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Abstract
One key characteristic of the Chinese spelling
check (CSC) task is that incorrect characters
are usually similar to the correct ones in either
phonetics or glyph. To accommodate this, pre-
vious works usually leverage confusion sets,
which suffer from two problems, i.e., difficulty
in determining which character pairs to include
and lack of probabilities to distinguish items in
the set. In this paper, we propose a light-weight
plug-and-play DISC (i.e., decoding interven-
tion with similarity of characters) module for
CSC models. DISC measures phonetic and
glyph similarities between characters and incor-
porates this similarity information only during
the inference phase. This method can be easily
integrated into various existing CSC models,
such as ReaLiSe, SCOPE, and ReLM, with-
out additional training costs. Experiments on
three CSC benchmarks demonstrate that our
proposed method significantly improves model
performance, approaching and even surpassing
the current state-of-the-art models.

1 Introduction

Given an input sentence, Chinese spelling check
(CSC) aims to detect incorrect characters and mod-
ify each into a correct character (Yu and Li, 2014;
Xu et al., 2021). Table 1 gives two examples.
Spelling errors degrade reading efficiency, and
sometimes even lead to misunderstanding. The
authority or attitude of the writer may be doubted
if their document contains simple spelling errors.
Moreover, spelling errors substantially hurt the per-
formance of subsequent NLP models.

As is well known, spelling errors in Chinese texts
have three major sources, i.e., 1) from keyboard
typing with some input methods, 2) from image
or document scanning with some optical character
recognition (OCR) software, and 3) from speech-to-
text translation with some automatic speech recog-
nition (ASR) software. Nowadays, most Chinese

B Zhenghua Li is the corresponding author.

记得戴眼睛(jı̄ng)。
Remember to wear eyes.记得戴眼镜(jìng)。
Remember to wear glasses.从商场的人(rén)口进去。
Enter through the mall’s population.从商场的入(rù)口进去。
Enter through the mall’s entrance.

Input

Reference

Input

Reference

Table 1: Two CSC examples. “睛”(jı̄ng, eyes) and
“镜”(jìng, glasses) are a pair of characters that are simi-
lar in phonetics, and “人”(human) and “入”(enter) are
similar in glyph.

users employ Pinyin-based input methods. Consid-
ering the three sources, we can see that the incorrect
character in most cases is similar to the underlying
correct one in phonetics or glyph, sometimes in
both. This is a key characteristic of the CSC task.

Previous works employ confusion sets to lever-
age such similarities among characters (Yeh et al.,
2013; Huang et al., 2014; Xie et al., 2015; Cheng
et al., 2020; Huang et al., 2023). Formally, a con-
fusion set is denoted as C “ tpc1i , c2i quMi“1, where
each pair pc1i , c2i q represents a pair of characters
and means that c1i may be mistakenly replaced by
c2i in real texts.

As a representative work, Wang et al. (2018) con-
struct a confusion set via two channels. First, they
add noise into glyph images and apply OCR. Sec-
ond, they apply ASR to parallel speech/text data.
Their confusion set covers about 5K characters and
consists of 19K character pairs that are likely to be
confused with each other in written texts.

The most direct and popular use of confusion
sets is to constrain the search space during the in-
ference phase. The model can only consider char-
acter pairs in C. More specifically, if pc1, c2q R C,
the model can never change c2 into c1. The justi-
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fication for such constrained decoding is that the
resulting sentence may deviate from the meaning
of the input sentence (i.e., unfaithfulness), if the
model replaces a character with a totally unrelated
new one.

Despite their popularity and usefulness, confu-
sion sets have two problems. First, it is difficult to
set criteria to decide the inclusion or exclusion of
certain character pairs. This renders the construc-
tion of confusion sets highly empirical, sometimes
requiring manual intervention. Second, there is no
probability to distinguish which character pairs are
more likely to be confused than others in C.

As a replacement for confusion sets, we pro-
pose a lightweight plug-and-play DISC (decoding
intervention with similarity of characters) module.
DISC derives probability-based similarities among
characters in both phonetics and glyph, and uses
them to intervene in the decoding process. Similar
to the confusion set, our DISC aims to enhance
the model’s precision. However, for datasets that
lack or have no in-domain training data, DISC may
result in under-corrections due to the model’s con-
servative predictions, leading to unstable recall. To
address this, we propose a copy-punishment solu-
tion to balance precision and recall.

It is worth noting that DISC is featured in com-
patibility. On the one hand, DISC is compatible
with the ways to derive probabilities for represent-
ing character similarity. On the other hand, DISC is
compatible with almost all the current mainstream
CSC models, such as SoftMasked-BERT (Zhang
et al., 2020), ReaLiSe (Xu et al., 2021), SCOPE
(Li et al., 2022), and ReLM (Liu et al., 2024).

Experiments and analyses on popular benchmark
datasets, i.e., SIGHANs, ECSpell, and LEMON,
demonstrate that our DISC module can signifi-
cantly enhance the error correction performance of
CSC models. This improvement does not require
additional training costs and only slightly affects
the decoding efficiency of the model. We release
our code at https://github.com/zhqia
o-nlp/DISC.

2 The Basic CSC Model

Given an input sentence consisting of n characters,
denoted as x “ x1x2 ¨ ¨ ¨xn, the goal of a CSC
model is to output a corresponding correct sentence,
denoted as y “ y1y2 ¨ ¨ ¨ yn, in which all erroneous
characters in x are replaced with the correct ones.

Presently, mainstream approaches treat CSC as a

character-wise classification problem (Zhang et al.,
2020; Liu et al., 2021; Xu et al., 2021), i.e., deter-
mining whether a current character should be kept
the same or be replaced with a new character.

Encoding. Given x, the encoder of the CSC
model generates representations for each character:

h1 ¨ ¨ ¨hn “ Encoderpxq. (1)

To leverage the power of pre-trained language
models, a BERT-like encoder is usually employed.

Classification. For each character position, for
instance hi, the CSC model employs MLP and
softmax layers to obtain a probability distribution
over the whole character vocabulary V:

ppy | x, iq “ softmaxp MLPphiq qrys. (2)

During the evaluation phase, the model selects
the character with the highest probability, i.e., y˚ “
argmaxyPV ppy | x, iq.

Training. The typical training procedure consists
of 2–3 steps for the CSC task. First, automatically
synthesize large-scale CSC training data by replac-
ing some characters with others randomly, some-
times constrained by a given confusion set. Second,
train the CSC model on the synthesized training
data. Third, fine-tune the model on a small-scale
in-domain training data, if the data is available.

3 Our Approach

In this paper, we propose a simple plug-and-play
module to intervene in the classification (or predic-
tion) process of any off-the-shelf CSC model. The
basic idea is to adjust the probability distribution
according to the similarity between a candidate
character y and the original character xi:

Scorepx, i, yq “ ppy | x, iq ` α ˆ Simpxi, yq,
(3)

where Simp¨q gives the similarity between two
characters, and α is a hyperparameter and we set
α “ 1.1 for all datasets and basic models accord-
ing to a few preliminary experiments. We use
Scorep¨q to denote the replacement likelihood
since the value is no longer a probability.

Our experiments show that by encouraging the
model to prefer similar characters, our approach
achieves a consistent and substantial performance
boost on all CSC benchmark datasets.
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Candidate characters:

...
切实保障公民基本权力和自由

Effectively guarantee the citizen's basic power and freedom.

CSC Encoder

...... ......
Representations

CSC Decoder

DISC Module
+

Distribution
=

Wrong Sentence

Plug-and-Play Module

...

Similarity

...

0.08

0.78

0.43

1.0

0.36

切实保障公民基本权利和自由
Effectively guarantee the citizen's basic rights and freedom.

Similarity Decoding Intervention
利益 祉权力

利益 祉权力

利益 祉权力

利(lì): right
益(yì): equity
力(lì): power
祉(zhǐ):  happiness
权(quán): authority

Probability

(old)

Distribution
(new)

Probability

Figure 1: Overview of DISC. It intervenes in the CSC decoder with the similarity between the potential error
character and its candidate characters. The DISC module intervenes in the probability distribution results of the
CSC model based on specific similarity, favoring the selection of more similar confusing characters.

We measure character similarity from two per-
spectives, i.e., phonetic and glyph:

Simpc1, c2q “ β ˆ SimPpc1, c2q
`p1 ´ βq ˆ SimGpc1, c2q, (4)

where β is an interpolation hyperparameter, our ex-
periments in Section 6 demonstrate that the model
achieves good and stable performance when it is
set to 0.7.

3.1 Phonetic Similarity

Given two characters, we employ the pypinyin li-
brary to obtain the Pinyin sequences,1 e.g., “忠”
(zhong) and “仲” (zhong),2 and then compute the
phonetic similarity based on the edit distance over
their Pinyin sequences:

SimPpc1, c2q “ 1 ´ LDppypc1q,pypc2qq
lenppypc1q ` pypc2qq ,

(5)
where LDp¨q gives the Levenshtein distance,3 and
lenp¨q gives the total length of the two sequences.

1https://pypi.org/project/pypinyin
2We do not use the tone information, e.g., “忠” (zhōng)

and “仲” (zhòng), which is not helpful for model performance
according to our preliminary experiments. We suspect the
reason is that Pinyin-based input methods do not require users
to input the tones. Therefore, tones are not directly related to
spelling errors.

3Levenshtein distance is a type of edit distance. We set the
weights of the three types of operations, i.e., deletion, insertion
and substitutions, as 1/1/2 respectively.

Handling polyphonic characters. Given two
characters, we enumerate all possible Pinyin se-
quences of each character, and adopt the combina-
tion that leads to the highest similarity.

We have also tried more sophisticated strategies.
For instance, we follow Yang et al. (2023b) and
give higher weights to certain phoneme (consonant
or vowel) pairs, since they are more likely to cause
spelling errors. However, our preliminary exper-
iments show that our simple strategy in Eq. (5)
works quite robustly.

3.2 Glyph Similarity

According to Liu et al. (2010), 83% of Chinese
spelling errors are related to pronunciation, while
48% are with glyphs, indicating that a consider-
able proportion is related to both. Therefore, it is
necessary to consider the glyph information when
computing character similarity.

Pinyin sequences can largely encode the phonet-
ics of Chinese characters. In contrast, it is much
more complex to represent character glyphs. In this
work, we compute and fuse glyph similarity from
four aspects:

SimGpc1, c2q “
ř4

i“1 Sim
G
i pc1, c2q

4
. (6)

Four-corner code. The four-corner method is
widely used in Chinese lexicography for indexing
characters. Given a character, it gives four digits
ranging from 0 to 9, corresponding to the shapes
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at the four corners of the character’s glyph, respec-
tively. For instance, the four-corner code is 5033
for “忠”, and 2520 for “仲”.

Then, we use the digit-wise matching rate be-
tween two codes as the similarity:

SimG1pc1, c2q “
ř4

i“1 1pFCpc1qris “ FCpc2qrisq
4

,

(7)
where FCp¨q gives the four-digit code, and 1 is the
indicator function.

Structure-aware four-corner code. One impor-
tant feature of Chinese characters is that a complex
character can usually be decomposed into simpler
parts, and each part corresponds to a simpler char-
acter or a radical. Most radicals are semantically
equivalent to some character, e.g., “亻” to “人”.

Such structural decomposition directly reveals
how characters are visually similar to each other.
Motivated by this observation, we design a
structure-aware four-corner code for each character.
For example,
“忠”: C5000C3300 (“中”: 5000; “心”: 3300)
“仲”: B8000B5000 (“人”: 8000; “中”: 5000)
where “C” leading a four-coner code means up-
down structure, and “B” means left-right structure.

Then we compute the similarity based on the
Levenshtein distance as follows:

SimG2pc1, c2q “ 1 ´ LDpSFCpc1q,SFCpc2qq
lenpSFCpc1q ` SFCpc2qq ,

(8)
where SFCp¨q gives the structure-aware code of a
character.

Stroke sequences. Four-corner codes focus on
the shapes of the four corners. Some very similar
characters may obtain quite different codes, e.g.,
“木” (4090) vs. “本” (5023). To address this is-
sue, we utilize stroke sequence information, which
encodes how a character is handwritten stroke by
stroke. For example,

“木”: 一丨ノ、 (4 strokes)
“本”: 一丨ノ、一 (5 strokes)
Then we compute two similarity metrics from

two complementary viewpoints. The first metric is
based on Levenshtein distance:

SimG3pc1, c2q “ 1 ´ LDpSSpc1q,SSpc2qq
lenpSSpc1q ` SSpc2qq ,

(9)
where SSp¨q gives the stroke sequence of a charac-
ter.

The second metric considers the longest com-
mon subsequence, i.e., LCSp¨q:

SimG4pc1, c2q “ LCSpSSpc1q,SSpc2qq
maxplenpSSpc1qq,lenpSSpc2qqq .

(10)
According to Eq. (4), and supposing β “ 0.7,

we get the similarity between “忠” and “仲” being:

0.7 ˆ 1 ` 0.3 ˆ 0 ` 0.56 ` 0.57 ` 0.5

4
“ 0.82.

4 Experimental Setup

4.1 Datasets

Following the conventions of previous work, we
employ the test sets of the SIGHAN 13/14/15
datasets (Wu et al., 2013; Yu et al., 2014; Tseng
et al., 2015) as our evaluation benchmarks.

However, many previous studies have pointed
out that the SIGHAN datasets may not represent
real-world CSC tasks, as they are derived from
Chinese learner texts. To address this limitation,
we also conduct experiments on the ECSpell (Lv
et al., 2023) and LEMON (Wu et al., 2023) datasets,
which are derived from Chinese native-speaker
(CNS) texts and encompass a wide range of do-
mains. It is worth noting that LEMON does not
have a dedicated training set, making it an excellent
test set for evaluating a model’s generalization abil-
ity. Due to space constraints, we selected results
from four domains for display and provided the
average performance across all seven domains.

The details of these datasets are in Appendix B.

4.2 Baseline Models

We select three representative BERT-style models
as our baselines: ReaLiSe, SCOPE, and ReLM.

The ReaLiSe model (Xu et al., 2021) employs
multi-modal technology to capture semantic, pho-
netic, and glyph information. The SCOPE model
(Li et al., 2022) is one of the SOTA models for CSC,
which enhances model correction performance by
introducing a character pronunciation prediction
task. The ReLM model (Liu et al., 2024) treats
CSC as a non-autoregressive paraphrasing task,
standing out as a new SOTA model.

Additionally, we include some of the latest work
(Cheng et al., 2020; Huang et al., 2023) for perfor-
mance comparison.

In the era of LLMs, researchers have begun us-
ing LLMs to explore the CSC field. We present
the results of representative LLMs on certain
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C-Pæ C-Ræ C-Fæ FPRç C-Pæ C-Ræ C-Fæ FPRç C-Pæ C-Ræ C-Fæ FPRç

72.1 77.7 75.9 – 63.1 67.2 65.3 – 78.3 72.7 75.4 –
75.9 79.9 77.8 12.0 66.3 70.0 68.1 14.9 87.2 81.2 84.1 10.3
78.7 83.5 81.0 11.3 67.1 71.2 69.5 14.8 86.5 82.1 84.2 17.2
80.3 82.3 81.3 – 69.3 72.3 70.7 – 87.7 83.0 85.3 –
76.8 83.9 80.2 12.7 63.7 72.3 67.7 17.5 85.0 82.3 83.7 10.8

32.7 38.4 35.3 33.8 39.7 22.1 28.4 14.6 57.1 27.1 36.7 13.8
36.5 49.2 41.9 40.8 32.8 45.0 38.0 43.5 47.3 45.7 46.5 44.8

77.0 79.9 78.4Ò 11.3Ó 68.2 70.2 69.2Ò 13.7Ó 87.6 81.1 84.2Ò 10.3
80.2 83.4 81.8Ò 10.0Ó 69.3 72.5 70.9Ò 13.7Ó 88.0 83.0 85.4Ò 17.2
79.8 83.1 81.4Ò 9.5Ó 68.6 73.7 71.0Ò 14.3Ó 88.4 83.3 85.8Ò 7.6Ó

Models SIGHAN15 SIGHAN14 SIGHAN13

Previous SOTAs
SpellGCN
ReaLiSe
SCOPE:
SCOPE + DR-CSC
ReLM:

LLMs Results
GPT3.5
GPT4

Ours
ReaLiSe + DISC
SCOPE + DISC
ReLM + DISC

Table 2: Sentence-level performance on the SIGHAN13, SIGHAN14 and SIGHAN15 test sets. Precision (P), recall
(R) and F1 for correction are reported (%). Results marked with “:” are obtained by reruning the official code
released by Li et al. (2022) and Liu et al. (2024). Other baseline results are directly taken from their literature. Apart
from SpellGCN, all models apply post-processing on SIGHAN13, which removes all detected and corrected “地”
and “得” from the model output before evaluation. “+ DISC” means adding DISC module in the decoder. α and β
are assigned the values 1.1 and 0.7, respectively.

benchmarks for comparison, including the top-
performing GPT series in terms of overall capa-
bility: GPT3.5 and GPT4, as well as some re-
sults on open-source LLMs in the Chinese NLP
community from previous work, such as finetuned
Baichuan2 (Yang et al., 2023a). Specifically, we
demonstrate the results of Baichuan2 on the EC-
Spell and LEMON test sets using supervised fine-
tuning (SFT) (Liu et al., 2024) and prompt-free
training-free approach (Zhou et al., 2024), repre-
senting the current SOTA performance.

4.3 Evaluation Metrics

The CSC task comprises two subtasks: error detec-
tion and error correction. Following the previous
work (Zhang et al., 2020), we report the precision
(P), recall (R), and F1 scores at the sentence level
for both subtasks. Additionally, we also evalu-
ate the models with the False Positive Rate (FPR)
metric (Liu et al., 2024), which quantifies the CSC
model’s frequency of over-correction, i.e., incor-
rectly identifying correct sentences as erroneous.

4.4 Hyperparameters

Hyperparameters α and β denote the weights as-
signed to overall similarity and phonetic similarity,
respectively. As detailed in Section 6 on grid search
results, we set α “ 1.1 in Eq. 3 and β “ 0.7 in Eq.
4 for all experiments.

5 Main Results

Results on SIGHANs. Table 2 illustrates the
main results across SIGHAN benchmarks, demon-
strating that the addition of the DISC module in the
decoding process leads to notable improvements
across all the compared models, reaching state-
of-the-art performance. Specifically, ReaLiSe +
DISC has increases of 0.1/1.1/0.6, SCOPE + DISC
achieves lifts of 1.2/1.4/0.8, and ReLM + DISC
sees enhancements of 2.1/3.3/1.2 in correction-
level F1 (C-F) score on the SIGHAN13/14/15 test
sets, respectively.

It is worth noting that ReaLiSe and SCOPE have
incorporated phonetic or glyph information dur-
ing training. However, our DISC module can still
improve the performance of these models.

In addition to the consistent improvement in the
F1 metric, results demonstrate that the integration
of the DISC module into CSC models leads to
a significant reduction in FPR across almost all
datasets. This implies that DISC can avoid some
unnecessary corrections.

Results on Native Datasets. As ReLM has
shown outstanding performance on the SIGHAN
benchmarks, we continue to utilize it for exper-
iments on the multi-domain datasets of ECSpell
and LEMON to demonstrate the DISC module’s
domain adaptability.

Table 3 depicts that the incorporation of the
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P R F1

GPT3.5 48.5 43.1 45.6 9.4
GPT4 62.0 62.0 62.0 7.3
Baichuan2-7B‹ 85.1 87.1 86.0 –
ReLM 93.7 98.8 96.2 6.5

+ DISC 96.5 98.0 97.3 2.9
GPT3.5 36.5 42.0 39.1 20.1
GPT4 45.1 57.5 50.6 24.8
Baichuan2-7B‹ 72.6 73.9 73.2 –
ReLM 85.1 95.8 90.2 9.8

+ DISC 91.6 96.3 93.9 4.6
GPT3.5 57.3 52.3 54.7 6.3
GPT4 71.7 67.6 69.5 1.7
Baichuan2-7B‹ 86.1 79.3 82.6 –
ReLM 89.4 91.5 90.4 5.8

+ DISC 91.1 91.1 91.1 3.3

Baichuan2-7B: 38.2 35.6 36.9 19.8
ReLM 35.8 33.6 34.6 20.6

+ DISC 56.1 31.5 40.4 8.5
Baichuan2-7B: 64.3 46.8 54.2 6.9
ReLM 59.2 48.9 53.6 12.0

+ DISC 72.3 45.9 56.2 4.6
Baichuan2-7B: 59.8 45.1 51.4 10.2
ReLM 55.8 41.6 47.7 12.7

+ DISC 72.2 39.3 50.9 5.1
Baichuan2-7B: 77.5 49.7 60.6 3.4
ReLM 67.3 44.9 53.9 5.8

+ DISC 82.2 44.5 57.7 2.2
Baichuan2-7B: 62.1 46.8 53.2 9.9
ReLM 58.1 45.1 50.6 11.7

+ DISC 73.7 42.5 53.7 4.5

Domain Model Correction
FPR

ECSpell

LAW

MED

ODW

LEMON

GAM

CAR

ENC

MEC

Avg. (all)

Table 3: Sentence-level performance of LLMs, ReLM,
and ReLM + DISC on the test sets of ECSpell and
LEMON. Results marked with “‹” are from Liu et al.
(2024), and “:” are from Zhou et al. (2024).

DISC module into ReLM leads to substantial im-
provements of 1.1/3.7/0.7 C-F score compared to
unenhanced ReLM in the LAW, MED and ODW
domains, respectively.

Table 3 also presents the performance of DISC
on LEMON. After integrating the DISC module,
the results of ReLM + DISC achieve notable im-
provements across all domains, and the average
C-F has an increase of 3.1. This demonstrates that
our DISC module yields stable and significant im-
provements in cross-domain CSC testing.

5.1 Case Study

We present two illustrative examples of DISC-
augmented error correction in Figure 2. These
examples explain why our DISC module can sig-
nificantly improve model precision.

Input: 肌肉酸痛是运动过读(dú)导致的。
Muscle soreness is caused by read and exercise.

Reference:读➔度 (dú ➔ dù, excessive)

ReLM: 读➔少 (dú ➔ shǎo, insufficient)

ReLM+DISC:读➔度 (dú ➔ dù, excessive)

(a) Select the more similar word

Input: 浓荫蔽空(kōng)，郁郁苍苍。
Thick foliage shades the sky, lush and verdant.

Reference:NONE
ReLM: 空➔日(kōng ➔ rì, sun)
ReLM+DISC:NONE

(b) Mitigate over-correction

Figure 2: Cases from the SIGHANs and LEMON.

Figure 2(a) exemplifies how the DISC module
retrieves a more plausible alteration resembling
the original character. In this example, the ReLM
model corrects the erroneous word “读”(dú) to
“少”(shǎo). This correction is grammatically cor-
rect, but deviates from the original meaning of the
sentence. From the perspective of phonetics, a
more suitable correction should be “度”(dù), which
shares the same pronunciation as the erroneous
word. The DISC makes this correction by leverag-
ing semantic and phonetic information.

In Figure 2(b), the DISC alleviates over-
correction. The CSC model mistakenly alters
“空”(kōng) to “日”(rì), yet the similarity interven-
tion rectifies this error. Specifically, since the most
similar to a character is the character itself, when
a CSC model incorrectly tends to correct over pre-
serve on a correct sentence, the DISC module can
increase the score of the character itself compared
to other correction options based on similarity,
which sometimes avoids unnecessary corrections.

6 Discussion

We select the SIGHAN15 along with two domains
from the LEMON database, ENC and MEC, to
conduct further analysis.

Robustness of similarity hyperparameters. As
illustrated in Figure 3, the model’s precision
steadily improves as α increases. This is be-
cause increased similarity intervention reduces
over-correction (Figure 2(a)), boosting precision.
However, at the same time, DISC may revert pre-
dictions to the original character, as characters are
most similar to themselves. This under-correction
phenomenon caused by DISC sometimes leads to
instability in recall.
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Figure 3: The average scores in ENC, MEC and
SIGHAN15 with different values of α and β. The solid
lines represent the results of ReLM + DISC, and the
dashed lines represent the results of the original ReLM.

For β, it shows the effect of the proportion of
phonetic similarity in the total similarity on cor-
rection performance. The F1 score curve shows a
clear trend of rising first and then decreasing, which
indicates that phonetic and glyph similarities are
complementary, with phonetic similarity being rel-
atively more important than glyph similarity.

The balance between precision and recall. The
primary purpose of using a confusion set is to nar-
row down the retrieval space, thereby improving
precision. While a confusion set can enhance recall
by enabling the model to make more reasonable
edits, it may also reduce recall by discouraging the
model from making edits, because the most similar
character to the source character is itself.

We observe that this decrease in recall primarily
occurs in the LEMON test set. The key distinction
between these datasets is that LEMON contains
less seen edit pairs in training data. As shown in
Table 4, we calculate the proportion of edit pairs
from each test set that appear in the training set.4

In ECSpell, the proportion of seen edit pairs is very
low, yet the model performs well. This is due to
data leakage, as we explain in Appendix E. Models
are prone to copy the source character when the
target edit pair is not available in the training data.

For this type of test set, we can use a simple copy
punishment combined with DISC, which reduces
the probability of copying the original character
during inference, to mitigate the decrease in re-
call. Detailed experimental results can be found in
Appendix C.

4For LEMON, we conduct statistics using the pairs in the
confusion set which is used to generate 34 million monolin-
gual sentences.

Domain Edit Pairs Seen Pairs Prop.
SIGHANs

SIGHAN15 703 698 99.29%
SIGHAN14 771 765 99.22%
SIGHAN13 1,224 1,206 98.53%

ECSpell
LAW 390 211 54.10%
MED 356 169 47.47%
ODW 404 168 41.58%

LEMON
GAM 164 100 60.98%
CAR 1,911 1,254 65.62%
NOV 3,415 2,045 59.88%
ENC 1,787 1,040 58.20%
NEW 3,260 2,293 70.34%
COT 486 309 63.58%
MEC 1,032 627 60.76%

Table 4: Proportion of seen edit pairs in the test sets of
SIGHANs, ECSpell, and LEMON.

Effectiveness of DISC module. We conducted
experiments using the vanilla BERT without fine-
tuning, initialized with bert-base-chinese,
as shown in Table 5. Obviously, the general lan-
guage model, without any fine-tuning or error cor-
rection strategies, cannot be applied to error correc-
tion tasks. However, after adding our DISC mod-
ule, the performance of vanilla BERT improves
significantly, giving the model basic error correc-
tion capabilities.

To further demonstrate the superiority of our
method, we degrade the DISC module to a sim-
ple confusion set constraint decoding strategy. We
investigate two confusion sets: one derived from
our similarity computation strategy5 and another
pre-existing one provided by Wang et al. (2018).
The results are shown in the second part of Table 6.
From the results, we can see that both confusion
sets fail to consistently improve performance, in-
dicating the strategy’s sensitivity to confusion set
quality. The confusion set from Wang et al. (2018)
improves SIGHAN15 by covering over 99% of its
erroneous pairs but degrades performance on other
test sets, highlighting the domain-specific limita-
tions of such confusion sets.

Effectiveness of components of the DISC mod-
ule. We conduct an ablation study on the compo-
nents of the DISC module. The results are shown
in the third part of Table 6. Removing either pho-
netic or glyph knowledge from the DISC module

5We treat a character pair as confused if their similarity
score exceeds 0.5.

28318



P R F1

vanilla BERT 2.3 4.4 3.1 91.1
+ DISC 71.5 25.5 37.6 2.1

vanilla BERT 3.6 5.8 4.4 73.0
+ DISC 79.9 18.3 29.8 1.0

vanilla BERT 2.7 4.8 3.5 77.2
+ DISC 88.4 18.5 30.5 0.3

Domain Correction
FPR

SIGHAN15

LEMON-ENC

LEMON-MEC

Table 5: Sentence-level performance of vanilla BERT.

leads to performance declines across benchmarks.
Notably, the absence of phonetic similarity has
a lesser effect on SIGHAN15 but a stronger im-
pact on LEMON. The results also show that the
four components involved in calculating glyph sim-
ilarity are independently effective. However, ex-
cluding any three typically causes a slight drop
in performance, with exceptions like ENC. This
phenomenon underscores the necessity of using
multi-dimensional similarity measurements for a
more comprehensive modeling of glyph similar-
ity. Combining these often results in consistent
improvements. Moreover, the fusion of phonetic
and glyph similarities achieves the optimal error
correction performance, affirming the necessity of
integrating these two similarities.

Analysis on Different Error Types. Based on
the similarity calculation strategy proposed in this
paper, we separately filter the phonetic and glyph
error types. Taking the phonetic error type as an
example, the specific approach is as follows: for
all edit pairs with a phonetic similarity < 0.5, we
modify the source character to the golden character,
resulting in a test set containing only phonetic edit
pairs. The results are shown in Table 7.

According to our classification rule, the average
proportions of phonetic and glyph on SIGHAN15
are 90.0% and 40.7%. From the results, it can be
seen that DISC significantly improves performance
on all error types. We find that, compared to pho-
netic errors, the original model exhibited a higher
Recall metric and lower Precision metric on glyph
errors, which makes the improvement brought by
the DISC module more pronounced.

Impact on Decoding Efficiency. We examine
the influence of the DISC module on decoding
speed, with the results shown in Table 8. Pho-
netic and glyph similarities can be pre-calculated

Model ENC MEC SIG15 Avg
ReLM 47.7 53.9 80.2 60.6

+ DISC 50.9 57.7 81.4 63.3
+ Confusion set 47.1 56.0 78.0 60.4
+ Confusion set; 41.5 48.7 80.7 57.0
+ DISC (phonetic) 49.1 56.1 80.1 61.8
+ DISC (glyph) 49.4 53.3 80.3 61.0
+ DISC (phonetic &)├SimG1 50.5 56.8 81.4 62.9├SimG2 50.5 57.4 81.4 63.1├SimG3 51.3 57.5 81.2 63.3└SimG4 51.6 56.9 80.8 63.1

Table 6: Ablation results in two kinds of confusion sets
and different components of DISC. “;” represents the
confusion set from Wang et al. (2018). “SimGi ” means
using similarities of phonetics and the ith part of glyph.

and DISC only need to index them during decod-
ing. Thus, the time taken to decode each sentence
increased merely by 14.3%, 3.5%, and 1.0% for
ReaLiSe, SCOPE, and ReLM, respectively. The
minor slowdown in decoding speed incurred by
the DISC module is deemed acceptable consider-
ing the substantial enhancement it brings to the
model’s performance. Notably, SCOPE exhibits
significantly slower decoding speeds compared to
the other two models, which we speculate may be
attributed to its iterative decoding approach.

7 Related Work

Model architecture shift. Most early works on
CSC employed a three-step pipeline, i.e., 1) detect-
ing potential erroneous characters, 2) constructing
new sentences by replacing erroneous characters
with new ones based on a confusion set; and 3)
evaluating the probability of the constructed sen-
tences based on an n-gram language model and
choose the one with the highest probability (Yeh
et al., 2013; Yu and Li, 2014; Huang et al., 2014;
Xie et al., 2015).

In the current deep-learning era, especially with
the prevalence of PLMs, recent models directly per-
form character-level replacement via classification,
as introduced in Section 2. There also exist some
works that employ a two-step pipeline architecture,
which first detects potentially erroneous characters
and then replaces them at the detected positions
(Zhang et al., 2020; Huang et al., 2023).

Utilizing confusion sets. These works fall into
three categories. (1) At only the inference phase.
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P R F1

ReLM 65.2 77.6 70.9 19.3
+ DISC 69.8 78.0 73.7 14.3

ReLM 44.7 81.5 57.7 19.6
+ DISC 51.8 83.4 63.9 15.1

Domain Correction
FPR

Phonetic errors

Glyph errors

Table 7: Sentence-level performance of different error
types on SIGHAN15.

Wang et al. (2019) and Bao et al. (2020) use the
confusion set as constraints upon the search space,
i.e., allowing the model to only consider characters
in the confusion set.

(2) For data synthesis. Liu et al. (2021) use a
confusion set C to synthesize data for training CSC
models. For a given correct sentence, they ran-
domly select a character (e.g., ci), and replace it
with an incorrect character (e.g., c1). The replace-
ment is constrained such that only pairs contained
in the confusion set are considered, i.e., pci, c1q P C.

(3) At both training and inference phases. Cheng
et al. (2020) construct two character graphs, one
based on phonetic relatedness, and the other based
on glyph relatedness, and employ GCN to ob-
tain new character representations as extra inputs.
Huang et al. (2023) use two confusion sets, one
encoding phonetic relatedness, and the other encod-
ing glyph relatedness. Given a potential spelling er-
ror, they use a classification module to judge which
confusion set the error belongs to, with an extra
training loss. During the test phase, the model can
only consider characters from the corresponding
confusion set according to the classification result.

Utilizing phonetic and glyph information. Be-
sides the use of confusion sets, there exist some
works that directly utilize phonetic and glyph infor-
mation to enhance CSC models. Liu et al. (2021)
and Li et al. (2022) add an extra task of predict-
ing the phonetic of each input character. Xu et al.
(2021) use GRU to encode Pinyin, and use CNN to
encode glyphs (font pictures) for each input char-
acter, as extra character representations.

Decoding intervention. Gou and Chen (2021)
extract features such as probability and rank of the
original character and the top 1 candidate charac-
ter, and use SVM to judge modification retention.
Yin et al. (2024) retrieve similar segments from
the training set, and intervene in the decoding pro-
cess based on the segment (n-gram) similarity be-

Model Speed (ms/sent) Slowdown
ReaLiSe 24.5 –

+ DISC 27.5 1.143ˆ
SCOPE 138.6 –

+ DISC 143.4 1.035ˆ
ReLM 12.7 –

+ DISC 12.8 1.010ˆ
Table 8: The decoding time per sentence with a batch
size of 1 on SIGHAN15. The results are the average
time of three runs.

tween the retrieved segments and the input. Lv
et al. (2023) employ a word dictionary in the target
domain to assist the decoding process.

8 Conclusions

We propose a plug-and-play decoding intervention
strategy that enhances CSC models by utilizing
phonetic and glyph similarities through a tailored
algorithm. Unlike methods that alter model train-
ing, our training-free strategy only modifies the
decoding process, making it adaptable to almost all
mainstream CSC models. Experiments on multiple
CSC benchmarks demonstrate that our method sig-
nificantly improves baselines, and even surpasses
the current SOTA models. Furthermore, experi-
mental analyses demonstrate that our DISC module
helps the model better identify similar candidate
characters, effectively reducing over-correction.
Our research has transcended the limitations of tra-
ditional confusion set decoding intervention, prov-
ing that specific measures and combinations of pho-
netic and glyph similarities are necessary.

Limitations

We believe that our work can be further improved
from two aspects. First, our experiments focus on
the CSC datasets, while our approach can apply
to other languages such as Japanese and Korean.
Second, as a general-use technique, our proposed
approach for determining character similarity may
not be optimal for CSC in specific domains or sce-
narios. In that case, we may need to consider more
factors besides phonetic and glyph information to
compute character similarity.
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A Implementation Details

We use the official implementation of ReaLiSe
and directly utilize the checkpoint provided by
its GitHub repository,6 which initializes the se-
mantic encoder with the weights of chinese-
roberta-wwm-ext.7 ReLM uses the offi-
cial BERT weights bert-base-chinese,8 and
only offered the checkpoint after pre-training in 34
million monolingual sentences that are synthesized
by confusion set. We fine-tune it on SIGHANs and
ECSpell with a batch size of 128 and a learning
rate of 3e-5, and the MFT strategy (Wu et al., 2023)
is used during training. SCOPE utilizes the pre-
trained weights from the ChineseBERT-base,9

and we leverage their official implementation for
fine-tuning.10 We did not attempt DR-CSC + DISC
because they have not fully open-sourced their

6https://github.com/DaDaMrX/ReaLiSe
7https://huggingface.co/hfl/chinese-r

oberta-wwm-ext
8https://huggingface.co/bert-base-chi

nese
9https://huggingface.co/ShannonAI/Chi

neseBERT-base
10https://github.com/jiahaozhenbang/SC

OPE

Training Set #Sent Avg. Length #Errors
SIGHAN15 2,339 31.3 2,549
SIGHAN14 3,437 49.6 3,799
SIGHAN13 700 41.8 343
Wang271K 271,329 42.6 381,962
ECSpell_LAW 1,960 30.7 1,681
ECSpell_MED 3,000 50.2 2,260
ECSpell_ODW 1,720 41.2 1,578

Test Set #Sent Avg. Length #Errors
SIGHAN15 1,100 30.6 703
SIGHAN14 1,062 50.0 771
SIGHAN13 1,000 74.3 1,224
ECSpell_LAW 500 29.7 390
ECSpell_MED 500 49.6 356
ECSpell_ODW 500 40.5 404
LEMON 22,252 35.4 12,055

Table 9: Statistics of the datasets.

work. Due to our decoding intervention strategy be-
ing deterministic, without any random factors, the
experiments are conducted only once. All exper-
iments are conducted on one Tesla V100S-PCIE-
32GB GPU.

B Details of Datasets

SIGHANs. Following the setup of previous work,
we employ SIGHAN 13/14/15 datasets (Wu et al.,
2013; Yu et al., 2014; Tseng et al., 2015) as
our training sets, in conjunction with Wang271K
(Wang et al., 2018), which consists of 271K syn-
thetically generated instances. We employ the test
sets of SIGHAN13/14/15 for evaluation.

ECSpell. ECSpell (Lv et al., 2023) encompasses
data from three domains: law, medical treatment,
and official document writing. Unlike SIGHANs
from Chinese learner texts, the sentences in EC-
Spell are derived from CNS texts.

LEMON. LEMON (Wu et al., 2023) also orig-
inates from CNS texts, containing over 22K in-
stances spanning 7 domains. Given its lack of a
dedicated training set, LEMON serves as a bench-
mark for evaluating the domain adaptation capabil-
ity of CSC models.

We conduct detailed statistics on the above
datasets, and the results are presented in Table 9.

C Copy Punishment

For datasets like LEMON that lack in-domain train-
ing data, we discover a simple recall-boosting so-
lution: reducing the probability of selecting the
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P R F1

ReLM 35.8 33.6 34.6 20.6
+ DISC 56.1 31.5 40.4 8.5
+ DISC* 52.4 37.0 43.4 11.3

ReLM 59.2 48.9 53.6 12.0
+ DISC 72.3 45.9 56.2 4.6
+ DISC* 68.0 47.5 55.9 6.2

ReLM 46.3 32.2 38.0 17.6
+ DISC 65.2 29.6 40.8 7.1
+ DISC* 57.8 31.2 40.6 10.2

ReLM 55.8 41.6 47.7 12.7
+ DISC 72.2 39.3 50.9 5.1
+ DISC* 66.9 41.7 51.4 7.1

ReLM 68.5 51.5 58.8 8.4
+ DISC 80.4 48.1 60.2 3.2
+ DISC* 76.5 49.7 60.3 4.3

ReLM 73.5 62.8 67.7 4.9
+ DISC 87.4 58.3 69.9 1.1
+ DISC* 80.8 61.0 69.5 1.8

ReLM 67.3 44.9 53.9 5.8
+ DISC 82.2 44.5 57.7 2.2
+ DISC* 76.3 45.0 56.6 3.2

Domain Model Correction
FPR

LEMON

GAM

CAR

NOV

ENC

NEW

COT

MEC

Table 10: Sentence-level performance of LLMs, ReLM,
and ReLM + DISC on the test sets of ECSpell and
LEMON. Results marked with “*” indicate the use of
copy-punishment solution.

original character during inference. Specifically,
after incorporating the DISC module, we addition-
ally lower the prediction probability of the original
character by 0.1 to reduce the model’s tendency
to select the original character during inference,
thereby improving the model’s recall rate. The
experimental results can be found in Table 10.

D Prompt Example

In this work, we use the prompt-based method to
activate the CSC ability of the GPT3.5 and GPT4.
The prompt is shown in Figure 4.

System and User Prompts for LLMs

System Prompt:你是一个优秀的中文拼写纠错模型，中文拼写纠错模型即更正用户输入句子中的拼写错误。
User Prompt:你需要识别并纠正用户输入的句子中可能的错别字并输出正确的句子，纠正时必须保证改动前后句子等长，在纠正错别字的同时尽可能减少对原句子的改动(不添加额外标点符号，不添加额外的字，不删除多余的字)。只输出没有错别字的句子，不要添加任何其他解释或说明。如果句子没有错别字，就直接输出和输入相同的句子。

Figure 4: Prompt template used in GPT3.5 and GPT4.

P R F1

GPT3.5 48.5 43.1 45.6 9.4
GPT4 62.0 62.0 62.0 7.3
ReLM 66.1 71.0 70.0 8.6

+ DISC 73.7 70.2 71.9 5.7
GPT3.5 36.5 42.0 39.1 20.1
GPT4 45.1 57.5 50.6 24.8
ReLM 67.4 70.2 68.8 7.0

+ DISC 78.2 71.6 74.8 4.6
GPT3.5 57.3 52.3 54.7 6.3
GPT4 71.7 67.6 69.5 1.7
ReLM 78.2 76.4 77.3 4.1

+ DISC 81.8 76.7 79.2 2.5

Domain Model Correction
FPR

ECSpell

LAW

MED

ODW

Table 11: Sentence-level performance of LLMs, ReLM,
and ReLM + DISC on the test sets of cleaned ECSpell.

E Experiments on Cleaned ECSpell

We discovered a serious data leakage issue in EC-
Spell. Specifically, the same correct sentence may
appear multiple times in both the training and
test sets, with only the location and type of er-
rors varying. These sentences respectively account
for 52.7%, 19.3%, and 28.2% of the ECSpell-
LAW/MED/ODW training sets. We cleaned these
duplicate sentences and reorganized the experi-
ments, as shown in Table 11.

The experimental results show that, compared to
using the uncleaned training sets, ReLM’s perfor-
mance on ECSpell significantly decreased, but it
still outperforms GPT4. DISC also achieves stable
performance improvement, with an impressive 6.0
F1 value increase on ECSpell-MED.

F Detailed Results

In addition to the correction-level performance, we
also present the detection-level experimental results
of the CSC models, as shown in Table 12. SCOPE
+ DR-CSC performs well at the detection level,
primarily because they incorporate an additional
detection network.

Since SIGHANs contain a lot of noise, we also
conduct experiments on their revised versions (re-
ferred to as SIGHANs (rev.)) released by Yang
et al. (2023b), which have undergone manual veri-
fication and error correction to ensure higher data
quality. As shown in Table 13 and Table 14, our
DISC module also achieves consistent performance
improvements on SIGHANs (rev.).
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D-Pæ D-Ræ D-Fæ D-Pæ D-Ræ D-Fæ D-Pæ D-Ræ D-Fæ

74.8 80.7 77.7 65.1 69.5 67.2 80.1 74.4 77.2
77.3 81.3 79.3 67.8 71.5 69.6 88.6 82.5 85.4
80.5 85.4 82.9 68.8 73.7 71.1 87.5 83.0 85.2
82.9 84.8 83.8 70.2 73.3 71.7 88.5 83.7 86.0
78.3 85.6 81.8 65.7 74.5 69.8 86.4 83.7 85.0

39.4 46.4 42.6 41.4 23.1 29.6 61.6 29.2 39.7
42.7 57.5 49.0 38.1 52.3 44.1 53.4 51.6 52.5

78.3 81.2 79.7Ò 69.2 71.2 70.1Ò 88.9 82.2 85.4
81.7 84.8 83.2Ò 70.2 73.5 71.8Ò 88.8 83.7 86.2Ò
80.8 84.3 82.5Ò 69.7 74.9 72.2Ò 89.7 84.5 87.0Ò

Models SIGHAN15 SIGHAN14 SIGHAN13

Previous SOTAs
SpellGCN
ReaLiSe
SCOPE:
SCOPE + DR-CSC
ReLM:

LLMs Results
GPT3.5
GPT4

Ours
ReaLiSe + DISC
SCOPE + DISC
ReLM + DISC

Table 12: Sentence-level performance on the SIGHAN13, SIGHAN14 and SIGHAN15 test sets. Precision (P),
recall (R) and F1 for detection are reported (%). Results marked with “:” are obtained by reruning the official code
released by Li et al. (2022) and Liu et al. (2024). Other baseline results are directly taken from their literature. Apart
from SpellGCN, all models apply post-processing on SIGHAN13, which removes all detected and corrected “地”
and “得” from the model output before evaluation. “+ DISC” means adding DISC module in the decoder. α and β
are assigned the values 1.1 and 0.7, respectively.

C-Pæ C-Ræ C-Fæ FPRç C-Pæ C-Ræ C-Fæ FPRç C-Pæ C-Ræ C-Fæ FPRç

73.2 67.5 70.2 – 62.6 57.5 59.9 – 71.1 67.4 69.2 –
74.4 69.6 71.9 – 63.6 59.0 61.2 – 71.9 68.0 69.9 –
77.0 67.6 72.0 – 66.0 57.1 61.3 – 73.2 67.1 70.0 –
76.4 73.5 74.9 8.5 65.5 62.9 64.2 11.3 74.0 70.9 72.4 10.7

79.0 73.0 75.9 6.4 69.3 63.4 66.2 8.9 75.4 71.3 73.3 9.4

Models SIGHAN15 (rev.) SIGHAN14 (rev.) SIGHAN13 (rev.)

Previous SOTAs
BERT‹
ReaLiSe‹
Yang et al. (2023b)
ReLM

Ours
ReLM + DISC

Table 13: Sentence-level performance on the revised SIGHAN13-15 test sets. Precision (P), recall (R) and F1 for
correction are reported (%). “*” means that the results of BERT and ReaLiSe in the table are directly copied from
Yang et al. (2023b).

D-Pæ D-Ræ D-Fæ D-Pæ D-Ræ D-Fæ D-Pæ D-Ræ D-Fæ

75.4 70.0 72.4 64.6 59.3 61.8 72.6 68.8 70.6
75.8 70.9 73.2 65.6 60.8 63.1 74.9 70.7 72.7
77.7 68.3 72.7 67.2 58.1 62.3 74.4 68.3 71.2
78.8 75.7 77.2 68.4 65.7 67.0 76.0 72.8 74.4

80.6 74.4 77.4 71.2 65.2 68.1 76.4 72.3 74.3

Models SIGHAN15 (rev.) SIGHAN14 (rev.) SIGHAN13 (rev.)

Previous SOTAs
BERT‹
ReaLiSe‹
Yang et al. (2023b)
ReLM

Ours
ReLM + DISC

Table 14: Sentence-level performance on the revised SIGHAN13-15 test sets. Precision (P), recall (R) and F1 for
detection are reported (%). “*” means that the results of BERT and ReaLiSe in the table are directly copied from
Yang et al. (2023b).
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