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Abstract

Semantic parsing, which converts natural lan-
guage questions into logic forms, plays a cru-
cial role in reasoning within structured en-
vironments. However, existing methods en-
counter two significant challenges: reliance
on extensive manually annotated datasets and
limited generalization capability to unseen ex-
amples. To tackle these issues, we propose
Targeted Synthetic Data Generation (TARGA),
a practical framework that dynamically gen-
erates high-relevance synthetic data without
manual annotation. Starting from the perti-
nent entities and relations of a given ques-
tion, we probe for the potential relevant queries
through layer-wise expansion and cross-layer
combination. Then we generate correspond-
ing natural language questions for these con-
structed queries to jointly serve as the synthetic
demonstrations for in-context learning. Ex-
periments on multiple knowledge base ques-
tion answering (KBQA) datasets demonstrate
that TARGA, using only a 7B-parameter model,
substantially outperforms existing non-fine-
tuned methods that utilize close-sourced model,
achieving notable improvements in F1 scores
on GrailQA (+7.7) and KBQA-Agent (+12.2).
Furthermore, TARGA also exhibits superior
sample efficiency, robustness, and generaliza-
tion capabilities under non-L.I.D. settings.

1 Introduction

Reasoning over structured environments, such as
Knowledge Base (KB), Database, and Web, has
emerged as a crucial ability for large language
models (LLMs) (Liu et al., 2024; Gu et al., 2023).
Among various methods for structural reasoning,
semantic parsing stands out as a mainstream and

has garnered increasing attention from researchers.

By translating natural language questions (NLQ)
into logic forms, semantic parsing enables seamless
interaction with structured environments, thereby
enhancing user experience and accessibility.

* Equal contribution.
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Figure 1: Compared with previous methods, TARGA
aims to mitigate the reliance on large amounts of manu-
ally labeled data and enhance generalization capabilities
in non-i.i.d. scenarios.

However, current semantic paring methods typi-
cally face two significant challenges:

1) Dependence on annotation. Previous meth-
ods usually rely on extensive amounts of manually
annotated data. By training (Ye et al., 2022; Shu
et al., 2022; Huang et al., 2023b) or retrieval (Li
et al., 2023b; Nie et al., 2023) based on large-scale
annotations, existing works have made remarkable
progress. Unfortunately, collecting manual annota-
tions in specific environments is labor-intensive and
time-consuming. In real-world scenarios, a large
pre-collected annotated dataset is often unavailable,
limiting the scalability of these methods.

2) Limited generalization capability. Even with
access to large annotated datasets, previous meth-
ods still struggle with generalizing to unseen exam-
ples. Regardless of the paradigm (e.g., in-context
learning or fine-tuning), any method relying on a
static, offline-collected dataset is inevitably influ-
enced by the dataset’s distribution. Specifically,
these methods tend to perform well on examples
encountered in the dataset (the I.I.D. setting) but ex-
hibit weaker generalization when faced with unseen
environmental items or query structures (the non-
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LLD. settings), as shown in Figure 1. In complex
environments, such as Freebase (Bollacker et al.,
2008) with over three billion triples, it is nearly im-
possible for a pre-collected static dataset to cover
the full scope of the environment. Additionally, as
the coverage of annotations increases, so do the
costs associated with training and retrieval, which
further limits the scalability and generalization.

To address the aforementioned challenges, in
this work, we propose a practical semantic pars-
ing framework called Targeted Synthetic Data
Generation (TARGA), which does not need any
manually annotated data and can efficiently work
on a 7B model. Specifically, TARGA addresses
these challenges by dynamically synthesizing
highly relevant examples of a test question as
demonstrations for in-context learning. Starting
from the KB items (entity, relation) that may be
related to the given question, we construct logic
forms through layer-wise expansion (extend a new
edge for a sub-structure) and cross-layer combina-
tion (combine different sub-structures), gradually
evolving from simple to complex structures. To
further enhance relevance, we re-rank the synthetic
logic forms to select the most pertinent ones and
generate their corresponding natural language ques-
tions, which are then used as demonstrations for
reasoning. Through this automatic data synthesis,
TARGA free annotators from the heavy burden of
labeling tasks. Additionally, the demonstrations
are generated based on the given question, thus
naturally avoiding the challenge of generalization.

Without any data annotation, TARGA signifi-
cantly outperforms all non-fine-tuned approaches
across multiple complex KBQA datasets, particu-
larly excelling in non-L.LD. settings. Remarkably,
TARGA achieves this with only a 7B-parameter
model, whereas most baselines rely on advanced
closed-source models, such as gpt-3.5-turbo, en-
abling faster and more cost-efficient inference. On
the GrailQA dataset, we improve the performance
of non-fine-tuned methods from an F1 score of 61.3
to 69.0. On KBQA-Agent, the most challenging
dataset, we elevate the SOTA performance from
34.3 to 46.5 F1 scores. Further analyses highlight
the high quality of the data generated by TARGA.
Even with a single demonstration, TARGA still sur-
passes all non-fine-tuned methods on GrailQA. Ad-
ditionally, TARGA exhibits remarkable robustness
in adversarial settings'.

"https://github.com/cdhx/TARGA

2 Related Works
2.1 Few-shot KBQA with LLMs

With the advancement of large language models,
recent works have adopted LLMs as the backend
for KBQA (Cheng et al., 2024). In particular, In-
Context Learning (Brown et al., 2020) requires
dozens of demonstrations to guide the model’s re-
sponses. To achieve competitive performance, ex-
isting ICL-based KBQA works (Li et al., 2023b;
Nie et al., 2023) typically retrieve the most similar
examples from a manually annotated training set
as demonstrations. However, this strategy often
results in performance degradation on non-L.I.D.
questions involving unseen structures or KB items.
For example, Nie et al. (2023); Li et al. (2023b)
reported that the performance in zero-shot settings
can be up to 20% lower compared to L.L.D. settings.
Another line of KBQA methods, agent-based
methods (Liu et al., 2024; Huang et al., 2024; Gu
et al., 2024), decomposes questions into individual
steps to solve. While step-by-step solving aligns
with human intuition and demonstrates remarkable
generalization ability, it incurs high computational
costs and presents challenges in constructing tra-
jectories. Moreover, the effectiveness of the agent-
based paradigm relies heavily on the planning and
generalization abilities of advanced LLMs, leading
to subpar performance when using weaker models,
such as some open-source variants. Such depen-
dency underscores the limitation of agent-based
approaches when superior LLMs are unavailable
or impractical to use due to resource constraints.

2.2 Synthetic Data Generation

Instead of relying solely on human annotation for
training data, recent works have leveraged LLMs
to generate synthetic data, thereby reducing the
burden on human annotators. For instance, Chiang
et al. (2023); Taori et al. (2023) use instructions to
generate training data as a supplement to manual
annotation via self-instruct techniques (Wang et al.,
2023). However, this approach still requires human-
annotated seed examples to ensure high-quality
demonstrations, which entails significant demand
for LLM usage. Rather than directly prompting
LLMs to generate training data, Cao et al. (2022);
Huang et al. (2023a) address this problem by first
sampling structured queries from the environment
and then converting these queries into natural lan-
guage using LL.Ms. Nevertheless, obtaining mean-
ingful structured queries remains a non-trivial task.
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Other works similar to ours include FlexK-
BQA (Lietal.,2023c) and BYOKG (Agarwal et al.,
2024). FlexKBQA relies on predefined templates
and model training stages to automatically anno-
tate data, while BYOKG synthesizes data from
scratch. However, both approaches require a time-
consuming offline data collection phase. More im-
portantly, like other methods, they rely on reason-
ing over a pre-collected static dataset, which still
suffers from generalization issues. In TARGA, we
systematically design a framework to dynamically
synthesize relevant examples in an online manner.
It avoids the need for a lengthy data collection pro-
cess, enabling us to dynamically obtain the most
relevant examples for each test case without being
constrained by a static dataset.

3 Methods

3.1 Overview

As shown in Figure 2, our targeted data synthesis
framework, TARGA, consists of four parts. Given
a natural language question nlq, we first collect
candidate KB items such as entities F),;, and rela-
tions Ry, as initialization. Then, we explore valid
query graphs from simple to complex structures
to construct synthetic queries (). Next, we filter
high-relevance candidate queries by ranking. Fi-
nally, we use these high-quality synthetic data as
demonstrations for QA reasoning.

3.2 Candidate KB Items Retrieval

For candidate entities, we adopt the linking result
provided by Gu et al. (2023) for a fair compari-
son (detail in Appendix E.2). For candidate rela-
tions, we compute the similarity of question and
freebase relations based on text-embedding-ada-
0022 and retain the top 20 most similar candidates.
Different from previous fine-tuned methods (Ye
et al., 2022; Hu et al., 2022), which typically re-
quire training a relation linking model for higher
precision and recall, our method does not rely on
the precision of these items. This is because, al-
though all retrieved KB items are relevant to the
question, they do not necessarily form valid com-
binations within a specific graph structure. In this
way, the subsequent query construction steps in
Section 3.3 can be viewed as a joint entity-relation
disambiguation process, thus significantly reducing
the number of invalid queries.

2https://platform.openai.com/docs/guides/
embeddings

3.3 Synthetic Query Construction

This stage aims to construct question-targeted
queries to facilitate subsequent QA reasoning.
Given a knowledge base G and the set of retrieved
KB items relevant to the question nlq, we explore
the possible query structures () that are valid (i.e.,
yield non-empty execution results). Specifically,
we used PyQL (Huang et al., 2023a) to represent
logic form during construction. However, enumer-
ating all possible structures may lead to an un-
manageable combinatorial explosion. To mitigate
this, our exploration of candidate queries follows a
simple-to-complex manner, where we only further
explore new structures that are derived from the
sub-structures already verified as valid. Starting
from the simplest structure (£; in Figure 2), we
progressively search for more complex query struc-
tures through Layer-wise Expansion (for multi-hop
structures) and Cross-layer Combination (for multi-
constraint structures), gradually extending the ob-
tained query graphs until a desired complexity is
achieved.

Layer-wise Expansion is utilized to model
multi-hop structures (the depth of the query graph),
which are chain-like, non-branching query struc-
tures originating from a single entity. We define
L} as the set of queries in which the distance from
the entity to the farthest variable in the chain-like
query structure is k. Specifically, we first identify
all possible connections between E,;, and R,
forming the simplest query structure £, where an
entity s is connected to a variable o through a sin-
gle relation p. EXEC (q, g) indicates the execution
results of query ¢ against G.

El = {(Svpv O) ’S € Enlmp € Rnl(p
ey
Exec((s,p,0).) # 0}

We then progressively expand outward from the
terminal variable nodes by connecting them to a
new variable through another relation to construct
Lo, and so forth. Generally, £y is formed by
expanding the valid queries from the previous layer
(L) with an additional edge:

Ek—‘rl = {QU (Oi,p/,Oj) ‘ q€ Ly, 0; € O(Q)v
p, € Rnlq7 EXEC((] U (0i7p,a 0])7g) 7é @}
2
where O(q) represents the set of variables in ¢

and o, is a newly introduced variable. The expan-
sion process stops when the complexity threshold
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Figure 2: Overview of TARGA.

(e.g., 3 hops) is reached, since for a coherent and
reasonable question, the distance between a spe-
cific entity and the final answer typically does not
exceed three hops.

Cross-layer Combination models multi-
constraint structures (the width of the query graph)
by merging two queries, thereby applying multiple
constraints to the same variable. Given two queries
g and ¢/, we choose one of the variables from
each query (o; for g and o; for ¢’) as the common
variable of them, then combine these two queries
into a more complex query through this shared
variable. We define L, as the set of queries
formed by combining a query from £, and a query
from L,. Specifically, we start from the simplest
combinations, such as merging two queries in L1,
and gradually explore more complex combination
patterns, such as merging £ with £3 or merging
L1 with L£1x2. This combination process can be
formally expressed as:

Loxy={qUd |q€Le, ¢ €Ly,

Joi € O(q), 0; € O(¢), (3)
E(o)) NE(0j) #0,EXEC(qU ¢, G) # 0},

where &£ (o;) refers to the set of entities correspond-
ing to the variable o; in the execution result of
query g on G. o; and o; serve as the shared vari-
able. This combination terminates once the query
structure reaches five edges, which is sufficient to
model most questions in current datasets.

In this manner, we circumvented a significant
number of invalid queries, thus obtaining most
of the potentially relevant queries with relatively
lower query overhead. We also provide statistical
data regarding these synthetic queries in Appendix

E.5. The average number of valid candidate queries
per question is only in the range of several dozen,
which is well within the contextual length limits
manageable by an ICL model.

3.4 Synthetic Query Re-ranking

To obtain the most relevant examples for the subse-
quent QA task, we re-rank all valid queries using
the bge-reranker-v2-m3 model (Chen et al., 2024)
based on their similarity to the question. Addition-
ally, we employ a process called Query Textifica-
tion, where the synthesized query is transformed
into a format closer to natural language through
heuristic rules. This step helps bridge the gap be-
tween the text embedding model and the query,
further improving the quality of the ranking. Detail
and examples of textification process are provided
in Appendix E.4 and Table 12.

To address the imbalance caused by the expo-
nential growth of complex queries, we implement
a Hierarchical Ranking strategy. For all queries
derived from the same parent query (the sub-query
that this query is derived from), we retain only the
top n candidates. The final candidate query pool is
the union of all top tanked candidates:

Qranked - U

ARGMAX™  SCORE(QT(q), nlq).
qu PARENT(q)=a
4

where () denotes the set of queries generated dur-
ing query construction, SCORE measures similarity
and QT is Query Textification. PARENT(q) indi-
cates the parent query of ¢, and A refers to the set
of parent queries that have child queries. This ap-
proach ensures that the size of the candidate pool
grows at a manageable rate, while preserving high-
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quality queries for downstream processing.

3.5 Question Answering

To help the LLM understand the semantics of
the provided query, we equip each generated
query with its corresponding natural language ques-
tions (NLQ), forming (NLQ, Query) pairs. Specif-
ically, we directly utilize the textification results
mentioned in Section 3.4 as the NLQ, ensuring
both efficiency and the preservation of information
integrity. Then, we adopt the In-context Learning
paradigm to generate the target query. Finally, we
parse and execute the output query from the LLM
to obtain the answer.

4 Evaluation

4.1 Setup

We experiment with four complex KBQA datasets,
i.e., GrailQA (Gu et al., 2021), GraphQ (Su et al.,
2016), KBQA-Agent (Gu et al., 2024), MetaQA
(Zhang et al., 2018) and a Text2SQL dataset, i.e.,
WikiSQL (Zhong et al., 2017). We use the F1
scores as the evaluation metric for KBQA and deno-
tation accuracy for Text2SQL. We compare TARGA
with various paradigms of baselines, including fine-
tuning, ICL, and Agent, where we report perfor-
mance in the original paper. For experiments with
other settings, we copy the re-implemented re-
sult from Gu et al. (2024). By default, we use
Qwen-2.5-7B-Instruct as the base LLM in our
experiments with 10 demonstrations for all datasets.
Detailed introduction of datasets and baselines are
available in Appendices B and C.

4.2 Main Result

Table 1 illustrates the main result for KBQA.
we compare TARGA with methods that re-
quire different amounts of annotation. For the
relatively challenging datasets, i.e., GrailQA,
GraphQ, and KBQA-Agent, based on a 7B model,
TARGA achieves the best performance among all
non-fine-tuned methods which are based on ad-
vanced close-sourced LLMs. On GrailQA and
KBQA-Agent, TARGA surpasses previous SOTA
non-fine-tuned methods by 8.7 and 13.0 F1. On
GraphQ, TARGA even beats some fine-tuned meth-
ods and achieves similar performance with the best
non-fine-tuned method.

When compared to methods with a similar
paradigm (ICL-based), TARGA outperform previ-
ous methods by 14.0 and 28.4 in F1 on GraphQ

F1 Score

0.45 Ours(Synthetic)
Similarity
Random

1 5 10 15 20
Shots

Figure 3: Performance with various numbers of demon-
strations on GrailQA (1,000 randomly sampled ques-
tions).

and KBQA-Agent, respectively. It is worth not-
ing that our method requires neither any manually
annotated corpus nor the expensive close-sourced
model. Besides, we have not incorporated self-
consistency to boost the performance. This can
be attributed to the high quality of the synthetic
data, which has led to a reduction in task diffi-
culty and a decreased reliance on the capabilities
of strong LLMs. Moreover, compared with other
ICL-based methods which include 40-100 demon-
strations, TARGA uses only 10 demonstrations but
still achieves the best performance, demonstrating
notable data efficiency.

Compared to BYOKG which also works with-
out annotated data, TARGA achieves approximately
1.5 x performance on GrailQA and MetaQA-3Hop.
More importantly, TARGA dynamically synthe-
sizes the most relevant data for different questions,
enabling seamless adaptation to questions from
any distribution. Besides, the synthetic data by
TARGA is generated online, eliminating the need
for a time-consuming offline data collection phase.

4.3 Detailed Analyses

To gain more insights, we conduct detailed exper-
iments to illustrate some favorable practical char-
acteristics of TARGA on: sample efficiency, robust-
ness, generalization ability, efficiency, model size
requirements, and transferability.

4.3.1 Sample Efficiency

In this section, we analyze how the number of
demonstrations impacts the performance. We ex-
periment on GrailQA, with the number of demon-
strations ranging from 1 to 20. Based on our QA
framework, we compare three distinct sampling set-
tings: Random, Similarity-based, and Ours (syn-
thetic), corresponding to examples randomly sam-
pled from the training set, retrieved by similarity
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Methods Models

GrailQA GraphQ KBQA-Agent MetaQA

full training set (Seq2Seq Fine-tuning / ICL / Agent Fine-tuning)

ArcaneQA (Gu and Su, 2022) T5-base 73.7 31.8 - -
Pangu (Gu et al., 2023) T5-3B 83.4 57.7 - -
- KB-Binder-R (Lietal., 2023b) GPT-3.5-turbo 585 325 - 99.5
KB-Coder-R (Nie et al., 2023) GPT-3.5-turbo 61.3 36.6 - -
- KG-Agent (Jiang et al., 2024) ~ Llama2-7B ge.l - - -
DARA* (Fang et al., 2024) Llama2-7B 77.7 62.7 - -
dozens of annotations (ICL)

KB-Binder (Li et al., 2023b) GPT-3.5-turbo 50.8 34.5 42 96.4
KB-Coder (Nie et al., 2023) GPT-3.5-turbo 51.7 35.8 - -
Pangu (ICL) (Li et al., 2023b) Codex 53.5 354 18.1 -

one annotation (Agent Training-free)

AgentBench (Liu et al., 2024) GPT-3.5-turbo 30.5 25.1 25.9 -
MIDDLEWARE (Gu et al., 2024) GPT-3.5-turbo - - 343 -

QueryAgent (Huang et al., 2024) GPT-3.5-turbo 60.5 50.8 - 98.5

zero annotation (ICL)

BYOKG (Agarwal et al., 2024) MPT-7B 46.5 - - 56.5

TARGA (Ours) QWen-2.5-7B-Instruct 69.0 50.6 46.5 85.7

QWen-2.5-72B-Instruct 70.6 54.1 57.3 99.8

GPT-3.5-turbo 68.9 51.0 52.7 96.5

GPT-4-turbo 69.8 52.5 51.4 99.9

Table 1: Main results of KBQA performance, categorized by the amount of required annotated data example.
Seq2Seq Fine-tuning / ICL / Agent Fine-tuning indicates different reasoning paradigms (split by the dashed line).
Bold values highlight the best among non-fine-tuned models. * indicates using golden entity linking result.

from the training set, and retrieved by similarity
from the synthetic data by TARGA, respectively.
The random and similarity settings can be viewed
as reflections of the previous ICL-based and the
retrieval-augmented ICL-based methods. Results
are illustrated in Figure 3. With only one demon-
stration, our synthetic setting significantly outper-
forms the random and retrieval settings with 20
shots, suggesting the high quality of our synthetic
data. Moreover, the growth curve in the synthetic
setting (blue line) is relatively flat as the number of
demonstrations increases. After reaching 7 shots,
the synthetic setting exhibits almost no further im-
provement, while the other two settings continue
to show growth even after reaching 20 shots, high-
lighting the data efficiency of our methods.

4.3.2 Robustness Analyses

To further validate the robustness of our approach
in real-world scenarios, we conduct an adversar-
ial experiment designed to simulate conditions of
poor synthetic data quality. Specifically, the attack
involves randomly replacing one relation in a can-
didate query. We compare the same three settings
as in Section 4.3.1. As in Figure 4, our method
exhibits significantly stronger robustness under ad-
versarial conditions. Even when all demonstrations

0.70

F1 Score
o o o
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o o (=}

.
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!

Ours(Synthetic)
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Random

o
8
=1

T T T T T T T T
1 2 3 4 7 8 9 10

5 6
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Figure 4: Performance under attack setting on 1,000
randomly sampled GrailQA questions. Attack level in-
dicates how many demonstrations have been corrupted.

were compromised, the performance degradation of
TARGA was only around 25%. In contrast, the other
setups experience a sharp decline: the F1 scores of
similarity-based setup drop by about 40%, and the
random setting even falls by approximately 75%.
This further demonstrates the superior robustness
of our method compared to other approaches. We
also provide another analysis about when corrupt
entities in demonstrations in Appendix F.2

4.3.3 Performance on Different
Generalization Levels

We experiment on GrailQA to compare the perfor-

mance on different generalization levels (prelimi-

nary in Appendix D). To make a fair comparison

2709



Methods LLD. Comp. Zero. Avg.
KB-BINDER 48.3 48.8 41.8 50.8
KB-CODER 49.3 49.6 432 51.7
TARGA 68.4 62.2 71.7  69.0
KB-BINDER-R  80.6 53.6 50.7 58.5
KB-CODER-R  81.0 57.8 541 613
TARGA-R 80.8 63.6 71.6 719

Table 2: Results of different generalization levels on
GrailQA. “-R” indicates a version accessing the whole
training set for similarity retrieval. Comp. and Zero.
indicates the Compositional and Zero-shot setting on
GrailQA, respectively. Avg. denotes the average F1.

with the “-R” setting of previous methods, we also
implemented a “-R” version of TARGA where the
entire training set was incorporated into our demon-
stration sampling pool. Specifically, we retain the
top 5 most similar examples from the training set
and the top 5 most similar synthetic data instances
jointly as demonstrations.

As shown in Table 2, under the LI.D setting,
TARGA-R benefits from the inclusion of high-
quality annotations (training set), achieving similar
performance to previous “-R” methods. However,
for the more challenging Compositional and Zero-
shot settings, where similar questions are absent
from the pre-collected training set, the performance
of previous methods in the “-R” setup dramatically
decreases by approximately 30 in F1. In contrast,
TARGA shows no significant decline, demonstrat-
ing its strong generalization ability in scenarios that
more closely resemble real-world situations where
relevant corpora are unavailable. Notably, under
the zero-shot setting, TARGA derives minimal im-
provements from the training set, suggesting that
pre-collecting a substantial corpus of examples is
ultimately an incomplete solution and tends to fail
when confronted with real, unseen problems.

4.3.4 Efficiency analysis

For a practical QA system, high efficiency is
also a key characteristic. Following Huang et al.
(2024), we analyzed three efficiency metrics: TPQ,
QPQ, and CPQ, as shown in Table 3. Regarding
TPQ, our method significantly outperforms previ-
ous methods with only 4.5 seconds response time
on GrailQA (detailed in Appendix F.4). Regard-
ing QPQ, Agent-based methods have an inherent
advantage. However, comparatively speaking, the
overhead of QPQ remains relatively inexpensive
than the other two metrics. Compared to KB-

Methods GrailQA GraphQ

TPQ QPQ CPQ TPQ QPQ CPQ
KB-BINDER 51.2 3,297.7 0.010 84.0 2,113.8 0.024
AgentBench 40.0 74 0034 65.1 7.2 0.035
QueryAgent 16.6 52 0019 153 6.2 0.021
TARGA 4.5 256.8 0.000 13.0 1,094.6 0.000

Table 3: Efficiency analysis with ICL-based (KB-
Binder) and Agent-based methods (AgentBench and
QueryAgent). TPQ, QPQ, and CPQ denote the time
cost (seconds), number of SPARQL query times, and
open-source model invocation cost ($) per question.

Binder, which also employs the ICL paradigm,
our approach demonstrates a marked superiority
on QPQ. This is primarily because our synthetic
demonstrations are highly aligned with the target
question, enabling the generated logic forms to be
executable without any post-processing in most
cases. Conversely, since previous methods can not
always retrieve the relevant candidate query in the
training set, the generated logic forms are often not
executable. Consequently, the logic form necessi-
tates stepwise binding to valid KB items, which
leads to a large demand for queries.

In terms of CPQ, agent-based methods inher-
ently face challenges due to the lengthy trajectory
of demonstrations and the need for multiple calls
of LLM. Since our method does not rely on close-
sourced LLM, the CPQ is zero. If compared with
the consumed tokens, TARGA uses significantly
fewer tokens because it requires fewer examples as
demonstrations and does not use self-consistency.
As a result, the token cost is only about 1/10 that
of other ICL-based methods. We also provide a
detailed analysis of token consumption in the Ap-
pendix F.6 and more detail in Appendix E.5.

4.3.5 Performance on different sizes of LLM

In real-world applications, large and powerful
LLMs are not always accessible or affordable.
Therefore, we further analyze the performance of
various methods across different model sizes. We
compare the Agent method (QueryAgent), ICL
method (KB-Binder), and the retrieval-augmented
ICL method (KB-BINDER-R). As shown in Table
4, our approach demonstrates remarkable adaptabil-
ity from gwen-1.5B-instruct to gpt-4o-mini. With
just the 1.5B model, our method already surpasses
the previous best-performing method, while at 7B,
it only slightly lags behind the closed-source model.
The Agent method has strong generalization capa-
bilities but is heavily reliant on the planning and
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1.5B 7B 32B 72B 4o-mini A

QueryAgent 103 16.1 50.8 58.5 62.3 52.0
KB-Binder 202 398 513 506 470 31.1
KB-Binder-R 27.6 550 594 63.8 58.0 36.3

TARGA 61.3 653 674 67.5 67.7 9.4

Table 4: The performance on GrailQA with different
base model sizes. The 1.5B, 7B, 32B, and 72B represent
the Qwen 2.5 instruct models family, while 40-mini
indicates GPT-40-mini. We experiment on 500 random
sampling questions. A indicates the max performance
gap between different models.

GrailQA GraphQ KBQA-Agent

TARGA 69.0 50.6 46.5
w/o Query Textification 64.9 46.6 39.6
w/o Re-Ranking 59.9 38.7 19.3
w/o Synthetic Question 67.3 49.5 45.5

Table 5: Ablation study of each component on GrailQA.

self-correction abilities of the most advanced LLM,
which smaller models do not excel at. For models
below 72B, the performance of the QueryAgent is
essentially unusable. For the 72B model, the per-
formance of QueryAgent is still inferior to that of
the ICL method using a model of the same size and
ultimately failing to exceed closed-source model
performance. Regarding the ICL methods, previ-
ous works typically experiment on the strongest
closed-source models without testing their perfor-
mance on open-source models. We demonstrate
here the performance of ICL on open-source mod-
els, revealing that the latest open-source models
can reach or even surpass the capabilities of the
GPT series models in certain tasks. This provides
a feasible assurance for continuing research in se-
mantic parsing based on closed-source models.

4.3.6 Ablation Study

Table 5 presents the impact of distinct components
on model performance across three datasets. Com-
pared to the full model, removing the query tex-
tification component leads to a noticeable drop,
particularly on KBQA-Agent (-6.9), highlighting
the importance of bridging the gap between the text
embedding model and logic form. The removal of
the re-ranking component results in the largest per-
formance decrease, with reductions of 9.1, 11.9,
and 27.2 on GrailQA, GraphQ, and KBQA-Agent,
respectively, underscoring the importance of the
re-ranking step. In contrast, excluding synthetic
question generation yields more modest declines,
suggesting it is less critical than the other compo-

Methods Acc.
RESDSQL-3B + NatSQL* (Li et al., 2023a) 79.9
T5-3B+PICARD* (Scholak et al., 2021) 75.1
StructGPT (ChatGPT) (Jiang et al., 2023) 65.6
Readi (Cheng et al., 2024) 66.2
AgentBench (Liu et al., 2024) 57.6
QueryAgent (Huang et al., 2024) 72.5
TARGA 75.5

Table 6: Results on WikiSQL. * indicates fine-tuned.

nents but still beneficial for KBQA-Agent. It is un-
expected, but from another aspect, it indicates that
even only using the synthetic query as the demon-
stration the performance is also competitive.

4.3.7 Transferability to Text2SQL

We adapted our framework to the Text2SQL task
to demonstrate the generality of our approach in
other semantic parsing tasks. Employing the Wik-
iSQL dataset, we compare TARGA with both the
fine-tuned and non-fine-tuned methods. Among
them, StructGPT and Readi are 32-shot and 7-shot
methods, respectively. AgentBench and QueryA-
gent both use 1 shot. As shown in Table 6, with
merely 10 synthetic examples as demonstrations,
our method surpasses prior methods with 32 manu-
ally annotated examples and also outperforms the
best 1-shot method, all while incurring a lower
cost and smaller model. Besides, TARGA can even
surpass a fine-tuned method with 3B model.

5 Conclusion

In this paper, we explore two critical challenges
in the semantic parsing task: reliance on anno-
tated data and poor generalization on non-L.LD.
cases. We proposed a novel method called TARGA,
which automatically synthesizes examples that are
most relevant to the test data and utilizes them as
demonstrations for in-context learning. Remark-
ably, TARGA achieves the best performance among
all non-fine-tuned methods across three complex
KBQA datasets and one Text2SQL dataset, espe-
cially on GrailQA and KBQA-Agent (7.7 and 12.2
F1 points, respectively). While achieving impres-
sive performance, TARGA also exhibits the follow-
ing practical properties: 1) It does not require any
annotated data. 2) It is effective even with a model
size of just 7B parameters. 3) The synthetic data is
generated online. 4) It exhibits superior generaliza-
tion, robustness, and speed. This work highlights
the potential of leveraging synthetic data in seman-
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tic parsing, and we hope that TARGA can serve as a
valuable foundation for developing more practical
systems in this field.

Limitations

We would like to discuss some limitations of our
work. First, in this paper, we validate TARGA on
two specific semantic parsing tasks: KBQA and
Text2SQL. While these tasks demonstrate the po-
tential of our approach, further exploration across
a broader range of tasks that involve transform-
ing natural language into logical forms could
strengthen the generalizability of TARGA. Ad-
ditionally, we have not yet investigated the fea-
sibility of our synthetic data generation method in
other paradigms, such as agent-based or fine-tuned
models. We would like to adapt TARGA to these
paradigms in future work.
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A Preliminary

A.1 Knowledge Base Question Answering

We introduce related concepts and the task of
knowledge base question answering as follows.
Let E be a set of entities, P be a set of relations,
C be a set of classes, and [ be a set of literals. A
knowledge base K C Ex P x (EUCUI)is aset
of triples (s, p,0), where s € E is a subject entity,
p € Pisapredicate, and o € (EUCUI) is an
object entity, class or literal value.

The task of knowledge base question answer-
ing can be formalized as learning a function f that
takes a natural language question ¢ as input, and
outputs a structured query ¢’ = f(g) in a formal
language such as SPARQL (Gregory, 2013). The
structured query ¢’ should ideally encode the en-
tities, relations, and constraints specified by the
input question ¢, such that executing ¢’ over the
knowledge base K yields the correct answer of g.

A.2 In-Context Learning

In-context learning (Brown et al., 2020) allows
LLMs to perform new tasks by simply observing
examples provided within the input, without updat-
ing their internal parameters. Intuitively, the model
“learns” from the context and uses it to generate
appropriate responses for similar tasks, relying on
patterns it recognizes from the given examples.

More precisely, let [x1,z9, -+ ,x,] be a se-
quence of input tokens representing natural lan-
guage texts, and let [y1,y2, - ,yn] be a corre-
sponding sequence of output tokens representing
the desired task, which in our context are struc-
tured queries. A LLM, denoted as fy, is a func-
tion parameterized by 6, which takes an input se-
quence and predicts the next token or sequence of
tokens. In-context learning refers to the ability of
a pretrained LLM to learn and adapt to a specific
task purely by conditioning on a sequence of ex-
amples S = [(.%'1, yl)? (1’2, Z/Q), B (.I'n, yn)]’ pro-
vided as part of the input context, without updating
the model parameter #. In contrast to traditional
learning paradigms that require parameter updates
via gradient descent, the LLM uses the provided
examples to infer the underlying task and generate
predictions for a new input 1.

B Datasets

We conduct experiments on four KBQA datasets
and one Text2SQL dataset, their statistics are
shown in Table 7.

Datasets Train Dev Test
GRAILQA 44,337 6,763 13,231
GRAPHQ 2,381 - 2,395
KBQA-AGENT - - 500
METAQA-3HOP 114,196 14,274 14,274
WIKISQL 56,355 8,421 15,878

Table 7: Statistics of datasets.

e GrailQA (Gu et al., 2021) is one of the most
popular complex KBQA datasets. It divides
the dataset into three levels of generalization,
i.e., L.1.D, Compositional, and Zero-shot.

* GraphQ (Su et al.,, 2016) is a challenging
dataset that only consists of Compositional
questions.

* KBQA-Agent (Gu et al., 2024) is a mixed
dataset of the most difficult questions from
four datasets (i.e., GrailQA (Gu et al., 2021),
ComplexWebQuesiton (Talmor and Berant,
2018), GraphQ (Su et al., 2016), and We-
bQSP (Yih et al., 2016)).

* MetaQA-3Hop (Zhang et al., 2018) is the
most difficult 3-hop subset of a large-scale
KBQA dataset based on Wiki-Movies KG.

* WikiSQL (Zhong et al., 2017) is a large-scale
complex Text2SQL dataset which requiring
comparison, aggregation and arithmetic oper-
ations.

C Baselines

C.1 Seq2Seq Fine-tuning Methods

* ArcaneQA (Gu and Su, 2022) is a generation-
based method that incrementally synthesizes
a program by dynamically predicting a se-
quence of subprograms. It prunes the search
space by constrained decoding.

* Pangu (Gu et al., 2023) leverages the discrim-
ination ability of language models to build
queries in an incremental manner. It consists
of a symbolic agent to collect valid candidate
plans and an LM to select the most likely one.

C.2 ICL-based Method

* Pangu-ICL (Gu et al., 2023) is a ICL version
of Pangu. The result is based on output distri-
bution of the LL.Ms, which require access to
model parameters.
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C3

C4

KB-Binder (Li et al., 2023b) propose an ICL-
based method for few-shot KBQA by feed-
ing LLM with some (question, S-expression)
pairs.

KB-Coder (Nie et al., 2023) further optimizes
KB-Binder by changing the target format from
S-expression to code-style logic form.

Readi (Cheng et al., 2024) propose a
Reasoning-then-Editing framework that ini-
tially generates a reasoning path given a query,
then instantiates the path. Editing is triggered
only when necessary.

BYOKG (Agarwal et al., 2024) does not need
manually annotated dataset. It first explores
the KB to collect synthetic datasets within a
day (e.g., 10K data in 10 hours), then uses the
synthetic dataset for bottom-up reasoning.

Agent Fine-tuning Methods

KG-Agent (Jiang et al., 2024) enables a small
LLM to actively make decisions until finish-
ing the reasoning process over KGs through
fine-tuning an Agent.

DARA (Fang et al., 2024) propose a
Decomposition-Alignment-Reasoning  Au-
tonomous Language Agent which can be
efficiently trained with a small number of
high-quality reasoning trajectories.

Agent-based Method (Training-free)

AgentBench (Liu et al., 2024) model KBQA
as a tool learning task and outfitting LLM with
an array of KG-querying tools such as “get_
relation”, “argmax” and “intersection”.
MIDDLEWARE (Gu et al., 2024) design cus-
tomized tools acting as middleware between
LLMs and complex environments. They also
incorporate decoupled generation and error
feedback to boost performance.

QueryAgent (Huang et al., 2024) step-by-
step build the target query and use an envi-
ronmental feed-based self-correction method
to reduce hallucination.

D Levels of Generalization

In the context of KBQA, the three levels of
generalization—IL.I.D. generalization, composi-
tional generalization, and zero-shot generalization—
refer to the capability of models to handle in-
creasingly challenging and diverse types of ques-
tions (Gu et al., 2021). In particular, I.I.D. gener-
alization refers to the model’s ability to correctly
answer questions that are sampled from the same
distribution as the training set, which assumes that
the test data follow similar patterns and schema.
On top of that, compositional generalization refers
to the model’s ability to handle novel combinations
of KB items (e.g., entities and relations) that were
seen during training, but in configurations that the
model has not encountered before. Finally, zero-
shot generalization refers to the model’s ability to
answer questions involving entirely new KB items,
such as unseen entities and relations that were never
presented in the training set.

Gu et al. (2021) argue that relying solely on
datasets under L.ID. settings limits the practical use
of KBQA models, as real-world questions often in-
volve unfamiliar entities or require novel reasoning.
This limitation is evident in the degraded perfor-
mance of existing KBQA methods under compo-
sitional and zero-shot settings compared to L.I.D.
settings. Therefore, practical KBQA models should
be equipped with built-in generalization capabili-
ties across all three levels to better handle diverse,
real-world questions.

E More Details

E.1 Other Experiment Settings

TARGA and Pangu used 10 demonstrations across
all datasets. KB-Binder and KB-Coder used 40
shots for GrailQA, 100 shots for GraphQ, and 5
shots for MetaQA, with KB-Binder employing 20
shots for KBQA-Agent. AgentBench, MIDDLE-
WARE, and QueryAgent are all 1-shot methods.
The experiments using models with 1.5B, 7B, 32B,
and 72B parameters were conducted on 1, 1, 4, and
8 A100 GPUs, respectively.

E.2 Entity Linking Detail

The detailed entity linking results of all compared
methods are listed in Table 8. For KBQA-Agent
and MetaQA-3Hop, all compared methods use
golden linking results. For GrailQA and GraphQ,
most compared methods use the entity linking re-
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Method GrailQA GraphQ KBQA-Agent MetaQA-3Hop
KB-Binder FACC1+BM25 FACC1+BM25 Golden Exact match
KB-Coder FACCI1+SimCSE FACC1+SimCSE - -

Pangu(ICL) Pangu Pangu Golden -

MIDDLEWARE - - Golden -

AgentBench Pangu Pangu Golden -
QueryAgent Pangu Pangu - Exact match
TARGA Pangu Pangu Golden Exact match

Table 8: The detailed source of entity linking data for compared method. The original performance of AgentBench
is based on the Golden entity linking result. For a fair comparison, we report the perfomance with the Pangu entity
linking result re-implemented by QueryAgent (Huang et al., 2024) in Table 1.

sult by Pangu (Gu et al., 2023). Therefore, we
follow their setting to make a fair comparison.

Among all the methods compared, KB-Binder
and KB-Coder chose a pipeline that was different
from the other methods. Other methods first get
the entity linking results and then generate logic
forms based on them. KB-Binder and KB-Coder
first generate a logic form draft and then bind each
KB item in the logic form draft to the knowledge
base. For KB-Binder and KB-Coder, the elements
requiring linking depend on the generated draft,
making it less suitable for directly using the entity
linking results as other methods.

E.3 Logic Form Design

Inspired by PyQL (Huang et al., 2023a), we de-
signed a simplified logical form for constructing
queries, which uses a series of functions for seman-
tic expression, making it easier for LLMs to learn
and enabling seamless translation into SPARQL.
Table 10 shows all functions that we used.

E.4 Query Textification Detail

To improve the performance of the text embedding
model, we transform the synthesized query into a
format closer to natural language by implementing
a simple yet effective rule-based parsing program.
An example of query textification is provided in
Table 12.

Specifically, we first replace the entities and rela-
tions in the triples with their labels, concatenating
the subject, predicate, and object to create a de-
scription. For two nested descriptions (multi-hop),
we represent them in a hierarchical form using “a
have b.”. For two conjunction descriptions (multi-
constraint), we connect the two parts with “and.”
We also applied some simple processing to the fil-
ters, such as using "more than" and "less than" to

connect comparison objects.

E.5 Statistics of Query Construction

As shown in Table 9, we present the statistics of
the synthetic query in Section 3.3.

Datasets Size Cvg. TPQ QPQ
GrailQA 174 079 2.99 256.8
GraphQ 893 0.69 1141 1,094.6
KBQA-Agent 173.1 0.78 20.07 2,270.3
MetaQA-3Hop 259 1.00 0.05 56.1
WikiSQL 18.1 0.75 0.16 88.6

Table 9: Statistics of query construction. Size represents
the average number of valid queries per question. Cvg.
refers to coverage, indicating the proportion of questions
with at least one correct (F1 = 1) in synthetic queries.
TPQ and QPQ denote the running time (in seconds) and
the number of query attempts per question, respectively.

E.6 Natural Language Question Generation
Detail

We directly use the pseudo-questions generated by
query textification for building (query, question)
pairs as demonstrations in QA phase, and the per-
formance is good enough. We also experimented
with using an LLM (GPT or Qwen) to generate
questions during this phase, but the downstream
QA performance remained nearly unchanged, with
a difference of less than 0.5 F1. Moreover, leverag-
ing an LLM to generate corresponding questions
requires labeling a few examples as demonstrations
and incurs an extra time cost (less than 1 second).
In fact, even without generating questions and
using only the queries as demonstrations, the per-
formance showed only a slight decline (see the ab-
lation study in Table 6). We recommend choosing
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between using rules or an LLLM based on specific
scenarios:

e If you want to use TARGA for ICL-style QA,
the quality of question generation at this stage
does not need to be particularly high. Heuris-
tic rules are sufficient enough.

* If you want to construct standard parallel cor-
pora for fine-tuning or other purposes, we rec-
ommend you use an LLM along with some
demonstrations to generate higher-quality nat-
ural language questions.

E.7 Prompt for Question Answering

We provide example prompts for TARGA on the
KBQA and Text2SQL tasks In Tables 16 and 17. It
consists of some synthetic demonstrations (NLQ-
Query pairs) and the test question. For the KBQA
task, we provide the entity linking results. For the
Text2SQL task, we provide the headers of the table.

F Further Analysis

F.1 The performance difference between
Compositional and zero-shot setting

In Table 2, we notice that the performance of the
compositional setting is lower than the zero-shot
setting for TARGA, but this trend is reversed for
other compared methods. Our perspective is out-
lined as follows:

* This is a matter of relative performance: If the
performance of TARGA on zero-shot perfor-
mance is above the normal level, then compo-
sitional will appear lower than zero-shot, and
vice versa for comparative methods. If the
performance of other methods on zero-shot
setting is very poor, the performance of com-
positional setting will appear relatively high.

» Setting aside whether the test questions are
seen in the training set or not, there are signifi-
cant inherent difficulty differences among the
three generalization levels of GrailQA: com-
positional is the hardest, followed by i.i.d.,
and zero-shot is the easiest.

Firstly, we explain why other methods exhibit
lower zero-shot performance:

The zero-shot setting implies that the given ques-
tion contains entities or relationships not seen in
the training set. The compositional setting involves
combinations of entities and relationships that have

not been seen together, though each individual ele-
ment exists in the training set. Note that the com-
parative methods we used are, to some degree, in-
fluenced by the training set. Retrieving several
examples from the training set can still essentially
cover all the elements needed to solve a question,
but this is not the case with zero-shot. This may
explain why compared methods exhibit lower zero-
shot performance than compositional settings. Be-
sides, for GraphQ, the 100% Compositional dataset,
TARGA exhibit more significant improvement com-
pared to KB-Binder and KB-Coder than GrailQA
(25% Compositional), indicating that TARGA does
not harm the performance of the compositional set-
ting.

Secondly, we explain why our compositional
performance is lower than zero-shot:

We believe that the fundamental reason for this
phenomenon lies in how the dataset is split and
the inherent difficulty of the problems themselves.
For TARGA, there is no substantial distinction be-
tween input questions, as each one is treated as
an unseen question. However, the generalization
level of a question is determined solely by whether
it appears in the training set, irrespective of the
question’s inherent difficulty. As a result, TARGA
serves as a fair model for evaluating a question’s
inherent difficulty, as it is unaffected by any static
dataset distribution. We hypothesize that TARGA’s
performance across the three generalization levels
reflects significant differences in difficulty within
the GrailQA dataset, with the compositional setting
being the most challenging, followed by i.i.d., and
zero-shot being the easiest.

To support this hypothesis, Table 11 reports the
average length of the final SPARQL queries for
questions across the three generalization levels. In
general, longer SPARQL queries correspond to
more complex questions (i.e., higher difficulty).
Compositional questions yield the longest queries
and the lowest performance, whereas zero-shot
questions are the simplest and achieve the high-
est performance. These statistical results strongly
validate our earlier conjecture.

F.2 Further Analysis on Robustness

In Section 4.3.2, we have analyzed the effect of ran-
domly replacing relations in demonstrations. Here,
we present the performance of randomly replacing
entities in the demonstrations. Similarly to 4.3.2,
we corrupt N demonstrations by replacing one en-
tity with another randomly selected entity from the
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Functions Brief Description

triplet(s, p, o)

argmax(v)

argmin(v)

filter(v, op, value)
of [<, >, <=, >=].

Add a condition that the subject s is linked to the object o via a relation p.
Add a condition that the variable v must have the maximum value.

Add a condition that the variable v must have the minimum value.

Add a condition that the variable v must meet, where the operator op is one

Specify that the variable v belongs to the class (entity type) t.

type(v, t)
count(v) Set the count of variable v as the final answer.
answer(v) Set the variable v as the final answer.

Table 10: Functions used in our logic form.

Generalization level Difficulty Performance

Compositional 5.1 62.2
LLD. 4.8 68.4
Zero-shot 4.5 71.7

Table 11: Difficulty and performance of TARGA across
three generalization settings on GrailQA. The difficulty
is measured by the average length of SPARQL queries,
and the performance shows TARGA’s F1 score.
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Figure 5: Performance under attack setting(entity) on
1,000 randomly sampled GrailQA questions.

training set (with a candidate pool of 32K entities).
The results in Figure 5 indicate that replacing the
entity has a minimal impact across all three set-
tings.

F.3 Further analysis on ranking

Considering that a poor ranking might incorrectly
identify the top 1 or top 2 results, while the top
10 overall might still be generally correct. There-
fore, we conducted a more convincing experiment
using only the top 1 data as the demonstrations to
better illustrate the impact of query textification on
ranking quality.

The results are shown in Table 13: we found that
in this setting, the decline without query textifica-
tion was generally more pronounced (9.9, 7.6, and

3.1 on three datasets) than Table 5 (4.1, 4.0 and 6.9
on three datasets), indicating that query textifica-
tion can enhance ranking quality, thereby further
improving QA performance.

F.4 Runtime Breakdown

We present a detailed runtime breakdown to pro-
vide a clearer understanding of the time costs asso-
ciated with each stage, using GrailQA as an exam-
ple.

(1). Entity linking: nearly negligible (0 s): We
use the cache provided by previous work for fair
comparison. Most previous non-finetuning meth-
ods either rely on cached results or the golden link-
ing results. Details are provided in Section E.2.

(2). Relation linking: very fast (0.60 s): Rela-
tion linking consists of three steps:

a). Obtain the relation embedding (0 s, cached
in advance). Note that the relations in Freebase are
fixed and limited, so they only need to be cached
once in advance.

b). Obtain the question embedding (0.52 s).

c). Calculate the embedding similarity between
question embedding and all relation embeddings
(0.08s). We utilized FAISS (Johnson et al., 2019)
to accelerate similarity computations.

(3). Query construction: the slowest part
(2.99 s for GrailQA):

This is the most time-consuming stage, which is
described in detail in Section 3.3.

(4). Reranking: very fast (0.11 s): This is
implemented by bge-reranker. Since we carefully
controlled the number of candidate queries during
the construction process, the final set for ranking is
relatively small. Details about the size of the candi-
date queries are provided in Table 9. For instance,
only an average of 17.4 candidate queries were in-
volved in the reranking stage, which contributed to
its speed.
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Queries with textification results

Query 1:

triplet(?v0, measurement_unit.mass_unit.weightmass_in_kilograms, ?v1)

argmin(?vl)
answer(?v0)
Textification Result:

what mass_unit, mass_unit has weightmass_in_kilograms, when weightmass_in_kilograms is the

smallest

Query 2:

triplet(?v0, boats.ship_class.date_designed, ?v1)
argmax(?vl)

answer(?v0)

Textification Result:

what ship_class, ship_class has date_designed, when date_designed is the largest

Query 3:

triplet(?v0, spaceflight.rocket_engine.designed_by, [rocketdyne])
triplet(?v0, spaceflight.rocket_engine.isp_sea_level, 7v1)

filter(?v1, <=, 260.0)
answer(?v0)
Textification Result:

what rocket_engine, rocket_engine has rocketdyne, rocket _engine has isp_sea_level, when

isp_sea_level no more than 260.0

Table 12: Examples of Query Textification.

GrailQA GraphQ KBQA-Agent

61.46 44.31 37.53
52.55 36.76 34.48

w/ QT
w/o QT

Table 13: Abalation study of Query Textification (QT)
when only using Top 1 candidate as the demonstra-
tion (experiment on 500 randomly selected examples).

(5). Question generation: nearly negligible (0
s): Since we use the pseudo-questions generated by
query textification (implemented by simple rules)
as the corresponding question of a candidate query,
this time cost is negligible.

(6). In-Context Learning QA (0.78 s): This
is a simple ICL request with about 700 input to-
kens; a normal inference speed is generally less
than 1 second. The time difference between using
locally deployed open-source models (Qwen) and
online closed-source models (GPT) is not signifi-
cant. For closed-source models (GPT), a normal
request speed is generally on the order of seconds.
For open-source models, the specific speed depends
on your hardware configuration. We deployed a
7B model using a single 80GB A100 GPU and

a 72B model using eight A100 GPUs, leveraging
vLLM (Kwon et al., 2023) for deployment. Using
more devices can further speed up.

F.5 Clarifications on the Computational
Details of CPQ

We follow the OpenAl official price calculation
method 3 as reported in QueryAgent (Huang et al.,
2024) to calculate CPQ in Table 3. TARGA only
relying on an open-source model, except for Sec-
tion 3.2 use ada-v2 for obtain the embedding and
question. However, this part of the cost is less than
le-5 $ per question, therefore, the CPQ is 0 $ when
retaining three decimal places in Table 3.

The cost in Section 3.2 consists of two parts:
relation embedding and question embedding. The
cost of caching embeddings for all relations in Free-
base (20K relations) is less than 0.01 $, and this
cost is one-time; once cached, it does not increase
regardless of the number of questions solved. For
obtaining the embeddings for the test question it-
self, the average cost per question is less than le-
5 $, which rounds to approximately 0.000 $ when

3https: //openai.com/api/pricing/
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retaining three decimal places in Table 3. In sum-
mary, the close-source model invocations cost of
TARGA is negligible.

F.6 Analysis of Token Consumption

Since TARGA basically does not rely on closed-
source models, to make the inference cost more
comparable, we additionally provide a comparison
of the total tokens consumed (input tokens + out-
put tokens) for a more comprehensive evaluation.
The result is shown in Table 14 TARGA has sig-
nificant advantages in terms of token usage, with
inference costs being less than one-tenth of those of
other methods. Note that the substantial difference
in token consumption by KB-Binder across the
two datasets primarily stems from the use of more
demonstration: 100 shots for GraphQ compared to
40 shots for GrailQA.

GrailQA GraphQ

KB-Binder 6,138 + 189 15, 166 + 206
AgentBench 19,783 +934 20, 143 + 968
QueryAgent 12,277 +391 13, 453 + 391

TARGA 638 + 36 734 + 38

Table 14: Average consumed tokens (input + output).

F.7 Case Study

Table 15 presents a detailed demonstration of how
TARGA operates with a new question.
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Pipeline

Details

Question the camera with a sensor from canon and a compression format of jpeg (exif
2.21) uses which viewfinder?
Candidate Entities {canon: m.01bvxl, jpeg (exif 2.21): m.03h4I1t3 }

Candidates Relations

[digicams.digital_camera.viewfinder_type,
digicams.camera_compressed_format.cameras,
digicams.digital_camera.sensor_type,
digicams.camera_uncompressed_format.cameras,
digicams.camera_iso.cameras,
digicams.camera_format.cameras,
digicams.camera_sensor_manufacturer.cameras,

cesy

digicams.camera_white_balance.cameras]

Query Construction

Query 1

triplet([jpeg (exif 2.21)], digicams.camera_compressed_format.cameras, ?v0)
answer(?2v0)

Query 2

triplet([jpeg (exif 2.21)], digicams.camera_compressed_format.cameras, ?v0)
triplet( 2v0, digicams.digital_camera.viewfinder_type, ?vI)

answer(?vl)

Query 56

triplet([jpeg (exif 2.21)], digicams.camera_compressed_format.cameras, ?v0)
triplet(?v0, digicams.digital_camera.viewfinder_type, ?vI)

triplet([canon], digicams.camera_sensor_manufacturer.cameras, ?v0)
answer(?vl)

Query 71

triplet([canon], digicams.digital_camera_manufacturer.cameras, ?v0)

triplet( 2v0, digicams.camera_storage_type.compatible_cameras, ?vI)
answer(?vl)

Query Re-ranking

Rank 1

triplet([jpeg (exif 2.21)], digicams.camera_compressed_format.cameras, ?v0)
triplet(?v0, digicams.digital_camera.viewfinder_type, ?vI)

triplet([canon], digicams.camera_sensor_manufacturer.cameras, ?v0)
answer(?vl)

Rank 2

triplet([jpeg (exif 2.21)], digicams.camera_compressed_format.cameras, ?v0)
triplet( 2v0, digicams.digital_camera.viewfinder_type, ?vI)

triplet([canon], digicams.digital_camera_manufacturer.cameras, ?v0)
answer(?vl)

Rank 71

triplet([canon], digicams.digital_camera_manufacturer.cameras, ?v0)

triplet( ?v0, digicams.camera_storage_type.compatible_cameras, ?v1)
answer(?vl)
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Pipeline

Details

Question Generation

Query 1

triplet([jpeg (exif 2.21)], digicams.camera_compressed_format.cameras, ?v0)
triplet( 2v0, digicams.digital_camera.viewfinder_type, ?vI)

triplet([canon], digicams.camera_sensor_manufacturer.cameras, ?v0)
answer(?vl)

Generated Question

what viewfinder_type, jpeg ( exif 2.21 ) has cameras, cameras has
viewfinder_type, canon has cameras

Query 2

triplet([jpeg (exif 2.21)], digicams.camera_compressed_format.cameras, ?v0)
triplet(?v0, digicams.digital_camera.viewfinder_type, ?vI)

triplet([canon], digicams.digital_camera_manufacturer.cameras, ?v0)
answer(?vl)

Generated Question

what viewfinder_type, jpeg ( exif 2.21 ) has cameras, cameras has
viewfinder_type, canon has cameras

Query 10

triplet([jpeg (exif 2.21)], digicams.camera_compressed_format.cameras, ?v0)
triplet( ?2v0, digicams.digital_camera.sensor_resolution, ?vi)

triplet([canon], digicams.digital_camera_manufacturer.cameras, ?v0)
answer(?vl)

Generated Question

what sensor_resolution, jpeg ( exif 2.21 ) has cameras, cameras has sen-
sor_resolution, canon has cameras
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Pipeline Details

QA Prompt You are a powerful model for generating PyQL queries to answer natural
language questions. Here are some exemplars:
###Question
what viewfinder_type, jpeg ( exif 2.21 ) has cameras, cameras has
viewfinder_type, canon has cameras
###PyQL
triplet([jpeg ( exif 2.21 )], digicams.camera_compressed_format.cameras, 7v0)
triplet(?v0, digicams.digital_camera.viewfinder_type, 7v1)
triplet([canon], digicams.camera_sensor_manufacturer.cameras, ?v0)
answer(?v1)
###Question
what viewfinder_type, jpeg ( exif 2.21 ) has cameras, cameras has
viewfinder_type, canon has cameras
###PyQL
triplet([jpeg ( exif 2.21 )], digicams.camera_compressed_format.cameras, ?v0)
triplet(?v0, digicams.digital_camera.viewfinder_type, 7v1)
triplet([canon], digicams.digital_camera_manufacturer.cameras, ?v0)
answer(?vl)
...... (8 demonstrations omitted here.)
Please follow the format of exemplars and output PyQL query for the following
question. No explanation or questioning allowed.
Entity List: [’jpeg ( exif 2.21 )’, *canon’]
###Question
the camera with a sensor from canon and a compression format of jpeg (exif
2.21) uses which viewfinder?
###PyQL

LLM Output triplet([jpeg ( exif 2.21 )], digicams.camera_compressed_format.cameras, ?v0)
triplet( 2v0, digicams.digital_camera.viewfinder_type, ?vi)
triplet([canon], digicams.camera_sensor_manufacturer.cameras, ?v0)
answer(?vl)

Parsed SPARQL SELECT DISTINCT ?vl WHERE {

:m.03h41t3 :digicams.camera_compressed_format.cameras ?v0 .
20 :digicams.digital_camera.viewfinder_type ?vI .
:m.01lbvxl :digicams.camera_sensor_manufacturer.cameras ?v0 .

/

Execution Result

{m.OIxrglf: Optical, m.01xrg6z: TTL}

F1 Score

1.0

Table 15: A case study of TARGA from GrailQA.
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Prompt for KBQA

You are a powerful model for generating PyQL queries to answer natural language questions. Here are
some exemplars:

###Question

what football_league_system, football_league_system has conference premier

###PyQL

triplet(?v0, soccer.football_league_system.leagues, [conference premier])

answer(?v0)

###Question

what leagues, football_league_system has conference premier, football_league_system has leagues
###PyQL

triplet(?v0, soccer.football_league_system.leagues, [conference premier])

triplet(?v0, soccer.football_league_system.leagues, ?v1)

answer(?vl)

###Question

what sport, sport has conference premier

###PyQL

triplet(?v0, sports.sport.leagues, [conference premier])
answer(?v0)

...... (5 demonstrations omitted here.)

###Question

what positions, sport has conference premier, sport has positions
###PyQL

triplet(?v0, sports.sport.leagues, [conference premier])
triplet(?v0, sports.sport.positions, ?v1)

answer(?vl)

###Question

what team_coaches, sport has conference premier, sport has team_coaches
###PyQL

triplet(?v0, sports.sport.leagues, [conference premier])

triplet(?vO0, sports.sport.team_coaches, ?v1)

answer(?vl)

Please follow the format of exemplars and output PyQL query for the following question. No
explanation or questioning allowed.

Entity List: [’conference premier’]

###Question

what are the names of the football leagues that are in the same football league system with conference
premier?

###PyQL

Table 16: Prompt for KBQA.
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Prompt for Text2SQL

You are a powerful model for generating SQL queries to answer natural language questions.
Here are some related exemplars you can learn from:

SELECT MIN(Magnitude (M bol )) FROM TABLE WHERE Radius (R ®) =10’
SELECT MIN(Mass (M ®)) FROM TABLE WHERE Radius (R ®) =10’

SELECT MIN(Spectral type) FROM TABLE WHERE Radius (R ©) =10’

SELECT MIN(Star (Pismis24-#)) FROM TABLE WHERE Radius (R ®) =10
SELECT MIN(Radius (R ®)) FROM TABLE WHERE Radius (R ®) =10’

SELECT MIN(Mass (M ®)) FROM TABLE WHERE Star (Pismis24-#) =10’
SELECT MIN(Temperature (K)) FROM TABLE WHERE Radius (R ®) =10’
SELECT MIN(Radius (R ®)) FROM TABLE WHERE Star (Pismis24-#) =10
SELECT MIN(Magnitude (M bol )) FROM TABLE WHERE Star (Pismis24-#) =10’
SELECT MIN(Spectral type) FROM TABLE WHERE Star (Pismis24-#) =10’

Please output SQL query for the following question. No explanation or questioning allowed. Note that
there is no need to use the LIKE keyword. And table name is TABLE for all questions.

###Question
If a radius is 10, what is the lowest possible mass?

###Header
[’Star (Pismis24-#)’, ’Spectral type’, "Magnitude (M bol )’, *Temperature (K)’, ’'Radius (R ®)’, ’"Mass
M ©o)]

#HH#SQL

Table 17: Prompts for Text2SQL.
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