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Abstract

Document-level text generation tasks are
known to be more difficult than sentence-level
text generation tasks as they require the under-
standing of longer context to generate high-
quality texts. In this paper, we investigate
the adaption of Minimum Bayes Risk (MBR)
decoding for document-level text generation
tasks. MBR decoding makes use of a utility
function to estimate the output with the high-
est expected utility from a set of candidate
outputs. Although MBR decoding is shown
to be effective in a wide range of sentence-
level text generation tasks, its performance on
document-level text generation tasks is lim-
ited as many of the utility functions are de-
signed for evaluating the utility of sentences.
To this end, we propose MBR-OT, a variant
of MBR decoding using Wasserstein distance
to compute the utility of a document using a
sentence-level utility function. The experimen-
tal result shows that the performance of MBR-
OT outperforms that of the standard MBR in
document-level machine translation, text sim-
plification, and dense image captioning tasks.
Our code is available at https://github.
com/jinnaiyuu/mbr-optimal-transport.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across various natural lan-
guage processing tasks (Stiennon et al., 2020;
Ouyang et al., 2022; Touvron et al., 2023; Dubey
et al., 2024; OpenAI et al., 2024). While many
text-generation tasks are evaluated at the sentence
level, LLMs are also capable of generating text at
the document level (Wang et al., 2023; Xia et al.,
2024; Zhang et al., 2024). This raises the need for
evaluating the performance of decoding algorithms
for document-level text generation tasks.

Minimum Bayes Risk (MBR) decoding has been
shown to be highly effective for sentence-level di-
rected text generation tasks (Goel and Byrne, 2000;
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Figure 1: Illustrative example of a metric using Wasser-
stein distance over two texts "I love cats. I love dogs"
and "I love dogs. I love cats.". Each output is seg-
mented into a set of segments (e.g., sentence) and a
utility function is used to compute the utility over a pair
of segments from each of the outputs. Wasserstein dis-
tance is flexible to the change in the structure of the text,
making it an adaptive measure for a wide range of tasks.

Freitag et al., 2022a; Eikema and Aziz, 2022; Fre-
itag et al., 2023a). However, its effectiveness for
generating longer texts is less investigated. In this
paper, we evaluate the performance of MBR decod-
ing in document-level text generation tasks. Specif-
ically, we propose MBR-OT, a variant of MBR
decoding that uses an optimal transport distance as
a utility function. Optimal transport has been used
in many fields to measure the dissimilarity of two
probability distributions (Peyré and Cuturi, 2020;
Villani, 2021). We use optimal transport as a tool
to evaluate the utility between documents using
sentence-level utility functions. This approach en-
ables the use of the sentence-level utility functions
that have been investigated for years to improve
their accuracy by many researchers (Freitag et al.,
2022b, 2023b, 2024).

We evaluate MBR-OT on multiple directed text
generation tasks: document-level machine transla-
tion, document-level text simplification, and dense
image captioning. Our results show that MBR
decoding consistently outperforms the baselines
across these tasks, showing its effectiveness for
document-level text generation tasks.
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2 Background

We introduce MBR decoding as one of the algo-
rithms to solve the task. Then, we explain the
concept of optimal transport which is used by the
proposed method.

2.1 Minimum Bayes Risk (MBR) Decoding

Unlike maximum a posteriori (MAP) decoding
(Eikema and Aziz, 2020; Holtzman et al., 2020),
which aims to find the most probable output, mini-
mum Bayes risk (MBR) decoding selects the output
that maximizes the expected utility, which is equiv-
alent to minimizing risk (Goel and Byrne, 2000;
Kumar and Byrne, 2002, 2004).

MBR decoding consists of two key components:
a text generation model Pmodel and a utility metric
u. The model estimates the probability of an output
y given an input sentence x. The utility metric,
u(h,y), measures the quality of a candidate output
h with respect to a reference output y.

Let Y be a set of all possible sequences. Given
a set of candidate hypotheses Hcand ⊆ Y , MBR
decoding selects the hypothesis that maximizes its
expected utility:

hhuman = argmax
h∈Hcand

∑

y∈Y
u(h,y) · Phuman(y | x).

(1)
Since the true human probability distribution,
Phuman, is unknown, MBR approximates it using
the model probability Pmodel:

hmodel = argmax
h∈Hcand

∑

y∈Y
u(h,y) · Pmodel(y | x).

(2)
For simplicity, we denote Pmodel as P throughout
the remainder of this paper unless stated otherwise.

Since integrating over Y is computationally in-
tractable, Eq. (2) is typically approximated using
a Monte Carlo estimate (Eikema and Aziz, 2022;
Farinhas et al., 2023). This is done by sampling a
set of reference hypotheses Href , from the model
P :

hMBR = argmax
h∈Hcand

1

N

∑

y∈Href

u(h,y), (3)

where N = |Href |.
A common practice is to use the same set of

hypotheses for both the candidate pool (H) and the
reference pool (Href ). We follow the practice in
this paper and assume Hcand = Href .

2.2 Optimal Transport (OT)
Optimal Transport (OT; Peyré and Cuturi 2020;
Villani 2021) provides a mathematical framework
for quantifying the dissimilarity between two dis-
tributions. In natural language processing (NLP),
OT has been widely used to measure text similar-
ity, often referred to as the Earth Mover’s Distance
(Kusner et al., 2015; Zhao et al., 2019). It has been
applied in various contexts, including document
similarity (Kusner et al., 2015) and summary eval-
uation (Zhao et al., 2019).

While existing metrics for document-level ma-
chine translation have been proposed (Vernikos
et al., 2022), they are typically designed for tasks
where generated documents can be segmented into
a fixed sequence of corresponding segments. This
limitation makes them unsuitable for scenarios
where segment order or count varies across doc-
uments.

On the other hand, a key advantage of OT-based
metrics is their adaptability to text structure. They
can effectively handle variations such as sentence
reordering and merging, which frequently occur
in machine translation (Hovy and Gerber, 1997;
Marcu et al., 2000). For instance, due to structural
differences between Japanese and English, profes-
sional translators often restructure paragraphs dur-
ing translation, significantly altering sentence order
and merging content (Hovy and Gerber, 1997).

In this paper, we consider multiple OT formu-
lations, including linear assignment, Wasserstein
distance, and entropic regularized Wasserstein dis-
tance.

Linear assignment (LA). Linear assignment
(LA) is a simple formulation of OT where the cost
is computed as a linear sum of the cost of each ele-
ment (Peyré and Cuturi, 2020; Villani, 2021). Let
h = {h1, h2, . . . , hm} and y = {y1, y2, . . . , yn}
be a set of sentences. Let ph and py be a proba-
bility distribution over a set of elements in h and
y. Let C be a non-negative function representing
the cost or the dissimilarity between two sentences.
Using LA, the cost between two sets of sentences
is defined as follows:

LAC [ph∥py] =
inf

γ∈ΓL(h,y)

∑

i∈{1..m}
ph(hi)C(hi, γ(hi)), (4)

where ΓL(h,y) is a set of deterministic mappings
from h to y that is injective if m ≤ n, and subjec-
tive if m ≥ n (thus bijective if m = n).
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LA assigns one sentence in a source to exactly
one sentence in a target and computes the sum of
the cost between them. One of the failure cases
of this constraint is when aligning texts with and
without merge.

(1) I like cats and dogs.

(2) I like cats. I like dogs.

Because LA cannot distribute weights of a source
sentences probabilistically, it has to assign "I like
cats and dogs." to only one of either "I like cats."
or "I like dogs.". Thus, although the two texts have
very high similarity, its utility computed by LA
gets small.

Wasserstein distance (WD). The shortcoming
of LA is that it is constrained to assign the weight
of the source element to a single target element,
and thus cannot adapt to the change in disclosure.
Figure 1 shows the example of sentences where
this is undesirable. Wasserstein distance (WD) is
a generalization of LA where the source element
can divide its weights and assign it to any number
of target elements (Peyré and Cuturi, 2020; Villani,
2021). This enables the alignment of the sequence
like in Figure 1 where one source sentence is di-
vided into two target sentences.

WD is computed as follows:

WDC [ph∥py] =
inf

γ∈Γ(ph,py)

∑

(i,j)∈m×n

γ(hi, yj)C(hi, yj), (5)

where Γ(ph, py) is a set of all possible joint distri-
butions γ whose marginals are ph and py.

WD is a metric used to quantify the dissimilarity
between two probability distributions. Intuitively,
it measures the minimum cost required to trans-
form one distribution into the other. This cost is
conceptualized as the amount of probability mass
that must be moved multiplied by the distance that
would be moved.

The advantage of WD over LA is that it can as-
sign multiple reference segments to a single source
sentences. In the case of "I like cats and dogs.",
one can distribute its weight to both ""I like cats."
and "I like dogs.", resulting in high utility score.

Entropic regularized WD (EWD). Entropic reg-
ularized WD (EWD) is an extension of WD where

the KL regularization is enforced to the joint prob-
ability distribution γ (Peyré and Cuturi, 2020; Vil-
lani, 2021):

WDϵ
C [ph∥py]

= inf
γ∈Γ(ph,py)

∑

(i,j)∈m×n

γ(hi, yj)C(hi, yj)

+ ϵKL[γ∥ph ⊕ py], (6)

where KL represents the KL-divergence between
the two probability distributions and ϵ is a param-
eter to choose the weight on the KL-divergence
term.

Intuitively, EWD is a WD plus the cost of every
sentence pair is considered. The KL-divergence
term requires the joint distribution γ to be spread
across y. Thus, the KL term is smaller if the two
documents are similar to each other overall in addi-
tion to the cost of the optimal assignment between
pairs of sentences.

EWD is known to be robust under the model un-
certainty (Azizian et al., 2023) and is fast to com-
pute using the Sinkhorn algorithm (Cuturi, 2013).

3 MBR-OT: MBR Decoding using OT

The performance of MBR decoding relies on the
utility function. However, many of the state-of-
the-art utility functions are developed for sentence-
level evaluation and are not trained to predict
document-level utility.

To this end, we propose MBR-OT, a variant of
MBR decoding that uses WD as the utility function
for MBR decoding. Let the utility function between
two sentences be us where we assume its range to
be [0, 1].

Let ph be a discrete probability distribution
over h = {h1,h2, ...,hm} and so is py for y =
{y1,y2, ...,yn}. We propose the WD between the
two probability distributions to be the utility func-
tion of MBR-OT. Formally, the utility function is
defined as follows:

u(h,y) = 1−OT[ph∥py], (7)

where
C(hi, yj) = 1− us(hi, yj), (8)

where us is a utility function to be used for com-
puting the utility of two segments. In the following
experiments, we use sentence-level utility functions
such as BLEU and MetricX for us. Figure 1 shows
the illustrative example of how it is computed.
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We use a uniform distribution for constructing
p(h) and p(y) so that each sentence is weighted
equally:

p(hi) =
1

|h| . (9)

An alternative is to weight a probability propor-
tional to its length so that each token is weighted
equally:

pL(hi) =
|hi|∑
j |hj |

. (10)

Incorporating segment informativeness may en-
hance the performance of our proposed method.
This approach may be particularly beneficial in
evaluating informal texts where there are large vari-
ations in segment informativeness.

The choice of the optimal transport formulation
depends on the structure of the language and the
objective of the task. We call the MBR-OT using
AL, WD, and EWD for the OT in Eq. (7) as MBR-
AL, MBR-WD, and MBR-WDϵ. In particular, we
denote these algorithms using Eq. (10) as MBR-
ALL, MBR-WDL, and MBR-WDϵ

L.
The strength of the method is that it can make

the best use of the sentence-level utility functions.
Sentence-level utility functions are meticulously
developed by researchers and engineers and they
are shown to have a very high correlation with hu-
man evaluation (Rei et al., 2022; Guerreiro et al.,
2024). Compared to the effort on sentence-level
utility functions, document-level utility functions
are less investigated. In fact, many of them are
based on using sentence-level utility functions effi-
ciently (Liu et al., 2020; Vernikos et al., 2022).

Optimizations for MBR-OT using WD. There
are several optimizations applicable to speed up
MBR-OT when using WD. First, because WD (and
EWD) are metrics, they are guaranteed to be sym-
metric:

∀h∀y : u(h,y) = u(y,h). (11)

Also, the value of WD is 1 when the two distribu-
tions are the same. Thus,

∀h : u(h,h) = 0. (12)

Therefore, for N documents, one only needs to
compute N(N−1)

2 pairs of documents instead of N2

pairs.
Second, because WD is a metric in a finite-

dimensional space, it is likely that the matrix of

utility scores can be well approximated by a low-
rank matrix (Drineas and Mahoney, 2005; Holod-
nak and Ipsen, 2015). This enables the optimization
by a low-rank approximation, significantly reduc-
ing the computational complexity (Trabelsi et al.,
2024).

Third, we can train a document-level utility func-
tion by distilling the WD metric, or train the lan-
guage model directly. There are several studies
showing that the performance of LLM can be im-
proved by distilling the output of MBR decoding
(Yan et al., 2023; Ramos et al., 2024; Wu et al.,
2024; Yang et al., 2024; Finkelstein and Freitag,
2024; Guttmann et al., 2024). These approaches
require additional training but solve the computa-
tional overhead at decoding time.

In the experiments of the paper, we only use the
first optimization so that the values are computed
exactly.

4 Experiments

We first evaluate the accuracy of the WD metric for
machine translation to assess if it is a metric suit-
able for a document-level evaluation. We evaluate
the performance of MBR decoding and MBR-OT
on machine translation, document simplification,
and dense image captioning tasks.

In all the experiments, we divide the output into
a set of sentences for MBR-OT. The default sen-
tencizer in spaPy1 is used for English and German.
GiNZA NLP Library2 is used for Japanese as the
sentencizer in spaPy is incompatible with Japanese.
See Appendix E for the hyperparameters used for
the experiments and Appendix F for the implemen-
tation details.

4.1 Evaluation of WD Metrics for Machine
Translation

We evaluate the accuracy of the WD metric using
the Metric Shared Task on WMT22 and WMT23
(Freitag et al., 2022b, 2023b). We compare the
correlation of the metrics with the human evalua-
tion. As a baseline, we compare 1. using the met-
ric to evaluate each segment (Base), and 2. using
the document-level evaluation method by Vernikos
et al. (2022) to evaluate each segment but with a
context of the document (Doc). On computing the
score using the WD, we compute the utility of the
entire document without using the segmentation

1https://github.com/explosion/spaCy
2https://github.com/megagonlabs/ginza
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base doc ot (Ours)
data lp Utility

wmt22 en-de sacrebleu 0.6420 0.6783 0.7090
BERTScore 0.7843 0.7670 0.8060
SentBERT 0.8630 0.8313 0.8681

en-ru sacrebleu 0.7861 0.7480 0.7919
BERTScore 0.8106 0.7864 0.8061
SentBERT 0.8030 0.8437 0.8114

wmt23 en-de sacrebleu 0.8911 0.9165 0.9384
BERTScore 0.8906 0.9212 0.9553
MetricX-23 0.9876 0.9874 0.9753

he-en sacrebleu 0.8751 0.8853 0.8716
BERTScore 0.8942 0.9449 0.7138
MetricX-23 0.9357 0.9600 0.8072

Table 1: System level correlation of the metrics with the
human evaluation. Base: sentence-level metric, Doc: a
document-level metric by Vernikos et al. (2022), WD: a
document-level metric using WD.

provided. Then, we use the average score over a
set of documents as the system score. We set ϵ = 0
and use a uniform weight (Eq. 9) for the probability
distribution of WD.

We evaluate BLEU score (Papineni
et al., 2002) using sacrebleu library
(Post, 2018), BERTScore (Zhang et al.,
2020) (bert-base-multilingual-cased),3

and a cosine distance of the sen-
tence embedding model (SentBERT;
sentence-transformers/all-mpnet-base-v2),
and MetricX-23 (google/metricx-23-xl-v2p0;
Juraska et al., 2023).

Table 1 shows the correlation of the metrics with
human evaluation. Because MetricX-23 is trained
with the WMT22 dataset, we evaluate SentBERT
instead. Overall, we observe the WD metric to
be on par with the accuracy of segment-level and
document-level evaluation metrics, except for the
WMT23 he-en. The authors are not familiar with
Hebrew so are not aware of the reason.

Note that the WD metric does not exploit the fact
that the sentences of the documents are aligned in
the same order. Thus, it uses less information than
the baselines. The result shows that the proposed
method is on par with the state-of-the-art metric,
while it is a robust metric that is applicable to a
wide range of tasks where the disclosure structures
can vary.

4.2 Document-Level Translation

The use of LLMs for document-level translation is
shown to be effective due to their ability to com-

3https://github.com/Tiiiger/bert_score

MetricX-23 En-Ja En-De

Beam 61.57 79.07

MBR (SentBERT) 56.26 78.66
MBR (COMET-22) 60.55 80.92
MBR (SFR-2) 57.38 76.88
MBR (MetricX) 68.81 82.02

MBR-LA (MetricX) 70.01 80.77
MBR-LAL (MetricX) 71.01 83.13
MBR-WDϵ (MetricX) 68.07 83.77
MBR-WDϵ

L (MetricX) 70.67 83.24
MBR-WD (MetricX) 75.29 83.40
MBR-WDL (MetricX) 72.38 83.24

Table 2: Comparison of MBR-OT methods with LA,
WD, and EWD. The evaluation metric is MetricX-23-
XXL with EWD.

COMET-22 En-Ja En-De
CALM2-DPO EuroLLM

MBR 79.65 83.03
MBR-WDϵ 83.54 85.13
MBR-WDϵ

L 84.08 84.25

Table 3: Evaluation of MBR-WDϵ on WMT24 with 32
samples on LLMs specifically trained for the languages
(cyberagent/calm2-7b-chat-dpo-experimental
and utter-project/EuroLLM-1.7B-Instruct). The
evaluation metric is MetricX-23-XXL with EWD.

prehend long-context texts (Wang et al., 2023).
We use WMT24 En-De and En-Ja lan-

guage pairs for the evaluation (Kocmi et al.,
2024). We generate 32 samples using Llama-3.1
(meta-llama/Llama-3.1-8B-Instruct) as a lan-
guage model (Dubey et al., 2024). See Appendix
D for the prompt used.

We use MetricX-23 (google/metricx-23-xl-
-v2p0) as the utility function (Juraska et al., 2023).
Because the output from the MetricX-23 models
is a score in the range [0, 25] where lower is better,
we inverted and rescaled it to [0, 1]. For an eval-
uation, we use MetricX-23 with EWD (ϵ = 0.1)
to evaluate document-level text generation. Given
that MetricX-23 with EWD shows a high correla-
tion with human evaluation in Table 1, we fore-
see it to be a valid metric for the task. In addi-
tion to using MetricX as a utility function, we
also evaluate using SentBERT, COMET-22, and
SFR-2 (Salesforce/SFR-Embedding-2_R) as a
reference. We use a bigger MetricX-23 model

28264

https://github.com/Tiiiger/bert_score


4 8 16 32
Number of Hypotheses

62

64

66

68

70

W
D

 (M
et

ric
X-

XX
L)

WMT24 En-Ja
MBR
MBR-WD
MBR-WDL

(a) WMT24 En-Ja

4 8 16 32
Number of Hypotheses

80.0

80.5

81.0

81.5

82.0

82.5

83.0

W
D

 (M
et

ric
X-

XX
L)

WMT24 En-De
MBR
MBR-WD
MBR-WDL

(b) WMT24 En-De

Figure 2: Evaluation of MBR-OT on document-level
machine translation tasks. WD metric with MetricX-
23 as a sentence-level utility function is used as the
evaluation metric.

(google/metricx-23-xxl-v2p0) to alleviate the
overfitting problem of MBR decoding (Kovacs
et al., 2024). We additionally evaluate with
COMET-22 (Unbabel/wmt22-comet-da; Rei et al.
2022) in Appendix A.

Comparison of LA, WD, and EWD. Table 2
shows the performance of MBR-OT using LA, WD,
and EWD as the formulation of the optimal trans-
port. We observe that MBR-WDϵ and MBR-WD
outperform the baselines.

We observe the BLEU scores of En-Ja are low
compared to the state-of-the-art models (Table 4).
Llama-3 tends to generate a shorter summary of
the original English document rather than a precise
translation. The average length of the generated
texts is 642.34 characters, whereas the reference
texts average 860.61 characters. In several cases,
the generated outputs are less than one-third the
length of the reference translations. Table 5 sum-

BLEU En-Ja En-De

Beam 7.75 17.44
MBR 10.01 18.42
MBR-WDϵ 9.66 18.26
MBR-WDϵ

L 9.82 18.42

Table 4: BLEU scores of the MBR-WDϵ and MBR
on WMT24 with 32 samples. mecab-python3 library
(Kudo et al., 2004) is used for tokenizing Japanese texts.
Note that the lexical metric is shown to have little corre-
lation with human evaluation. The values are reported
for reference.

marizes the number of characters, sentences, and
the average number of characters per sentences
generated by MBR and MBR-OT.

For the rest of the paper, we conduct experiments
using EWD with ϵ = 0.10, as its performance is
only marginal below WD, and EWD is known to
be robust to model noises.

Evaluation of MBR-OT. Figure 2 shows the per-
formance of the algorithms on Llama-3.1 and Ta-
ble 3 on LLMs specifically trained for the target
languages. The result shows that the performance
of MBR-OT is outperforming the baselines in both
language pairs.

4.3 Document-Level Simplification
Document-level simplification task is a combina-
tion of document summarization and a text simpli-
fication task (Sun et al., 2021; Blinova et al., 2023).
The goal is to generate a short and easily readable
summary of the given document so that the infor-
mation is accessible to children and those who are
learning the language. We use the first 300 entries
of the JADOS dataset for the task (Nagai et al.,
2024). The dataset contains articles in Japanese
and their summaries, which were manually written
by native Japanese speakers. We use the Wikipedia
subset of the JADOS dataset as it is open-sourced.

We generate 32 samples using Llama-3.1 as a
language model. We use the SentBERT as a utility
function. D-SARI (Sun et al., 2021; Blinova et al.,
2023) is used as the document-level evaluation met-
ric following Nagai et al. (2024).

Figure 3a shows the D-SARI scores of the de-
coding algorithms with varying number of samples.
Overall, we observe MBR-OT outperforming the
baselines. We additionally evaluate the readability
of the texts using JReadability (Hasebe and Lee,
2015) in Table 6 which shows that the readability
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Dataset MBR MBR-WDϵ MBR-WDϵ
L

|C| |S| |C|/|S| |C| |S| |C|/|S| |C| |S| |C|/|S|

WMT24 En-Ja 713.6 28.4 25.2 633.9 29.4 21.6 625.0 29.6 21.1
WMT24 En-De 1435.0 12.3 116.4 1366.9 11.8 115.3 1366.0 11.6 117.4
JADOS 338.7 7.8 43.6 317.9 7.3 43.5 319.3 7.2 44.2
CNNDM 488.5 3.0 162.8 489.7 2.9 168.9 471.1 2.9 165.3
PP-cc12m 660.5 5.9 111.4 589.0 6.9 85.5 625.9 7.2 86.7
PP-commonpool 565.9 5.1 110.3 517.8 6.1 84.9 508.0 5.9 86.5
PP-redcaps 710.5 6.5 109.3 572.7 6.8 84.5 586.7 6.5 90.1

Table 5: The average number of characters (|C|), sentences (|S|), and the average number of characters per sentence
(|C|/|S|).

jReadability

Beam 4.46
MBR 3.30
MBR-WDϵ 3.25
MBR-WDϵ

L 3.25

Table 6: Evaluation of readability of the generated text
using jReadability (Hasebe and Lee, 2015). The lower
score shows better readability.

CNNDM JADOS

Beam 16.32 16.39
MBR 17.58 25.39
MBR-WDϵ 18.23 26.63
MBR-WDϵ

L 18.88 26.56

Table 7: ROUGE scores of the MBR-WDϵ and MBR
on CNNDM and JADOS with 32 samples. Note that
the lexical metric is shown to have little correlation with
human evaluation. The values are reported for reference.

of MBR-OT is on par with MBR. Table 7 shows
the ROUGE scores as a reference.

4.4 Document-Level Summarization

Although the proposed method is targeted for
document-level text generation tasks, it is appli-
cable to generating short paragraphs with a cou-
ple of sentences. We evaluate the performance of
MBR-OT on the first 300 entries of the CNNDM
dataset where the output is around 2 to 4 sentences.
CNNDM is a summarization task where the goal
is to generate a short summary of the given news
article. We use Llama-3.1 as a language model and
SentBERT as a utility function. The result shows
that the present approach has a positive impact
even when the number of segments in the output is

cc12m commonpool redcaps

Beam 28.26 24.77 27.57
MBR 28.38 25.53 29.27
MBR-WDϵ 27.99 25.20 29.03
MBR-WDϵ

L 28.28 24.33 28.70

Table 8: Evaluation of the MBR-WDϵ and MBR using
METEOR with 32 samples. Note that the lexical metric
is shown to have little correlation with human evaluation.
The values are reported for reference.

relatively small.

4.5 Dense Image Captioning

The task of dense image captioning is to generate
a caption of an image containing types, attributes,
and counts of objects in an image, in addition to
spatial relations between objects, the presence of
text, various broad image categorizations, etc (John-
son et al., 2016; Krishna et al., 2017; Urbanek et al.,
2024; Singla et al., 2024).

Unlike a traditional image captioning task, the
caption wants to contain as much information about
the image as possible.

We use the PixelProse dataset for the evaluation
(Singla et al., 2024). PixelProse is a collection of
images crawled web pages with curation to filter
out harmful images and images that can violate
privacy. We use 200 images from each of the
three subsets of the dataset (cc12m, commonpool,
and redcaps). We use PaliGemma-2 10B (Steiner
et al., 2024b) fine-tuned on DOCCI dataset (Onoe
et al., 2024) to generate 32 captions for each image
(google/paligemma2-10b-ft-docci-448).
We use CLIPText as a utility function
(openai/clip-vit-large-patch14; Qin et al.,
2023). CLAIR (Chan et al., 2023a) is used as the
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Figure 3: Evaluation of MBR-OT on document-level
summarization and simplification tasks.

metric to evaluate the outputs. CLAIR uses GPT-4
as a judge to compute the utility of the caption.

Figure 4 shows the performance of the algo-
rithms. Overall, the performance of MBR-WD
outperforms MBR decoding in all three subsets,
showing that it consistently achieves high quality
captioning in a wide range of images. We observe
little differences between the algorithms on ME-
TEOR (Banerjee and Lavie, 2005) scores (Table 8).

5 Related Work

MBR decoding. The performance of MBR de-
coding is known to be dependent on the quality
of the utility function (Fernandes et al., 2022; Fre-
itag et al., 2022a; Kovacs et al., 2024). One of the
problems of MBR decoding is its computational
complexity. Several methods have been proposed
to reduce the computational complexity of MBR
decoding (Cheng and Vlachos, 2023; Jinnai and
Ariu, 2024; Trabelsi et al., 2024), many of which
are also applicable to MBR-OT.
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Figure 4: Evaluation of MBR-OT on dense image cap-
tioning tasks.

The sampling strategy is an important aspect of
MBR decoding. Epsilon sampling (Hewitt et al.,
2022) is known to be an effective choice for MBR
(Freitag et al., 2023a; Jinnai et al., 2024). We use
epsilon sampling in this paper following their work.

Document-level text generation tasks. Improve-
ment to the decoding algorithm is not the only solu-
tion to solve document-level text generation tasks.

Hendy et al. (2023) show that few-shot learning
is an effective strategy to generate high quality texts
on document-level translation tasks using GPT. Bri-
akou et al. (2024) propose a method to translate a
document by decomposing the translation process
into steps consisting of pre-translation research,
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drafting, refining, and proofreading. Jiang et al.
(2022) proposes a metric specific to the evaluation
of document-level machine translation tasks.

Blinova et al. (2023) proposes to use both the
explicit summarization model and the simplifica-
tion model to generate the final output. Cripwell
et al. (2023) proposes a method to plan a simplifica-
tion as a sequence of four simplification operations
(copy, rephrase, split, or delete).

Because the objective of dense image captioning
is to extract as much information from the given
image, many of the studies have proposed methods
to extract information from the image effectively.
The importance of dense image captioning is recog-
nized by the study by Krishna et al. (2017) is one
of the first studies to show the use of rich annota-
tion data for images. Hao et al. (2024) combines a
detection model, a vision-language model, an OCR
model, and other CV tools to generate dense image
captions.

While these methods achieve domain-specific
optimization to improve the performance of the
given task, our contribution is to present a general-
purpose decoding algorithm that is independent of
the domain, except for its length.

6 Conclusions

We evaluate the performance of MBR-OT, a vari-
ant of MBR decoding using optimal transport dis-
tance to compute the document-level utility using
a segment-level utility function. Compared to the
prior work on document-level metric for machine
translation (Vernikos et al., 2022), the advantage
of MBR-OT is that it is naturally applicable to
tasks where there are many options for disclosure
structures in the output text. WD can adapt to the
reordering, merging, and separation of disclosures,
making it applicable to many tasks without engi-
neering task-dependent optimization.

The empirical result shows that MBR-OT out-
performs MBR decoding in document-level text
generation tasks including machine translation, text
simplification, and dense image captioning.

7 Limitations

MBR-OT requires additional computational over-
head on MBR decoding which is already known to
be computationally intensive. In our experiments
using NVIDIA A100 GPUs with 80 GB VRAM,
MBR-OT is roughly more than four times slower
than MBR with the same number of samples. We

foresee it to be used combined with efficient MBR
methods (Cheng and Vlachos, 2023; Jinnai and
Ariu, 2024) in practice. Also note that approxima-
tion algorithms to compute optimal transport dis-
tance faster have been proposed (Altschuler et al.,
2017; Dvurechensky et al., 2018; Sommerfeld et al.,
2019), which may enable us to compute MBR-OT
faster.

Our study is limited to simple formulations of
OT where the ordering of the segments are ignored.
This may result in cases where the ordering of the
segments matters. For example, the meaning of the
pronoun is dependent on the ordering:

(1) Bob likes cats. Charles likes dogs.
*He* always takes pictures of them.

(2) Charles likes dogs. Bob likes cats.
*He* always takes pictures of them.

In the first text, “He” refers to Charles and “them”
refers to dogs, but in the second text, they refers
to Bob and cats. Therefore, the third sentence
has semantically different meanings in the context.
However, the formulations we present in the paper
cannot distinguish such a difference. This sug-
gests that the use of additional context proposed by
Vernikos et al. (2022) may be also beneficial to the
OT utility functions. Alternative approach is to use
a more sophisticted OT formulation such as Fused
Gromov-Wasserstein (Titouan et al., 2019) to take
into account the structures of the segments.

We consider the weight of the segments to be
uniform or propotional to its length (Eq. 9 and
10). Evaluation of other approaches such as using
probability mass or entropy would be future work.

We focus on directed text generation tasks.
Open-ended text generation tasks such as story gen-
eration is an interesting future work.

The evaluation is limited to moderately long doc-
uments with a couple of paragraphs. The evaluation
of the method for much longer text generation tasks
(Liang et al., 2023; Zhang et al., 2024; Hsieh et al.,
2024) is future work. For generating much longer
texts, we require the segmentation of paragraphs
instead of sentences to align larger semantic blocks.
How to build a hierarchy of segmented texts from
a long text is not a trivial problem that we need to
investigate for applying MBR-OT to these tasks.

As mentioned in Section 5, there are many meth-
ods proposed for each specific document-level text
generation task. For example, several methods have
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been proposed for document-level machine transla-
tion (Voita et al., 2019; Kudo et al., 2024). Evalu-
ation of MBR-OT combined with task-dependent
optimizations is future work.

The study depends on automated metrics. Al-
though the metrics we used in the study are known
to have a high correlation with human evaluation,
they are not flawless. Human evaluation is desir-
able for evaluation.

8 Impact Statements

This work was conducted using existing, publicly
available, including WMT datasets, JADOS, Pixel-
Prose, and CNNDM. The datasets are constructed
as benchmarks for research use in the research com-
munity (Table 14).

As for MBR, MBR-OT is not designed to prevent
the system from generating toxic texts. Thus, it
requires a countermeasure besides MBR-OT, such
as language model alignment (Ouyang et al., 2022;
Eisenstein et al., 2023; Rafailov et al., 2023).
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Ondřej Bojar, Anton Dvorkovich, Christian Feder-
mann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, Barry Haddow, Marzena
Karpinska, Philipp Koehn, Benjamin Marie, Christof
Monz, Kenton Murray, Masaaki Nagata, Martin
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computed the average scores for each domain in the
WMT24 En-Ja task (Table 11). Note that the num-
ber of documents is uneven (news = 17, speech =
111, literary = 8, and social = 34). The performance
of MBR-WD (MetricX) is better than MBR (Met-
ricX) in all four categories. Interestingly, in the
social domain, where MBR drops the score com-
pared to the other domains, MBR-WD achieves a
score on par with the other domains. We speculate
that this is because documents in social domains
are sourced from SNS (Mastodon) (Kocmi et al.,
2024) and are less structured than those in news
domains sourced from online news sites. OT may

COMET-22 En-Ja En-De

Beam 58.14 67.19
MBR (SFR2) 53.98 61.72

MBR (MetricX) 67.76 70.77
MBR-LA (MetricX) 64.12 72.56
MBR-LAL (MetricX) 64.56 73.17
MBR-WD (MetricX) 66.82 72.70
MBR-WDL (MetricX) 70.46 73.13
MBR-WDϵ (MetricX) 66.82 73.62
MBR-WDϵ

L (MetricX) 70.23 73.86

Table 9: Comparison of MBR-OT methods with LA,
WD, and EWD using COMET-22. Llama-3.1 is used as
the text generation model.

COMET-22 En-Ja En-De
CALM2-DPO EuroLLM

MBR 83.26 75.44
MBR-WDϵ 83.06 76.27
MBR-WDϵ

L 83.55 76.35

Table 10: COMET-22 scores of the MBR-OT and MBR
on WMT24 with 32 samples on LLMs specifically
trained for the languages.

not offer a strong advantage in the news domain as
the document structure is relatively fixed.

Note that the analysis is based on a small number
of samples, so further investigation is needed for
more fine-grained analysis.

C Generation Examples on WMT24
En-Ja

Below are the generation examples of the Llama-
3.1 model by random sampling. The source English
document is the following.

Source document (Abbreviated)

Siso’s depictions of land, water center
new gallery exhibition "People Swim-
ming in the Swimming Pool" from 2022
is one Vicente Siso artwork that will dis-
play at Tierra del Sol Gallery beginning
Jan. 13. (photo courtesy of Vicente
Siso) Tierra del Sol is pleased to present
"Vicente Siso: Memories of the Land
and Water" at the new gallery location
in West Hollywood. Siso has been an
artist in the Studio Arts Program since
2012, this marks his debut solo exhibi-
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Category Overall News Speech Literary Social

Beam 61.57 63.22 60.55 56.01 65.37

MBR (SentBERT) 56.26 72.46 54.38 52.51 60.35
MBR (COMET-22) 60.55 77.06 58.15 56.17 61.16
MBR (SFR-2) 57.38 70.40 54.35 61.23 59.86
MBR (MetricX) 68.81 73.32 71.14 68.48 59.03

MBR-LA (MetricX) 70.01 77.34 72.64 73.62 66.93
MBR-WDϵ (MetricX) 68.07 74.64 70.41 58.77 59.31
MBR-WD (MetricX) 75.29 77.00 75.94 74.96 72.40

Table 11: Evaluation of the MetricX scores on the WMT’2024 En-Ja. The number of documents is news=17,
speech=111, literary=8, and social=34.

tion. ... "Vicente Siso: Memories of the
Land and Water" opens on Saturday, Jan.
13, with a reception from 6-8 p.m. The
exhibition is on view through Sunday,
March 3. The Tierra del Sol Gallery is
located at 7414 Santa Monica Blvd. For
information, visit tierradelsolgallery.org.

Generation example 1

Sisoの作品、「2022年に製作され
た「Swimming Poolの人間たち」」
が、2023年1月13日からTierra del Sol
Galleryで展示されることになりま
す。この展示は、西ハリウッド
の新しいギャラリーで開催され
る「Vicente Siso:ランドと水の記
憶」というタイトルのグループ
展です。 ... 「Vicente Siso:ランド
と水の記憶」は、2023年1月13日に
開幕し、6-8 p.m.の受け入れを含
み、3月3日まで展示します。ティ
エラデルソル・ギャラリーは、サン
タモニカブラビュー7414号にありま
す。情報は、tierradelsolgallery.orgに
アクセスしてください。

Generation example 2

2022年の作品「People Swimming in
the Swimming Pool」が、西海岸
の Tierra del Sol ギャラリーで展
示されるVICENTE SISOの作品で
す。Tierra del Sol ギャラリーは、
ロサンゼルス西部の新しいギャ
ラリーで、VICENTE SISOの個展
「Memories of the Land and Water」
を開催します。

...

VICENTE SISOの個展「Memories of
the Land and Water」は、1月13日の
土曜日6-8pmに開催され、3月3日の
日曜日まで展示されます。Tierra del
Solギャラリーは、サンタモニカ・
ブールバード7414番地に所在してお
り、tierradelsolgallery.orgで情報を閲
覧できます。

Generation example 3

シソ・ソロ展「Vicente Siso：Land
and Waterのメモリー」

新しいギャラリー、ティエラ・
デ ル ・ ソ ル ・ ギ ャ ラ リ ー に
おいて、2022年の「People Swim-
ming in the Swimming Pool」 を
始まり、1月13日から出展しま
す 。 （ 写 真 ：Vicente Siso） ...
「Vicente Siso：Land and Waterのメ
モリー」は、1月13日(土)6-8pmの
オープン・リセプションに始ま
り、3月3日(日)まで開催されます。
ティエラ・デル・ソル・ギャラ
リーは、サンタ・モニカ・ブール
バード7414番地にあります。詳細
はtierradelsolgallery.orgを参照してく
ださい。

The “。” character serves as the period in
Japanese, so most texts are segmented based on this
character. In the examples, the bolded text high-
lights segments where the structure differs from
the rest of the generated outputs. In the second
example, two sentences from the original English
document are merged into a single sentence. In the
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Figure 5: Evaluation of MBR-OT on document-level
machine translation tasks using COMET-22. Llama-3.1
is used as the text generation model.

third example, the first sentence of the document
appears to be interpreted as the title of the article.

Although the document-level MT is a directed
text generation task, the generated texts from the
LLM may have various structures.

D Prompts for Text Generation

We use the following prompt for the machine trans-
lation tasks in Section 4.2.

Translate the following paragraph from
English to [[LANGUAGE]].

[[QUESTION]]

Translate this paragraph from English to
[[LANGUAGE]].

We use the following prompt for the JADOS
dataset (Section 4.3).

以下のWikipediaの記事を、小学生
でも分かるやさしい日本語で要約し
てください。

記事: [[QUESTION]]
Q: この記事をやさしい日本語で要
約してください。
A:

The text below is the above prompt translated
into English.

Please summarize the following
Wikipedia article in simple Japanese that
even an elementary school student can
understand.

Article: [[QUESTION]]
Q: Please summarize this article in
simple Japanese.
A:

For the dense image captioning (Section 4.5), we
use the same prompt as Singla et al. 2024:

Describe the image in detail. Please spec-
ify any objects within the image, back-
grounds, scenery, interactions, and ges-
tures or poses. If they are multiple of
any object, please specify how many and
where they are. If any text is present in
the image, mention where it is, and the
font. Describe the text in detail with quo-
tation marks. For example, if the image
has text, Merry Christmas, write it down
as “Merry Christmas”. Describe the style
of the image. If there are people or char-
acters in the image, what emotions are
they conveying? Identify the style of the
image, and describe it as well. Please
keep your descriptions factual and terse
but complete. The description should be
purely factual, with no subjective spec-
ulation. Make sure to include the style
of the image, for example cartoon, pho-
tograph, 3d render etc.

E Hyperparameters

Table 12 shows the hyperparameters used for text
generation. We use epsilon sampling (Hewitt et al.,
2022) for all the experiments as it is shown to be
effective for generating samples for MBR decoding
(Freitag et al., 2023a; Jinnai et al., 2024).
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Parameter Value

Temperature 1.0
top_p 1.0

epsilon_cutoff 0.01
max_new_tokens 1024

Table 12: Hyperparmeters for text generation

Parameter Value

Temperature 0.3
Version 2024-05-13

Table 13: Hyperparmeters for GPT-4

Table 13 shows the hyperparameters we use for
GPT-4 evaluation and for CLAIR in Section 4.5.

F Reproducibility Statement

All datasets and models used in the experiments are
publicly available. The code is implemented using
Huggingface’s Transformers library (Wolf et al.,
2020). The computation of Wasserstein distance is
implemented by POT: Python Optimal Transport
library (Flamary et al., 2021). For Section 4.1, we
use the codebase of Vernikos et al. (2022)4 and use
MT Metrics Eval V25 for the evaluation. Our code
is available at https://github.com/jinnaiyuu/
mbr-optimal-transport.

The experiments are conducted using NVIDIA
A100 GPUs with 80 GB VRAM. The total amount
of GPU time for the study is estimated to be 100-
1000 GPU hours.

4https://github.com/amazon-science/
doc-mt-metrics

5https://github.com/google-research/
mt-metrics-eval
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Table 14: List of datasets and models used in the experiments.

Name Reference

WMT22 Metric Task (Freitag et al., 2022b) https://www.statmt.org/wmt22/metrics/index.
html

WMT23 Metric Task (Freitag et al., 2023b) https://wmt-metrics-task.github.io/

WMT24 General Task (Kocmi et al., 2024) https://www2.statmt.org/wmt24/
translation-task.html

CNNDM (Hermann et al., 2015) https://github.com/google-deepmind/rc-data

JADOS (Nagai et al., 2024) https://github.com/tmu-nlp/JADOS

PixelProse (Singla et al., 2024) https://huggingface.co/datasets/
tomg-group-umd/pixelprose

Llama-3.1 (Dubey et al., 2024) https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

PaliGemma-2 (Steiner et al., 2024a) https://huggingface.co/google/
paligemma2-10b-ft-docci-448

MetricX-23 (Juraska et al., 2023) https://huggingface.co/google/
metricx-23-xxl-v2p0

MPNet (Song et al., 2020) https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

CLIP (Radford et al., 2021) https://huggingface.co/openai/
clip-vit-large-patch14

COMET-22 (Rei et al., 2022) https://huggingface.co/Unbabel/wmt22-comet-da

D-SARI (Sun et al., 2021) https://github.com/jinnaiyuu/
mbr-optimal-transport Implemented by the authors.

JReadability (Hasebe and Lee, 2015) https://github.com/joshdavham/jreadability

CLAIR (Chan et al., 2023b) https://github.com/davidmchan/clair
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