
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 28341–28356
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Value Residual Learning

Zhanchao Zhou1,2,3 Tianyi Wu4†* Zhiyun Jiang5†∗ Fares Obeid6 Zhenzhong Lan2⋄
1Zhejiang University 2Westlake University 3Ant Group
4University of Electronic Science and Technology of China

5China University of Mining and Technology 6Imperial College London

Abstract

While Transformer models have achieved re-
markable success in various domains, the effec-
tiveness of information propagation through
deep networks remains a critical challenge.
Standard hidden state residuals often fail to
adequately preserve initial token-level infor-
mation in deeper layers. This paper intro-
duces ResFormer, a novel architecture that
enhances information flow by incorporating
value residual connections in addition to hid-
den state residuals. And a variant is SVFormer,
where all layers share the first layer’s value em-
bedding. Comprehensive empirical evidence
demonstrates ResFormer achieves equivalent
validation loss with 16.11% fewer model pa-
rameters and 20.3% less training data com-
pared to Transformer, while maintaining simi-
lar memory usage and computational cost. Be-
sides, SVFormer reduces KV cache size by
nearly half with only a small performance
penalty and can be integrated with other KV-
efficient methods, yielding further reductions
in KV cache, with performance influenced by
sequence length and cumulative learning rate.

1 Introduction

The Transformer (Vaswani et al., 2017) model has
become one of the leading architectures in recent
years, excelling in both language modeling (De-
vlin et al., 2019; Lan et al., 2020; Brown et al.,
2020) and computer vision tasks (Dosovitskiy et al.,
2021). Among its variants, decoder-only architec-
tures have become the most prominent (Kaplan
et al., 2020; Dubey et al., 2024). The discovery of
scaling laws (Hoffmann et al., 2022; Kaplan et al.,
2020) has driven the pursuit of larger Transformer
models by increasing network depth and width.

In a standard decoder-only transformer, initial
token embeddings contain localized information,

*Equal Contribution; †Work done during internship at
Westlake University; ⋄ Corresponding author.

which rapidly evolves into abstract semantic fea-
tures through early attention layers (Sun et al.,
2024b; Clark et al., 2019). As Transformers deepen,
a critical question arises: How effectively is the
initial information propagated to deeper lay-
ers? One common answer is that residual con-
nections of hidden states ensure access to ini-
tial information throughout the network. How-
ever, some studies (Zhou et al., 2021; Shi et al.,
2022) have identified that the smoothing effect
of attention mechanisms leads to over-smoothing,
where token representations become increasingly
similar as the network deepens. This indicates
that in deeper layers, sequence-level features be-
come dominant, while token-level features are di-
luted. DenseFormer (Pagliardini et al., 2024) ap-
plied the idea of learnable dense connections from
DenseNet (Huang et al., 2016) to Transformer,
and the learned connection coefficients shows that
deeper layers indeed require larger attention to
initial embeddings. Given the low similarity be-
tween initial token embeddings and deeper hidden
states (Sun et al., 2024b), their directly summation
may significantly impact the modeling of attention
distribution for abstract semantic information in
later layers. NeuTRENO (Nguyen et al., 2023)
alleviates over-smoothing from the view of regular-
izers by considering the difference between value
vectors of the first and current layers.

In this paper, we propose ResFormer, which en-
hances the propagation of initial local information
by introducing value residual connections in addi-
tion to the standard hidden residual connections.
Specifically, ResFormer applies a residual connec-
tion between the value vectors of the current layer
and the first layer before the attention operation. In
other words, both value states share the existing
attention matrix of the current layer. The value
states of the first attention layer and the preceding
hidden states differ only by a linear transforma-
tion along the channel dimension, both represent-

28341

1H

1A 1V

2H

2A 2V

3H

3A 3V

(a) Transformer

1A 1V

2A

3A

2V

3V

1H

2H

3H

(b) NeuTRENO

1H

1A 1V

2H

2A 2V

3H

3A 3V

(c) DenseFormer

1H

1A 1V

2H

2A
2V

3H

3A
3V

(d) ResFormer

1H

1A 1V

2H

2A

3H

3A

(e) SVFormer

Figure 1: Simplified illustration of the vanilla Transformer, NeuTRENO, DenseFormer, ResFormer, and SVFormer,
with only three-layer structures and no operations other than attention. Ai, Vi, and Hi denote the attention matrix,
value vectors, and attention outputs at the i-th layer, respectively. ⊕, ⊖, and ⊗ represent standard matrix addition,
subtraction, and multiplication, respectively.

ing token-level raw information. We hypothesize
that introducing residual connections for values has
a less impact on modeling attention distributions
for sequence-level semantic information in higher
layers and complements the original hidden state
residual. Fig. 1 illustrates a comparison of the extra
skip connections introduced by different models.

During inference, deep networks require substan-
tial KV cache, severely impacting model deploy-
ment (Xiao et al., 2024). Existing KV -efficient
methods often process keys and values simultane-
ously. Building on ResFormer, we decouple the
value from the attention operation and propose a
new kind of Transformer (SVFormer) where all
layers share a single value state.

We experiment on a 20B SlimPajama sub-
sampled dataset, using settings similar to popular
large language models (Wei et al., 2023; Dubey
et al., 2024; Kaplan et al., 2020). We compare dif-
ferent models based on the valid loss against the
vanilla Transformer. Results show that ResFormer
outperforms the vanilla Transformer, DenseFormer,
and NeuTRENO. ResFormer achieves equivalent
validation loss with 16.11% fewer model param-
eters and 20.3% less training data compared to
Transformer, while maintaining similar memory
usage and computational cost. Besides, SVFormer,
while reducing the KV -cache by nearly half, re-
quires a 12.2% increase in parameters to achieve
the same validation loss as Transformer. And SV-

Former performs better when the training sequence
length is longer. It further reduces the KV cache
when integrated with GQA (Ainslie et al., 2023).

2 Related Work

2.1 Shortcut Connections

Deep learning models often consist of multiple lay-
ers, posing a challenge to minimize information
loss during transmission. ResNet (He et al., 2016)
mitigates the vanishing gradient problem with iden-
tity connections. Stochastic Depth (Huang et al.,
2016) enhances training by randomly dropping lay-
ers. DenseNet (Huang et al., 2017) allows subse-
quent layers to directly access the hidden states of
all preceding layers. These two methods further
enhance the information flow after ResNet.

Related research indicates that, although increas-
ing depth continues to yield performance improve-
ments in language modeling tasks, the gains be-
come less significant with further increases (Petty
et al., 2024). Furthermore, (Zhou et al., 2021) illus-
trates that a 32-layer ViT underperforms a 24-layer
ViT. DenseFormer (Pagliardini et al., 2024) inte-
grates weighted fusion of outputs from all preced-
ing layers after each layer. To explore why increas-
ing depth in Transformers does not yield expected
gains, (Wang et al., 2022) finds that self-attention
acts as a low-pass filter, smoothing token repre-
sentations in ViTs. Additionally, (Shi et al., 2022)

28342

investigates over-smoothing from a graph perspec-
tive in BERT-based language modeling tasks. Neu-
TRENO (Nguyen et al., 2023) adds the difference
between the value vectors of the first and current
layers to each layer’s attention output and signifi-
cantly alleviates the over-smoothing problem.

2.2 KV cache compressing
The KV cache significantly impacts the efficiency
of long-text model inference, attracting extensive
research. One category of Transformer-based meth-
ods addresses this by employing parameter or
activation value sharing techniques. The most
representative works include Multi-Query Atten-
tion (Shazeer, 2019) and Grouped-Query Attention
(Ainslie et al., 2023) which suggest to share key
and value across a group of queries. Besides, CLA
(Brandon et al., 2024) and LISA (Mu et al., 2024)
respectively point out that we can reuse keys, val-
ues, or the attention matrix across layers to reduce
redundancy between layers. While these methods
typically process both key and value simultane-
ously, SVFormer is the first approach to decouple
value from query and key during attention.

3 Method

3.1 Preliminary
Notations Let Hn ∈ Rl×d be the output hidden
state of the n-th layer, where l denotes the sequence
length and d is the dimension size. For each layer,
the hidden state Hn−1 will be firstly projected into
Qn,Kn,Vn ∈ Rl×d through three linear projec-
tions WQ

n ,WK
n ,WV

n ∈ Rd×d respectively. After
these projections, the attention operation (Attn),
output projection (WO

n ∈ Rd×d), and Multi-Layer-
Perceptron (Mlp) are applied sequentially:

Un = Attn(Qn,Kn,Vn). (1)

Hn = Mlp(UnW
O
n). (2)

NeuTRENO and DenseFormer After Eqn. 1,
NeuTRENO adds the difference between the first
and current layer’s value:

Un = Attn(Qn,Kn,Vn) + λn(V1 −Vn). (3)

After Eqn. 2, DenseFormer performs a weighted
average between all previous hidden states:

Hn = λn,nMlp(UnW
O
n) +

n−1∑

i=0

λn,iHi. (4)

where H0 = Embedding(X) for the input X. λn

in Eqn. 3 and{λn,i}n−1
i=0 in Eqn. 4 are new parame-

ters. Unless noted, λn is set to 0.4 for NeuTRENO
suggested by (Nguyen et al., 2023). For Dense-
Former, only λn,n are set to 1 and the others are
set to zero during initialization here.

3.2 ResFormer
In contrast, before Eqn. 1, ResFormer introduces a
skip connection from the first layer’s value V1 =
H0W

V
1 to current layer’s value Vn = Hn−1W

V
n :

Vn = λn,1V1 + λn,2Hn−1W
V
n . (5)

where λn,1 and λn,2 are flexible scalars.
When all λn,1 and λn,2 are predetermined con-

stants, it is termed Constant-ResFormer. If
{λn,1 = λn,2}Nn=1, where N is the total number
of layers, the model is called Identity-ResFormer.
Another variant where some layers have λn,1 = 0
is referred to as Sparse-ResFormer. Besides, if
λn,1 and λn,2 are trainable parameters, the model
is termed Learnable-ResFormer. Unless other-
wise specified, λn,1 and λn,2 are initialized to
0.5 for Learnable-ResFormer and are predeter-
mined as 0.5 for Identity-ResFormer. Furthermore,
given that higher layers require more supplemen-
tary information from V1, we propose the Learn-
able ResFormer Plus. The initialization strat-
egy is as follows: 1). λn,2 is initialized to 0.5,
where n = 1, 2, . . . , N . 2). λn,1 is initialized to

λscale · e
λ′n,1

∑N
j=1 e

λ′
j,1

, where λscale is initialized to the

total layer number N and is shared across all layers.
A more general form is Dense-ResFormer, de-

fined as Vn=λn,nHn−1W
V
n +

∑n−1
i=1 λn,iVi for

n ≥ 2, where{λn,i}n−1
i=1 are constants or trainable

scalars. Unless noted, all λn,n are set to 1.

3.3 SVFormer

Shared Parts - values keys keys & values

Valid Loss 2.739 2.743 2.753 2.776

Table 1: Results of sharing different parts every 2 layers.

Beyond ResFormer, SVFormer adopts standard
attention in the first layer and obtain the attention
output Un for n-th layer when n ≥ 2 through
Un = AnV1, where An is the attention matrix
of n-th layer. Its main advantage is that it only re-
quires computing and storing the value vectors for
the first layer, saving nearly half of the KV cache

28343

100 150 200 250 300 350 400 450
Parameters (M)

2.2

2.3

2.4

2.5

2.6

2.7
Av

er
ag

e
Va

lid
 L

os
s

Vanilla Transformer
NeuTRENO
Denseformer
Identity Resformer
Learnable Resformer
Learnable Resformer Plus
16.11% reduction

4 6 8 10 12 14 16 18 20
Training Tokens (B)

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

Av
er

ag
e

Va
lid

 L
os

s

Vanilla Transformer
NeuTRENO
Denseformer
Identity Resformer
Learnable Resformer
Learnable Resformer Plus
20.3% reduction

25 50 75 100 125 150 175 200
Training Tokens (B)

2.1

2.2

2.3

2.4

2.5

2.6

Av
er

ag
e

Va
lid

 L
os

s

Vanilla Transformer
Learnable Resformer
Learnable Resformer Plus

Figure 2: (Left) Validation loss as model size scales from 82M to 468M parameters on 20B tokens. (Medium)
Validation loss for the 468M parameter model evaluated every 2B tokens. ResFormer achieves approximately
16.1%-20.3% reduction in both model parameters and training data. (Right) Validation loss for the 1.6B parameter
model evaluated every 10B tokens.

Model Wiki. LMB. Arc-c Arc-e BoolQ Hella. LMB. Obqa Wino. PiQA Avg.
PPL PPL ACC ACC ACC ACC ACC ACC ACC ACC ACC

Transformer 24.8 33.4 18.8 49.6 57.5 31.1 34.1 17.6 49.8 66.1 40.6
NeuTRENO 24.3 36.3 20.7 48.8 59.2 31.6 34.2 19.0 51.8 65.9 41.4
DenseFormer 24.0 28.0 20.1 48.7 56.5 32.1 36.6 17.6 49.3 65.6 40.8

Identity ResFormer 23.8 32.9 20.2 49.0 59.0 32.1 36.0 16.8 51.2 66.1 41.3
Learnable ResFormer 23.7 32.5 21.2 50.3 60.9 32.3 36.3 18.8 51.2 67.0 42.3

Learnable ResFormer plus 23.2 31.4 21.2 49.7 60.6 32.4 36.0 17.8 51.1 67.5 42.0

Table 2: Downstream evaluation of different models with 468M parameters trained on 20B tokens.

during inference. Similar methods like CLA reduce
KV cache by sharing both of the key and value
vectors every two layers. However, the results in
Table 1 show that sharing values has less negative
impact compared with sharing keys.

4 Experiments

4.1 Setting

Training Details Following (Brandon et al.,
2024), we choose the Llama-like architecture and
SlimPajama (Soboleva et al., 2023) data for main
experiments. Specifically, the architecture includes
pre-normalization, SwiGLU activations (Shazeer,
2020), rotary position embedding (Su et al., 2024),
and no dropout. For SlimPajama, we randomly
sample nearly 20B tokens based on the original
data distribution of seven domains during training
and adopt tokenizer used for “RedPajama-INCITE-
7B-Base". See Table 12 in Appendix for data de-
tails.

Unless otherwise noted, we train all models
using AdamW optimizer with 0.1 weight decay,
β1 = 0.9, β2 = 0.95 and the max grad norm 1.0.
The batch size is set to be around 2M tokens (Zhang
et al., 2024) with a sequence length of 2,048 and
the total steps is fixed 10,000 steps (Kaplan et al.,
2020). We adopt linear learning rate warmup for
the first 1,200 steps with the initial learning rate
and the peak learning rate to be 1e-7 and 6e-4 re-

spectively. The cosine decay schedule gradually
decays to 10% of the peak learning rate by the
end of training (Zhou et al., 2024; Wei et al., 2023).
The detailed hyperparameters for models of various
sizes and different training sequence lengths in Ap-
pendix A.3. Moreover, All models are trained with
8 Nvidia A100 80G GPUs using mixed-precision
training in FP16. We adopt deepspeed zero-2 opti-
mizer and flash attention mechanism.

Scaling Details We conduct scaling experiments
on a 1.6B parameter model using approximately
200B tokens of internal pre-training data. Train-
ing is performed with a sequence length of 8,192,
learning rate of 1.5e-4, and batch size of 2M tokens,
requiring about 3,584 H800 GPU hours per run.

Evaluation For model evaluation and compari-
son, we primarily utilized the average validation
loss across seven domains, computed on the en-
tire SlimPajama validation split. Additionally, we
randomly selected a fixed set of 1,000 sample se-
quences for subsequent visualization analysis.

We also compare different models on several
classical reasoning tasks following (Zhang et al.,
2024) in a zero-shot way. The tasks include Hel-
laswag (Hella.) (Zellers et al., 2019) Openbookqa
(Obqa.) (Mihaylov et al., 2018), WinoGrande
(Wino.) (Sakaguchi et al., 2019), ARC-Easy (Arc-
e) and ARC-Challenge (Arc-c) (Clark et al., 2018)
and PiQA (Bisk et al., 2020). In addition to accu-

28344

racy on reasoning tasks, we also reports the per-
plexity (PPL) on Wikitext (Wiki.) and LAMBADA
(LMB.).

4.2 ResFormer vs. NeuTRENO, DenseFormer
We analyze how different models scale with model
size and data size under similar experimental set-
tings. We train models with 82M, 180M, 320M,
and 468M parameters on 20B tokens and evalu-
ate on a validation set. Fig.2 (Left) shows Res-
Former achieves equivalent validation loss to Trans-
former while using 16.11% fewer parameters. We
also evaluate 468M models every 2B tokens, find-
ing ResFormer requires 20.3% fewer training to-
kens to match Transformer’s loss (Fig.2 (Medium)).
All ResFormer variants demonstrate superior scal-
ing compared to NeuTRENO and DenseFormer.
Table 2 confirms ResFormer outperforms other
models on downstream tasks, with Learnable Res-
Former achieving 1.7 point average accuracy im-
provement over vanilla Transformer.

To validate the performance improvement of
value residual at larger training scales, we conduct
additional experiments following the scaling details
in Sec.4.1. As shown in Fig.2 (Right), value resid-
ual consistently improves performance throughout
training.

0 1 2 3 4 5
 Value

2.70

2.71

2.72

2.73

2.74

2.75

2.76

Av
er

ag
e

Va
lid

 L
os

s

Vanilla Transformer
Learnable ResFormer
NeuTRENO: (v1 vn) + un

Constant Resformer: v1 + vn

Identity Resformer: 0.5v1 + 0.5vn

Figure 3: The impact of varying λ values on 82M 8-
layer Constant-ResFormer and NeuTRENO.

Both Constant-ResFormer and NeuTRENO rely
on predetermined λ constants. Fig. 3 shows the
performance curves of these models against vary-
ing λ. Results indicate that Constant-ResFormer
significantly outperforms NeuTRENO and demon-
strates greater robustness across a wider range of λ
values, achieving optimal performance at λ = 2.

Furthermore, we test the performance of other
varaints of ResFormer mentioned in Sec.3.2. The
λ values for Constant-ResFormer and Sparse-
ResFormer were optimized through multiple exper-
iments. All ResFormer variants, including the sim-
plest Identity-ResFormer, show significant perfor-

Model Initial Form Loss

Baselines

Vanilla Transformer - 2.739

DenseFormer∗ H′
n=1×Hn +

∑n−1
i=0 0×Hi 2.722

NeuTRENO U′
n = 0.4(V1 − Vn) + Un 2.72

ResFormer

Identity-ResFormer V′
n = 0.5V1 + 0.5Vn 2.712

Dense-ResFormer∗ V′
n =

∑n
i=1 1×Vi 2.709

Learnable-ResFormer∗ V′
n = 0.5V1 + 0.5Vn 2.705

Constant-ResFormer V′
n = 2V1 + Vn 2.7

Sparse-ResFormer





V′
n = Vn, 1 ≤ n ≤ 5

V′
n = V1, 6 ≤ n ≤ 8

2.696

Sparse-ResFormer





V′
n = Vn, 1 ≤ n ≤ 5

V′
n = 5V1 + Vn,

6 ≤ n ≤ 8

2.687

ResFormer-Plus∗ See Sec.3.2 2.681

Table 3: Average valid loss for 8-layer, 82M-parameter
models. “Initial form" shows deviations from vanilla
transformer. Red numbers are the λ values from Eqn. 3,
Eqn. 4, and Eqn. 5. For models marked with “*" , λ is
learnable, and the red numbers indicate the initial value;
otherwise, red numbers are fixed constants.

mance improvements. However, manually-tuned
Sparse-ResFormer and Learnable-ResFormer-Plus
outperform the standard Learnable-ResFormer. It
demonstrates the challenge to pre-determine the
optimal layers for V1 connections and their corre-
sponding λ1 values in more general scenarios. In-
terestingly, the third to last row shows that Sparse-
ResFormer achieved better performance despite
having three fewer WV.

4.3 Truly Better or Just Faster?

0 5 10 15 20 25
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Gr
ad

 N
or

m

Vanilla Transformer WQ

Vanilla Transformer WK

Vanilla Transformer WV

Vanilla Transformer WO

Identity ResFormer WQ

Identity ResFormer WK

Identity ResFormer WV

Identity ResFormer WO

0.001 0.002 0.003 0.004 0.005 0.006
Learning rate

2.65

2.70

2.75

2.80

2.85

Av
er

ag
e

Va
lid

 L
os

s

Vanilla Transformer
Identity ResFormer
Double LR of W1

v (Transformer)
Double LR of Layer1 (Transformer)

Figure 4: (Left) Average gradient norms of model out-
puts with respect to parameter matrices across different
layers in Transformer and ResFormer. (Right) Compari-
son of Transformer and ResFormer performance across
various learning rates during training.

To verify that ResFormer’s performance im-
provements are not solely due to accelerated train-
ing from its shortcuts, we examined model perfor-
mance across different learning rates. We com-

28345

pared Identity ResFormer and vanilla Transformer
under five learning rate settings. As shown in
Fig. 4 (Right), both models achieved optimal re-
sults around a learning rate of 0.003, with Iden-
tity ResFormer significantly outperforming vanilla
Transformer across all rates.

Analysis of the grad norm for the four param-
eter matrices (WQ, WK, WV, WO) in each
layer’s attention module revealed that Identity Res-
Former’s output had approximately twice the grad
norm for WV

1 and half for WO
1 in the first layer

compared to vanilla Transformer. This indicates
that a portion of the gradient originally propagated
to V1 through H1 is now transmitted via the value
residual directly for Identity ResFormer.

In this way, we conducted the other two ablation
experiments on vanilla Transformer: doubling the
learning rate for only the first layer, and doubling it
exclusively for WV

1 in the first layer. Neither mod-
ification yielded significant improvements. This
further demonstrates that the performance improve-
ments brought by ResFormer are unrelated to the
changes in gradient magnitude.

4.4 Ablation Study of Value Residual

1 2 3 4 5 6 7
Layer Index

2.715

2.720

2.725

2.730

2.735

2.740

2.745

Av
er

ag
e

Va
lid

 L
os

s

Vanilla Transformer
Adjacent Previous Layer
All Previous Layer (Dense-ResFormer)
One Certain Layer
Identity-Resformer

2 3 4 5 6 7 8
Layer Index

2.700

2.705

2.710

2.715

2.720

2.725

2.730

2.735

2.740

Av
er

ag
e

Va
lid

 L
os

s

Single Layer (Sparse ResFormer)
Multi Layers (Sparse ResFormer)
2-8 Layer (Identity ResFormer)
2-8 Layer (Learnable ResFormer)
Vanilla Transformer

Figure 5: (Left) Impact of value skip connections source
from different layers on model performance, where all
connections are identity connections and λ = 1 in
Dense-ResFormer. (Right) Average validation loss of
various Sparse-ResFormer configurations, which retain
only single or multiple skip connections from V1.

Where from, where to? We analyzed which
value skip-connections are necessary for the vanilla
transformer. For an 8-layer transformer, we added
various pre-defined value skip-connections (with
constant λ) and evaluated the resulting validation
loss. As shown in Fig. 5 (Left), we first exam-
ined the impact of skip-connections from differ-
ent sources. Our findings indicate that only skip-
connections originating from the first layer’s value
(V1) yield significant performance improvements.
Skip-connections from the second layer’s value
(V2) offer no significant benefit to subsequent lay-
ers. Skip-connections from later layers, occurring

only in the final few layers, even lead to perfor-
mance degradation. Both of the two special cases
in Fig. 5 (Left) include V1 skip-connections. How-
ever, when these connections occur only between
adjacent layers, the information in V1 fails to ef-
fectively reach the final layers. Conversely, dense
value skip-connections dilute the impact of V1 with
information from other sources.

Furthermore, we investigated spare ResFormer,
a variant of identity ResFormer where the value
residual connection V′

n = 0.5V1 + 0.5Vn is ap-
plied selectively to specific layers. As shown in
Fig. 5 (Right), for an 8-layer model, when limited
to a single layer, applying the residual connection
to the 7th layer yields the most significant improve-
ment. When applied to multiple layers, the greatest
benefit is observed when incorporating layers 6 to
8. Extending the residual connection to earlier lay-
ers, such as the 5th, diminishes the overall effect.
It suggests that the model’s final few layers benefit
most from the first layer’s value information.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ra
tio

 o
f

 v
al

ue
s

82M n, 1
n, 2

468M n, 1
n, 2

1 2 3 4 5 6 7 8
 Index

1
2

3
4

5
6

7
8

La
ye

r I
nd

ex

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 6: (Left) Visualization of λ1/λ2 across differ-
ent layers in the 82M and 468M Learnable-ResFormer.
(Right) Heatmap visualization of learned λ across dif-
ferent layers in the 468M Dense-Learnable-ResFormer.

We further trained 8-layer and 24-layer
Learnable-ResFormers, as well as an 8-layer
Learnable-Dense-ResFormer, and visualized the
learned λ values. As shown in Fig. 6, the later lay-
ers tend to require more value residual connections
from V1, which aligns with the findings in Fig. 5.
Fortunately, the Learnable-ResFormer can, to some
extent, identify similar sparse residual patterns to
those of the best performing Sparse-ResFormer in
Table 3. Notably, the Learnable-Dense-ResFormer
learns value residual patterns that closely resemble
those of the Learnable-ResFormer.

Why needed beyond hidden residual? Our ex-
periments revealed that V1 information provides
additional benefits to later network layers, despite
both H0 and V1 containing initial, unfused token
information. H0 is propagated through default hid-
den residual connections, but it may be diluted by

28346

Residual
Type

Initial Form
Valid
Loss

- - 2.7389
value V′

n = 0.5V1 + 0.5Vn 2.705
hidden H′

n = 0.5H0 + 0.5Hn 2.781
value V′

n = 0×V1 + 1Vn 2.73
hidden H′

n = 0×H0 + 1Hn 2.722

Table 4: Comparison of additional value residual (to
V1) and hidden residual (to H0) connections against the
default hidden residual, under various λ initializations.
Trainable λ parameters are highlighted in red.

subsequent information, hindering its effective uti-
lization in later layers. To test this hypothesis, we
introduced an additional skip connection to H0 :
H′

n = λ0H1 + λ2Hn, where λ is learnable. We
conducted experiments with two λ initialization
settings and compared them to value residual.

Results showed that when λ1 = λ2 initially, the
extra hidden residual had adverse effects. How-
ever, initializing λ1 = 0 yielded some improve-
ments, suggesting possible dilution of H0 informa-
tion. Nevertheless, these gains were smaller than
those from value residual connections, which con-
sistently outperformed vanilla transformers across
different initializations. Actually, the connection
H0 : H′

n = λ1H1 + λ2Hn, is similar to applying
residuals to queries, keys, and values at the same
time, may disrupt attention distributions and hinder
higher-level semantic information fusing. The re-
duction performance brought by identity residuals
of queries or keys shown in Table 6 can support it.

0 1000 2000 3000 4000 5000 6000
Training Step

0.3

0.2

0.1

0.0

0.1

0.2

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Dense Value Residual
Value Residual

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Layer

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

La
ye

r

0.2

0.4

0.6

0.8

1.0

Figure 7: (Left) The relative training loss curve between
different cross layer residual and vanilla hidden residual.
(Right) Layer-to-layer hidden states similarity.

Why V1 instead of V2? In Fig. 5 (Left), con-
nections to V1 show significant improvement,
while those to V2 yield minimal gains. This
likely occurs because the original hidden residual
propagates information from H1 to the network
(V2 = H1W

V
2). To verify, we adjusted residual

connections, introducing them at different points.

Hidden Residual
Starts Place

Value Residual
Target Place

Valid
Loss

H0 (Default) - 2.739
H0 (Default) V1 2.712
H0 (Default) V2 2.738

H1 - 2.78
H1 V2 2.78
H2 - 2.82
H2 V2 2.787
H2 - 2.82
H2 V3 2.833
H3 - 3.057
H3 V3 2.883

Table 5: Comparison of performance across different
value residual target and varying hidden residual start
settings. “value residual target place" Vi indicates the
earliest value accessible to subsequent layers, while
“hidden residual starts place" denotes the earliest hidden
state available, without prior residual connections.

For example, starting from H1, we use H1 =
Layer1(H0) instead of H1 = Layer1(H0) +H0.

Table 5 results show that when residual connec-
tions begin from H0 or H1, allowing H2 and sub-
sequent layers access to H1, V2 + Vn offers no
improvement. However, starting from H2, skip
connections from V2 provide substantial benefits.
Regarding the disparity in information propagation
between V2 (via H1) and V1 (via H0), we posit
that after the first layer’s integration, H1 contains
higher-level semantic information more similar to
subsequent hidden states, see Fig. 7 (Right). This
may ensure that the attention distribution remains
relatively undisturbed when connecting to H1. Be-
sides, Fig. 7 (Left) shows that Dense-ResFormer
performs better than ResFormer when there is no
cross layer hidden residual.

Residual Type Valid
Loss

- 2.739
Query 2.742
Key 2.746

Attention 2.757
Value 2.712

Table 6: The impact
of various residual types,
where all residual connec-
tions adopt a form similar
to V′

n=0.5V1 + 0.5Vn.

Residual Mapping Valid
Loss

- 2.739
Identity Mapping 3.137

Cross Layer
Attention 2.729

Current Attention 2.712

Table 7: Comparison of
different mapping matri-
ces when adding V1 to
Un, with “Current At-
tention" corresponding to
Identity-ResFormer.

28347

Superior to other residual For vanilla trans-
formers, to better propagate information from
the first layer, new residual connections can
be introduced at various points in addition to
the existing hidden residual: query states Q,
key states K, value states V, and post-softmax
attention matrix A. Results in Table 6 indicate
that only the value residual connection improves
performance. When connecting V1 and Vn,
three approaches free of extra parameters are
possible: (1) the proposed residual connection,
directly summing the two and then sharing
an attention matrix; (2) cross layer attention
(Softmax

(
Qn Concat(Kn,K1)

T
)
Concat(Vn,V1)),

recomputing an attention matrix for V1 based on
K1 and Qn; and (3) directly adding V1 to Un in
Eqn. 1, equivalent to using an identity mapping
as V1’s attention matrix in layer N . The second
approach significantly increases computational
cost. Results in Table 7 demonstrate that sharing
the attention matrix yields the best performance.

4.5 Post-Analysis of ResFormer

0 5 10 15 20
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Learnable ResFormer: value after residual
Identity ResFormer: value after residual
Vanilla Transformer
Learnable ResFormer: value before residual

0 5 10 15 20 25
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y Learnable Resformer: value before residual
Identity Resformer: value before residual
Learnable Resformer: value after residual
Identity Resformer: value after residual

Figure 8: (Left) Similarity between first layer values and
other layers’ values. (Right) Token-to-token similarity
across sequence for value states at different place.

How value residual works? We performed post-
analysis on trained ResFormer and vanilla Trans-
former models to understand value residual learn-
ing. Fig. 8 (Left) shows cosine similarities between
value states at different layers and the first layer,
averaged across token positions. For ResFormer,
we calculated this before and after applying value
residual. Results show that in vanilla Transformers,
the first layer’s value has low similarity with other
layers. In contrast, ResFormer maintains high simi-
larity between the first layer’s value and the post-
residual values in subsequent layers due to value
residual connections. Notably, in layers where Res-
Former relies more heavily on the first layer’s value
(see Fig. 6), the pre-residual value exhibits lower
similarity with the first layer’s value, indicating that
WV in these layers is learning the value residual.

For ResFormer, we also examined the average

pairwise similarity between tokens’ values before
and after the residual connection. The results Fig. 8
(Right) reveal that with value residual connections,
the learned values (before the value residual) from
each layer become increasingly similar as the net-
work deepens. We hypothesize that this is because,
given the default hidden residual and value resid-
ual, each layer learns a ∆V, with the magnitude
of necessary adjustments decreasing in later layers.
This phenomenon is unique to ResFormer and not
observed in vanilla Transformers.

0 5 10 15 20 25
Dropped Layer

4

6

8

10

Te
st

 L
os

s

Vanilla Transformer(Skip Mlp)
Vanilla Transformer(Skip Attention)
Identity ResFormer(Skip Mlp)
Identity ResFormer(Skip Attention)

0 5 10 15 20 25
Layer Index

30

40

50

60

70

80

Co

re
 Fe

at
ur

es

Vanilla Transformer
Learnable ResFormer

Figure 9: (Left) The change in test loss as model mod-
ules are progressively removed, starting from the back
to front while keeping the first layer intact. (Right) The
number of core features in each layer’s hidden state af-
ter PCA dimensionality reduction, where core features
represent the minimum number of principal components
required to explain 99% of the variance.

Representation and Module Analysis We an-
alyzed the overall network changes, focusing on
the hidden state representation capabilities and the
contributions of different modules. (Tyukin et al.,
2024) suggests that removing Attention in Trans-
formers has a significantly smaller impact than
removing Mlp. We progressively removed atten-
tion or MLP layers, starting from the last layer
while retaining the first layer. Fig. 9 (Left) demon-
strates that for ResFormer, the impact of removing
Attention is more comparable to that of remov-
ing Mlp, in contrast to vanilla Transformers. This
indicates that the Attention in ResFormer, with
value residual, contribute more significantly to each
layer’s hidden states than in vanilla Transformers.

Furthermore, we performed PCA dimensional-
ity reduction on the hidden states of each layer in
both ResFormer and vanilla Transformer models.
We determined the minimum number of principal
components required to explain 99% of the vari-
ance. Fig. 9 reveals that ResFormer, starting from
the second layer where value residual connections
are introduced, consistently produces hidden states
with a higher minimum number of principal com-
ponents compared to vanilla Transformers. This
suggests that ResFormer generates hidden states

28348

with higher information density.

4.6 SVFormer vs. GQA,CLA

Sequence
Model

Valid
Length Loss

2,048

- 2.739
CLA2 2.776
GQA2 2.748

SVFormer 2.774

64,000

- 2.753
CLA2 2.793
GQA2 2.773

SVFormer 2.7485

Sequence
Model

Valid
Length Loss

64,000

- 2.753
GQA8 2.807
CLA2

+GQA4
2.815

SVFormer
+GQA4

2.741

Table 8: Comparison of valid loss under varying de-
grees of KV cache reduction. CLA2 denotes parameter
sharing every two layers, while GQA2 indicates halving
the key-value heads. Left: Model with nearly 1/2 KV
cache. Right: Model with nearly 1/8 KV cache.

0 2000 4000 6000 8000 10000
Training Step

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Training sequence length:
512
2048
8192
32000
64000

0 10000 20000 30000 40000 50000 60000
Training Sequence Length

5000

10000

15000

20000

25000

30000

Cr
iti

ca
l P

oi
nt

 S
te

p

Figure 10: Left: Relative training loss for SVFormer vs.
vanilla Transformer under different sequence lengths
with a fixed batch size of 2M tokens. Right: Analysis of
critical point, and we predict it for length 64,000 using
linear regression with the last 1,000 data points.

Model
Type

Learning
Rate

Warnup
Steps

Valid
Loss

Llama

1e-4 120 -0.033
3e-4 120 +0.021
6e-4 120 +0.035
6e-4 1,200 +0.036

GPT2 6e-4 120 +0.029

Table 9: Relative valida-
tion loss of SVFormer
compared to vanilla
Transformer under
different hyper-parameter
settings.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Parameters 1e8

2.3

2.4

2.5

2.6

2.7

Av
er

ag
e

Va
lid

 L
os

s

Transformer
SVFormer
12.2% increase

Figure 11: Validation loss
for SVFormer as model
size scales from 82M to
468M.

In the Table 8, at a training sequence length of
64,000, SVFormer demonstrates lower final loss
compared to existing KV -efficient methods such
as CLA and GQA. Moreover, it can be used con-
currently with GQA to enhance KV efficiency
further. However, we observed that with a train-
ing sequence length of 2,048, SVFormer underper-
forms compared to GQA. The results indicate that
sequence length significantly affects SVFormer’s
performance. Thus, we conducted more compre-
hensive experiments on sequence length.

Effects of sequence length Results in Fig. 10
(Left) demonstrate that SVFormer will always
be gradually surpassed by vanilla attention dur-
ing training while its training speed is faster than
vanilla Transformer at the early stage. However,
as the training sequence length increases, the SV-
Former model performs better. In this way, we
focus on the critical point, defined as the number of
training steps exceeded. Fig. 10 (Right) illustrates
that the relationship between the critical point and
sequence length exhibits an exponential trend. We
argue that it’s due to the challenge deep models
face in fully optimizing the increasingly larger first-
layer value matrix as the sequence length grows.

Other factors Table 9 show SVFormer bene-
fits more from smaller learning rates than from
warmup. This aligns with performance correlat-
ing to total summed learning rate (Kaplan et al.,
2020). Larger models, requiring smaller learn-
ing rates, suit SVFormer better. Results also in-
dicates the SVFormer-Transformer difference is
not architecture-sensitive. Compared with Trans-
former, SVFormer requires a 12.2% increase in
parameters to achieve the same loss while reducing
the KV -cache by nearly half in Fig. 11.

5 Conclusion

In this paper, we demonstrate the inadequacy of ex-
isting hidden residual connections in propagating
information from the initial token-level to deeper
layers. To address this limitation, we propose Res-
Former, which incorporates a residual connection
between the value vectors of the current layer and
those of the first layer prior to the attention oper-
ation. Furthermore, we introduce SVFormer, an
extension of ResFormer, which achieves a nearly
50% reduction in the KV cache. We conducted
extensive experiments on language modeling tasks
to evaluate the efficacy of these two Transformer
variants across diverse scenarios.

Limitations

The proposed learnable ResFormer, still falls short
of identifying the optimal λ setting through cur-
rent training, instead converging on a relative opti-
mum. This limitation suggests that further refine-
ment of initialization strategies and learning algo-
rithms may be necessary. Due to computational
constraints, we were unable to conduct experimen-
tal validation on larger-scale models at this time.

28349

Ethics Statement

On the one hand, the data employed in this paper is
sourced from publicly available datasets provided
by the company, which have undergone a certain
level of filtering. On the other hand, the models
trained in our study are solely utilized for experi-
mental analysis and will not be publicly deployed.

Acknowledgments

This work was supported by the Scientific Re-
search Project of Westlake University (Grant No.
WU2024B003).

References
Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury

Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In AAAI,
pages 7432–7439. AAAI Press.

William Brandon, Mayank Mishra, Aniruddha
Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. 2024. Reducing transformer key-value cache
size with cross-layer attention. arXiv preprint
arXiv:2405.12981.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of bert’s attention. In Black-
boxNLP@ACL, pages 276–286. Association for
Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Timothée Darcet, Maxime Oquab, Julien Mairal, and
Piotr Bojanowski. 2024. Vision transformers need
registers. In International Conference on Learning
Representations. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1), pages 4171–4186. As-
sociation for Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations. OpenReview.net.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I
Jordan, and Song Mei. 2024a. Active-dormant
attention heads: Mechanistically demystifying
extreme-token phenomena in llms. arXiv preprint
arXiv:2410.13835.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe.
2024b. Attention score is not all you need for token
importance indicator in kv cache reduction: Value
also matters. arXiv preprint arXiv:2406.12335.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. 2017. Densely connected con-
volutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4700–4708.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and
Kilian Q Weinberger. 2016. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016:

28350

14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part IV
14, pages 646–661. Springer.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Inter-
national Conference on Learning Representations.
OpenReview.net.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. Preprint, arXiv:1809.02789.

Yongyu Mu, Yuzhang Wu, Yuchun Fan, Chenglong
Wang, Hengyu Li, Qiaozhi He, Murun Yang, Tong
Xiao, and Jingbo Zhu. 2024. Cross-layer attention
sharing for large language models. arXiv preprint
arXiv:2408.01890.

Tam Nguyen, Tan Nguyen, and Richard Baraniuk. 2023.
Mitigating over-smoothing in transformers via reg-
ularized nonlocal functionals. Advances in Neural
Information Processing Systems, 36:80233–80256.

Matteo Pagliardini, Amirkeivan Mohtashami, Fran-
cois Fleuret, and Martin Jaggi. 2024. Dense-
former: Enhancing information flow in transform-
ers via depth weighted averaging. arXiv preprint
arXiv:2402.02622.

Jackson Petty, Sjoerd Steenkiste, Ishita Dasgupta, Fei
Sha, Dan Garrette, and Tal Linzen. 2024. The impact
of depth on compositional generalization in trans-
former language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 7232–7245.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. Preprint,
arXiv:1907.10641.

Noam Shazeer. 2019. Fast transformer decoding: One
write-head is all you need. CoRR, abs/1911.02150.

Noam Shazeer. 2020. GLU variants improve trans-
former. CoRR, abs/2002.05202.

Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo
Li, Lingpeng Kong, Stephen Lee, and James T Kwok.
2022. Revisiting over-smoothing in bert from the per-
spective of graph. arXiv preprint arXiv:2202.08625.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang
Liu. 2024a. Massive activations in large language
models. arXiv preprint arXiv:2402.17762.

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion
Jones. 2024b. Transformer layers as painters. CoRR,
abs/2407.09298.

Georgy Tyukin, Gbètondji J.-S. Dovonon, Jean Kaddour,
and Pasquale Minervini. 2024. Attention is all you
need but you don’t need all of it for inference of large
language models. CoRR, abs/2407.15516.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention
is all you need.(nips), 2017. arXiv preprint
arXiv:1706.03762, 10:S0140525X16001837.

Peihao Wang, Wenqing Zheng, Tianlong Chen, and
Zhangyang Wang. 2022. Anti-oversmoothing in
deep vision transformers via the fourier domain
analysis: From theory to practice. arXiv preprint
arXiv:2203.05962.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu,
Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng,
Weiwei Lü, Rui Hu, et al. 2023. Skywork: A more
open bilingual foundation model. arXiv preprint
arXiv:2310.19341.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In International
Conference on Learning Representations. OpenRe-
view.net.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V
Le, Tengyu Ma, and Adams Wei Yu. 2024. Doremi:
Optimizing data mixtures speeds up language model
pretraining. Advances in Neural Information Pro-
cessing Systems, 36.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can
a machine really finish your sentence? In ACL (1),
pages 4791–4800. Association for Computational
Linguistics.

28351

https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing
Systems, 36.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang,
Xiaochen Lian, Zihang Jiang, Qibin Hou, and Jiashi
Feng. 2021. Deepvit: Towards deeper vision trans-
former. arXiv preprint arXiv:2103.11886.

A Appendix

A.1 Attention pattern analysis

0 5 10 15 20
Layer Index

7.194

7.196

7.198

7.200

7.202

7.204

En
tro

py

Entropy
Token Similarity 0.50

0.55

0.60

0.65

0.70

0.75

To
ke

n
Si

m
ila

rit
y

0 5 10 15 20 25 30
Layer Index

2

3

4

5

6

Av
er

ag
e

En
tro

py

Llama 8B V3.1
Mistral 7B V0.2
Llama 8B Instruct V3.1
Mistral 7B Instruct V0.2

Figure 12: (Left) Average entropy of token importance
and the average hidden-state similarity for a randomly
initialized 468M model. (Right) Average entropy of
token importance across layers in Llama (8B) (Dubey
et al., 2024) and Mistral (7B) (Jiang et al., 2023).

0 5 10 15 20 25
Layer Index

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Av
er

ag
e

En
tro

py

Transformer
NeuTRENO
Resformer
SVFormer

(a) Attention Entropy.

0 5 10 15 20 25
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

To
ke

n
Im

po
rta

nc
e

Transformer
NeuTRENO
Resformer
SVformer

(b) Token importance.

0 5 10 15 20 25
Layer Index

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lu

e-
st

at
e

No
rm

Transformer
NeuTRENO
Resformer
SVformer

(c) Norms of value states.

0 5 10 15 20 25
Layer Index

0

500

1000

1500

2000

2500

3000

Hi
dd

en
-s

ta
te

 N
or

m

Transformer
NeuTRENO
Resformer
SVformer

(d) Norms of hidden states.

Figure 13: The token importance (Xiao et al., 2024),
value-state norms (Guo et al., 2024b), and hidden-state
norms (Sun et al., 2024a) of the first token across layers
of 468M models. “Attention Entropy" refers to the
entropy of token importance across each sequence.

Attention concentration Given the attention ma-
trix A ∈ Rl×l at one layer, we use entropy e
to represent its concentration effect. To obtain
entropy E, calculate the importance vector a =

1
l

∑l
j=1Aij firstly where A is a lower triangular

matrix. The entropy can be formulated as follows:
e = −∑l

i=1 a
′
i loga

′
i, where a′i = ai/

(∑l
i=1 ai

)

for i = 1, 2, . . . , l and the higher the entropy e, the
greater the degree of clustering in a, i.e., attention
matrix A is more likely to focus on specific tokens.

The phenomenon of attention concentration is
inherent to model architecture and emerges during
training. Fig. 12 shows that randomly initialized
models exhibit over-smoothing but not attention
concentration and popular trained models exhibit
obvious attention concentration problem. Trained
ViT models often focus on low-informative back-
ground areas (Darcet et al., 2024), while language
models concentrate on low-semantic tokens (Sun
et al., 2024a), particularly the start token (attention
sink (Xiao et al., 2024)). While previous studies an-
alyzed single-layer attention patterns, our research
reveals a “concentration - dispersion - concentra-
tion" pattern in deep models, as shown in Fig. 12
(Right), suggesting potential loss of information
during concentrated phases.

ResFormer alleviates attention concentration
Fig. 13a illustrates that the clustering effect of at-
tention increases significantly with the number of
layers for the vanilla Transformer, whereas the
clustering effect is relatively less pronounced for
the ResFormer. We further visualize the attention
weights, value-state norms ∥v∥2, and hidden-state
norms ∥h∥2 of tokens at different layers and posi-
tions. Given that attention clustering often occurs
on the first token, we primarily show its results in
Fig. 13. The results indicate that using ResFormer
significantly mitigates attention sinks (Xiao et al.,
2024), value-state drains (Guo et al., 2024b) and
residual-state peaks (Sun et al., 2024a). (Guo et al.,
2024a) attributes these phenomena to the mutual
reinforcement mechanism of model between value-
state drains and attention sinks. We suggest that
the value shortcut disrupts this mechanism by al-
leviating value-state drains due to the absence of
value-state drains in the first layer. Specifically,
for tokens lacking semantic information like start
tokens, a large value state magnitude can adversely
affect the prediction of subsequent tokens if they
are overly attended to since Un = AnVn in Eqn.1.
However, when there is no value-state drains, mod-
els will reduce attention clustering to these tokens
to minimize loss.

Fig. 14 (First column) demonstrates that the start
token easily attracts massive attention despite lack-

28352

Transformer

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

500

1000

1500

2000

2500

NeuTRENO

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

200

400

600

800

1000

1200

1400

ResFormer

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.7

0.8

0.9

1.0

1.1

1.2

1.3

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

50

100

150

200

250

300

SVFormer

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.01

0.02

0.03

0.04

0.05

(a) Token importance.

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

1.82

1.83

1.84

1.85

1.86

1.87

1.88

(b) Value-state norms.

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

50

100

150

200

250

300

350

400

(c) Hidden-state drains.

Figure 14: Visualization of token importance, value state norms, and hidden state norms across different token
positions and layers in 468M models.

28353

0 5 10 15 20 25
Layer Index

0.00

0.05

0.10

0.15

0.20

0.25
To

ke
n

Im
po

rta
nc

e
Top-1
Top-2
Top-3
Top-10
Top-1%

(a) Transformer.

0 5 10 15 20 25
Layer Index

0.00

0.02

0.04

0.06

0.08

0.10

To
ke

n
Im

po
rta

nc
e

Top-1
Top-2
Top-3
Top-10
Top-1%

(b) NeuTRENO.

0 5 10 15 20 25
Layer Index

0.00

0.02

0.04

0.06

0.08

0.10

To
ke

n
Im

po
rta

nc
e

Top-1
Top-2
Top-3
Top-10
Top-1%

(c) ResFormer.

0 5 10 15 20 25
Layer Index

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

To
ke

n
Im

po
rta

nc
e

Top-1
Top-2
Top-3
Top-10
Top-1%

(d) SVFormer.

Figure 15: The distribution of token importance for different models at different layers.

ing semantic information for Transformer and Neu-
TRENO. And Fig.15 further illustrates the distribu-
tion of token importance, where TOP-i represents
the i-th largest token importance within a sequence.
Compared to Transformer and NeuTRENO, Res-
Former and SVFormer exhibit a more uniform dis-
tribution of token importance.

λ value Layers Valid loss

- - 2.739

1
All layers 2.7037

2,3,4 2.724
5,6,7 2.698

2
All layers 2.7

2,3,4 2.728
5,6,7 2.688

5
All layers 2.704

2,3,4 2.732
5,6,7 2.682

Table 10: Performance of Sparse ResFormer with dif-
ferent λ values and different layer configurations.

ResFormer Layers Norm re-scale Valid loss

All Layers
No 2.712
Yes 2.701

2,3,4
No 2.734
Yes 2.727

6,7,8
No 2.702
Yes 2.701

Table 11: Ablation study of post-value residual re-
scaling.

Any negative effect? Mitigating attention con-
centration may enhance interpretability but po-
tentially affect transformer sparsity. As attention
sinks typically emerge early, applying value resid-
ual to later layers should have less impact intu-
itively. We compared two sparse ResFormer vari-
ants on an 8-layer model, applying value resid-
ual to layers 2-4 versus 6-8. The results in Ta-

ble 10 demonstrate that while incorporating value
residual generally improves performance compared
to vanilla Transformers, increasing λ (the propor-
tion of V1) in the value residual led to decreased
performance for shallower networks. Conversely,
deeper networks showed improved results with
higher λ values. Notably, the Learnable-ResFormer
learned to apply value residual primarily to later
layers, minimizing the impact on network sparsity.
Moreover, we implemented post-value residual re-
scaling (V′

n = ∥Vn∥
∥0.5V1+0.5Vn∥(0.5V1+0.5Vn)) to

mitigate its impact on later layers. This approach
benefited shallow-sparse ResFormers but had min-
imal effect on deep-sparse variants. This further
suggests that the value residual patterns learned by
the Learnable ResFormer do not introduce signifi-
cant negative effects in this context.

A.2 Pre-train Dataset

Based on the equation D ≥ 5000 ·N0.74 (Kaplan
et al., 2020) where D is data size and N is the
number of non-embedding parameters, we need
to collect at least 17.5B for model has N = 700M
non-embedding parameters (corresponding to com-
plete 1B model with 2,048 hidden size, 50,277
vocab size and 2,048 sequence length) to avoid
over-fitting. Besides, (Xie et al., 2024) indicates
that the mixture proportions of pre-training data do-
mains significantly affects the training results. In
this way, we sampled 20B tokens data from original
627B data based on the original data proportions
shown in the Table 12.

A.3 Training Details

Section 4.1 introduces the main experimental hy-
perparameters used in the paper. This section
further details the training parameters for various
model sizes and training sequence lengths. Ta-
ble 14 demonstrates the differences among models
of various sizes. The configurations for the num-
ber of layers, attention heads, hidden dimensions,
and FFN dimensions are based on (Biderman et al.,

28354

Data source proportions Tokens

Commoncrawl 50% 10 B
C4 20% 4 B

GitHub 10% 2 B
Books 5% 1 B
ArXiv 5% 1 B

Wikpedia 5% 1 B
StackExchange 5% 1 B

Table 12: The details of pre-train dataset.

Max Sequence Length 512 2,048 8,192 32,000 64,000

Total Batch Size 4,096 1,024 256 64 32

Per-GPU Batch Size 128 32 8 2 1

Gradient Accumulation Step 32

GPUs 8

Table 13: Training details for training dataset with different sequence length.

2023). Moreover, as reported in Table 13, the batch
size that a single GPU can accommodate varies
depending on the length of the training sequences.
Note that the total number of tokens in each batch
is consistently 2 million.

28355

Model Size 2M 82M 180M 468M

Layers 4 8 12 24

Attention Heads 2 8 12 16

Hidden Dimension 16 512 768 1,024

FFN Dimension 56 1,792 2,688 3,584

Tie Word Embedding False

(Peak Learning Rate, Final Learning Rate) (6e− 4, 6e− 5)

Learning Rate Schedule Cosine Decay

Vocabulary Size 50,277

Activation Function SwiGLU

Position Embedding RoPE (θ = 10,000)

Batch Size 2M tokens

Data Size 20B tokens

(Warmup Steps, Training Steps) (120, 10,000)

Adam β (0.9, 0.95)

Dropout 0.0

Weight Decay 0.1

Table 14: Training details for models with different size.

28356

