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Abstract

Modern language models are typically trained
over subword sequences, but ultimately define
probabilities over character-strings. Ideally, the
choice of the tokeniser—which maps character-
strings to subwords—should not affect the prob-
ability assigned to the underlying character-
string; in practice, it does. We define this
mismatch as tokenisation bias. In this work,
we quantify one particular type of tokenisation
bias: the effect of including or not a subword
(e.g., ⟨hello⟩) in a tokeniser’s vocabulary on the
probability a trained model assigns to the corre-
sponding characters (i.e., “hello”). Estimating
this effect is challenging because each model
is trained with only one tokeniser. We address
this by framing tokenisation bias as a causal
effect and estimating it using the regression dis-
continuity design. Specifically, we exploit the
fact that tokenisation algorithms rank subwords
and add the first K to a tokeniser’s vocabulary,
where K is an arbitrary cutoff point. As such,
we can estimate a causal effect by comparing
similar subwords around this cutoff. Experi-
mentally, we find that tokenisation consistently
affects models’ outputs across scales, vocab-
ularies, and tokenisers. Notably, a subword’s
presence in a small model’s vocabulary may
increase its characters’ probability by up to 17
times, highlighting tokenisation as a key design
choice in language modelling.

1 Introduction

Language models (LMs) define probability distri-
butions over character-strings (e.g., “hello”), i.e.,
finite sequences of characters1 from an alphabet.
Directly modelling character-strings, however, can
be inefficient, as it might require processing long
sequences. To improve computational efficiency,
modern LMs (e.g., Touvron et al., 2023) typically
model subwords-strings instead (e.g., ⟨he, llo⟩);

1We use characters as a generic term to refer to either raw
bytes (e.g., in ASCII), Unicode symbols, or graphemes.

Figure 1: Tokenisation bias. Consider subword ⟨hello⟩.
If it is included in the vocabulary, then each occurrence
of “hello” in the training data is represented as a single
subword; otherwise, it is split into two subwords, i.e.,
⟨he, llo⟩. If two models are trained under these two
settings, the difference in the probability they assign to
“hello” is the tokenisation bias we aim to estimate.

these subword-strings are produced by a tokeniser,
where each subword represents a sequence of char-
acters. While in practice LMs thus output dis-
tributions over subword-strings, we can still map
them back to distributions over character-strings
(Pimentel and Meister, 2024; Phan et al., 2025).

Notably, a tokeniser’s behaviour is constrained
by its vocabulary: a finite set of subwords which it
may produce. Given a character-string, a tokeniser
deterministically maps it to a sequence of subwords
from its vocabulary. Different tokenisers (with dif-
ferent vocabularies) thus map character-strings to
different subword-strings (e.g., map “hello” to ei-
ther ⟨he, llo⟩ or ⟨hello⟩). While an ideal LM would
assign the same probability to a string regardless
of tokenisation (§3.2), in practice, tokenisation is
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an influential design choice for model performance
(Rust et al., 2021; Toraman et al., 2023; Ali et al.,
2024, inter alia). How tokenisation affects trained
models, however, remains poorly understood.

In this work, we first define the effect of
a tokenisation choice on model behaviour as
tokenisation bias. We then quantify one particular
type of tokenisation bias: the effect of including
or not a subword (e.g., ⟨hello⟩) in a tokeniser’s
vocabulary on the log-probability a trained model
assigns to its characters (i.e., “hello”). While
tokenisation bias may be an intuitive concept,
estimating it is not straightforward. We cannot
simply compare a model’s log-probabilities on
in- vs. out-of-vocabulary words (e.g., “hello” vs.
“appoggiatura”); as vocabularies are built based
on, e.g., frequency, there are systematic differences
between these groups. Further, we cannot compare
log-probabilities on the same word under different
tokenisations (e.g., ⟨he, llo⟩ or ⟨hello⟩); as the
model only sees one of them during training.2

To quantify tokenisation bias, we first frame it
as a causal effect, asking: how would a word’s
log-probability change if its subword was removed
from the vocabulary (see Fig. 1)? This question
requires comparing two values: (i) an observed
value, the log-probability the model assigns the
word in question; (ii) a counterfactual value, the
log-probability the model would assign the word
had it not been in the vocabulary. We estimate this
causal effect by noting that tokenisers’ vocabularies
are typically built incrementally. This effectively
creates a ranking over subwords, which is arbitrar-
ily cut off by a fixed vocabulary size: e.g., the first
32k subwords under this ranking are included in
the vocabulary; later ones are excluded. Regres-
sion discontinuity (RD) design (Thistlewaite and
Campbell, 1960) then gives us a principled way to
estimate our causal effect: we can compare sub-
words near the cutoff—as they are bound to have
similar features—using subwords before the cut-
off to estimate our observed values, and the ones
after the cutoff to input the counterfactual value.

Experimentally, we show that tokenisation con-
sistently affects LM performance across vocabu-
lary sizes, model scales, and tokenisers. Text rep-
resented as a single subword receives more log-
probability (on average) than if split into two. Fur-

2A brute-force approach—e.g., training separate models
under the different possible tokenisers—is (i) computationally
impractical and (ii) estimates expected bias for a LM family,
rather than the tokenisation bias in a specific model instance.

ther, this bias grows during training and in models
under 100M parameters, it reaches 2.88 nats for
BPE and 2.51 for WP. In 850M-parameter models,
this bias is around 1 nat: a subword’s characters
would thus be assigned roughly 2.7 times less prob-
ability if it were not in the tokeniser’s vocabulary.

2 Tokenisation

Let c ∈ Σ be a character, where Σ is an alphabet
representing either a set of bytes, or the graphemes
in a language (including whitespace and punctua-
tion). Further, let c ∈ Σ∗ be a character-string,
i.e., a finite sequences of characters; we will repre-
sent these strings as c = “c1c2 · · · c|c|”. The goal
of language modelling is to learn a language’s prob-
ability distribution over character-strings. We write
these probabilities autoregressively as:

p(c) = p(eos | c)
|c|∏

t=1

p(ct | c<t) (1)

where eos /∈ Σ is a special symbol denoting the
end of a string.3 Most modern LMs, however, do
not model eq. (1) directly. Rather, they model dis-
tributions over subword-strings v∈V∗:

p(v) = p(eos | v)
|v|∏

t=1

p(vt | v<t) (2)

In words, subword-strings are finite sequences of
subwords v ∈ V , where V is a finite set typically
called a vocabulary; we thus represent these strings
as v = ⟨v1, ..., v|v|⟩. As we explain later, subwords
represent character spans, denoted here as cv = v.
How do eqs. (1) and (2) connect? This is the job of
a tokeniser, which we describe next.

2.1 Characters-strings ↔ Subword-strings
Tokenisers map character-strings to subword-
strings and back, and can be formally defined as
a tuple T def

= (V, τ, τ). The first item in this tu-
ple is a vocabulary: a finite set of character-spans
V ⊂ Σ+, whose elements are called subwords
v ∈ V .4 The second item is known as the tokeni-
sation function: a function τ : Σ∗ → V∗ which
maps character-strings to subword-strings. Finally,
the third item in T is a detokenisation function: a
function τ: V∗ → Σ∗ which maps subword-strings
back to character-strings.

3The eos symbol is required to define probability distribu-
tions over strings autoregressively (Du et al., 2023).

4To ensure any character-string can be represented with V ,
the original alphabet is typically included in this set: Σ ⊆ V .
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As subwords represent character-spans, deto-
kenisation is typically defined as the simple con-
catenation of the subwords in a subword-string:

τ(v)
def
= v1 ◦ v2 ◦ · · · ◦ v|v| (3)

e.g., τ(⟨he, llo⟩) = “hello”. Further, to guaran-
tee that a tokeniser is lossless, τ is designed such
that detokenising its output returns the original
character-string: i.e., c = τ(τ(c)). We describe
two popular tokenisation functions in App. A.

2.2 Language Modelling
Language modelling is the task of defining a prob-
ability distribution over character-strings, arguably
being the most prominent use case of tokenisa-
tion. During LM training, we typically start with a
dataset of character-strings: D = {cn}Nn=1, where
cn ∼ p(c). We then use a tokeniser T to convert
each of these into a subword-string: vn = τ(cn),
which are the actual inputs to our model. Given this
setup, we can deduce a distribution over subword-
strings from the tokeniser:

pT(v) =

{
p(c) if v = τ(c)

0 otherwise
(4)

where we denote this distribution as pT now to
make its dependence on T explicit. Eq. (4) thus
connects eqs. (1) and (2). Notably, training an
LM on strings vn produces a model pTθ (v)—which
ideally should be a good approximation of pT(v).
We can then recover a character-level distribution
pTθ (c) from this model by marginalising over all v
which are detokenised to this character-string:

pTθ (c) =
∑

v∈V∗
pTθ (v) 1{c = τ(v)} (5)

Notably, while this equation depends on an infinite
sum over V∗, it can be approximated efficiently
(Phan et al., 2024, 2025; Vieira et al., 2024).

3 Tokenisation Bias

Now, consider tokeniserT = (V, τ, τ) and assume
we use it for training a LM; out data-generating
distribution is thus pT (from eq. (4)) and our LM is
pTθ . Further, consider a specific subword v in this
tokeniser’s vocabulary. We can measure how well
the model predicts this subword’s associated char-
acters cv in a given context c<t as how large of a
probability it assigns to this sequence of characters
pTθ (cv | c<t). We are interested in studying how

this probability would change had v not been in V .
More generally, we can ask: how does our choice
of tokeniserT bias our trained model pTθ ? We term
this tokenisation bias.5

Definition 1. The tokenisation bias induced by a
property of the tokeniser is its effect on a model’s
ability to predict some character-string c.

We can define different kinds of tokenisation
bias, considering different properties of a tokeniser.
The property we will focus on here is the inclusion
of a subword in its vocabulary, i.e., v∈V , and how
it affects predictions on its characters, cv.

Definition 2. The tokenisation bias of v∈T is its
effect on a model’s ability to predict cv.6

We now frame this tokenisation bias as a causal
effect: it compares the performance of an observed
model pTθ , with the performance of a counterfac-
tual model pT′

θ′ . This counterfactual model repre-
sents what our model would have been if trained
with tokeniser T′ = (V ′, τ ′, τ′) which did not in-
clude subword v. We define this causal effect for-
mally in the next section. First, however, note that:

v = τ(cv),︸ ︷︷ ︸
observed subword

v′cv = τ ′(cv)︸ ︷︷ ︸
counterfactual subwords

(6)

where v′cv is the sequence of subwords which
would be used to represent cv in the counterfactual
case. Assuming no tokenisation mismatch (Phan
et al., 2024), i.e., that τ(c<t) is a prefix of τ(c) in
this context (and similarly under τ ′), we then have:

pTθ (cv | c<t) = pTθ (v | τ(c<t)) (7)

pT
′

θ′ (cv | c<t) =
|v′cv |∏

t′=1

pT
′

θ′ (v′cv
t′ | τ ′(c<t) ◦ v′cv

<t′)

In words, we can compute pT′
θ′ (cv | c<t) by multi-

plying the probabilities of subwords in v′cv .

3.1 A Subword’s Causal Effect
We now define tokenisation bias in terms of poten-
tial outcomes (Rubin, 1974, 2005); this framework
allows us to formally describe the causal effect of
a treatment on some target outcome. In our case,

5We note that Phan et al. (2024) use the term tokenisation
bias to describe an issue arising when one applies τ to a prefix
of c: namely, when τ(c<t) is not necessarily a prefix of τ(c).
We interpret this not as a bias, but as a misuse of tokenisers
by the LM’s users. We will thus term Phan et al.’s analysed
phenomenon tokenisation mismatch here, instead of bias.

6We use the shorthand notation v ∈ T to denote that v is
in the tokeniser’s vocabulary V .
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we want to estimate the causal effect of including a
subword v in tokeniser T on a model pTθ ’s ability
to predict the character-string cv. Before defining
the effect of interest, however, we must formally
introduce its treatment and outcome. We define a
treatment assignment variable as:

Wv
def
= 1{v ∈ T} (8)

and we define a potential outcome variable as:

YW (v)
def
= E

c<t

[
log pTθ (cv | c<t)

]
(9)

where we quantify a model’s ability to predict a
character-string cv as its log-probability averaged
across contexts c<t.7 Given these definitions, we
can write the causal effect of interest as follows.

Definition 3. The causal effect of a subword v on
a model’s ability to predict character-string cv is:

ψv
def
= Y1(v)︸ ︷︷ ︸

performance on cv
when trained with v

− Y0(v)︸ ︷︷ ︸
performance on cv

when trained without v

(10)

Importantly, a model is trained with a tokeniser
that either includes v or does not. Thus, for
any model, we can only observe either Y1(v) or
Y0(v) with the other term being counterfactual.
The causal analysis literature provides us with
methods—and the relative assumptions that need
to be met—to impute the counterfactual term from
observable outcomes in a principled way. Defi-
nition 3 represents an individual treatment effect
(ITE), as it defines the causal effect of a specific
subword. Methods to estimate an ITE, however,
require strong assumptions, if at all applicable (Lu
et al., 2018). To avoid this requirement, we thus fo-
cus on average effects, as is common in the econo-
metrics literature (Angrist and Pischke, 2015).

Definition 4. The expected effect of a subword on
the model’s ability to predict its character-string is:

ψ
def
= E

v
[Y1(v)− Y0(v)] (11)

In other words, we simplify the causal estimation
problem by focusing on the expected causal effect
across a population of subwords. The causal effect
for each specific subword v might thus be larger

7Our framework also generalises beyond mean effects
across contexts. For instance, replacing the expectation in
eq. (9) with a standard deviation yields the tokenisation bias of
v∈T on a model’s variability when predicting cv . Similarly,
defining Y c<t

W (v) = log pTθ (cv | c<t) allows us to study a
context-specific tokenisation bias instead of aggregated ones.

or smaller than this expected effect; the expected
effect we measure, however, gives us a best guess
(in terms of mean squared error) of what their effect
would be, given no additional information.

3.2 Tokenisation Bias in Perfect and in
Untrained Models

We now analyse this causal effect under perfect
models: LMs for which pTθ exactly matches the
data-generating distribution pT.

Theorem 1. Assume we have a training process
that—regardless of the choice of tokeniser T—
always returns perfect models, i.e., models for
which pTθ (v)= pT(v). In this case, the causal ef-
fect of a subword v is always zero, i.e., ψv = 0.

Proof. See the proof in App. B.1.

If the ideal effect is always zero, why bother
estimating it? In practice, LMs are imperfect,
and biases—both inductive and learned—may lead
models to assign different probabilities to the same
character-string under different tokenisations (all
else held equal). Measuring this effect in practice
is thus important. As an example, we show that at
initialisation this causal effect is relatively large.

Theorem 2. Assume that at initialisation our
language model outputs the uniform distribution
pTθ (v |v<t)= 1

|V| .
8 In this case, the causal effect of

a subword v at initialisation is ψv ⪆ log |V|.

Proof. See the proof in App. B.2.

4 Estimating Tokenisation Bias

Now, we get to estimating the causal effect we de-
fined; this is typically done in three steps. First, we
define a causal estimand, the theoretical quantity
that represents the effect of interest; this is the value
in Definition 4. Second, we rewrite this causal esti-
mand in terms of quantities that we can actually ob-
serve, thus defining a statistical estimand. Finally,
we define an estimator, a statistical procedure to
approximate the statistical estimand.

Importantly, the causal estimand in eq. (11) is
non-trivial to estimate, as it contains a counterfac-
tual; this is exposed by a simple decomposition:

ψ = E
v
[Y1(v)]

︸ ︷︷ ︸
1

−E
v
[Y0(v)]

︸ ︷︷ ︸
2

(12)

8See support for this in, e.g., Chang and Bergen (2022).
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Notably, we can observe the potential outcomes in
expectation 1 only for subwords in the given to-
keniser (v ∈ T), while expectation 2 is observable
only for subwords not in that tokeniser (v /∈ T).
Naively comparing a model’s average performance
in these two groups of in- and out-of-vocabulary
items would return a biased estimate of the causal
effect. This is due to the way tokenisers are de-
veloped: subwords are not randomly included in
the vocabulary, but carefully selected under some
objective. As a subword’s assigned treatment is
not random, the two subgroups are not comparable,
and there may thus be confounders.

Luckily, a popular class of tokenisation
algorithms—which includes byte-pair encoding
(BPE, Sennrich et al., 2016) and WordPiece (WP,
Schuster and Nakajima, 2012)—select subwords
iteratively, one-at-a-time, to compose their vocab-
ularies. This creates a ranking among subwords
which deterministically defines their treatment as-
signment (i.e., whether v ∈ T or not); we will
leverage the non-randomness in this treatment as-
signment to estimate our desired effect. We de-
scribe these methods next.

4.1 Sequential Vocabulary Construction
Let D = {cn}Nn=1 be a dataset of character-strings.
Bottom-up tokenisers typically define an objective
function, ϕ(v[1], v[2],D), which measures the bene-
fit of including a new subword v[new]=v[1]◦v[2] in the
vocabulary. Given a target vocabulary size K+|Σ|,
their algorithm initialises a vocabulary as V0=Σ
and a dataset as D0=D. For K iterations, it then
selects the pair of subwords v[1]

k , v
[2]
k which max-

imises objective ϕ over the current dataset, adds it
to the vocabulary Vk=Vk−1 ∪ {v[new]

k }, and applies
it to Dk = {mergev[1]

k ⊚ v[2]
k
(v) | v ∈ Dk−1}, where

merge replaces consecutive occurrences of v[1]
k , v

[2]
k

with v[new]
k . The algorithm then returns VK .

While the choice of objective function is arbi-
trary, most tokenisers employed by current LMs
use either the objective from BPE or WP:

ϕbpe(v
[1], v[2],Dk)

def
= #(⟨v[1], v[2]⟩,Dk) (13)

ϕwp(v
[1], v[2],Dk)

def
=

#(⟨v[1], v[2]⟩,Dk)

#(⟨v[1]⟩,Dk)#(⟨v[2]⟩,Dk)

where we use #(v,D) to denote the number of
occurrences of subword-string v in dataset D. At
each iteration, BPE’s objective (ϕbpe) selects the
most frequent subword-pair in dataset D, while
WP’s (ϕwp) selects the subword-pair with the largest
pointwise mutual information in it.

4.2 The Regression Discontinuity Design
We define a principled estimator for tokenisation
bias based on the regression discontinuity (RD)
design (Thistlewaite and Campbell, 1960).9 Let
us consider running the algorithm above (§4.1) for
K+ ≫ K iterations and obtain a list of subwords:

[v[new]
1 , v[new]

2 , ..., v[new]
K , ..., v[new]

K+
] (14)

The index k ∈ {1, ...,K+} of a subword in this
sequence represents the iteration at which it
would be selected by the tokenisation algorithm.
Index k thus determines a natural ordering of
how subwords are added to a bottom-up tokeniser.
Now, let us denote it as an index-valued random
variable γv; this variable deterministically defines
a subword’s treatment assignment:

Wv = 1{γv ≤ K} (15)

In words, a subword is thus included in the
vocabulary if its index γv is smaller than K. In RD
design, γv is termed a running variable and K
is the cutoff of this running variable.

For RD design to be applicable, this cutoff must
be predetermined and exogenous—i.e., indepen-
dent of potential outcomes—ensuring an unbiased
treatment assignment. This holds for bottom-up
tokenisers, where vocabulary sizes are set before-
hand. Notably, we still cannot directly compare in-
and out-of-vocabulary subwords, as they have dif-
ferent values of the running variable: by definition
these groups have, respectively, running variable
values of γv ≤ K or γv > K. This makes them
systematically different and introduces bias. The
RD design addresses this issue by focusing on a
local treatment effect instead:

ψγv
def
= E

v
[Y1(v)− Y0(v) | γv] (16)

Notably, ψγv is thus a localised causal effect repre-
senting the effect expected for subwords added to
the vocabulary at a specific index γv.

We now leverage the cutoff point K to estimate
this local causal effect. In short, since treatment
assignment is deterministic and the cutoff is exoge-
nous, this assignment mechanism is “as good as
random” (Angrist and Pischke, 2015). If the out-
come Y(v) is a continuous function of the running

9RD design is a quasi-experimental paradigm that exploits
a deterministic relationship between an observed characteris-
tic, known as the running variable, and the treatment assign-
ment. Unlike a true experiment, a quasi-experiment does not
randomly assign participants to control and treatment groups.
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variable, thus, it should transition smoothly across
the cutoff in the absence of treatment, making any
discontinuity at this point solely due to treatment.10

4.3 The Regression Discontinuity Estimand
Before introducing a statistical estimand, we need
to introduce the functional relationship between
potential outcomes and the running variable. We
can write this formally as:

E
v
[Y0(v) | γv] = f(γv) (17a)

E
v
[Y1(v) | γv] = f(γv) + ψγv (17b)

where eq. (17b) immediately follows from eq. (16).
As typical in RD, we posit a smooth relationship be-
tween the running variable and potential outcomes.

Assumption 1 (Continuity Assumption). The con-
ditional expectation of a potential outcome is con-
tinuous at the cutoff. That is, both limits exist:

lim
k→K

E
v
[Y0(v) | γv = k] (18a)

lim
k→K

E
v
[Y1(v) | γv = k] (18b)

Now, we note that eq. (15) implies that there is
no value of the running variable for which we can
observe both potential outcomes, where we write
an observed outcome as:11

Yobs(v) =

{
Y1(v) if Wv =1

Y0(v) otherwise
(19)

Luckily, Hahn et al. (2001) show that the only re-
quired assumption to identify the causal estimand
in eq. (16) is that Assump. 1 holds. We can write a
statistical estimand at the cutoff as:

ψRD = lim
k→K−

E
v
[Yobs(v) | γv = k] (20)

− lim
k→K+

E
v
[Yobs(v) | γv = k]

In words, the RD estimand is the discontinuity in
the conditional expectation function at the cutoff.12

10Notably, our running variable γv is discrete, and thus not
continuous by definition. In our experiments, we consider
large enough windows around the cutoff and thus assume our
variable is fine-grained enough to allow for such an estimation.
Alternatively, we could have used other running variables for
our experiments instead, such as, e.g., the objective function
ϕ. We also note that, while the RD design typically assumes
continuous running variables, it can be applied to discrete
ones, such as the rank in our case (Cattaneo et al., 2024).

11Assuming consistency, i.e., assuming that a potential out-
come under the observed treatment assignment equals the
observed outcome (Cole and Frangakis, 2009).

12If we could estimate eq. (20)’s expectations, we would

4.4 The Regression Discontinuity Estimator
In the limit of eq. (20), the functional terms f(γv)
in the observed effects cancel out. However, we
do not have a large number of samples exactly at
the cutoff. In practice, thus, RD is estimated by
extrapolating over values of the running variable in
a window around the cutoff; in this case, these func-
tional terms f(γv) do not cancel out. To control
for them, we first take a conditional expectation of
Yobs(v), which we write in terms of eq. (17):

E
v
[Yobs(v) | γv] = f(γv) + ψγv Wv (21)

We then assume a parametric form for f (e.g., lin-
ear in γv) and ψγv (e.g., a constant). Given a set of
observed subwords K in a window around the cut-
off, we obtain an estimator of ψγv by minimising
the squared error of the functional fit of f and ψγv .

Estimator 1. Given a parametric function f and a
set of observed subwords around the cutoff K, the
regression discontinuity estimator ψ̂RD is:

argmin
f,ψRD

∑

v∈K
(Yobs(v)−f(γv)−ψRD Wv)

2 (22)

This is an unbiased estimator of the local effect
ψγv at γv = K under Assump. 1 and assuming
f provides an adequate description of expected
potential effects (Angrist and Pischke, 2009).

Notably, the validity of an RD estimator hinges
on the correct specification of f and on the size of
the window used to obtain the set K. On the one
hand, a larger window allows for a bigger sample
size but relies more on the correct estimation of
f . On the other hand, a smaller window depends
less strongly on f but may not have enough sam-
ples for precise statistical estimation. Thus, RD
requires careful tuning of the window size to con-
trol this bias-variance trade-off. In Fig. 2, we show
an example of this method in practice.

5 Experimental Setup

We conduct experiments on a suite of Llama-
style transformer models of varying scales, trained
with different tokenisation schemes and vocabulary
sizes.13 More details in App. C.

have a principled (non-parametric) estimator for ψγv . Obtain-
ing such estimates, however, is tricky (Angrist and Pischke,
2009, chapter 6). First, working in a small neighbourhood of
the cutoff means we would have little data. Second, sample
averages are biased when estimated on one side of a boundary.

13Since our method requires knowing which subwords
would be added after the cutoff, we could not use open-source
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Figure 3: Tokenisation bias ψγv
of 57M across training

for (left) BPE across vocabulary sizes 8k, 32k, and 128k;
and for (right) vocabulary size 32k across tokenisers
BPE, WP, and BPE2WP.

Models and Tokenisers. Unless otherwise speci-
fied, we run our experiments with a BPE tokeniser
with vocabulary size K =32k, and a Llama (Tou-
vron et al., 2023) LM with 57M non-embedding
parameters trained on the MiniPile (Kaddour, 2023)
dataset for 50k steps. To explore how tokenisation
bias changes as a function of: (i) model size, we fur-
ther train Llama variants with approximately 340M,
and 850M non-embedding parameters; (ii) vocabu-
lary size, we experiment with BPE’s with K equal
8k, 32k, and 128k; (iii) tokenisation algorithm, we
experiment with a standard WP tokeniser, and a to-
keniser using WP’s tokenisation function but BPE’s
vocabulary, which we call BPE2WP; (iv) embed-
ding tying and training dataset, we train a 100M
parameter model with and without tied input-output
embeddings on 20B tokens from the Fineweb-Edu
corpus (Penedo et al., 2024).

Evaluation and Data Collection. All models are
evaluated on the MiniPile validation set. To compute
Yobs(v), we collect subwords’ log-probabilities and

LMs, as this information is typically not published even for
open-source models like Pythia (Biderman et al., 2023) and
OLMo (Groeneveld et al., 2024). Further, their tokeniser con-
struction details are often unreproducible. We therefore train
new tokenisers and models from scratch.

aggregate them across the contexts in which they
appear. For our regression discontinuity estimation,
we focus on a window of 5k subwords around the
tokeniser’s vocabulary cutoff.

6 Results

In this section, we report the estimated tokenisa-
tion bias ψγv in our models. Fig. 2 (left) presents
tokenisation bias in BPE with default parameters.
We estimate this bias to be 2.88 nats, with treated
character-strings cv having a log-probability of
−7.72 and untreated ones −10.60. This means
a cv can be assigned roughly 17 times less proba-
bility due solely to tokenisation, implying LMs are
highly susceptible to tokenisation bias. We next
examine this effect in detail.

Effect Across Training. Fig. 3 (left; orange line)
shows the causal effect evolving through training.
As predicted (Thm. 2), this effect is large at the start
of training. Notably, it drops sharply by step 2k
and then slowly grows again. This is counterintu-
itive. Since an ideal model would be unaffected by
tokenisation (Thm. 1), one would expect a decline
in ψγv across training. Instead, our results suggest
models become more biased as they improve.

Comparison Across Vocabulary Sizes. Fig. 3
(left) also shows how tokenisation bias varies with
vocabulary size (K ∈ {8k, 32k, 128k}). We find
weaker biases when using smaller vocabularies.
This might be because for smaller K, the character-
strings cv near the cutoff will be more frequent;
untreated strings cv will thus see more training,
which potentially reduces tokenisation bias. Be-
yond a critical size, the effect stabilises, with 128k
and 32k showing similar biases despite a large dif-
ference in vocabulary size (see also Fig. 6, App. D).
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across training of models with different sizes and BPE tokeniser with K = 32k.

Comparison Across Tokenisers. Fig. 3 (right)
shows how the causal effect changes as a function
of the used tokenisation and objective functions,
displaying results for BPE (with τ↑, ϕbpe), BPE2WP
(with τ↑, ϕwp), and WP (with τlong, ϕwp). In this fig-
ure, we see that tokenisation bias seems consistent
across these tokenisers (see also Fig. 8, App. D).

Comparison Across Model Sizes. Fig. 4 (right)
shows how tokenisation bias changes as a func-
tion of model size. In this figure, we see that bias
is smaller on larger (e.g., 340M parameters) than
in small models (e.g., 57M). Among our largest
models, however (with either 340M or 850M pa-
rameters), we see little difference in tokenisation
bias. Further, even in the largest models, bias does
not seem to decrease across training. Together,
these results suggest that tokenisation bias may be
a persisting property of LMs.

Tokenisation Bias vs. Model Quality. We next
explore in more detail the previous observation that
tokenisation bias grows across training (Fig. 3)—
suggesting an inverse-scaling effect where tokenisa-
tion bias strengthens as models improve (McKenzie
et al., 2023). Fig. 4 plots the estimated ψγv against
model quality (quantified as cross-entropy). As
can be seen, two opposing trends emerge: across
training, better models show larger causal effects
(shown on the left); across tokenisers with differ-
ent vocabulary sizes, better models show smaller
effects (shown on the center-left). Further, this
relationship seems to change across model scales
(shown on the center-right). This highlights that
tokenisation bias is a complex phenomenon, which
can either improve or worsen as models get better.

Other Causal Effects. Our framework also al-
lows us to study tokenisation-related biases beyond
average model performance. Here, we examine the
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Figure 5: Estimated effect ψ̂RD (y-axis) vs. window size
used to estimate it (x-axis). Results for fully trained
model with BPE and K ∈ {8k, 32k, 128k}. Shaded
regions correspond to standard errors.

effect of tokenisation bias on the stability of model
outputs across contexts. To this end, we define new
potential outcome variables:

Y M
W (v)

def
= M

c<t

[
log pTθ (cv | c<t)

]
(23)

where we consider standard deviation, median, and
interquartile range as M. Results are in Fig. 2
(also in Fig. 6 and 8, App. D). In particular, stan-
dard deviation results show that whether a subword
is present in an LM’s vocabulary significantly af-
fects output stability: cv of in-vocabulary subwords
exhibit far less variation in log-probability across
contexts than out-of-vocabulary ones. This again
underscores the strong influence of tokenisation on
model behaviour.

Robustness of the RD Estimation. Finally, we
analyse the robustness of our estimates with respect
to: (i) window size used to select K, and (ii) func-
tional form of f used for the regression fit. First,
Fig. 5 shows that the estimated effect is unstable for
window sizes smaller than 500, but stabilises when
using at least 1k subwords on both sides of the cut-
off (see also Fig. 7, App. D). Second, Fig. 9 (in
App. D, due to space constraints) shows that more
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flexible specifications of f return similar estimates
to our linear choice, though fitting noise.

7 Tokenisation Bias in Context

We now place our findings in the broader context of
existing work on tokenisation, highlighting theoret-
ical implications, potential links to known biases,
and opportunities for improved fairness.

7.1 Implications of Tokenisation Bias

Theoretical Underpinnings of Tokenisation.
Our results align with recent theoretical work on
the role of tokenisation in language modelling. Ra-
jaraman et al. (2024) show that subword vocabu-
laries endow Transformers with inductive biases
suited to modelling higher-order Markov sources,
while character-level models lag behind. This
is supported by our finding that representing a
character-string as two subwords instead of one
reliably lowers its log-probability.

Length Bias. Tokenisation bias may help explain
the well-documented length bias in LMs (Murray
and Chiang, 2018; Stahlberg and Byrne, 2019),
where longer subword sequences are less likely
to be generated. We find that character-strings to-
kenised as multiple subwords are systematically as-
signed lower probabilities, which may cause mod-
els to prefer generating shorter sequences.

Multilingual Fairness. Tokenisation can also
contribute to performance disparities across lan-
guages. Petrov et al. (2023) show that under typical
multilingual tokenisers, lower-resource languages
tend to have longer tokenisations. While originally
noted for its cost implications, we show this may
also hurt performance as, ceteris paribus, (i) longer
subword-strings receive lower probability due to
tokenisation bias and, thus, (ii) they may reduce
the model’s likelihood of generating low-resource
language content, reinforcing data sparsity effects.
These effects echo Rust et al.’s (2021) findings,
which show that language-specific tokenisers close
much of the performance gap between monolingual
and multilingual models, highlighting tokenisation
as a key factor in multilingual performance.

7.2 Going Forward: Uses for ψγv
This paper provides new empirical evidence that
tokenisation choices bias model predictions. Prior
studies have largely focused on observational ev-
idence of these effects, often through adversarial

prompts or indirect correlates (Chai et al., 2024;
Wang et al., 2025). Our estimator, by contrast, en-
ables a more principled study of how vocabulary
construction choices affect a LM’s behaviour. We
sketch two concrete use cases for ψ below.

Measuring Impact on Lexical Generalisation.
Adding subwords to the vocabulary causes mod-
els to treat the corresponding character span as
an indivisible unit. This can be beneficial (e.g.,
in English, ⟨pl⟩ and ⟨ay⟩ do not have meanings
on their own, but ⟨play⟩ does), but may hinder
generalisation across morphological variants (e.g.,
⟨play⟩ and ⟨plays⟩). Tokenisation may thus im-
pact model generalisation across orthographically
similar lexical items. Prior work already hints at
this tradeoff: Schäfer et al. (2024) show that du-
plicated entries in a vocabulary may hurt general-
isation, while Toraman et al. (2023) and Schmidt
et al. (2024) show that vocabulary expansion helps
only under morphology-aware tokenisation. These
results suggest that adding too many subwords to
the vocabulary can hurt lexical generalisation, a
hypothesis our estimator could be adapted to test.

Optimising Tokenisation. Finding an optimal
tokeniser is NP-complete (Whittington et al., 2025;
Kozma and Voderholzer, 2024). Further, existing
heuristic metrics for tokeniser selection, such as
subword frequency thresholds (Gowda and May,
2020) or Rényi efficiency (Zouhar et al., 2023), are
often poorly correlated with downstream model
performance (Schmidt et al., 2024). Our causal
estimator offers a more grounded alternative. If a
practitioner aims to optimise held-out perplexity, a
positive ψ would signal that expanding the vocab-
ulary (i.e., including more subwords) could help.
Conversely, a negligible or negative ψ might justify
shrinking the vocabulary to gain efficiency without
hurting performance. This moves us beyond heuris-
tic selection toward a more systematic, model-level
approach to tokeniser design.

8 Conclusion

We study a phenomenon we call tokenisation bias:
the extent to which a model’s outputs are affected
by whether a subword appears in its tokeniser’s vo-
cabulary. We propose a new method to measure it
without re-training the model. We empirically show
that character-strings tokenised as a single subword
receive significantly more probability than when
split, and that this effect intensifies over training.
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Limitations

This work estimates tokenisation bias: the extent
to which a model’s output depends on whether a
subword appears in its tokeniser’s vocabulary. Un-
fortunately, due to the costs associated with train-
ing large LMs, most of our experiments focused
on relatively small models trained in a single lan-
guage (English). Investigating whether other model
architectures, training procedures, and natural lan-
guages result in similar causal effects would be
important to strengthen our conclusions. Moreover,
our method estimates a local causal effect (i.e., the
effect for subwords in a window around the cutoff).
However, our results suggest that the estimated ef-
fect can be extrapolated further beyond the window
size, as our regression estimates show an almost
flat trend with respect to the running variable.
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A Definitions of Tokenisation Functions

Merge-based Tokenisation Function. The most
common tokenisation function to date—used by,
e.g., byte pair encoding (BPE; Gage, 1994; Sen-
nrich et al., 2016)—builds subword-strings by
merging a string’s symbols two-at-a-time in a fixed
pre-determined order. The building blocks of this
function are merges. A merge m ∈ V × V rep-
resents a pair of subwords; it can thus be writ-
ten as: m = v[1] ⊚ v[2]. Given a list of merges
m=[m1,m2, ...,m|m|], this function is defined as:

τ↑(c)
def
= mergem|m|(· · · (mergem1

(c))) (24)

where mergem : V∗ → V∗ is a function which
scans a string left-to-right, replacing any appear-
ance of v[1] followed by v[2] with another subword
v[m] which represents their concatenation v[m] =
v[1] ◦ v[2]. E.g., mergehe⊚llo(⟨he, llo⟩) = ⟨hello⟩.
Longest Prefix-match Tokenisation Function.
A common alternative to eq. (24)—used by, e.g.,
WordPiece (WP; Schuster and Nakajima, 2012)—
is to select the longest subword v ∈ V matching
a prefix of c, and then recursively tokenising the
remaining string. This function is defined as:

τlong(c)
def
=

〈
argmaxv∈V |v|
s.t. c1:|v|=v , τlong(c|v|:|c|)

〉
(25)

B Proofs

We provide the proofs for Thm. 1 and 2 here.

B.1 Proof of Thm. 1
Theorem 1. Assume we have a training process
that—regardless of the choice of tokeniser T—
always returns perfect models, i.e., models for
which pTθ (v)= pT(v). In this case, the causal ef-
fect of a subword v is always zero, i.e., ψv = 0.

Proof. Note that tokenisation functions τ are nec-
essarily injective and, thus, each character-string
is mapped to a unique subword-string. For any
tokeniser, we can thus rewrite eq. (4) as:

p(c) = pT(τ(c)) (26)

Further, for perfect models pTθ (v)= pT(v). We
can thus show that:

pTθ (c) =
∑

v∈V∗
pTθ (v) 1{c = τ(v)} (27a)

=
∑

v∈V∗
pT(v) 1{c = τ(v)} (27b)

= pT(τ(c)) (27c)

= p(c) (27d)

Under this condition, we can rewrite the potential
outcome in eq. (9) as:

YW (v) = E
c<t

[
log pTθ (cv | c<t)

]
(28a)

= E
c<t

[
log

pTθ (c<t ◦ cv ◦ Σ∗)
pTθ (c<t ◦ Σ∗)

]
(28b)

= E
c<t

[
log

p(c<t ◦ cv ◦ Σ∗)
p(c<t ◦ Σ∗)

]
(28c)

= E
c<t

[log p(cv | c<t)] (28d)

where we denote as p(c ◦Σ∗) the sum of the proba-
bility assigned to all character-strings starting with
c. As the potential outcomes are a function of p,
which does not depend on the used tokeniser, the
values of Y0(v) and Y1(v) will be the same, and
the causal effect ψv will thus be 0.

B.2 Proof of Thm. 2
Theorem 2. Assume that at initialisation our
language model outputs the uniform distribution
pTθ (v |v<t)= 1

|V| . In this case, the causal effect of
a subword v at initialisation is ψv ⪆ log |V|.
Proof. For treatment assignment 1, we have v ∈
T and τ(cv) = v; for any context, thus, the
model will approximately assign this character-
string probability pTθ (v | v<t)= 1

|V| .
14 For treat-

ment assignment 0, we have v /∈ T and τ(cv) =
⟨v [1], v [2], ...⟩, i.e., this subword now gets tokenised
into multiple subwords instead; for any context,
thus, the model will approximately assign cv prob-
ability

|τ(cv)|∏

i=1

pTθ (v
[i] |v<t◦τ(cv)<i)=

1

|V|
|τ(cv)|

(29)

For treatment assignment 0, we have |τ(cv)| ≥ 2.
The ψγv is thus approximately lower-bounded by:
log 1

|V|−log 1
|V|

2
=log |V|.

C Implementation Details

We implement all experiments using PyTorch
(Paszke et al., 2019) and implement variants of the
Llama architecture using components implemented
in the transformers library (Wolf et al., 2020).

14The character-string probabilities will only be approxi-
mately 1

|V| since other subword-strings might also map to cv .
However, these alternative subword-strings will be longer, and
thus have exponentially less probability mass. Once subword-
string probabilities are marginalised out, they will thus make
little difference to results.
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Data. We use the MiniPile dataset (Kaddour,
2023), a curated 6GB subset of the deduplicated
Pile corpus (Gao et al., 2020; Biderman et al.,
2022). The training set consists of 1M documents,
which we use to train both tokenisers and models.
Additionally, we train two 100M-parameter mod-
els on 20B tokens from Fineweb-Edu (Penedo et al.,
2024). For evaluation, we use the 10k-document
validation set to collect the subwords’ in-context
log-probabilities pTθ (cv | c<t).

Tokenisers. Our method requires knowing which
subwords would have been added if we allowed for
a larger vocabulary. To identify which subwords
would be added with a larger vocabulary, we con-
struct a tokeniser with a vocabulary size of 320k,
then truncate it to define smaller tokenisers while
retaining the full ranked list of subwords. Tokenis-
ers are built using the tokenisers library,15 and we
encourage others to report similar details to support
reproducibility. We evaluate vocabularies of sizes
8,024, 32k, and 128k, which allows us to study
how tokenisation bias varies with vocabulary size.
As the vocabulary grows, the added subwords are
naturally of lower frequency. We compare BPE
and WP tokenisers, trained identically using byte-
level pre-tokenisers, processors, decoders, and a
byte-based alphabet.

Model Training. We use variants of the LLaMA
2 architecture. Our default model has 57M pa-
rameters, with 6 layers, 24 attention heads, a hid-
den size of 768, and tied input–output embed-
dings. Details for other model configurations are
available in our repository.16 Models are trained
with AdamW (Kingma and Ba, 2015; Loshchilov
and Hutter, 2019) using learning rate 6 × 10−4,
β1=0.9, β2=0.95, ϵ=1× 10−8, and weight de-
cay 0.1. We adopt the warmup-stable-decay sched-
ule (Zhai et al., 2022), which maintains a flat learn-
ing rate after warmup and applies cosine decay
only during cooldown—an approach shown to be
effective for small LMs (Hu et al., 2024; Wen et al.,
2025) and which avoids requiring a fixed compute
budget. Training uses a context size of 2,048 to-
kens, batch size 128, gradient clipping to 1.0, and
runs for 50k steps with checkpoints saved every 2k
steps. All experiments are run with the same seed
for consistent data order and initialisation.

15github.com/huggingface/tokenisers.
16github.com/pietrolesci/tokenisation-bias.

Regression Model. Given observed outcomes
and subword indices, we estimate ψRD by fitting
the regression:

Yobs(v) = α+ β
γv

1000
+ ψRDWv + ηv (30)

where ηv is a zero-mean error term. To avoid con-
founding, we exclude subwords that are nested
within larger subwords also present in the vocab-
ulary (e.g., if both ⟨he⟩ and ⟨hello⟩ are included,
only the latter is used).17

Hardware Details. We use a server with one
NVIDIA A100 80GB PCIe, 32 CPUs, and 32 GB
of RAM for all experiments. Below, we report a
subset of the output of the lscpu command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical,

48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R)

Silver 4210R CPU
@ 2.40GHz

CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

Reproducibility. We release all experimental
artefacts as a HuggingFace Hub collection.18 This
includes: (i) the raw and tokenised data in model-
consumed order; (ii) the full 320k-subword tokenis-
ers; (iii) the reduced-vocabulary tokenisers used in
our experiments; and (iv) all model checkpoints.
We encourage others to adopt similar practices and
make tokeniser design choices more transparent.

D Additional Plots

Additional plots follow on the next pages.

17Following standard causal analysis, we assume SUTVA:
treating one unit does not affect others. This assumption is
violated by overlapping subwords—i.e., subwords that are
themselves part of larger subwords—which we thus exclude.

18https://huggingface.co/collections/pietrolesci/tokenisation-
bias-66d5d0b40cb82a2d789b19db.
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Figure 6: Average treatment effect for BPE withK ∈ {8k, 32k, 128k} at the last model checkpoints. Each row refers
to a different outcome variable: mean, standard deviation, median, and interquartile range of a cv’s log-probability
across contexts. Subwords on the left-hand side of the cutoff are treated (i.e., added to the vocabulary).
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Figure 7: Estimated effect ψ̂RD (y-axis) vs. window size used to estimate it. Results for fully trained model with BPE
and K ∈ {8k, 32k, 128k}. Shaded regions correspond to standard errors. The columns refer to different outcome
variables: mean, standard deviation, median, and interquartile range of a cv’s log-probability across contexts.
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Figure 8: Average treatment effect for fully trained models with BPE, BPE2WP, and WP and K = 32k. Each row
refers to a different outcome variable: mean, standard deviation, median, and interquartile range of a cv’s log-
probability across contexts. Subwords on the left-hand side of the cutoff are treated (i.e., added to the vocabulary).

28k 30k 32k 34k 36k

-20

-10

0

28k 30k 32k 34k 36k

-20

-10

0

28k 30k 32k 34k 36k
0

5

10

15

28k 30k 32k 34k 36k
0

10

20

Mean Median Standard Deviation Interquartile Range

Treatment True False

Subword Index

Figure 9: Stability of the average treatment effect with respect to the functional form of f , for fully trained models
with BPE and K = 32k. Columns refer to different outcome variables: mean, standard deviation, median, and
interquartile range of a cv’s log-probability across contexts. Subwords on the left-hand side of the cutoff are treated
(i.e., added to the vocabulary). Conditional mean lines and confidence intervals are computed using the LOESS
(locally estimated scatterplot smoothing) method.
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