, researchers focus on fine-
tuning open-weight LLMs to improve performance
in specific downstream applications (Zheng et al.,
2023; Du et al., 2022; Penedo et al., 2023).

However, lots of existing works on RAG pri-
marily concentrate on extracting relevant docu-
ments or the refinement of specialized instructions
(Asai et al., 2022; Ziems et al., 2023; Wang et al.,
2023b; Sun et al., 2023; Ma et al., 2023b; Tang
et al., 2023), which does not fully leverage the
in-context reasoning abilities intrinsic to LLMs.
Inspired by recent studies that employ LLMs for
self-calibration to generate better answers through
self-feedback mechanisms (Peng et al., 2023; Dhu-
liawala et al., 2023; Shinn et al., 2023), we argue
that LLMs can optimize generated answers of RAG
by utilizing prior responses coupled with strategic
hints to facilitate in-context reasoning. The pre-
liminary experimental findings, detailed in Section
A.2, lend credence to our hypothesis. In addition,
Figure 1a reveals a distinct gap in the uncertainty
scores produced by LLMs when distinguishing cor-
rect/incorrect answers and the relevant/irrelevant
documents. Meanwhile, several widely used uncer-
tainty estimation approaches (Figure 1b) confirm
the generality of this phenomenon.

Thus, we introduce a novel SGIC: Self-Guided
Iterative Calibration Framework that harnesses the
robust in-context reasoning capabilities of LLMs
to self-calibrate previously generated answers. We
adopt the uncertainty scores in the inference stage
to iteratively rephrase the input prompts, incorpo-
rating the uncertainty scores of previously gener-
ated answers to steer the LLMs towards in-context
reasoning and self-calibration. Additionally, we in-
troduce document uncertainty scores to assess the
relevance between each document and the question,
assisting LLMs in retrieving the most pertinent
documents. For small-scale models with limited
long-document understanding capabilities, we fur-
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(b) Three different uncertainty estimations.

Figure 1: The uncertainty score of the relevant/irrelevant documents and correct/wrong generated answers on 2,000
samples extracted from HotpotQA(Yang et al., 2018) dataset.

ther propose a strategy for reconstructing a self-
calibration training dataset following the procedure
in Figure 2, to fine-tune the LLMs to utilize the
uncertainty scores of the document and previous
responses to generate a better answer.

Empirically, we evaluate our framework across
two benchmarks, HotpotQA (Yang et al., 2018)
and Natural Question (NQ) (Kwiatkowski et al.,
2019), on two strong close-source LLMs, GPT-40
and GPT-40 mini (Achiam et al., 2023) and two
open-weight LLMs, which are Phi-3.5 (Li et al.,
2023) and Llama2-7B-Chat (Touvron et al., 2023).
The experimental results demonstrate the validity
and strong potential of our framework.

2 Related Work
2.1 Retrieval-Augmented Generation (RAG)

RAG retrieves relevant documents from a knowl-
edge base and employs a generator to produce
coherent and accurate responses based on the re-
trieved documents (Lewis et al., 2020). Recent
studies (Jiang et al., 2023; Chen et al., 2024; Fan
et al., 2024) have also demonstrated that RAG
can effectively address the hallucination and in-
correct reasoning problems of LLMS in the Ques-
tion Answering (QA) and downstream tasks, such
as Document Question Answering (DQA), which
require LLMS to reason between multiple docu-
ments. Trivedi et al. (2022) mutually integrated
the Chain-of-Thoughts (CoT) into the retrieval step
to enhance the retrieval capability of LLMs for
multi-hop QA. Ma et al. (2023a) proposed query
rewriting RAG through Adaptive queries gener-
ated by a fine-tuned rewriter. Ma et al. (2023c)
proposed an adaptive filter-then-rerank paradigm,
prompting LLMs to rerank few-shot hard samples

filtered by small LMs, which enhances the per-
ception of key information of the LLMs. Jeong
et al. (2024) proposed an adaptive QA framework,
dynamically selecting optimal RAG strategy from
simple to sophisticated through estimating query
complexity by a trained smaller LLM. Zhang et al.
(2024) proposed a retrieval-augmented fine-tuning
strategy, enabling LLM to identify distractor docu-
ments and adapt to domains. As for datasets, there
are several multi-hop QA corpora, such as Hot-
potQA (Yang et al., 2018) and WikiHop (Yang
et al., 2018), which are widely used in RAG tasks.

2.2 Self-Calibration

Self-calibration refers to LLMs learning from au-
tomated feedback to improve their behavior and
adapt over time, avoiding costly human feedback
(Pan et al., 2023). Traditional approaches (Li et al.,
2019; Unanue et al., 2021; Wu et al., 2021) utilize
meticulously designed external matrix to measure
the generative generation quality of LMs to guide
the model to perform the self-calibration. Akyiirek
et al. (2023); Yan et al. (2023); Li et al. (2024b)
further expanded these methods by modifying the
matrix or introducing external revising modules.
To avoid the increasingly complex matrix design,
researchers construct frameworks such as CoT to
calibrate the LLMs leveraging their strong infer-
ence ability iteratively(Zelikman et al., 2022; Wang
et al., 2022b,a). In addition, several methods (Du
et al., 2023; Li et al., 2024a; Liang et al., 2024)
employ multi-LLM debating frameworks to cali-
brate model-generated answers. However, these ap-
proaches require fine-tuning multiple LLM agents
or utilizing LLMs with extremely large parameters,
such as ChatGPT, for many rounds of interaction.
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” Write a short answer directly ...
Document [1]: ... On 20 December, it was revealed
that Derek was the person.
... (other documents)
Document [10]: ... the London Academy of Music and
Dramatic Art. He is married to Scottish actress Ashley
Jensen (2007).
Question: Who is the wife of the actor who played

3 . Derrick Banning in EastEnders in 1996?
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Figure 2: The overview of our framework.

In contrast, our approach requires fine-tuning the
LLMs only once, enabling them to perform com-
prehensive reasoning and self-calibration based on
retrieved documents, previously generated answers,
and their associated uncertainty scores.

3 Method

Figure 2 provides an overview of our proposed
framework, which comprises three main compo-
nents: (1) estimating the uncertainty scores of each
document and the generated answers (Section 3.1);
(2) iteratively utilizing the generated answers and
their corresponding uncertainty scores from the val-
idation set to perform the self-calibration process
during the inference stage (Section 3.2); and (3)
designing a strategy to reconstruct a new training
set to fine-tune a self-guided iterative calibration
LLM with uncertainty awareness (Section 3.3).

3.1 Uncertainty Estimation

To achieve our self-guided iterative calibration
framework, we first employ the uncertainty score
of the generated answer to evaluate the necessity of
calibration according to the observation in Figure 1.
For a given input sequence X=[x1,%2, ...,Zy] con-
sisting of n tokens, the large language model gen-
erates a corresponding output sequence Y =[y1,y2,
..Ym] with m tokens, accompanied by the corre-
sponding token-level logits. We begin by applying
the softmax function to the logits to derive the high-

est probability associated with each token, denoted
as P=[pi1, p2, ..., pm]. The uncertainty is then
estimated by computing the product of these max-
imum probabilities, a widely adopted method for
uncertainty estimation:

)

To ensure the consistency of this score across
both the training and inference stages, we redefine
Equation 1 as follows:

= (pl X p2 X ... Xpm)

Sans

Sans — gans . —
—————  if Sans < Sans

G — 1 —Sans
M otherwise )
1 —Suns
Shns = 100 X (0.5 4 0.5 x §)

where S, is the average uncertainty scores cal-
culated by all generated answers in the training,
validation, or test set seperately.

Furthermore, we incorporate uncertainty scores
to evaluate the model’s confidence regarding the
relevance of each document to the given question.
A lower uncertainty score indicates a higher likeli-
hood of the document being relevant, thereby aid-
ing the LLM in information retrieval. Inspired by
Duan et al. (2023), we estimate the uncertainty
score of each document by calculating the product
of the maximum probabilities of the generated an-
swers, obtained by combining the given question
with each document individually.
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Write a short answer ...
Document [1]: Yellowcraig, less commonly ...
... (other documents)
Document [10]: Dirleton Castle ...

" Question: A medieval fortress in Dirleton, ...
Previous Generated Answer:
Round 1: Lord High ... (Uncertainty Score: 73)
Round 2: United States ...(Uncertainty Score: 51)
Answer:

Table 1: The input format of iterative self-calibration in
our framework.

Sdoc = 1 — (P1 X D2 X ... X D)
(840e — Min(soc)) 3
(Max(sdoc) - Min(sdoc))

100 = 100 x

where siloc is the product of maximum probability
with the i-th document subtracted from one. A
higher product indicates the LLM is more confident
that the document is relevant to the question and
contains more adequate information. To estimate
the uncertainty score, we subtracted this product
from one and normalized the uncertainty scores of
all documents to reduce sensitivities.

Notably, the uncertainty estimation method can
be replaced with any improved metric that more
accurately measures uncertainty values. We also
discuss the precision of uncertainty estimation for
SGIC in Appendix A.5.

3.2 Iterative Self-Calibration

During the inference stage, we primarily generate
an answer based on the full documents and ascer-
tain its uncertainty score employing Equation 2.
Subsequently, we appraise the uncertainty score
associated with the answer generated by each doc-
ument following Equation 3. Then, we rephrase
the input with these elements. As demonstrated in
Figure 2, we integrate the documents with corre-
sponding uncertainty scores, while attaching the
primary answer combined with uncertainty scores
as the first-round original answer. The reformulated
input is supplied to the LLM, which then engages
in in-context reasoning and calibrates the answer
under the directive of the uncertainty scores.
Furthermore, self-calibration is iteratively con-
ducted K rounds to obtain a satisfactory answer
with minimal uncertainty. Specifically, in each
round, the generated answer is re-input into the
model for further calibration. During each cali-
bration, we calculate the uncertainty scores of the

answer according to Equation 2 and incorporate
the answer and score into the “Previous Generated
Answer” as illustrated in Table 1 to reconstruct the
input of subsequent round, enabling the answer to
be calibrated iteratively based on the given docu-
ments and the previously generated answers.

3.3 Uncertainty-aware Fine-tuning

After quantifying the uncertainty scores for the
training data, we reformulate the representation
of each data sample to incorporate these uncer-
tainty scores, as illustrated in Figure 2. Using this
reformulation, we construct an uncertainty-aware
self-calibration dataset derived from the original
training corpus. Following the pipeline outlined in
Section 3.2, we restructure the input by including
the content and uncertainty scores of documents
alongside the primary answers.

The LLM is then employed to iteratively cali-
brate the answers for each data sample until the
answer is correct or the round limit k is reached.
After k£ rounds of calibration, samples with incor-
rect answers are removed. For the remaining sam-
ples, the final reformulated input is used as the
training set input. Since the final input contains
multi-round information in the “Previous Gener-
ated Answer” field, it provides the LLM with com-
prehensive knowledge of the calibration process.
This pruning of unsuitable samples allows the LLM
to focus on learning how to leverage the additional
information encoded in the uncertainty scores for
improved calibration. In parallel, a substitution op-
eration is carefully designed to refine the model’s
ability to address answers with high uncertainty
while preserving or optimizing answers with low
uncertainty. This prevents the model from erro-
neously altering correct answers.

The refined training set enhances the model’s
ability to calibrate responses accurately while bet-
ter capturing relevant information through the un-
certainty scores. After the training set is restruc-
tured, we apply a standard supervised fine-tuning
(SFT) procedure to fine-tune the self-guided itera-
tive calibration LLM and evaluate its performance
as described in Section 3.2.

4 Experiments

4.1 Setup

Dataset We evaluate our proposed framework on
HotpotQA (Yang et al., 2018) and Natural Ques-
tion (NQ) (Kwiatkowski et al., 2019) corpus. The
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HotpotQA Natural Question (NQ)
Model EM F1 EM F1
Close-Source LLMs
GPT-40-mini 69.2 63.0 62.9 47.5
GPT-40-mini (Ours) 74.1 66.7 64.4 48.8
GPT-40 73.7 68.1 63.3 53.0
GPT-40 (Ours) 76.5 70.8 65.2 55.0
Open-Weight LLMs
Phi-3.5-mini (Full Tuning) 42.8 50.3 58.7 64.3
Phi-3.5-mini (Ours) 55.3 60.2 65.0 67.5
Llama2-7B-Chat (LoRA Tuning) 69.1 73.5 74.7 77.9
Llama2-7B-Chat (Ours) 77.2 80.5 79.0 81.2

Table 2: The main experimental results (%) on the dev set of HotpotQA and Natural Question (NQ) datasets. Bold
numbers indicate the better result for each baseline, which sampling K times following the iterative calibration

process.
Dataset Train  Validation  Test
HotpotQA 50,000 7,405 7,405
NQ 40,000 2,000 2,000

Table 3: The statistics of HotpotQA and Natural Ques-
tion (NQ) in our experimental setting.

statistic of these two datasets is shown in Table 3.
HotpotQA' dataset includes 113k multi-hop ques-
tions. There are two types of questions: bridge and
comparison. The final answer in the distractor set-
ting is generated through 10 passages. Each ques-
tion has at least 2 relevant passages. We also recon-
struct the Natural Question (NQ)? (Kwiatkowski
et al., 2019) dataset in the distractor setting sim-
ilar to HotpotQA to evaluate the robustness of
our framework. The question of the NQ dataset is
comprised of a Google query and a corresponding
Wikipedia page. Each page has a passage that can
answer the question. We take nine other passages
from the same page as distractors. Because of the
high demand for computational resources in LLM
and the computing resource limitations, we use part
of the training set in our experiments.

Evaluation For all experiments in this work, we
employ two widely used metrics, Exact Match
(EM) and F1 score, to evaluate the performance
of our framework. As noted in Huang et al. (2024),
it is unreasonable to assume that the ground truth
will always be present among all calibrated an-

"https://hotpotqa.github.io/
Zhttps://github.com/google-research-datasets/natural-
questions

Question Type EM F1

Bridge 65.0 72.9
Bridge (Ours) 75.7 79.4
Comparison 69.6 73.2
Comparison (Ours) 83.1 84.8

Table 4: The results of different types of question (%) in
HotpotQA dataset on Llama2-7B-Chat. Bold numbers
indicate the best results.

swers, as real-world scenarios typically lack access
to the ground truth. To address this, our methodol-
ogy involves performing K calibration iterations
on samples that require calibration. From these
iterations, we select the response with the minimal
uncertainty score as the final correct answer.

Models For closed-source LLMs, we evaluate
our proposed method on the GPT-40-mini and
GPT-40 models (Hurst et al., 2024) through the
OpenAl API without fine-tuning on the down-
stream datasets. As for open-weight baselines, we
employ two strong decoder-only large language
models (LLMs) that vary in scale and architec-
ture: Phi-3.5 (Li et al., 2023) and Llama2-7B-
Chat (Touvron et al., 2023). The implementation
of experiments will be explained in Appendix A.1.

4.2 Main Results

As shown in Table 2, we show our main experi-
mental results on two closed-source LLMs and two
open-weight LL.Ms, which are evaluated with Hot-
potQA and Natural Question (NQ) datasets. For
close-source LLMs, which are GPT-40-mini and
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Model EM Fl
Llama2-7B-Chat (LoRA Tuning) 69.1 73.5
"+ Calibration 7 718 753

+ Calibration & Answer

Uncertainty 76.2  79.6
+ Calibration & Document

Uncertainty (Ours) 77.2 80.5

Table 5: The ablation study results (%) on the dev set
of HotpotQA dataset. Bold numbers indicate the best
results.

GPT-40, our method consistently achieves better
performance on both EM and F1 scores compared
with sampling the response K times directly. As
for the open-weight LLMs, the Phi-3.5-mini and
Llama2-7B-Chat models, which are fine-tuned with
our proposed framework, also outperform the base-
lines on all EM and F1 scores, whether with the
LoRA tuning or full tuning.

To explore the effectiveness of our approach on
different types of problems, we also comparatively
analyze the effectiveness of our approach on bridge
and comparison types of questions within the dev
set of HotpotQA dataset, which are shown in Table
4. Our framework obtained more than 10% im-
provements on both two types of questions. This
suggests that our approach works not only on com-
parison questions with binary answers, but also on
bridge questions with open answers, which demon-
strate the robustness and generality of our method.

4.3 Ablation Study

To evaluate the various components of our pro-
posed framework, we conducted a series of exper-
iments to assess the performance impact of com-
bining: (a) only the initial answer, (b) the initial
answer with its uncertainty score, and (c) the un-
certainty scores of documents. It should be noted
that, for experiment (a), we selected the calibrated
answer repeated in the second iteration as the final
answer, following Huang et al. (2024), since uncer-
tainty scores are not available when only the initial
answer is used. As shown in Table 5, the combina-
tion of most components yields superior results in
both EM and F1 evaluation metrics, demonstrating
the effectiveness of our proposed methodology.

5 Analysis
5.1 The Impact of Uncertainty Scores

Despite the depiction of the observed uncertainty
distribution in Figure 1, we conducted experiments

Model EM F1

Llama2-7B-Chat (LoRA Tuning) 69.1 73.5

External Relevant Score 754 78.8

Oracle Uncertainty 85.7 85.1
 Llama2-7B-Chat (Ours) 772 80.5

Table 6: The experimental results (%) on the dev set of
HotpotQA dataset with different settings of the uncer-
tainty scores in our method. Bold numbers indicate the
best results.

885 FT T T =
80 - *
Bl |
- 75
é ________________________________________
70 *
65 |- K times Sampling (Llama2-7B-Chat) | _|
o K times Calibration (Ours)
--- Llama2-13B-Chat (Ours)
60 - L T T |
1 2 3 4 5

Figure 3: The EM scores of the Llama2-7B-Chat fine-
tuned with our method to perform the K times calibra-
tions on the dev set of the HotpotQA dataset.

to validate the necessity of this pattern within our
framework. As evidenced in Table 6, we replaced
the uncertainty scores of the documents with the
relevant scores calculated by the Multi-qa-mpnet-
base-dot-v1 model, a powerful document extrac-
tion model proposed by Reimers and Gurevych
(2019). We believe this is because the uncertainty
scores computed by the model itself are strongly
correlated with the model’s capabilities, and there-
fore, more effectively guide the model in itera-
tive self-calibration. Moreover, we consider an
extreme case where the uncertainty scores for rel-
evant/irrelevant documents and correct/wrong an-
swers are perfectly accurate. In this scenario, we
assign uncertainty scores ranging from 0 to 20
for relevant documents and correct initial answers,
while irrelevant documents and wrong answers
were given uncertainty scores spanning from 80
to 100. The EM scores improved to 85.7, and the
F1 scores improved to 85.1, which further justifies
the potential of our framework. Furthermore, we
provide a theoretical analysis regarding the appli-
cation of uncertainty scores in Appendix A.4.

5.2 The Performance of Iterative Calibration

We conducted additional experiments to thoroughly
investigate the implications of the K-times cali-
bration mechanism. The blue solid curve in Fig-
ure 3 illustrates the experimental outcomes with
K = {1,2,3,4,5} iterations of self-calibration.

28362



[
(S
T
|

45| - 4 e |

—@— Correct => Correct
Incorrect => Correct

uncertainty scores

35 Incorrect => Incorrect | |
—&— Correct => Incorrect

| | | T T
1 2 3 4 5
rounds
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brations in four modes of answer variation.

Intuitively, the performance improves as the num-
ber of calibration iterations increases. Remarkably,
it even surpasses the fine-tuned Llama2-13B-Chat
model and the same model fine-tuned with our
framework, demonstrating the potential of our ap-
proach. For a fair comparison, we also performed
1 to 5 sampling iterations with a temperature of
0.7 for the fine-tuned Llama2-7B-Chat model, rep-
resented by the solid orange line in Figure 3. As
expected, the performance of the model gradually
improves with an increasing number of samples.
However, it is evident that our framework still
shows a significant performance advantage over
this baseline. Additionally, we compare the infer-
ence cost of our self-calibration method with the
sampling baseline in Appendix A.3.

5.3 Uncertainty Change of Iterative
Calibration

To clarify the iterative calibration process, we
present the average uncertainty scores for how an-
swers change in each calibration round, as illus-
trated in Figure 4. The uncertainty for “Correct =>
Correct” and “Incorrect => Incorrect” remains rela-
tively stable, which makes sense since the answers
do not change in these cases. However, the uncer-
tainty scores for “Correct => Incorrect” and “Incor-
rect => Correct” gradually increase with more cali-
brations. This likely happens because as more “Pre-
vious Generated Answers” accumulate, the model
engages in more complex reasoning, leading to
higher uncertainty. Interestingly, the uncertainty
for “Incorrect => Correct” samples is consistently
lower than for “Correct => Incorrect” samples in
each round, indicating that the model exhibits lower
uncertainty when the calibration results in a cor-
rect answer. This can help the model recognize the
successful calibrations.
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Figure 5: The answer correctness and uncertainty scores
of 10 random samples during the iterative calibration.
Round 0 refers to the initially generated answer without
document uncertainty. Red samples refers to incorrect
answers, while samples refers to correct answers.

Model EM
Llama2-7B-Chat (Fine-tuned) 36.2
Llama2-7B-Chat (Ours) 40.1

Table 7: The experimental results (%) on the test set of
GSMSK dataset. Bold numbers are the best results for
each base model.

In more detail, we also conduct a more concrete
analysis of the 10 randomly extracted samples and
results in each round to visualize changes in their
answer correctness and corresponding uncertainty
scores throughout our calibration procedure. The
result is demonstrated in Figure 5, which indicates
three types of calibration procedures. For the sam-
ples that remain uncorrected after five times calibra-
tions, the uncertainty scores persist at high levels
during the whole process. This reveals the LLM
is confused by the question and documents. In
contrast, for those samples calibrated within five
times, the LLLM starts with being suspicious of
the incorrect answer, as indicated by an increase
in uncertainty scores in the first time calibration.
The LLM then adjusts the suspected answer in the
following iteration with a lower uncertainty score.
Moreover, we observe that some initially correct
answers are altered to be incorrect in the first round,
As evidenced by a significant rise in uncertainty
scores, the alternations resemble uncertain attempts.
Subsequently, the LLM identifies the errors and cal-
ibrates the answers in subsequent iterations.

5.4 Generalizability

In addition to evaluating our approach to RAG
tasks, we conduct experiments on other types of
reasoning tasks to demonstrate their broader ap-
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Dataset EM F1
Fine-tuned on NQ

HotpotQA (Sampling 5 times) 54.5 57.5
HotpotQA (Ours) 71.0 74.4
Fine-tuned on HotpotQA
NQ (Sampling 5 times) 58.7 67.4
NQ (Ours) 76.5 78.8

Table 8: The results of Llama2-7B-Chat on the test set
of one dataset, fine-tuned on the other. Bold numbers
indicate the best results.

plicability. Specifically, we employ the GSM8K
dataset (Cobbe et al., 2021), which contains ba-
sic mathematical problems necessitating multi-
step reasoning, to fine-tune both the baseline and
our method on the Llama2-7B-Chat model. The
GSMSK dataset comprises 7,473 training instances
and 1,319 testing instances. For evaluation, we
compute the Exact Match (EM) score using the
final computation result, without considering the
intermediate reasoning steps. Additionally, we treat
each step in the reasoning process generated by the
pre-trained LLM as a document in the RAG task to
calculate the uncertainty score, which is then used
for fine-tuning and self-calibration.

As presented in Table 7, fine-tuning the model by
reconstructing the input to match the format shown
in Table 12 yields an approximate 4% improvement
in model performance with only one-time calibra-
tion. This consistent enhancement highlights the
generalizability of our approach and its potential
applicability to a range of reasoning tasks.

5.5 Transferability

We investigate the transferability of calibration ca-
pabilities in LLMs fine-tuned with our framework.
Specifically, we assess the impact of using LLMs
fine-tuned on one dataset when applied to the dev
set of another dataset. As shown in Table 8, sam-
pling five times with the LLM fine-tuned on a dif-
ferent dataset results in significantly lower perfor-
mance compared to the baseline fine-tuned on the
corresponding training set (Table 2). This occurs
because, in the original QA task, LLMs primar-
ily learn to extract answers from documents, often
overlooking in-context reasoning abilities. Addi-
tionally, the single-hop of NQ and the multi-hop
of HotpotQA influence the LLMs’ transferability.
However, our framework’s self-calibration capabil-
ity outperforms the baseline and nearly matches the

performance of LLMs fine-tuned with the specific
training set. This is due to our approach’s emphasis
on reasoning through multiple rounds of answers
and documents, using uncertainty scores to identify
more plausible answers, which is a common logic
applicable across all datasets.

5.6 Error Analysis

To explore deeper into the distinctions between
our method and baseline, we performed an error
analysis using the HotpotQA dataset. In the base-
line, error samples with low uncertainty are typ-
ically more likely to be calibrated successfully,
whereas those with high uncertainty often fail cal-
ibration. Our analysis of calibration performance
across 7,405 samples showed that 1,440 samples
(19.5%) were successfully calibrated, while 1,080
samples (14.6%) failed. Among the successful
calibrations, 75% (1,081 samples) were calibrated
within the first two rounds. This was due to the high
initial uncertainty in the baseline answers, which
prompted divergent responses. The remaining 359
samples required iterative calibration: baseline an-
swers with low uncertainty gradually accumulated
doubt over rounds until a threshold was reached,
prompting revised responses. Correct answers re-
inforced confidence, reducing uncertainty, while
incorrect ones sustained high uncertainty, prompt-
ing further revisions. For the failures, 693 cases re-
tained incorrect answers with declining uncertainty.
A small subset proposed alternative incorrect an-
swers accompanied by sharp drops in uncertainty,
halting calibration. Notably, 387 failures reached
the 5-round limit with rising uncertainty, suggest-
ing potential calibration success if the rounds were
extended. This indicates the framework’s ability
to iterative self-calibration, although round limits
currently constrain efficacy.

5.7 Case Study

We present two examples in Table 13 to empir-
ically showcase the capabilities of SGIC. In Ex-
ample 1, our uncertainty-aware self-calibration for
LLMs calibrates errors in generated answers us-
ing uncertainty scores from source documents and
the initial answer. In Example 2, we illustrate the
framework’s ability to refine partially correct an-
swers, enhancing both the completeness and ac-
curacy of the responses. These examples provide
compelling evidence of the effectiveness of our
framework in improving the quality and reliability
of LLM-generated answers.
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Figure 6: The visualization of the attention distribution
of the given documents in a sample. Red means the
relevant two documents.

5.8 Attention Distribution

To further investigate how our framework enables
LLMs to self-calibrate, we visualize the attention
distribution across various documents to analyze
its impact on LLM parameterization. Figure 6
presents a comparison between the attention al-
location of Llama2-7B-Chat fine-tuned with our
framework (lower) and the baseline model (upper).
Notably, the baseline model exhibits low attention
distribution to relevant documents, whereas our
self-calibration framework directs attention more
effectively toward these relevant documents. This
observation indicates that our framework enhances
the model’s ability to calibrate its answers by fo-
cusing attention on pertinent information.

For a more detailed evaluation, we examined
the attention distribution for the whole test set of
the HotpotQA dataset. Since the relevant docu-
ments may appear in different positions among
all candidates, we quantified the difference using
the R10@Fk score. This metric represents the pro-
portion of the top two relevant documents ranked
within the top k positions, based on the attention
distribution in the LLM. We compared the atten-
tion weights from the baseline model and after the
first calibration. The results, displayed in Table 10,
reveal that even a single calibration with our frame-
work significantly improves the model’s focus on
relevant documents compared to the baseline.

6 Conclusion

In this paper, we observed significant gaps in un-
certainty scores from various LL.Ms and estimation
methods between relevant/irrelevant documents
and correct/incorrect answers in the RAG task. To
address this, we proposed a novel framework that
guides iterative calibration using the model’s in-

context reasoning abilities. Our framework consis-
tently improves performance for both open-weight
and closed-source models by utilizing uncertainty
scores of documents and generated answers. These
findings underscore the potential of uncertainty-
aware self-calibration in enhancing the accuracy
and reliability of large language models.

7 Limitation

Even though our proposed novel SGIC framework
can utilize the in-context reasoning capabilities of
large language models (LLMs) to iteratively self-
calibrate the answers by leveraging the uncertainty
scores of the given documents and the initially gen-
erated answers, it is contingent upon the precision
of the underlying uncertainty estimation. While
much current work has devoted considerable atten-
tion to methodologies for gauging the uncertainty
indicative of the veracity of generated responses,
there remains a dearth of studies addressing the as-
sessment of the confidence regarding the pertinence
of documents to the question. In the future, we will
further explore how to improve the accuracy of
uncertainty estimation, which can maximize the
effectiveness of our framework.
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A Appendix

A.1 Implementation Details

We use the LLaMA-Factory® GitHub repository
to fine-tune the Llama2-7B-Chat with LoRA (Hu
et al., 2021) and Phi-3.5-mini with full-parameters
mode because of the limitation of computation re-
source. We train all models using the batch size
of 16. We set the initial learning rate to 5e-5 and
fine-tuned all models 3 epochs. We truncate each
document and ensure that its length is less than 200
tokens for all the open-weight LLMs. All the ex-
periments have been completed on one 80G H800
GPU or 80G A100 GPU. Besides, all experiments
are calibrated at most five rounds. During the cali-
bration phase, we ensure an equitable evaluation by
sampling k times for the baseline model the same
as an equivalent number of experimental trials with
the baseline model.

A.2 The Impact of the Tag In Context

Firstly, we leverage large language models (LLMs)
without fine-tuning to conduct experiments aimed
at evaluating the effectiveness of using specific tags
as hints within the context to guide LLM reason-
ing. Table 11 illustrates the input format utilized in
these experimental settings. We selected a random
subset of 2,000 instances from the development set
of the HotpotQA dataset. Each instance adds the
“<key>" tags before the relevant documents.

3hitps://github.com/hiyouga/LLaMA-Factory
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Figure 7: The experimental results of using the
“<KEY>" tag to guide LLM on the RAG task at differ-
ent order of documents. The solid line is the result of
adding the “<KEY>" tag, while the dashed line is the
baseline result.

Dataset HotpotQA NQ

EM F1 EM F1
Self-RAG 487 299 61.3 70.8
Ours 772 805 79.0 81.2

Table 9: The results of comparing our method with the
Self-RAG framework.

To mitigate potential biases arising from input
sequencing in LLMs, as identified by Liu et al.
(2023), we systematically varied the positions of
the given documents. In separate trials, the two
relevant documents are placed at the beginning,
middle, and end of the input sequence, as well as
in random positions. The results of these experi-
ments are depicted in Figure 7. Notably, the use
of tags to direct the model’s attention to relevant
documents demonstrates an improvement in perfor-
mance on retrieval-augmented generation (RAG)
tasks. This finding supports our hypothesis that the
model has the potential to calibrate its generated
answers through in-context reasoning guided by
specific tags.

A.3 Analysis of Inference Cost

One of the concerns regarding the self-calibration
framework is its inference cost, as it requires gen-
erating an initial answer and then calibrating it. To
address this, we conducted experiments to analyze
the inference cost of our proposed method. Ini-
tially, we compared the first calibration cost with
the baseline implementation of Llama2-7B-Chat
fine-tuned with LoRA, using the same number of
sampling iterations. Our framework retains 72%
of the baseline’s inference speed while achieving
superior performance, as demonstrated in Figure
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3. This empirically validated trade-off highlights
our framework’s ability to deliver significant per-
formance improvements with minimal latency in-
crease.

Additionally, we conducted a comparative anal-
ysis with one of the state-of-the-art frameworks,
Self-RAG (Asai et al., 2023). The experimental
results, detailed in Table 9, provide significant in-
sights. Using the Llama2-7B model as per Self-
RAG’s setup, our framework, with 10 retrieved
documents, shows notable improvements over Self-
RAG. Specifically, our SGIC framework enhances
Exact Match (EM) scores by 28.5 on the HotpotQA
dataset and 17.7 on the Natural Questions (NQ)
dataset.

A key strength of our framework is its enhanced
computational efficiency, achieved through batch
processing of document uncertainties. On the
HotpotQA dataset, SGIC achieves 210% of Self-
RAG’s inference speed. Although this speed advan-
tage decreases to 90% on the NQ dataset, this re-
duction is due to Self-RAG’s shorter generation pat-
tern on the simpler single-hop NQ dataset, which
reduces time spent on retrieval, critique, and gen-
eration phases. Furthermore, Self-RAG requires
full parameter fine-tuning and relies on GPT-4 to
generate extensive critique training data, increasing
training overhead. In contrast, our framework elim-
inates the need for external knowledge and acceler-
ates training using Parameter-Efficient Fine-Tuning
(PEFT) methods like LoRA, achieving superior re-
sults compared to Self-RAG.

A.4 Theoretical Analysis

In this section, we delve into the theoretical un-
derpinnings of why our method is effective. The
Probability Ranking Principle (PRP), as introduced
by Robertson (1977), posits that ranking docu-
ments based on their probability of relevance en-
sures optimal performance in ad-hoc retrieval tasks.
This principle relies on models that provide well-
calibrated probability estimates. Recent studies
have shown that integrating uncertainty into rank-
ing processes can significantly boost learning and
performance in information retrieval scenarios (Yu
et al., 2024). Our method adheres to the PRP by
enhancing model calibration through robust uncer-
tainty estimation.

While Duan et al. (2023) points out challenges
such as generative inequalities in uncertainty quan-
tification, our research emphasizes how uncertainty
can be harnessed to improve retrieval models. By

Method R1p@2 R10@5
Baseline 42.9 70.1
1st Time Calibration 49.8 75.4

Table 10: The R;o@k scores of ranking the candi-
date documents from largest to smallest in terms of
the weight of the attention distribution in Llama2-7B-
Chat on the HotpotQA dataset.

fine-tuning models to effectively utilize uncertainty
scores, we achieve outcomes that align with the
PRP, thereby demonstrating the reliability of our
approach. Furthermore, employing advanced esti-
mation techniques has the potential to further ele-
vate performance, highlighting the robustness and
versatility of our method. Beyond retrieval, our ap-
proach is applicable to long document challenges,
such as translation and summarization, showcasing
its adaptability across a wide range of tasks.

A.5 Discussion of Uncertainty Estimation

In this work, our primary focus is on leveraging
uncertainty scores to identify the best-calibrated an-
swers by comparing these scores, rather than solely
concentrating on the precision of uncertainty esti-
mation. Nonetheless, we also assess the precision
of uncertainty estimation for both our method and
the baseline using a consistent estimation frame-
work. We utilize the AUROC score as a metric and
evaluate it on the HotpotQA test set. Following
the 1st time calibration, our approach achieves an
AUROC score of 68.4, surpassing the baseline’s
score of 65.5. This indicates that our method not
only excels in selecting well-calibrated answers but
also enhances uncertainty estimation, even though
this is not our primary objective.
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Write a short answer directly ...

<KEY> means this document contains key information of the question.

(Other docuemtns) ...

Document [6]: <KEY> Yellowcraig, less commonly known as Broad Sands Bay, is a coastal area ...
Document [7]: <KEY> Dirleton Castle is a medieval fortress in the village of Dirleton, East ...

Table 11: The input format of adding <KEY > tags.

Explain your reasoning and give a final answer for the given question. The initial
Question: Josh decides to try flipping a house. He buys a house for $80,000 and ...

Reasoning Steps:

1. The house was worth $80,000 before the repairs.(Uncertainty Score: 57)

. The repairs cost $50,000.(Uncertainty Score: 53)

. So the house is now worth $80,000 + $50,000 = $«80000+ ... (Uncertainty Score: 4)

. The repairs increased the value of the house by 150%.(Uncertainty Score: 36)

. So the value of the house increased by 150% of $50,000 = $«150 ... (Uncertainty Score: 100)
. So the house is now worth $130,000 - $75,000 = $«130000-75000= ... (Uncertainty Score: 0)
. So Josh made a profit of $55,000. (Uncertainty Score: 49)

Final Answer:

~N OB W

Table 12: The input format of fine-tuning our method on the GSMS8K dataset.

Example 1

Werite a short answer directly without any explanation or introduction for the ...
(Documents and their uncertainty scores) ...

Question: A medieval fortress in Dirleton, East Lothian, Scotland borders on the south side of ...
The initial answer is:

(Previous Rounds Generated Answer)

Round 2: Firth of Forth (Uncertainty Score: 90)

The correct answer is:

Example 2

Write a short answer directly without any explanation or introduction for the...

(Documents and their uncertainty scores) ...

Question: The director of the romantic comedy “Big Stone Gap” is based in what New York city?
The initial answer is:

(Previous Rounds Generated Answer)

Round 3: Greenwich Village (Uncertainty Score: 66)

The correct answer is:

Table 13: Two examples of how our proposed framework corrects the answer. Red means the answer is wrong,
while indicates the answer is correct. Blue indicates that the answer contains partially correct answer.

28370



