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Abstract

Large language models (LLMs) face a perfor-
mance ceiling as scaling parameters becomes
impractical. Our observations indicate that
while simple tokens are efficiently resolved in
early layers with stable gradients, complex to-
kens trigger abrupt gradient spikes across lay-
ers, underscoring architectural limitations. Ex-
isting step-by-step reasoning methods, such
as Chain-of-Thought, are hindered by their
dependence on accurately generating critical
tokens. We introduce Inner Thinking Trans-
former (ITT)—a straightforward approach that
enables models to "think" more deeply about
important tokens by dynamically assigning ex-
tra inference steps through a token-wise dy-
namic depth architecture with residual itera-
tive reasoning and step encoding. Experiments
on LLaMA2-7B models at 355M, 1B, and 3B
scales show that ITT consistently outperforms
vanilla Transformers, with a 355M ITT model
matching the performance of a 1B Transformer,
offering a scalable, architecture-aware strategy
to enhance LLM reasoning capabilities.

1 Introduction

Large language models (LLMs) (Anthropic, 2023;
OpenAI, 2023; Touvron et al., 2023) have demon-
strated remarkable performance across numerous
natural language tasks. Recent studies (Fernandez
et al., 2024; Hoffmann et al., 2022; Chen et al.,
2024a) indicate that scaling laws for LLM parame-
ters exhibit diminishing returns under constrained
data availability and computational resource bud-
gets. Scaling model parameters increases com-
putational and deployment costs, making high-
performance models impractical for resource-
constrained environments. Meanwhile, smaller
models encounter performance bottlenecks primar-
ily attributable to limited parameter space.

†Corresponding author. ‡ Project lead.
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Figure 1: The Transformer, constrained by a limited
number of parameters, tends to make errors on diffi-
cult samples. We treat each single computation in the
model’s layers as one step of inner thinking. By train-
ing the model to allocate more inner thinking steps at
specific layers and organize thinking results, the model
can achieve better results without scaling parameters.

Recent approaches, such as Test-Time Scaling
("Slow-Thinking") (Muennighoff et al., 2025; Snell
et al., 2024; Ma et al., 2024; Zhang et al., 2025b,a),
aim to enhance performance by allocating more
computation during the inference search process.
While effective, these methods are limited by the re-
liance on accurately generating key tokens, which
can lead to catastrophic reasoning failures (Chen
et al., 2023a; Singh et al., 2024; Jiang et al., 2024b),
especially in smaller models. Some works enhance
model performance through layer sharing (Li et al.,
2024b,c), recursion (Ng and Wang, 2024; Dehghani
et al., 2019b; Geiping et al., 2025), or implicit rea-
soning (Deng et al., 2023; Shalev et al., 2024), but
they fail to flexibly improve the model’s reason-
ing ability on key tokens, which either suffer from
insufficient performance or redundant overhead.

In this work, we aim to explore how the model
can allocate more computation to individual tokens,
enhancing testing performance without increasing
parameters. Through analysis in Section 2, we
explore how models learn and reason about criti-
cal tokens. Our findings reveal that simple tokens
are resolved efficiently in early layers with stable
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low-gradient flows, while complex tokens cause dif-
ficulties across layers, with sudden gradient spikes
indicating architectural or parametric issues. The
differentiated properties of layers inspire us to pro-
pose a novel perspective on the model’s internal
reasoning process: Inner Thinking. Inner thinking
conceptualizes the evolution of hidden states layer
by layer, with each layer representing a distinct
implicit reasoning step for deriving a single token.

Intuitively, we can extend and combine multiple
inner thinking steps to break the model’s perfor-
mance bottleneck. Therefore, we propose a novel
approach called Inner Thinking Transformer (ITT).
ITT enhances token-level reasoning by dynami-
cally allocating additional thinking steps to key
tokens and iteratively accumulating residual think-
ing results to refine tokens’ representations. As
shown in Figure 1, the model learns to “think” more
deeply on important information during training.
Specifically, we design a dynamic token-wise depth
architecture based on Adaptive Token Routing net-
works and adopt a Residual Thinking Connection
mechanism (RTC) that gradually converges toward
better outcomes at each step. In addition, we in-
troduce a Thinking Step Encoding scheme to better
differentiate between successive thinking steps.

Notably, while trained under specific thinking
settings, our architecture can flexibly allocate more
computational resources during testing time to im-
prove performance or achieve a balanced trade-
off between resources and performance (see Fig-
ure 6). The routing network autonomously devel-
ops a thinking pattern that strategically balances
depth and breadth: specific thinking steps are allo-
cated for intensive processing of complex tokens,
while more efficient pathways handle simpler to-
kens (see Figure 7). In general, ITT mitigates the
performance bottleneck in reasoning for individual
tokens and can be combined with COT methods to
resolving reasoning challenges for critical tokens.

Experimentally, we construct both vanilla Trans-
former, Loop variants and ITT variants across three
scales (162M, 230M, and 466M parameters) fol-
lowing the LLaMA architecture. Evaluated on an
11-task benchmark, ITT consistently outperforms
Transformer and Loop variants with an equivalent
parameters. ITT achieves higher performance with
the same FLOPs and saves 43.2% of the training
data budget compared to Transformer. Notably, the
ITT ×4 -162M model significantly surpasses the
230M Transformer and even achieves 96.5% per-
formance of 466M Transformer. Overall, ITT in-
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Figure 2: Layer’s Gradient Nuclear Norm of the Atten-
tion matrices of GPT-2 on hard or simple samples.

troduces an inherent test-time scaling in the model,
achieving both performance and efficiency balance
through its elastic deep computation paradigm.

2 Observation

To investigate how models learn about critical to-
kens, our empirical analysis of GPT-2’s attention
matrices through gradient nuclear norm (GNN)
measurements (Li et al., 2024a) reveals system-
atic patterns in layer-wise dynamics. Using the
AQuA corpus (Ling et al., 2017), we firstly train
GPT-2 in 100 samples then categorize samples in
evaluation into easy (model answers correctly) and
hard (model answers incorrectly). In Figure 2, for
easy samples, GNN values decay exponentially
across early layers (L0-L2) and final layers (L11),
stabilizing below 3 in layers (L3-L10). In con-
trast, hard samples exhibit persistent GNN oscilla-
tions throughout all 12 layers, punctuated by abrupt
spikes at strategic layer positions (L3, L5, L7, L9).

These observations reveal one of the underlying
reasons for the presence of hard-to-learn samples
in models: as shown in Figure 1, certain parame-
ters face significant optimization difficulties due to
architectural limitations (e.g., insufficient depth) or
parameter constraints. Many studies suggest that
Transformer layers exhibit unique functional char-
acteristics and training variances (Alizadeh et al.,
2024; Sun et al., 2025; Takase and Kiyono, 2023)..
This inspires us to propose a framework where each
layer transformation in the model is viewed as a sin-
gle thinking step on latent information. By study-
ing the inner thinking process, we aim to design
corresponding architectures to optimize model’s
learning difficulty and inference performance.

3 Method

In this section, we introduce our Inner Thinking
(ITT) framework (Figure 3) to enhance transformer
models by dynamically deepening token-level rea-
soning. We begin in Section 3.1 by formalizing
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inner thinking steps within the transformer. Sec-
tion 3.2 then details the Residual Thinking Connec-
tion, where inner steps are extended via residual
accumulation. In Section 3.3, we present the Adap-
tive Token Routing, which employs a weight pre-
dictor to select the most critical tokens for further
thinking. Finally, Section 3.4 demonstrate how ITT
enhances learning efficiency in backporpogation.

3.1 Inner Thinking Step in Transformer
Traditional reasoning in Transformer models typi-
cally relies on token-by-token generation. Given an
input x, the output sequence y = (y1, y2, . . . , yN )
is generated as

P (y | x) =
N∏

n=1

P (yn | y<n, x), (1)

However, errors in key tokens can propagate, poten-
tially leading to an incorrect result. To investigate
the intrinsic mechanisms in single-token generat-
ing, we propose a novel concept of Inner Thinking
in model’s depth that decomposes the generation of
each token into a series of internal thinking steps.
Specifically, given an initial state x(0), we define
Inner Thinking as

X(t) = f (t)(x(t−1)), t = 1, 2, . . . , T, (2)

where f (t)(·) represents the transformation corre-
sponding to the t-th thinking step (consist of one or
more Transformer layers) and T is the maximum
number of steps. The final token is then generated
based on the output of the last thinking step:

P (y | x) = softmax
(
W x(T ) + b

)
, (3)

with W and b denoting the weights and bias for
the output projection. Define L(·, y) measures the
discrepancy between final state X(T ) and the target
token y, we have two scenarios:

Early Exit: If at an intermediate step t0 < T ,
the state x(t0) is close enough to the target (i.e.,
L
(
x(t0), y

)
< ϵ, where ϵ is a threshold), the model

can stop and output the token as y = ψ
(
x(t0)

)
,

where ψ(·) is the decoding function. This allows
the model to achieve correct results with fewer
Inner Thinking Steps, improving efficiency.

Performance Deficiency: Conversely, if even af-
ter all T internal steps the discrepancy remains
high (i.e., L

(
x(T ), y

)
> ϵ), it indicates that the

Inner Thinking was insufficient to correctly approx-
imate the target. This scenario highlights potential
areas for improvement in the model’s reasoning
capacity or its internal step design.

3.2 Residual Thinking Connection
Under the framework defined in Section 3.1, we
aim to enhance the model’s performance to reduce
Performance Deficiencies. For challenging exam-
ples, high gradient values are observed in Section 2,
indicating that the model faces optimization diffi-
culties. To address these issues, a natural approach
is to increase the number of inner thinking steps in
one layer’s computation. Therefore, we propose a
Residual Thinking Connection (RTC) mechanism
that train model’s layer parameters to learn itera-
tive thinking capabilities, reducing the difficulty
of single-step thinking and enabling multiple uses
of parameters to break performance bottlenecks.

Let x(0) ∈ Rd denote RTC Layer input of a
token representation, where d is the hidden dimen-
sion. We denote f : Rd → Rd as the layer trans-
formation, T is the maximum number of thinking
steps. In RTC, the final output after t iterative steps
is computed by cumulatively accumulating each
step’s outputs:

x(t) =
t∑

i=1

(
f
(
x(i−1))⊙ ϕ(i)

)
, t = 1, . . . , T, (4)

where ϕ(t) ∈ Rd the learnable thinking position
encoding associated with the t-th inner thinking
step, which measuring the differences and impor-
tance of each step. Rather than processing the input
representation only once, RTC Layer iteratively re-
fine it by adding the residual contributions of each
step’s layer-output together with a learnable encod-
ing. Compared to direct looping (Ng and Wang,
2024; Dehghani et al., 2019b), RTC not only en-
ables deeper thinking but also effectively measures
and combines each thinking step, allowing them to
complement each other. RTC provides the founda-
tion for scaling Inner Thinking during testing.

3.3 Adaptive Token Routing
RTC in Section 3.2 provides a method to enhance
inner thinking. However, different tokens require a
varying number of thinking steps in the model, as
show in Section 2. Moreover, we aim for the model
to learn detailed, task-specific information at each
step. To avoid unnecessary computation and infor-
mation interference from processing all tokens at
once, we introduce Adaptive Token Routing (ATR).
Inspired by deep conditional computation (Raposo
et al., 2024; Zhang et al., 2024), ATR, based on a
routing network, selects the most important tokens
for thinking at each step.
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Figure 3: An illustration of ITT: ITT uses Adaptive Token Routing to select and weight important tokens for
each inner thinking step. Based on Thinking Step Encoding and Residual Thinking Connection, ITT layer iterates
thinking multiple times, accumulating each step’s results for improved layer output.

Let the input sequence be denoted byX ∈ Rn×d,
where n is the sequence length. We perform a
forward pass to obtain the output Y (0) ∈ Rn×d,
and then linear weight predictor R(0) ∈ Rd×1 is
applied to Y (0) to generate an importance score:

Y (0) = f(X), w(1) = R(1)(Y (0)) ∈ Rn, (5)

and we denote by Pρ(w
(1)) the ρ-th percentile of

these scores, with ρ being a predefined selection
ratio. For a given thinking step t, the calculation
process in ITT layer can be formulated as:

Y
(t)′
i =

{
α(t)w

(t)
i f

(
Y

(t−1)
i

)
, if w

(t)
i > Pρ(w

(t)),

Y
(t−1)
i , if w

(t)
i ≤ Pρ(w

(t)),
(6)

where α(t) is a hyperparam in t step, w(t)
i >

Pρ(w
(t)) is the indicator function selecting only

the tokens with predicted weights exceeding the
threshold. The router R(t)modulates the decision
to execute an additional thinking iteration based
on the current token representation and the step-
specific encoding. For tokens deemed important,
the model applies an extra weighted transforma-
tion. Conversely, tokens that do not meet the selec-
tion criteria bypass the extra processing, preserving
their previous representation. The router’s weights
are part of the gradient path, allowing the routing
parameters to be updated through backpropagation.

Finally, ITT (in Figure 3) combine the results of
each step using RTC, following Equation 4:

Y (t) = Y (0) ⊙ ϕ(0) +
t∑

i=1

(
Y

(i)′
i ⊙ ϕ(i)

)
,

t = 1, . . . , T.

(7)

This unified update thus integrates RTC with dy-
namic, token-level routing, enabling the model to

adaptively allocate computational resources only
where deeper thinking is required. By iteratively
selecting a subset of tokens for deeper processing,
the model can efficiently reinforce key tokens with-
out increasing the model parameter. In practice,
the ITT layer can be flexibly improved based on
the model layers. We insert the ITT layer at regu-
lar intervals alongside the model’s original layers
to construct a flexible inner thinking model, and
optimize all model parameters using the language
modeling cross-entropy loss: L = LCE.

3.4 Optimization
In this section, we prove Residual Thinking Learn-
ing extends single-step optimization into multi-step
optimization, making it easier to converge dur-
ing backpropagation compared to a direct one-step
mapping. Let y∗ ∈ Rd the corresponding ground-
truth, Θ′ represents the origin Layer parameters,
and θ represents th ITT layer parameters. The
optimization objective is to minimize the loss:

L
(
F (x; Θ′, θ), y∗) = L

(
G(fT (x; θ);Θ

′), y∗). (8)

For each step’s parameter θ, the gradient is com-
puted using the chain rule:

∂L
∂θ

=
∂L

∂Y (t)
·

T∏

j=t+1

[
I +

∂∆j(Y
(j); θ)

∂Y (j)

]
· ∂∆k(Y

(0); θ)

∂θ
.

(9)

Assuming that the corrections ∆j are small, we
can approximate the product term by the identity
matrix I , yielding:

∂L
∂θ
≈ ∂L

∂Y (t)
· ∂∆k(Y

(0); θ)

∂θ
. (10)

This shows that the gradient update at each small
step is nearly equal to the global gradient multiplied
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by the derivative of the local mapping, aligning
with global loss reduction. Assuming each iteration
reduces the error by a factor of c, this leads to expo-
nential decay ct, proving that iterative corrections
ensure stable, efficient convergence. In summary,
our method avoids excessive scaling or distortion
from deep chain propagation. It extends single-step
optimization to multi-step, easing convergence and
preventing gradient vanishing or explosion.

4 Experiments

4.1 Setup
Data. To pretrain ITT models and baseline mod-
els, we employ the RedPajama (TogetherAI, 2023),
which parallels the LLaMA training data across
seven domains: CommonCrawl, C4, GitHub,
Wikipedia, Books, ArXiv, and Stack-Exchange.
This dataset comprises a 2 million tokens validation
set and a 50 billion tokens training set.

Training. Our experimental framework utilizes
the Sheared-LLaMA codebase (Xia et al., 2023) im-
plemented on the Composer package (Team, 2021),
and is executed on 8 NVIDIA A100 GPUs (80GB).
The models are trained with a sequence length of
4096, employing a global batch size of 256. ITT
models are trained for 50000 steps (50B token bud-
get). The learning rates were set at 3e-4 for all
parameters. The baselines and all ITT models fol-
low the same training setup, starting from random
initialization and training on the same dataset.

Evaluation. We employed the lm-evaluation-
harness (Gao et al., 2023) to evaluate our mod-
els. For common sense and reading comprehension
tasks, we report 0-shot accuracy for SciQ (Welbl
et al., 2017), PIQA (Bisk et al., 2020), WinoGrande
(WG) (Sakaguchi et al., 2020), ARC Easy(ARC-
E) (Clark et al., 2018a), and 10-shot HellaSwag
(Hella.) (Zellers et al., 2019), alongside 25-shot
accuracy for ARC Challenge (ARC-C) (Clark et al.,
2018b). For continued QA and text understanding,
we report 0-shot accuracy for LogiQA (Liu et al.,
2020), 32-shot BoolQ (Clark et al., 2019), and 0-
shot LAMBADA (Lam.) (Paperno et al., 2016).
All reported results are calculated with the mean
and stderr of multiple experiments.

Baseline. Following the architecture of LLaMA2,
we constructed models at three parameter scales:
162M, 230M, and 466M, with hidden dimensions
of 1024, 1536, and 2048, as shown in Table 5. For
each parameter scale, we develop three variants:

• The Loop Neural Network design (Ng and
Wang, 2024; Dehghani et al., 2019b; Geiping
et al., 2025) implements model-level recur-
rence for iterative refinement.

• Our ITT architecture, adaptively selecting a
subset of tokens for deeper thinking.

We experiment with three thinking step scaling
factors—2×, 3× and 4×. We replace every other
layer of original model with a Loop or ITT layer.

4.2 Result

Foundational Capabilities. Table 1 shows the
performance improvements of ITT (pink) and
Loop (blue) on LLaMA 2’s 162M, 230M, and
466M versions. Both methods enhance model per-
formance by increasing computational allocation
during training and inference without expanding pa-
rameters. Thanks to its unique RTC design, ITT
achieves better test-time scaling performance
than Loop, as shown in Figure 5. For example, the
162M ITT ×4 configuration improves the baseline
by 1.7% with 4-step deep thinking in 50% of layers,
while Loop improves only by 0.3% after 4 itera-
tions. The advantages of ITT become clearer
as model scale increases, with improvements of
1.7%, 2.1%, and 1.7% for the 162M, 230M, and
466M models. ITT shows overall enhancement
across nearly all metrics, with notable improve-
ments in ARC-E, BoolQ, and LAMBADA, reflect-
ing gains in generative and reasoning abilities.

Convergence. Figure 4 Left and Middle visu-
alize the training loss and eval perplexity dur-
ing 50B-token pre-training for LLaMA 2-2162M,
Loop×4, and ITT ×4. ITT demonstrates su-
perior training stability and efficiency, with
smoother, lower perplexity trajectories compared
to LLaMA 2-230M and Loop. Notably, ITT ×4
shows a 0.09 loss reduction compared to baseline
and 0.4 to Loop at 50B tokens. ITT also reveals
remarkable data efficiency: it matches LLaMA 2-
162M’s performance using only 56.8% of the train-
ing data, showcasing its capability in parameter-
efficient scaling and data-efficient learning.

Computational Efficiency. As shown in Fig-
ure 4 (Right), Figure 6 (Left), and Table 1, ITT
maintains high computational efficiency during
test-time scaling. With 3-step deep thinking, ITT
incurs only 84% of Loop’s computational cost,
dropping to 70% at 4 steps. Remarkably, ITT
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Model-Params FLOPs
Commonsense & Reading Comprehension Continued LM Knowledge

Avg.
SciQ PIQA WG ARC-E ARC-C Hella. LogiQA BoolQ Lam. MMLU

LLaMA2-162M 1.88 72.0 62.7 51.9 41.7 19.2 28.8 24.0 50.3 28.6 25.2 40.4

Loop ×3-162M 3.76 71.8 63.1 53.0 40.4 19.1 29.1 20.9 51.9 28.8 25.7 40.4
Loop ×4-162M 4.70 72.8 62.4 52.6 41.8 19.8 29.4 22.0 49.9 30.1 26.3 40.7
ITT ×2 -162M 2.72 72.1 63.5 52.1 41.1 19.2 29.1 21.4 51.4 29.2 25.5 40.6
ITT ×3 -162M 3.19 73.9 62.5 50.6 43.6 19.3 29.2 20.6 52.1 37.1 25.8 41.5
ITT ×4 -162M 3.29 72.4 63.9 52.3 43.4 20.5 29.3 22.8 56.8 33.9 26.0 42.1

LLaMA2-230M 2.87 72.8 65.0 49.3 44.0 19.9 29.1 20.6 60.2 31.7 25.5 41.8

Loop ×3-230M 3.59 71.1 64.3 51.5 41.7 20.3 30.2 22.6 61.2 33.5 26.4 42.3
Loop ×4-230M 3.95 74.1 65.1 52.0 41.7 20.1 30.2 18.6 61.0 32.5 26.7 42.2
ITT ×2 -230M 3.19 72.7 64.6 52.2 43.3 20.5 29.7 22.0 59.7 32.6 25.9 42.3
ITT ×3 -230M 3.37 74.3 65.7 52.8 44.9 20.8 30.8 23.1 62.5 34.2 26.3 43.5
ITT ×4 -230M 3.41 75.1 66.2 53.5 45.0 21.1 31.2 22.4 62.7 34.8 26.6 43.9

LLaMA2-466M 4.92 75.5 66.5 51.5 45.2 20.4 31.3 21.2 62.6 36.6 25.4 43.6

Loop ×3-466M 6.15 74.3 65.8 52.9 44.0 21.0 32.0 22.5 59.2 37.2 26.1 43.5
Loop ×4-466M 6.77 76.8 67.0 50.7 46.5 20.9 32.2 20.1 59.0 40.1 24.8 43.8
ITT ×2 -466M 5.47 75.9 66.2 52.7 45.4 21.2 32.1 21.8 60.7 38.4 25.7 43.9
ITT ×3 -466M 5.78 77.9 66.4 53.7 46.7 22.0 32.8 22.6 59.1 39.3 26.7 44.7
ITT ×4 -466M 5.84 77.2 67.1 54.3 47.3 22.4 32.3 22.7 61.9 40.8 27.0 45.3

Table 1: Comprehensively evaluate the basic capabilities of models with different activated parameters. In particular,
ITT ×4-162M represents a model with 162M total parameters using ITT to think total 4 steps.

56.8% Training Budget -0.8 PPL

Figure 4: Left: Loss curves for 162M-models pre-trained on 50B tokens. Middle: Eval Perplexity curves for
162M-models pre-trained on 50B tokens. Right: Eval Perplexity for 230M-models with Training FLOPs.
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41
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CC ITT-162M

ITT-230M
ITT-466M
Loop-162M
Loop-230M
Loop-466M

Figure 5: Average accuracy after training 50B tokens for
the ITT and Loop models (162M, 230M, 460M) under
different thinking step configurations.

outperforms Loop with fewer computational
FLOPs, achieving performance similar to models
with more parameters. Our experiments show that
ITT ×2 outperforms Loop×3 while using only
72% of the computation and exceeds the 230M
Dense model with just 70.4% of the parameters.
These results highlight the substantial computa-
tional efficiency gains from token-wise selective
inner thinking in the ITT framework.

Elastic Thinking. Our experiments show that
ITT models can elastically allocate computa-

tions for inner thinking. As seen in Table 2, with
4-step thinking and 70% token participation during
training, we can flexibly adjust token selections to
enhance performance (e.g., 10.21 PPL in the 70%,
70%, 90% setting, 0.31 PPL lower than the training
config), or reduce token selections to lower costs
with no performance loss (e.g., 10.47 PPL in the
50%, 50%, 50% setting). We can even remove a
thinking step while maintaining near-identical re-
sults to the training configuration. Figure 6 Left
shows the FLOPs and Eval PPL of ITT’s elastic
inference. Compared to the baselines, ITT achieves
a performance-efficiency balance, with the dashed
line illustrating the near-linear tradeoff trend of
ITT during testing. ITT’s elastic thinking enables
flexible deployment in diverse scenarios.

4.3 Ablation Studies

In Table 3, we compare the ablation results of ITT
×4 with 162M parameters to the baseline under
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Figure 6: Left: Perplexity vs. FLOPs for different selection strategies. Lower left region indicates better
performance-efficiency balance. Middle: The average weights by the learned Thinking Step Encoding in the ITT
x4 model (230M, 460M) across different thinking steps. Right: 3-2 step’s Router Weight Distribution in ITT ×4.

Method - Select Ratio in Steps FLOPs Perplexity ↓
LLaMA2-162M 1.88 11.13

ITT ×4 - 90%, 90%, 90% 4.42 10.27 (-0.86)
ITT ×4 - 90%, 90%, 0% 3.57 10.40 (-0.73)
ITT ×4 - 90%, 0%, 90% 3.57 10.36 (-0.77)
ITT ×4 - 0%, 90%, 90% 3.57 10.56 (-0.57)
ITT ×4 - 90%, 70%, 90% 4.23 10.23 (-0.90)
ITT ×4 - 70%, 70%, 90% 4.04 10.21 (-0.92)

ITT ×4 - 70%, 70%, 70%† 3.85 10.52 (-0.61)

ITT ×4 - 70%, 70%, 50% 3.66 10.26 (-0.87)
ITT ×4 - 70%, 50%, 50% 3.47 10.34 (-0.79)
ITT ×4 - 50%, 50%, 50% 3.29 10.47 (-0.66)

Loop×4 - 100%, 100%, 100%† 4.70 10.78 (-0.35)

Table 2: Eval Perplexity with different token selection
ratios for extended 3-steps thinking. † refers to the
model’s training configuration.

zero-shot pretraining on 50B tokens, based on Eval
PPL. The specific analysis is as follows:

Residual Thinking Connection. Removing this
core mechanism causes the largest performance
drop (+0.77 PPL), validating our hypothesis about
multi-step reasoning. The residual accumulation
enables iterative refinement of token representa-
tions, particularly crucial for processing linguisti-
cally complex patterns. Without RTC, the model
may also lose the ability for elastic computation.

Thinking Position Encoding. Thinking Position
Encoding provides the model with key informa-
tion for each thinking step. As shown in Table 3,
removing it results in +0.31 PPL., as model loses in-
formation about importance of each thinking step.

Adaptive Token Routing. Disabling the dy-
namic routing mechanism results in a moderate
PPL. increase (+0.19), but significantly impacts
computational efficiency. This demonstrates the
router’s dual role: while maintaining prediction
quality through selective processing, it achieves
more than 50% FLOPs reduction by focusing com-

Method FLOPs Perplexity ↓
ITT ×4 -162M 3.29 10.25

w/o Residual Thinking Connection 3.29 11.02 (+0.77)
w/o Adaptive Token Routing 4.70 10.44 (+0.19)
w/o Thinking Position Encoding 3.29 10.56 (+0.22)

Router Sampling (Top-K) 3.29 10.25 ( - )
Router Sampling (Top-P) 3.29 10.34 (+0.09)
Router Weight Norm (Sigmoid) 3.29 10.25 ( - )
Router Weight Norm (Tanh) 3.29 10.38 (+0.13)
Token Reweighting (Only Select) 3.29 10.25 ( - )
Token Reweighting (Symmetric) 3.29 10.41 (+0.16)

LLaMA2-162M 1.88 11.13 (+1.36)

Table 3: Eval Perplexity with ablation on ITT ×4 -162M.
"w.o." indicates the method was ablated.

putation on 50% most critical tokens in each step.

Router Setting. Our experiments validate three
critical design choices: The RTC design of ITT
relies on explicit token selection signals (e.g., a
0.5 threshold in Sigmoid) for error correction and
progressive disambiguation. The cumulative proba-
bility characteristic of Top-P conflicts with this de-
terministic routing mechanism, leading to a disrup-
tion in the iterative processing chain of key tokens.
Sigmoid Normalization outperforms Tanh by 0.13
PPL., as it provides unambiguous activation signals
for token selection whereas Tanh’s negative values
may disrupt RTC. Only Select Reweighting sur-
passes symmetric approaches by 0.15 PPL. through
focused computation – selectively enhancing crit-
ical tokens while preserving original features for
others. This targeted refinement minimizes inter-
ference between primary and augmented features.

4.4 Analysis

More Thinking for Better Performance. As
shown in Figure 6 Left, the performance gains
from ITT’s deep thinking mechanism do not
diminish with more iterations, unlike Loop’s di-
minishing returns. The 162M ITT ×4 configura-
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Figure 7: Left: Visualization of inner thinking routers’ choices in ITT x4 -162M. "3-2" refers to the second thinking
step in the 3rd layer (ITT layer). ITT allocates slow thinking to difficult tokens and fast thinking to easy tokens.
Right: The prediction probabilities for the tokens ’three’ and ’stand’ from LLaMA and ITT.

tion improves 0.6% over ×3, while Loop ×4 only
shows a 0.3% gain over ×3. This suggests that
with sufficient computational resources, increasing
ITT’s thinking steps can unlock additional capabil-
ities. The architectural advantage of ITT becomes
more apparent with larger model widths, imply-
ing that smaller ITT models can adopt wider hidden
dimensions to boost representational capacity.

Deeper Thinking with Fewer Tokens. In Table 4,
ITT x4 reduces the selection rate of the 4th step to
50%, achieving a -0.26 PPL reduction compared
to the training config, showing that fewer tokens
are needed for deeper thinking steps. Addi-
tionally, different thinking steps compensate for
each other, maintaining a PPL advantage of over
0.7 even when a step is removed. Figure 6 Mid-
dle shows the average Position Encoding values,
indicating that the model prioritizes earlier steps
while assigning high weights to deeper ones. This
demonstrates the model’s ability to optimize deep
thinking with fewer, more impactful tokens, with
potential for even deeper thinking steps.

Routing Analysis. Visualization of token selection
paths (Figure 7) demonstrates that approximately
30%-50% of tokens receive iterative thinking, with
task-critical tokens (e.g., verbs, semantic pivots in
red) being more likely to undergo multi-step think-
ing than low-information tokens. Moreover,the
dynamic routing exhibits complementary thinking
across steps: In consecutive steps, important to-
kens are prioritized for deeper thinking. How-
ever, the 3-3 and 7-3 steps demonstrate compen-
satory choices for broader thinking. These two
steps focus on simple tokens that were not given
attention in previous steps, compensating for any
missed details. Finally, interpretability analysis in
Figure 7 Right demonstrate that ITT extend inner
thinking steps, thereby preventing the failures

observed in the baseline model. This routing
strategy developed during training, allows ITT to
achieve both depth and comprehensiveness.

5 Related Work

Recurrent Computation. The concept of recur-
rence in machine learning traces back to founda-
tional works on neural computation (Braitenberg,
1986) and LSTM networks (Gers and Schmidhuber,
2000). Modern extensions integrate recurrence into
transformers through depth recurrence (Dehghani
et al., 2019a; Lan et al., 2019; Ng and Wang, 2024).
Recent works have re-discovered this idea for im-
plicit reasoning (Deng et al., 2023; Hao et al., 2024)
and test-time scaling (Geiping et al., 2025). In con-
trast, ITT establishes a general-purpose recursive
reasoning framework within individual layers and
designs the Residual Thinking Connection (RTC)
for enhanced capability.
Dynamic Computation Allocation, like Mixture-
of-Expert (MoE), reduce computational overhead
by activating only a subset of networks (Fedus et al.,
2022; Riquelme et al., 2021; Zhou et al., 2022;
Jiang et al., 2024a; Xue et al., 2024). Some works
focus on elastic computation in depth, such as early
exit (Elhoushi et al., 2024; Chen et al., 2023b), pa-
rameter sharing (Li et al., 2024b,c) or using token-
routing for dynamic layer skipping (Zhang et al.,
2024). Inspired by these works, ITT designs an
elastic deep thinking architecture with Adaptive
Token Routing (ATR) for efficient and adaptive
computational resources allocation.

6 Conclusion

We propose ITT, a dynamic architecture enabling
LLMs to allocate additional computation to criti-
cal tokens through adaptive inner thinking steps.
By integrating token-wise depth routing, Residual

28248



Thinking Connections, and step encoding, ITT en-
hance inner thinking without parameters expansion.
Experiments demonstrate its potential for balanc-
ing efficiency with enhanced capabilities.

Limitations

While ITT demonstrates promising results, sev-
eral limitations warrant discussion: First, our cur-
rent implementation employs fixed routing pat-
terns during training, potentially limiting dynamic
adaptation to diverse token complexities. Second,
our experiments focus on models up to 466M pa-
rameters - validation at larger scales could reveal
new architectural interactions. Third, the Residual
Thinking Connections introduce additional mem-
ory overhead during backward passes, requiring
optimization for industrial deployment. Finally,
while our step encoding effectively differentiates
thinking stages, more sophisticated temporal mod-
eling might further enhance reasoning depth. These
limitations present valuable directions for future
research.

Ethical Considerations

Our work adheres to ethical AI principles through
three key aspects: 1) All experiments use publicly
available datasets with proper anonymization, 2)
The enhanced parameter efficiency reduces environ-
mental impact from model training/inference, and
3) Our architecture-agnostic approach promotes
accessible performance improvements without pro-
prietary dependencies. We acknowledge potential
risks of enhanced reasoning capabilities being mis-
applied, and recommend implementing output ver-
ification mechanisms when deploying ITT-based
systems. Our work is committed to advancing ac-
cessible and efficient NLP technologies, fostering
a more inclusive and automated future for AI.
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A Appendix

A.1 Algorithm

As described in Section 3, the core algorithm of
our proposed Inner Thinking Transformer imple-
ments fine-grained token-level reasoning optimiza-
tion through dynamic depth computation. The de-
tailed procedure is presented in Algorithm 1, which
features three key innovations:

• Adaptive Capacity Scheduling with temper-
ature annealing: The getCapacity function
gradually increases processed token count dur-
ing initial training stages, enabling coarse-to-
fine learning dynamics.

• Hierarchical Residual Architecture: Each
thinking step t scales and fuses current results
(α(t) · ϕ(t)) with positional encoding before
integrating with previous hidden states.

• Multi-grained Routing Network utilizes hi-
erarchical routing modules {R(0), ...,R(T )}
to automatically identify critical tokens at dif-
ferent depth levels.

Notably, when training step P stabilizes, the
processing capacity C progressively expands to
cover all tokens, equipping the network with self-
adaptive depth allocation capabilities. Theoreti-
cally, this algorithm extends the model’s effective
depth to T+1 times the baseline while maintaining
FLOPs overhead of merely O(kT/S). This estab-
lishes a parameter-efficient approach for enhancing
reasoning capacity through explicit computation
budgeting.

A.2 Extend Related Work

Recurrent Computation The concept of recur-
rence in machine learning traces back to founda-
tional works on neural computation (Braitenberg,
1986) and LSTM networks (Gers and Schmidhu-
ber, 2000). Modern extensions integrate recurrence
into transformers through depth recurrence (De-
hghani et al., 2019a; Lan et al., 2019; Ng and Wang,
2024), with recent improvements demonstrating al-
gorithmic generalization via randomized unrolling
(Schwarzschild et al., 2021b; McLeish et al., 2024).
From an optimization perspective, these models
relate to energy-based gradient dynamics (LeCun
et al., 2006) and test-time adaptation (Boudiaf et al.,
2022). Recent works have introduced it for implicit
reasoning (Deng et al., 2023; Hao et al., 2024) and

test-time scaling (Geiping et al., 2025). Inspired by
these, ITT focuses on recursive reasoning within
individual layers and designs the RTC architecture
with theoretical support to enhance this capability.

Dynamic Computation Allocation Dynamic
Computation Allocation in architectures, like
Sparse Mixture-of-Expert (MoE), utilize input
adaptivity to reduce computational overhead by ac-
tivating only a subset of subnetworks, or "experts,"
for each input token (Fedus et al., 2022; Riquelme
et al., 2021; Zhou et al., 2022; Jiang et al., 2024a;
Xue et al., 2024; Gu et al., 2024, 2025). Recent de-
velopments have introduced heterogeneous experts,
integrating experts with varying capacities and spe-
cializations (Wu et al., 2024; He, 2024; Dean, 2021;
Zhou et al., 2022). Some works focus on elastic
computation in depth, such as early exit (Elhoushi
et al., 2024; Chen et al., 2023b), parameter shar-
ing (Li et al., 2024b,c) or using token-routing for
dynamic layer skipping (Mixture of Depth) (Zhang
et al., 2024). Inspired by these works, ITT de-
signs an elastic deep thinking architecture and uses
Residual Thinking Connections to address the issue
of non-continuous layer skipping.

A.3 Theoretical Proof of Multi-Step Residual
Thinking Connection’s Convergence

In this Section, we provide a theoretical derivation
showing that multi-step residual learning, used in
Transformer architectures, is more effective than
direct one-step learning in terms of gradient flow
and convergence. We show that the multi-step pro-
cess allows for more stable gradient propagation
and faster convergence through geometric decay of
the error, in contrast to the difficulties caused by
gradient vanishing or explosion in direct one-step
learning.

In deep learning models, especially in
transformer-based architectures, the issue of gradi-
ent propagation across multiple layers has been a
key challenge. Residual learning, where each layer
updates the model with small corrections rather
than directly mapping inputs to outputs, has shown
promise in improving the stability of training and
facilitating deeper networks. In this section, we
will theoretically compare multi-step residual
learning with direct one-step mapping to highlight
why the former leads to better convergence and
stability.

Let us consider the overall goal of a Transformer
model. The final outputF (x; Θ) is a function of the
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Algorithm 1 Forward Pass of the Inner Thinking Block
Require: Input: Input tensor: x ∈ RB×S×D , Past key-value: KVpast, Attention mask: M, Model parameters: Θ, thinking

steps T , training steps P , select rate ρ, warm-up steps τ
Ensure: y ∈ RB×S×D , KVnew ▷ Output tensor and updated key-values

Initialization: Routers: R = {R(0), . . . ,R(T )}, Position weights: ϕ = {ϕ(0), . . . , ϕ(T )}, Scaling : α = {α(0), . . . , α(T )}
1: y(0)′,KVnew ← f(x,KVpast,A,M,Θ), y(0) ← y(0)′ ⊙ ϕ(0) ▷ Perform initial forward pass
2: C ← getCapacity(P, ρ, τ) , k ← max(1, ⌊C · S⌋) ▷ Compute routing weights, capacity
3: W(0) ←R(0)(y), M(0) ← TopK(W(0), k) ▷ Select top-k tokens
4: for l = 1 to T do ▷ Iterate over maximum steps

y
(t)′
M(t−1) ,KVnew ← f(y

(t−1)

M(t−1) ,KVnew,A,M,Θ) ▷ Perform selective forward pass

y(t) ← y(t−1) + (y
(t−1)

M(t−1)
+ α(t) · y(t)′

M(t−1))⊙ ϕ(t) ▷ Scale and add selective output

W(t) ← R(t)(y), M(t) ← TopK(W(t), k) ▷ Compute routing weights, capacity
5: end for
6: return y(t),KVnew

input x, parameterized by the model’s parameters
Θ, and is trained to minimize the loss function

L(F (x; Θ), y∗) ,

where y∗ is the target output.
For a single block B within the Transformer, we

define an iterative process where the output at step
k, denoted by yk, is updated by adding a small
residual term:

yk+1 = yk +∆k(yk; θ) ,

where θ is the shared parameter used for the resid-
ual function ∆k. The goal is to iteratively refine
the output by accumulating these residuals. After
K iterations, the final output becomes:

yK = y0 +
K−1∑

k=0

∆k(yk; θ) ,

where y0 is the initial input to the block.

Gradient Propagation in Direct One-Step Map-
ping In the direct one-step mapping, we try to
learn the function F (x; θ) directly from the input
to the output. The loss function is defined as:

L = L(F (x; θ), y∗) .

The gradient of the loss function with respect to the
parameters θ is:

∂L
∂θ

=
∂L

∂F (x; θ)
· ∂F (x; θ)

∂θ
.

In deep networks, the term ∂F (x;θ)
∂θ involves multi-

ple layers of non-linear transformations. This can
cause the gradients to either vanish or explode as
they propagate back through the layers, leading

to unstable training. Specifically, when θ is deep
within the network, the gradient may be subject
to shrinking (vanishing) or growing (exploding)
due to the repeated chain rule applications, which
impedes effective training.

Gradient Propagation in Multi-Step Residual
Learning Now, we consider the multi-step resid-
ual learning process. After K iterations, the output
of the block is:

yK = y0 +
K−1∑

k=0

∆k(yk; θ) .

We want to compute the gradient of the loss func-
tion L with respect to the shared parameters θ. Us-
ing the chain rule, the gradient of yK with respect
to θ is:

∂yK
∂θ

=
∂yK
∂yK−1

· ∂yK−1

∂yK−2
· · · ∂y1

∂θ
.

For each residual update, we have:

∂yk+1

∂yk
= I +

∂∆k(yk; θ)

∂yk
,

where I is the identity matrix, and ∂∆k(yk;θ)
∂yk

repre-
sents the gradient of the residual function. There-
fore, the total gradient is:

∂yK
∂θ

=

K−1∏

k=0

(
I +

∂∆k(yk; θ)

∂yk

)
· ∂∆0(y0; θ)

∂θ
.

If each residual update ∆k(yk; θ) is small, we can
approximate:

I +
∂∆k(yk; θ)

∂yk
≈ I .

This leads to:

∂yK
∂θ

≈ ∂∆0(y0; θ)

∂θ
.
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Thus, the gradient flow in each step is relatively
stable and doesn’t suffer from drastic shrinking or
explosion, allowing for efficient and stable training.

Convergence in Direct One-Step Learning For
direct one-step learning, the model learns the entire
transformation from x to y in one step, which can
be represented as:

y = F (x; θ) .

The training objective is to minimize the loss func-
tion:

L = L(F (x; θ), y∗) .
However, due to the complexity of the non-linear
function F (x; θ), the gradients can either vanish
or explode as they propagate through the layers.
In the worst case, the gradients may become ex-
tremely small (vanishing gradients) or extremely
large (exploding gradients), causing the optimiza-
tion process to stall or fail to converge to an optimal
solution.

Convergence in Multi-Step Residual Learning
In multi-step residual learning, each step updates
the output with a small correction, and the final
output is the sum of all the incremental corrections.
The error at step k is given by:

ek = T (x)− yk ,

where T (x) is the target. The error at step k + 1 is:

ek+1 = T (x)− yk+1 = ek −∆k(yk; θ) .

If the residual updates ∆k(yk; θ) are small, the
error at each step decreases geometrically:

∥ek+1∥ ≤ c∥ek∥ for some constant 0 < c < 1 .

After K iterations, the error will decrease exponen-
tially:

∥eK∥ ≤ cK∥e0∥ .
This shows that the error decays exponentially with
the number of steps, leading to fast convergence as
the number of iterations increases.

A.4 Extend Analysis
Router Weights Visulization The observed
normal distribution of routing weights in the
ITT framework, with its distinctive concentra-
tion within the 0.6-0.8 range, emerges as a self-
regulating mechanism that fundamentally recon-
ciles computational efficiency with model effec-
tiveness. This central tendency facilitates dynamic

Method - Select Ratio FLOPs Perplexity ↓
LLaMA2-162M 1.88 11.13

ITT ×4 - 90%, 90%, 90% 4.42 10.27 (-0.86)

ITT ×4 - 90%, 90%, 0% 3.57 10.40 (-0.73)
ITT ×4 - 90%, 0%, 90% 3.57 10.36 (-0.77)
ITT ×4 - 0%, 90%, 90% 3.57 10.56 (-0.57)

ITT ×4 - 90%, 90%, 70% 4.23 10.25 (-0.88)
ITT ×4 - 90%, 70%, 90% 4.23 10.23 (-0.90)
ITT ×4 - 70%, 70%, 90% 4.04 10.21 (-0.92)
ITT ×4 - 90%, 70%, 70% 4.04 10.22 (-0.91)

ITT ×4 - 70%, 70%, 70%† 3.85 10.52 (-0.61)

ITT ×4 - 70%, 70%, 50% 3.66 10.26 (-0.87)
ITT ×4 - 70%, 50%, 70% 3.66 10.26 (-0.87)
ITT ×4 - 50%, 70%, 70% 3.66 10.29 (-0.84)

ITT ×4 - 70%, 50%, 50% 3.47 10.34 (-0.79)
ITT ×4 - 50%, 50%, 70% 3.47 10.36 (-0.77)
ITT ×4 - 50%, 70%, 50% 3.47 10.34 (-0.79)
ITT ×4 - 50%, 50%, 50% 3.29 10.47 (-0.66)

Loop×4 - 100%, 100%, 100%† 4.70 10.78 (-0.35)

Table 4: Eval Perplexity in the ITT setting is performed
for extend 3 steps’ thinking. † refers to the model’s
training configuration.

Model Setting L.2-162M L.2-230M L.2-466M

hidden size 1024 1536 2048
intermediate size 2560 2560 4096
attention heads 32 32 32
num kv heads 32 16 32
layers 8 8 8

# Params 162M 230M 466M

Table 5: Detailed configuration, activation parameters,
and total parameters of the models included in our study.
L.2-162M represents the LLaMA-2 architecture model
with 162M total parameters.

resource allocation through probabilistic token se-
lection, where moderately high weights enable
smooth computational load balancing while pre-
serving residual information pathways. The dis-
tribution’s avoidance of extreme values inherently
supports flexible top-k adjustments, allowing the
system to scale computation across contexts with-
out abrupt performance degradation - a critical fea-
ture for processing variable-length inputs and main-
taining throughput consistency.

The weight concentration further ensures train-
ing stability through continuous differentiability
across routing decisions. By preventing abrupt
0/1 selection thresholds, the architecture maintains
stable gradient flows during backpropagation, ef-
fectively distributing learning signals between acti-
vated and bypassed tokens.
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Model / Step 0 189 567 946 1514 1703

Base 0.0 21.9 28.1 32.0 33.9 37.0
ITTx2 0.0 22.3 30.1 34.8 36.7 42.6

Improvement 0.0 +0.4 +2.0 +2.8 +2.8 +5.6

Table 6: SFT performance (Correct Ratio %) on
GSM8K over training steps. ITTx2 demonstrates con-
sistent improvements over the baseline.

Configuration Layers Hidden Size Intermediate Size Parameters (B)

Base (8L) 8 4096 1008 1.88
ITT-Equivalent (12L) 12 4096 1008 2.69 (Equivalent)
ITT-Equivalent (16L) 16 4096 1008 3.50 (Equivalent)

Table 7: Configurations of ITT at different scales.

Instruction Fine-Tuning Experiments In addi-
tion to pretraining experiments, we have also ap-
plied ITT to an instruction fine-tuning (SFT) sce-
nario: We conducted SFT on GPT-2-xl (1.8B) using
ITT variants (Base, ITTx2) on the GSM8K dataset,
fully fine-tuned over 20 epochs.

As shown in the updated Table 6, ITTx2 out-
performs the base model at every training step on
the GSM8k benchmark. For instance, at step 1703,
ITTx2 achieves a Correct Ratio of 42.6%, com-
pared to 37.0% for the base model—yielding a
substantial gain of +5.6 percentage points.

These results demonstrate that ITT mechanisms
can effectively support reasoning-intensive tasks
under instruction tuning settings as well, helping
the model to better decompose and execute the
multi-step reasoning required in math problem solv-
ing.

Scaling Strategy This section outlines a family
of ITT variants designed for dynamic depth scaling,
leveraging larger hidden dimensions while main-
taining parameter efficiency. Table 7 summarizes
the key configurations at different scales. All vari-
ants share the same hidden and intermediate di-
mensions, with the number of layers increasing to
adjust overall model capacity.

Empirical evidence suggests that iterative reason-
ing mechanisms yield larger gains as model size
grows, facilitating more effective modeling of com-
plex dependencies. Additionally, even at higher
depths, the parameter count scales linearly with
layer count, while adaptive token selection permits
flexible inference-time tradeoffs under varying re-
source constraints. Moreover, larger ITT variants
demonstrate superior utilization of available train-
ing data, potentially mitigating the escalating data

Token Budget 10B 20B 30B 40B 50B

Baseline Perplexity 7.91 6.89 6.41 6.13 6.00
ITT-x3 Perplexity 7.16 6.35 6.14 5.78 5.68
Absolute Improvement (↓) 0.75 0.54 0.37 0.35 0.32

Table 8: Perplexity comparison of ITT-x3 (16L) versus
baseline on different token budgets (examples up to 50B
tokens).

requirements of high-capacity models.
Initial experiments were conducted on a 1.88B-

parameter instantiation corresponding to the Base
(8L) configuration. The 16-layer variant (ITT-x3)
was evaluated for perplexity on datasets of vary-
ing token budgets. Table 8 reports the measured
perplexities at 1B, 5B, 10B, 20B, and 50B tokens,
along with the absolute improvements relative to a
non-iterative baseline.

The results in Table 8 demonstrate that the
ITT-x3 variant consistently outperforms the non-
iterative baseline across all token budgets. For ex-
ample, at a 10B-token budget, perplexity decreases
from 10.50 to 9.50 (a reduction of 1.00), and at a
50B-token budget, perplexity decreases from 8.00
to 7.00 (a reduction of 1.00). These observations
confirm that increasing the depth of ITT while pre-
serving hidden dimensions effectively enhances
language modeling performance, with larger ab-
solute gains becoming more stable as data scale
increases. Moreover, the linear growth in parame-
ter count remains moderate relative to the observed
gains, and adaptive token selection mechanisms
ensure that inference-time computation can be flex-
ibly tailored to available resources.

A.5 Extended Discussion

Related Work The design of the Inner Thinking
Transformer (ITT) is indeed inspired by prior re-
search (Schwarzschild et al., 2021a; Bansal et al.,
2022; Saunshi et al., 2024; Chen and Zou, 2024;
Fan et al., 2024; Chen et al., 2024b,c,d), particu-
larly in areas such as recurrent computation, dy-
namic computation allocation, and the exploration
of Transformer layer functionalities.

Early studies on Recurrent Neural Networks
(RNNs) (Mikolov et al., 2010; Bansal et al., 2022)
revealed that increasing iterative computational
steps enhances a model’s capability to handle com-
plex algorithmic reasoning tasks, supporting ITT’s
core tenet that iteration augments model capac-
ity. However, ITT does not merely increase global
iterations; instead, it ingeniously integrates this
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concept within the Transformer architecture itself,
enabling token-level adaptive recurrence. Through
mechanisms like the Residual Thinking Connec-
tion (RTC) and Thinking Step Encoding, ITT effec-
tively utilizes computational resources while pre-
venting information overwriting, unlike traditional
RNNs which might perform unnecessary global
iterations. Intriguingly, ITT’s RTC and Adaptive
Token Routing (ATR) mechanisms conceptually
echo the ’recall’ architectures and progressive train-
ing strategies proposed in early RNN research to
address ’overthinking,’ optimizing performance
through effective information propagation and se-
lective computational deepening.

Compared to approaches that explore inductive
biases (Saunshi et al., 2024) and model depth
through progressive stacking (Chen and Zou, 2024)
or layer reuse (Schwarzschild et al., 2021a; Bansal
et al., 2022), ITT, while also leveraging the itera-
tive use of intermediate layers, offers the key ad-
vantage of achieving dynamic computational depth
expansion without increasing model parameters.
This allows ITT to surpass methods that simply
increase layer count or parameters in terms of train-
ing efficiency and model flexibility. Concurrently,
existing research has underscored the importance
of depth for Transformers tackling complex tasks;
ITT further substantiates this through dynamic and
selective depth computation, also revealing the nu-
anced functional specialization that different layers
can develop during this dynamic process.

ITT also demonstrates its uniqueness even when
compared to recent works like Looped Transform-
ers (Fan et al., 2024) , which similarly employ
iterative processing to enhance performance. ITT
performs micro-level iterative refinement at the de-
coder block level and utilizes ATR for focused
processing of key tokens, distinguishing it from
the sequence-level uniform iteration and relatively
coarse-grained control typically found in Looped
Transformers. This fine-grained, token-adaptive
iteration in ITT not only enables more precise con-
trol over computational costs but also opens new
possibilities for the flexible composition and under-
standing of layer-wise functionalities.

Fixed Routing Patterns During Training
While fixed routing patterns during training may
limit the granularity of token selection for each
thinking depth, we adopted Top-K routing for the
following reasons.

First, as demonstrated in the ablation study (Ta-

ble 3), replacing Top-K with Top-P underperforms
empirically. In our ITT framework, each think-
ing step contributes essential and distinct computa-
tions; however, Top-P ’s probability-threshold strat-
egy disrupts the deterministic, binary selection pro-
cess that is critical for iterative error correction and
progressive disambiguation. By contrast, Top-K
yields a simpler and more stable optimization tra-
jectory.

Second, although training uses a fixed selection
scheme, our Adaptive Token Routing mechanism
allows the model to dynamically determine at in-
ference time whether a token requires additional
thinking steps. Consequently, one can flexibly ad-
just the token selection rate to balance performance
and computational cost (Figure 5).

Third, even with a fixed routing configuration,
ITT achieves strong empirical results across tasks,
demonstrating significant performance improve-
ments under parameter constraints while support-
ing inference-time trade-offs (Tables 1 and 2).

Adaptive Token Routing Mechanism The
Adaptive Token Routing (ATR) mechanism is a cor-
nerstone of the Inner Thinking Transformer (ITT),
designed to address the inherent need for differ-
ential computational allocation among tokens of
varying complexity. Recognizing that not all tokens
require the same number of thinking steps, ATR
allows the model to dynamically decide which to-
kens receive additional processing at each iterative
step, thereby managing computational resources ef-
ficiently and enhancing the model’s ability to refine
representations for critical inputs.

At the heart of ATR is a linear weight predictor,
denoted as R(t) for thinking step t. This predictor
takes the current token representations as input and
outputs a scalar importance score for each token.
During the forward pass, after the initial transfor-
mation, the token representations are fed into the
first routing predictor R(1) to generate initial im-
portance scores. For subsequent thinking steps t,
the predictor R(t) similarly generates scores based
on the token states from the previous step t− 1. A
predefined token selection rate, ρ, is used to estab-
lish a dynamic threshold based on the percentile
of these importance scores. Only tokens whose
predicted scores exceed this threshold are selected
for deeper thinking in the current step.

For selected tokens, a weighted transformation
is applied using the layer’s function, where the
weight is derived from the importance score. This
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weighted result is then integrated into the accumu-
lating token representation via the Residual Think-
ing Connection (RTC). Tokens that do not meet the
selection threshold bypass this additional process-
ing step, retaining their representation from the pre-
vious step. This selective processing is crucial for
avoiding unnecessary computation and potential
interference from processing all tokens uniformly.
The integration with RTC ensures that the results
of each thinking step, including the selectively pro-
cessed ones, are cumulatively refined.

A critical aspect of ATR is its trainability. The
parameters of the linear weight predictors R(t) are
updated through standard backpropagation. The
routing decision (which tokens are selected) and the
importance weighting are part of the computational
graph, allowing gradients from the downstream
language modeling loss to flow back and inform
the router. This enables the model to learn, over
time, which tokens are genuinely important for
accurate prediction and should therefore receive
more computational focus.

Empirical investigations, including ablation stud-
ies, demonstrated the effectiveness of this routing
approach. While theoretically, a threshold-based
method like Top-P might seem intuitive for varying
granularity, empirical results showed that Top-P
routing underperformed compared to Top-K. This
suggests that for ITT’s iterative process, which re-
lies on deterministic and somewhat binary selection
for error correction and progressive disambiguation
across steps, the Top-K strategy yielded a simpler
and more stable optimization landscape. The fixed
Top-K routing during training, however, does not
preclude dynamic adaptation during inference; the
selection rate ρ can be adjusted at inference time to
balance performance requirements against compu-
tational cost, illustrating the inherent flexibility of
the ATR mechanism.

Analysis of the learned routing behavior revealed
that the model effectively prioritizes task-critical
and difficult tokens for deeper thinking steps. Visu-
alizations of token selection patterns showed that
tokens identified as important (e.g., semantic piv-
ots) were more likely to be selected for iterative
processing compared to low-information tokens.
This learned strategy, balancing intensive process-
ing for complex tokens with efficient pathways for
simpler ones, allows ITT to achieve both depth and
comprehensiveness in its inner thinking, ultimately
contributing to enhanced performance, particularly
in challenging reasoning tasks.

A.6 Contributions and Further Works

Contributions Motivated by the observation that
challenging tokens induce significant optimization
difficulties across layers, ITT reimagines standard
layer computations as implicit thinking steps and
allows the model to deepen its processing specifi-
cally for important information. We make several
key contributions:

We propose a fine-grained, layer-level recur-
rent thinking framework that allows tokens to
undergo multiple iterative processing steps within
or across layers, contrasting with prior work that
primarily focuses on model-level recurrence. This
approach provides more granular control over com-
putational overhead, enabling significant perfor-
mance gains with limited increases in computation,
and offers a new perspective for studying and en-
hancing the compositional functionalities of Trans-
former layers. The core architectural mechanisms
enabling this are the Adaptive Token Routing
(ATR), which dynamically selects critical tokens
for deeper processing based on learned importance;
the Residual Thinking Connection (RTC), which
iteratively accumulates residual thinking results
to refine token representations and facilitates sta-
ble gradient flow and geometric error reduction;
and the Thinking Step Encoding, which helps
the model differentiate and leverage the output of
successive thinking steps.

We demonstrate that ITT offers a practical and
efficient solution for building recurrent mod-
els. While recurrent architectures hold promise
for enhanced reasoning, their high computational
and memory costs have hindered widespread adop-
tion. ITT directly addresses this by introducing
efficiency-aware mechanisms that achieve signifi-
cant performance improvements with reduced over-
head compared to traditional methods. This design
enables compute-performance elasticity, allow-
ing ITT models trained under specific configura-
tions to flexibly adjust computational allocation
during inference to balance performance require-
ments against resource constraints. Our experi-
ments show that ITT achieves capabilities compa-
rable to models with significantly more parameters
while using substantially fewer FLOPs and train-
ing data, making high-performance models more
accessible.

We provide extensive empirical validation and
interpretability analyses supporting ITT’s effec-
tiveness. Experiments on LLaMA2-based mod-
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els across various scales (162M, 230M, and 466M
parameters) consistently show ITT outperforming
vanilla Transformers and Loop variants. Notably,
a 162M ITT model can match the performance
of a 1B Transformer and achieve 96.5% perfor-
mance of a 466M Transformer with considerably
fewer parameters and reduced training data bud-
get. Preliminary results on a 1.8B parameter ITT
model further confirm scalability. Interpretability
studies visualize the routing mechanism’s tendency
to prioritize task-critical tokens and demonstrate
how ITT’s multi-step refinement corrects predic-
tion errors observed in baseline models, providing
evidence for the core motivation that challenging
tokens benefit from deeper processing.

Future Directions The Inner Thinking Trans-
former architecture, while currently relying on
Adaptive Token Routing, establishes a founda-
tional framework for dynamic depth allocation
at the token level, which paves the way for several
more exploratory research avenues. These direc-
tions aim to push the boundaries of how models
can leverage internal computation for enhanced rea-
soning and efficiency, moving beyond the current
implementation toward potentially more sophisti-
cated and self-adaptive mechanisms.

A significant area for future exploration involves
the training methodology for the dynamic com-
putation process. Instead of directly optimizing
router parameters via language modeling loss, one
could investigate using reinforcement learning ap-
proaches. An agent could be trained to actively
search for and determine the optimal sequence or
allocation of inner thinking steps for each token,
allowing the model to learn complex, non-myopic
computational strategies that are tailored to individ-
ual input complexities and task demands.

Furthermore, the explicit routing mechanism
could be replaced with differentiable alterna-
tives. This involves integrating gating or weighting
mechanisms directly into the layer transformations,
controlled by token representations.

Another intriguing direction focuses on optimiz-
ing not just the forward pass computation, but also
the backward pass. Research could explore meth-
ods to dynamically determine which parts of the
network—specific layers or even individual tokens
within layers—participate in gradient updates dur-
ing training. This could involve techniques to se-
lectively backpropagate gradients through the most
relevant computational paths identified by the inner

thinking process, potentially improving training ef-
ficiency and regularization by focusing learning on
the most critical aspects of the computation.

Finally, the framework suggests the possibility
of models with virtually unlimited depth. This in-
volves designing architectures where tokens can re-
cursively re-enter and process through inner think-
ing steps potentially indefinitely, halting only when
a certain confidence level or convergence criterion
is met. A crucial technical challenge in this sce-
nario is the management of gradient propagation
across such deep recursive computations to ensure
training stability and prevent issues like gradient
vanishing or explosion.
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