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Abstract

Large language models (LLMs) have encoded
vast amounts of knowledge in their parame-
ters, but the acquired knowledge can sometimes
be incorrect or outdated over time, necessitat-
ing rectification after pre-training. Traditional
localized methods in knowledge-based model
editing (KME) typically assume that knowl-
edge is stored in particular intermediate layers.
However, recent research suggests that these
methods do not identify the optimal locations
for parameter editing, as knowledge gradually
accumulates across all layers in LLMs during
the forward pass rather than being stored in spe-
cific layers. This paper, for the first time, intro-
duces the concept of critical transmission paths
into KME for parameter updating. Specifically,
these paths capture the key information flows
that significantly influence the model predic-
tions for the editing process. To facilitate this
process, we also design a parameter-aware con-
trastive rectifying algorithm that considers less
important paths as contrastive examples. Ex-
periments on two prominent datasets and three
widely used LLMs demonstrate the superiority
of our method in editing performance.

1 Introduction

Large language models (LLMs) have become the
cornerstone of natural language processing (NLP)
research as they could serve as the knowledge
repositories acquired from extensive pre-training
corpora, providing a wealth of information for var-
ious NLP tasks (Touvron et al., 2023; Kamalloo
et al., 2023; Lai and Nissim, 2024; Chen, 2024).
While LLMs have encoded vast amounts of knowl-
edge, the knowledge may be incorrect or outdated
over time, highlighting the need for rectification
after pre-training (Wang et al., 2024b; Zhang et al.,
2024b). For example, an LLM trained before 2023
probably predicts “PSG” instead of “Inter Miami
CF” for the prompt “Which club does Lionel Messi
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Figure 1: Illustration of KME for (Lionel Messi,
play_for, PSG→Inter Miami CF). After editing, other
knowledge should remain unaffected, e.g., (Lionel
Messi, wife, Antonella Roccuzzo), (Lionel Messi, na-
tionality, Argentina and Spain).

play for?” (see Figure 1). Although fine-tuning
LLMs is an intuitive way to update knowledge, it
technically suffers from issues of high computa-
tional costs, overfitting, and catastrophic forgetting
(Meng et al., 2022; Li et al., 2024b). An emerg-
ing field known as knowledge-based model editing
(KME) offers a cost-effective post hoc modifica-
tion to enhance the consistency of LLMs, spurring
the development of various methods (Meng et al.,
2022, 2023; Tan et al., 2024; Li et al., 2024b).

The primary goal of KME is to precisely rectify
the specified knowledge within LLMs without dis-
rupting the remainder of the acquired knowledge
(see Figure 1). This task is particularly challenging
due to the distributed and entangled nature of the
encoded knowledge (Hase et al., 2023; Wang et al.,
2024b). To achieve this editing target, several lines
of research have been proposed, with one promis-
ing approach being “localized modification” (Meng
et al., 2022, 2023; Li et al., 2024b) that focuses on
identifying the relevant model parameters storing
specific knowledge (i.e., where to edit) and then
update these weights (i.e., how to rectify) to yield
desirable outputs. Traditional methods typically
assume that the relevant parameters are localized in
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certain intermediate LLM layers and harness causal
tracing to perform the locating operation (Meng
et al., 2022, 2023; Gupta et al., 2023). However, re-
cent research indicates that the localization results
from the causal tracing do not statistically correlate
with the optimal positions for intervention (Hase
et al., 2023). Additionally, causal tracing tends to
show the largest causal effects on average in the
early hidden layers (e.g., 4-6 layers in GPT-J) and
ignore the parameters outside this range (e.g., 16-
20 layers of GPT-J) (Hase et al., 2023), leading to
sub-optimal editing effects.

To address these issues, this paper abandons the
“layer-based localization” and introduces, for the
first time, the critical transmission paths (Wang
et al., 2018) into KME, since the LLMs’ prediction
process could be viewed as a forward pass involv-
ing gradual information accumulation across layers
(Rogers et al., 2020; Geva et al., 2021, 2022; Hase
et al., 2023). Specifically, a transmission path is
a specific sequence of model parameters and con-
nections across all layers within LLMs, describing
an accumulation process from inputs to outputs
(Montavon et al., 2019; Achtibat et al., 2024). Crit-
ical transmission paths capture the key information
routes that significantly influence the model’s pre-
dictions for the editing, and updating the param-
eters in these paths could increase the likelihood
of yielding desired outputs. To identify the crit-
ical paths, we develop a perturbation-based path
importance estimation method that measures how
much each individual path contributes to correct-
ing the model’s predictions. Considering the vast
search space of neuron-level paths, we propose a
parameter packing strategy to partition the weights
of two FFN matrices by column-wise and row-wise
manners, inspired by the key-value memories view-
point of FFNs (Geva et al., 2021). This strategy
dramatically reduces the search space for candidate
paths, thereby lessening the computational burden.

After determining “where to edit”, we propose
a parameter-aware contrastive rectification algo-
rithm to better address “how to rectify”. This algo-
rithm treats each critical path as a positive example
(i.e., representing the parameters requiring updates).
Meanwhile, it also selects an insignificant transmis-
sion path as a negative example (i.e., negligible for
current editing but important for other knowledge)
to form the parameter-aware contrastive pair. The
underlying motivation is straightforward: once up-
dating the wrong portion of parameters, the current
knowledge cannot be rectified effectively and other

irrelevant knowledge will also be inadvertently al-
tered. By demonstrating the consequences of im-
proper rectifications to the model, it is promising to
achieve a better editing effect. Experimental results
demonstrate that our parameter-aware contrastive
editor significantly surpasses all compared methods
across most evaluation metrics. In addition, exper-
iments on editing time also verify the superiority
of our method in editing efficiency. To summarize,
the contributions of this paper are listed as follows:

• We introduce the critical transmission paths
into KME for the first time to select parame-
ters, effectively addressing the limitations of
representation-level causal de-noising.

• After pinpointing critical paths, we propose
a parameter-aware contrastive rectification al-
gorithm to facilitate the editing process.

• Experiments on two well-known datasets and
three extensively adopted LLMs, along with
comparisons to nine strong baselines, demon-
strate the superiority of our method regarding
editing performance and efficiency.

2 Preliminaries

2.1 Notations

Following the definition of previous KME works,
knowledge editing aims to modify the original
knowledge triple (s, r, o) encoded in LLMs into
the targeted one (s, r, o∗). Here, s represents the
subject (e.g., Lionel Messi), r a binary relation
(e.g., play_for), o the old object (e.g., PSG), and o∗

the expected object (e.g., Inter Miami CF). Specifi-
cally, we use εi = (s, r, o → o∗) to represent a spe-
cific editing request, with E being the collection of
knowledge to be edited. During an editing process,
(s, r) needs to be expressed as a natural language
sentence to align with the input format of LLMs,
and we use xi to represent the corresponding input
prompt, e.g., Which club does Lionel Messi play
for now?. However, there are probably more than
one reasonable textual expression, and we employ
Xεi (aliased as Xi) to denote other equivalent para-
phrases of xi. Analogously, we use yi to represent
the original textual model output for the input xi.
y∗i indicates the desired model output of the target
object o∗. The model to be edited is represented
as a complex function fΘ, where Θ denotes the
original model parameters.
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Figure 2: Illustration of transmission paths and the
packing strategy. Before applying the packing strategy,
each path is composed of each weight in FFNs across
all layers, e.g., (θ11,2, θ

2
3,9)

(1) → (θ18,5, θ
2
9,1)

(2) →
... → (θ17,5, θ

2
3,4)

(L). After applying the strategy,
each path becomes a sequence of weight vectors,
e.g., (θ1

2,θ
2
9)

(1) → ...(θ1
i ,θ

2
j )

(l)... → (θ1
13,θ

2
7)

(L),

where (θ1
i ,θ

2
j )

(l) (i.e., k(l)
i and v

(l)
j ) are the i-th col-

umn and the j-th row of W (l)
1 and W

(l)
2 , respectively.

2.2 Task Definition
KME aims to incorporate the new knowledge by
precisely updating a small fraction of parameters in
the given LLM, without negatively impacting other
encoded knowledge that is irrelevant to the edit set.
Formally, the editing target can be denoted as:

fΘ∗(x) =

{
y∗i , εi ∈ E , x ∈ {xi,Xi}
yi, εi /∈ E , x ∈ {xi,Xi}

(1)

Here, Θ∗ = Θ + ∆Θ∗ represents the updated
model parameters on the editing set E , where Θ
denotes the original parameters and ∆Θ∗ is the
parameter update matrix. Notably, ∆Θ∗ should
be sparse, indicating that only a small subset of
parameters are modified during this process.

2.3 Feed-Forward Network (FFN)
Before introducing the transmission paths into
KME, we first review a key module of LLMs,
namely the feed-forward network (FFN). It typi-
cally consists of two linear transformations sepa-
rated by an activation function (e.g., ReLU), which
captures complex nonlinear relationships within
the input representation. This module is positioned
after the self-attention module and is defined as:

FFN(l)(x) = ReLU(x⊤W (l)
1 )W

(l)
2 (2)

where x is the input representation. W
(l)
1 and

W
(l)
2 are the weight matrices at the l-th fully con-

nected layer. Specifically, the sizes of these two
matrices are D × M and M × D (i.e., W (l)

1 ∈
RD×M ,W

(l)
2 ∈ RM×D), where D and M refer to

the hidden dimensions of the model and the FFN
layer (e.g., D = 4, 096 and M = 14, 336 in Llama3
(8B)), respectively.

2.4 Transmission Paths
A transmission path describes the process of infor-
mation accumulation from inputs to outputs and
consists of a specific sequence of model parameters
and connections spanning all layers within LLMs
(Montavon et al., 2019; Achtibat et al., 2024). Fol-
lowing previous works (Meng et al., 2022, 2023;
Li et al., 2024b; Zhang et al., 2024a), we also focus
on the information accumulation in FFNs. Conse-
quently, each transmission path can be formulated
as a set of parameters in W

(l)
1 and W

(l)
2 :

τ = {(Θ(l)
1 ,Θ

(l)
2 ) | 1 ≤ l ≤ L} (3)

Here, τ ∈ T represents a specific transmission
path, with T being the set of paths in the given
LLM. Θ(l)

1 and Θ
(l)
2 are the nodes of path τ at the

l-th layer, which are part of the parameters in W
(l)
1

and W
(l)
2 . L refers to the number of hidden layers.

3 Parameter-Aware Contrastive KME

Based on the transmission path defined in Eq. 3,
KME can be performed by identifying the critical
paths from T (i.e., finding the important Θ(l)

1 and
Θ

(l)
2 across all layers) and then updating the param-

eters along these paths. Intuitively, the nodes Θ(l)
1

and Θ
(l)
2 shown in Eq. 3 could be selected from

W
(l)
1 and W

(l)
2 in a neuron-by-neuron manner.

However, the time complexity of this neuron-level
selection will be astonishing O[L×(D×M)2]. Fur-
thermore, the gradient updates on the neuron-level
transmission path can compromise the model’s ro-
bustness (Yu et al., 2023). To alleviate these is-
sues, we propose a parameter-packing strategy that
partitions the parameters of each FFN layer into
different segments and packs the parameters within
the same segment into a single node of one path.

3.1 Parameter Packing Strategy
Inspired by the investigation of Geva et al. (2021),
which suggests that the two matrices in each FFN
layer can be treated as key-value memories, we re-
formulate the FFN layer shown in Eq. 2 as follows:

FFN(l)(x) = g(x⊤K(l)
︸︷︷︸
W

(l)
1

)V (l)
︸︷︷︸
W

(l)
2

=

M∑

j=1

g(x⊤k(l)
j )

︸ ︷︷ ︸
α
(l)
j

v
(l)
j

(4)
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where g is the activation function. K(l) and V (l)

are the augmented versions1 of W
(l)
1 and W

(l)
2 ,

analogous to the key and value matrices used in the
attention mechanism. Here, k(l)

j and v
(l)
j represent

the j-th column and row weight vectors in W
(l)
1

and W
(l)
2 , respectively.

Eq. 4 implies that the output representation of
the l-th FFN layer can be treated as a weighted sum
over the value vectors v(l)

j , with α
(l)
j serving as the

weighting coefficient, where each v
(l)
j has the size

of 1×D. Specifically, α(l)
j is computed by taking

the dot product between the transposed input token
representation x⊤(1×D) and the column-wise key
vector k(l)

j (D×1). These observations motivate us
to pack parameters of the first and second weight
matrices of the FFN layer in a column-wise and
row-wise manner, respectively. This packing strat-
egy allows the transmission path defined in Eq. 3
to be reformulated as follows:

τ = {(k(l)
i ,v

(l)
j ) | 1 ≤ l ≤ L, 1 ≤ i, j ≤ M} (5)

Eq. 5 states that the parameters in the two weight
matrices (i.e., W (l)

1 and W
(l)
2 ) can be divided into

different groups, corresponding to the key and the
value vectors respectively. This strategy allows
knowledge editing to be performed on these param-
eter blocks, thereby reducing the time complexity
from O[L× (D ×M)2] to O(L×M2). Figure 2
illustrates the packing strategy and depicts the trans-
mission paths in this configuration.

3.2 Tracing Critical Transmission Paths

After defining what constitutes a “transmission
path”, the next step is to determine “where to per-
form editing”. Specifically, we need to identify the
critical information transmission paths that influ-
ence the model to shift its prediction from the “old”
answer to the desired one for a given editing request
εi. To achieve this, we introduce a perturbation-
based method to estimate the importance of each
transmission path.

3.2.1 Impact Score of Transmission Paths
To estimate the importance, we first review the
goal of knowledge editing, i.e., increasing the rela-
tive likelihood of desired outputs without changing
model behavior for unrelated inputs. Thus, the

1When the bias term is included in the FFN layer, these
two matrices will be the augmented matrices.

impact score of each transmission path can be mea-
sured by the degree of output interference in obtain-
ing desired predictions after adding infinitesimal
noise into parameters in τ . Based on this princi-
ple, we apply perturbation theory (Keinan, 2005)
to estimate the impact score as2:

ϕ(τ |εi) = lim
ϵτ→0

L(y∗i |Θ+ ϵτ , xi)− L(y∗i |Θ, xi)

ϵτ

≈
∑

θ∈τ
∂L
∂θ

(6)
Here, ϕ(τ |εi) represents the impact score of the
transmission path τ for εi. L is the cross-entropy
loss function, which measures the discrepancy be-
tween the model prediction and the expected output.
ϵτ represents the noise introduced into the packed
parameters of the transmission path τ .

After estimating the impact scores of all trans-
mission paths, we can identify which paths are
most sensitive to the current knowledge being
edited. Intuitively, we select the paths with the high-
est scores as the critical ones (T + or T +(εi)) that
can be defined as T +(εi) = {τ | 1 ≤ r(ϕ(τ |εi)) ≤
N}. Here, r(·) returns the rank position of the
given path score within the score list of the entire
path set T (descending order). N is the size of
critical transmission paths.

3.3 Parameter-Aware Contrastive Editing
After obtaining T +, we also sample another path
with the lowest score as the negative example
(i.e., T −). The rationale behind this design is to
demonstrate the consequences of editing parame-
ters that should not be modified, thereby enhancing
the effectiveness of editing the correct parameters.
Formally, the parameter-aware contrastive loss can
be formulated as follows:

J (εi) = L(fΘ∗(xi), y
∗
i ) + λL(fΘ′ (xi), yi) (7)

where J is the loss associated with the edit εi. L
measures the differences between the model pre-
dictions fΘ∗(xi) (or fΘ′ (xi)) and the correspond-
ing labels y∗i (or yi). Specifically, the consequent
model outputs after editing parameters that should
not be modified are represented by fΘ′ (xi). Θ∗

represents the parameters optimized along the pos-
itive paths T +, while Θ

′
refers to the parameters

updated along the negative path T −. The term λ
scales the loss associated with T −.

2Referring to the definition of the derivative: h
′
(x) =

lim∆x→0
h(x+∆x)−h(x)

∆x
= lim∆x→0

∆h
∆x

.
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Editor ZsRE COUNTERFACT
Efficacy Locality Generality Score Efficacy Locality Generality Score

GPT-J (6B) Original Model 26.32 / 25.79 26.06 16.22 / 18.56 17.39

Full-C (Zhu et al., 2021) 72.37 19.66 68.91 53.65 92.15 43.35 72.38 69.29
ROME (Meng et al., 2022) 56.42 9.86 54.65 40.31 57.50 52.05 54.20 54.58
MEMIT (Meng et al., 2023) 94.91 30.39 90.22 71.84 98.55 63.64 95.50 85.90
PRUNE (Ma et al., 2025) 0.15 0.00 0.15 0.10 86.15 53.87 86.85 75.62
RECT (Gu et al., 2024) 96.38 27.79 91.21 71.79 98.80 72.22 86.58 85.87
AlphaEdit (Fang et al., 2025) 99.79 28.29 96.00 74.69 99.75 75.48 96.38 90.54
Ours 100 93.22 63.75 85.66 100 17.00 12.00 43.00

Llama3 (8B) Original Model 36.99 / 36.34 36.67 7.85 / 10.58 9.22

Full-C (Zhu et al., 2021) 30.48 15.49 30.22 25.40 83.33 46.63 67.79 65.92
ROME (Meng et al., 2022) 2.01 0.69 1.80 1.50 64.40 49.44 61.42 58.42
MEMIT (Meng et al., 2023) 34.62 18.49 31.28 28.13 65.65 51.56 64.65 60.62
PRUNE (Ma et al., 2025) 24.77 20.69 23.87 23.11 68.25 49.82 64.75 60.94
RECT (Gu et al., 2024) 86.05 31.67 80.54 66.09 66.05 61.41 63.62 63.69
AlphaEdit (Fang et al., 2025) 94.47 32.55 91.13 72.72 98.90 67.88 94.22 87.00
Ours 98.21 85.36 77.04 86.87 100 16.00 23.00 46.33

Table 1: Average performance comparison under the batch editing with batch_size = 100. The baseline results are
from Fang et al. (2025).

The loss in Eq. 7 indicates that the optimization
of parameters along the critical paths aims to mini-
mize the distance between the edited model output
and the expected outcome, thereby ensuring the
effectiveness of the edit request. Conversely, if the
editing is applied to parameters within other in-
significant paths, the model predictions should not
change drastically for the current edit, as ensured
by L(fΘ′ (xi), yi). This aspect of the optimization
also ensures that other knowledge remains undis-
turbed, as these paths are likely crucial for other
knowledge. Maintaining the original output further
ensures that unrelated knowledge is not affected.

4 Experiments

4.1 Experimental Settings

Datasets & LLMs: Following previous works
(Mitchell et al., 2022a; Meng et al., 2022, 2023; Li
et al., 2024b), we also use the EDIT sets of ZSRE
(Levy et al., 2017) and COUNTERFACT (Meng
et al., 2022) to evaluate our method. Specifically,
ZSRE is a question-answering dataset designed
for zero-shot relation extraction, while COUNTER-
FACT focuses on inserting counterfactual knowl-
edge into models. Additionally, three prominent
auto-regressive LLMs are employed to perform
editing, i.e., GPT-J (6B) (Wang and Komatsuzaki,
2021), Llama2 (7B) (Touvron et al., 2023) and

Llama3 (8B) (Llama Team, 2024).
Baselines & Evaluation Metrics: To evaluate the
effectiveness of the proposed method, we compare
it with nine baselines. For the editing performance
comparison, we adopt three fundamental metrics
for evaluation, i.e., Efficacy, Generality, and Lo-
cality. In this paper, we consider the batch edit-
ing and a more difficult scenario, i.e., consecutive
editing. Batch editing refers to the simultaneous
processing of multiple edit requests. For the consec-
utive editing, all edit requests are done successively
without rolling back parameters after each edit, and
the evaluation is conducted after all knowledge up-
dates have been completed.

The experiments of all methods were conducted
on an NVIDIA A100-SXM4-40GB machine. The
baseline methods are implemented using the widely
adopted EasyEdit toolkit3, with hyperparameters
configured according to the recommended settings.

4.2 Comparison of Editing Effects

The performance of all compared methods in Ta-
ble 2 is evaluated on 3K samples from both datasets
under consecutive editing. It presents the average
performance, where Score is the mean result of Ef-
ficacy, Locality, and Generality. While most meth-
ods show satisfactory performance under batch

3https://github.com/zjunlp/EasyEdit
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Editor ZsRE COUNTERFACT
Efficacy Locality Generality Score Efficacy Locality Generality Score

GPT-J (6B) Original Model 21.65 / 21.10 21.37 0.30 / 0.23 0.27

Full-C (Zhu et al., 2021) 11.04 1.59 8.41 7.01 21.33 1.27 7.97 10.19
ROME (Meng et al., 2022) 31.87 18.29 28.10 26.09 0.13 0.03 0.20 0.12
KN (Dai et al., 2022) 0.00 0.01 0.00 0.003 0.01 0.00 0.007 0.006
MEMIT (Meng et al., 2023) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PMET (Li et al., 2024b) 0.02 0.03 0.02 0.02 0.00 0.00 0.00 0.00
AlphaEdit (Fang et al., 2025) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
LoRA (Xu et al., 2024) 1.11 0.01 1.15 0.76 0.97 0.13 0.67 0.59
EMMET (Gupta et al., 2024b) 55.21 37.47 51.67 48.12 70.20 33.03 41.17 48.13
R-ROME (Gupta et al., 2024a) 54.74 13.33 51.76 39.96 69.27 41.87 37.40 49.51
Ours 88.74 51.28 49.50 63.17 90.70 1.83 5.33 32.62

Llama2 (7B) Original Model 34.73 / 34.59 34.66 15.19 / 11.55 13.37

Full-C (Zhu et al., 2021) 7.88 0.55 6.73 5.05 2.24 2.31 0.05 1.53
ROME (Meng et al., 2022) 9.16 1.12 8.29 6.19 36.96 3.24 18.77 19.66
MEMIT (Meng et al., 2023) 0.00 0.03 0.00 0.01 0.00 6.43 0.00 2.14
KN (Dai et al., 2022) 1.02 0.03 0.09 0.38 0.37 0.02 0.29 0.23
PMET (Li et al., 2024b) 3.68 1.83 3.68 3.06 0.23 0.47 0.17 0.29
AlphaEdit (Fang et al., 2025) 2.83 0.97 2.81 2.20 0.00 4.41 0.00 1.47
LoRA (Xu et al., 2024) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EMMET (Gupta et al., 2024b) 25.01 2.87 22.43 16.77 38.67 5.83 28.35 24.28
R-ROME (Gupta et al., 2024a) 21.21 1.52 17.78 13.50 41.06 5.66 25.92 24.21

Ours 84.09 75.77 66.20 75.35 71.46 20.62 20.96 37.68

Llama3 (8B) Original Model 26.27 / 25.98 26.13 0.87 / 0.75 0.81

Full-C (Zhu et al., 2021) 7.69 0.69 6.66 5.01 5.75 0.13 0.47 2.12
ROME (Meng et al., 2022) 3.39 0.15 2.80 2.11 25.07 0.97 13.23 13.09
MEMIT (Meng et al., 2023) 0.00 3.96 0.00 1.32 0.00 7.22 0.00 2.41
KN (Dai et al., 2022) 0.03 0.01 0.01 0.02 0.11 0.02 0.05 0.06
PMET (Li et al., 2024b) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AlphaEdit (Fang et al., 2025) 0.01 0.003 0.00 0.004 0.33 0.07 0.17 0.19
LoRA (Xu et al., 2024) 11.45 5.35 11.16 9.32 0.77 0.17 1.17 0.70
EMMET (Gupta et al., 2024b) 5.17 0.43 4.86 3.49 54.50 1.28 38.82 31.53
R-ROME (Gupta et al., 2024a) 2.71 0.35 2.43 1.83 48.92 1.47 36.62 29.00

Ours 94.03 59.01 67.35 73.46 93.53 1.93 7.11 34.19

Table 2: Average performance of all compared methods under the consecutive editing.

editing (see Table 1), their performance signifi-
cantly deteriorates under consecutive editing, with
some models even dropping to zero. This sug-
gests that consecutive editing severely impacts the
original LLMs, likely due to inaccurate identifi-
cation of relevant parameters and ineffective up-
dates. This results in negative effects not only
on the edited knowledge but also on the original
knowledge stored within the model. In contrast,
our method consistently outperforms the compared
methods by significant margins across most met-
rics, highlighting the effectiveness of critical in-

formation transmission paths. Additionally, we
observe that our method exhibits relatively low
performance on the Generality and Locality met-
rics when evaluated on the COUNTERFACT dataset.
This limitation arises from an inherent challenge in
information path-based knowledge editing, i.e., if
an inappropriate intermediate node is selected and
directly modified, it may disrupt the intended in-
formation transmission path, leading to unintended
alterations in the model’s original behavior. Un-
like other benchmarks, COUNTERFACT primarily
focuses on inserting new factual knowledge rather
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Figure 3: Comparison of average time per editing among all methods on two datasets.

than modifying pre-existing information. Conse-
quently, the internal information pathways corre-
sponding to such novel knowledge are often not
well-established within the model. Editing certain
nodes along these underdeveloped paths can inad-
vertently interfere with previously learned knowl-
edge. We have identified this issue and are cur-
rently investigating adaptive rectification strategies
that dynamically adjust parameter updates in the
critical paths across different layers, aiming to miti-
gate such unintended side effects and improve both
Generality and Locality in knowledge editing.

4.3 Comparison of Editing Time
Editing efficiency is a critical factor in evaluat-
ing the KME method. Figure 3 presents the av-
erage time per edit for all compared methods, with
experiments conducted on an NVIDIA A100 ma-
chine equipped with an Intel(R) Xeon(R) Gold
5215@2.50GHz CPU. Our method demonstrates
strong efficiency across all models, requiring only
2.8, 2.0, and 3.1 seconds per edit for GPT-J, Llama2
(7B), and Llama3 (8B) on the ZSRE dataset. In
comparison, FT-C shows a slightly longer editing
time, with 3.06, 2.91, and 3.63 seconds for the
same models on the ZSRE dataset. Notably, meth-
ods like MEMIT, AlphaEdit, and PMET incur sig-
nificantly longer editing times compared to other
localization-based approaches. Among all meth-
ods, KN exhibits the longest editing time, making
it considerably less efficient than others.

4.4 Analysis of Critical Transmission Path
The critical path refers to the information accumu-
lation path across all layers for a given input. To
better understand T +, we estimate the contribution
of each node in every layer to the overall impact
of the critical transmission path, shown in Figure 4.
Specifically, the x-axis denotes the index of the hid-
den layer, while the y-axis represents the distribu-
tion of importance scores. The left panel presents
the results for the packed key nodes k(l)

i , while the
right one for the value nodes v

(l)
i . This box-plot

visualization provides several important insights:
(1) Notably, the same model exhibits consistent
trends across different datasets. This consistency
highlights the stability of the model’s internal in-
formation flow and further supports the robustness
of the critical transmission paths identified by our
method. (2) All hidden layers contribute to the
knowledge editing, revealing a key limitation of
prior methods that focus only on specific layers.
This finding suggests that effective knowledge edit-
ing should account for the entire network rather
than being restricted to particular layers. Relying
solely on middle layers may result in deficiencies
or even disrupt the model’s forward information
accumulation, ultimately degrading editing perfor-
mance. Moreover, the specific choice of which
middle layers to modify can significantly affect the
outcome, possibly explaining the performance vari-
ability observed across several baseline methods
(see Table 2). (3) The influence of different layers
is not uniformly distributed. While all layers play a
role in editing, nodes in the middle layers (e.g., lay-
ers 4-18 in Llama 3 8B) exert a stronger influence.
Therefore, these layers should be given higher pri-
ority when performing model updates. Currently,
our method uniformly optimizes all nodes along
the path; however, ongoing work explores adap-
tive re-weighting strategy that emphasizes nodes
in these more impactful middle layers. (4) Despite
the strong influence of middle layers (e.g., 4–18),
node importance varies significantly within these
layers. Some nodes may be highly entangled with
other unrelated knowledge and are thus unsuitable
for editing. Incorrectly updating such nodes can
reduce editing success and cause unintended dis-
ruptions to the model’s broader knowledge. Accu-
rate identification and selection of critical nodes
within these layers are therefore essential. This
further highlights the effectiveness of our method
in identifying important nodes as reflected in its
strong experimental performance. (5) Early (layers
1–4) and late (layers 28–32) layers exhibit distinct
behaviors. Interestingly, early layers contribute
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Figure 4: Importance of each node in T + across all Llama3 (8B) layers on ZSRE (Top) COUNTERFACT (Bottom).

more significantly than late layers. Additionally,
importance scores in the late layers remain rela-
tively stable, suggesting that nodes in these layers
behave more uniformly and have a consistent level
of influence across edits.

4.5 Effects of the Contrastive Rectification
The contrastive loss defined in Eq. 7 plays a cru-
cial role in enhancing the rectification process. In
Figure 6, the result for λ = 0 illustrates the edit-
ing performance without the contrastive rectifica-
tion. From these results, we can observe that the
contrastive rectification significantly improves the
model’s Efficacy by approximately 4%, while main-
taining the stability of Generality and Locality.
This outcome suggests that introducing contrastive
rectification allows the model to focus more effec-
tively on relevant knowledge, enhancing its editing
accuracy without disrupting its ability to generalize
or localize information. Additionally, the size of
|T −| is a hyperparameter of the model, represent-
ing the number of negative transmission paths used
in contrastive optimization. However, setting this
value too high inevitably leads to a notable decline
in both Efficacy and Generality. This degradation
is likely due to the model placing excessive em-
phasis on the contrastive loss, effectively becoming
overly focused on learning “what should not be
done”. As a result, the model’s ability to success-
fully apply edits and generalize to related contexts
is compromised. Based on empirical evaluation,
we set |T −| = 1 to achieve optimal performance.

4.6 Analysis of the size of T +

Figure 5 (the left column) shows the effects of
varying the size of |T +| on three evaluation met-
rics. In particular, two special cases are represented:
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Figure 5: Analysis of |T +| for Llama3 (8B).

|T +| = 0 and |T +| = ∗, which correspond to the
original model and full FFN parameters fine-tuning,
respectively. It can be observed that the editing suc-
cess rate and the model generality slightly rise as
|T +| increases. This is because the information ac-
cumulation path associated with the current edit is
effectively modified, allowing the model to better
integrate new information. However, once |T +|
surpasses a certain threshold (15 for Llama3 (8B)
on 3K ZSRE), Locality declines sharply. This
drop can be attributed to the introduction of irrel-
evant paths into the optimization process, which
may act as noise and negatively affect the original
model’s knowledge. For practical purposes, we set
|T +| = 15 as a reasonable compromise between
improvement and stability.

4.7 Analysis of λ

λ serves to balance the contrastive loss in the opti-
mization process. Figure 6 (the right column) visu-
alizes the impact of varying λ on the model’s perfor-
mance. As shown, the result generally declines as
λ increases. This is likely due to the overemphasis
placed on the contrastive loss, leading to the over-
fitting of expected predictions. This effect is most
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apparent in the evaluation of the Efficacy, where
the model struggles to maintain accuracy when the
contrastive loss becomes too dominant. Moreover,
the Locality metric exhibits lower fluctuations at
larger values of λ, indicating that the contrastive
optimization could benefit the preservation of un-
related knowledge. Given these observations, we
set λ = 0.1 as the optimal value to balance the con-
trastive loss. This value provides sufficient effects
of the contrastive rectification without excessively
impacting overall performance.

5 Related Work

According to Wang et al. (2024b); Mazzia et al.
(2023); Zhang et al. (2024b), KME methods can be
classified into two main categories, i.e., parameter-
preserved and parameter-modified.

5.1 Preserving Parameters
Methods for preserving parameters typically in-
volve external memories (Wang et al., 2024a), in-
context learning, or altering the LLM’s represen-
tation space. Mitchell et al. (2022b) introduce
SERAC to store edits in explicit memory and rea-
son over them. Li et al. (2023) optimize control-
lability and robustness by considering interactions
with factual context. Wang et al. (2024c) employ
depth-first search-based constrained decoding for
multi-step reasoning in knowledge editing. Zheng
et al. (2023) explore in-context learning in factual
knowledge editing. Other works focus on adding
extra parameters, such as patching models with nat-
ural language (Murty et al., 2022), adapting param-
eters to factual texts (Dong et al., 2022), altering
subject word embeddings (Li et al., 2025), and us-
ing Key-Value adaptors (Hartvigsen et al., 2023).
Some research also addresses reducing computa-
tional resources (Yu et al., 2024) or editing in the
representation space (Hernandez et al., 2024).

5.2 Modifying Parameters
Research on modifying LLM parameters includes
fine-tuning, hyper-network, and localization-based
methods. Ni et al. (2024) propose forgetting-
before-learning for effective fine-tuning. Hyper-
network-based methods include Cao et al. (2021),
with Mitchell et al. (2022a) improving it via low-
rank gradient decomposition. Tan et al. (2024)
resolve synchronous editing via least squares aggre-
gation. Localization methods like ROME (Meng
et al., 2022) edit FFN weights using causal interven-
tion, with subsequent improvements by Meng et al.
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Figure 6: Analysis of λ for Llama2 (7B).

(2023), Li et al. (2024b), and Hu et al. (2024). Oth-
ers include Gupta et al. (2023) on commonsense
judgment, Wu et al. (2023) and Li et al. (2024a) on
neuron editing and model computation impacts.

6 Conclusion

This paper introduced the critical transmission
paths into KME for the first time, alleviating
the limitations of layer-based localization meth-
ods. Specifically, critical paths captured key in-
formation flows across layers, and we proposed a
perturbation-based model to identify these paths for
each editing request. Additionally, we introduced a
parameter-aware contrastive loss that incorporates
both critical and inconsequential paths, enhancing
the efficacy and generality of the edited model. Ex-
tensive experiments on three popular LLMs and
two widely used KME datasets showed that our
approach outperformed all compared methods in
both editing performance and efficacy.

7 Limitations

While our method achieves notable improvements
in KME, several limitations remain. First, the cur-
rent method assumes that all layers within the iden-
tified critical transmission path contribute equally
to the editing process. However, this assumption
may overlook the varying degrees of influence that
different layers exert. As illustrated in Figure 4,
we are currently investigating layer-wise contribu-
tions to editing effectiveness. Incorporating a more
fine-grained, layer-sensitive optimization strategy
could further enhance performance through adap-
tive weighting. Second, our method operates with
a fixed-size critical transmission path during the
editing phase. This static configuration may not be
optimal across different types of edits or task re-
quirements. To address this, future work will focus
on dynamically adjusting the node number based
on the specific characteristics of each editing re-
quest, thereby improving the model’s adaptability
and robustness across diverse scenarios.
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8 Ethical Considerations

While Knowledge-based Model Editing (KME) of-
fers a powerful technique for correcting incorrect
knowledge within language models, it is crucial
to recognize its potential for misuse. Specifically,
KME could be exploited to inject biased, harmful,
or misleading information into the model. Since the
technique allows for the modification of a model’s
internal knowledge, careful oversight is necessary
to ensure that the changes made are ethical and do
not promote discrimination, harmful stereotypes,
or other detrimental effects.

One of the primary ethical concerns lies in the
potential for malicious actors to alter a model’s
knowledge base with the intent to manipulate its
output. Without robust safeguards and verification
processes, there is a risk that KME could facili-
tate the introduction of harmful content that under-
mines the reliability and fairness of the model’s
outputs. This is especially important in contexts
where the model is used for decision-making or
information dissemination, as biased or harmful
knowledge could lead to real-world consequences.
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