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Abstract

In this work, we prove the NP-completeness of
two variants of tokenisation, defined here as the
problem of compressing a dataset to at most δ
symbols by either finding a vocabulary directly
(direct tokenisation), or selecting a sequence of
merge operations (bottom-up tokenisation).

1 Introduction

Tokenisation is at the heart of natural language pro-
cessing (NLP) being the first step required to use
a language model. Given a string of characters c,
a tokeniser converts it into a string of subwords s.
Language models are then trained to estimate dis-
tributions over subword-strings—never seeing the
original character-strings. Despite its prominent
role, however, much remains unknown about to-
kenisation. We still do not know, for instance, what
makes a good tokeniser (Gowda and May, 2020;
Cognetta et al., 2024): which characteristics should
its produced subwords s have to be a good starting
point for language modelling? If we knew this,
then we could define an objective function with
which we could evaluate tokenisers.

Another open question is how to—given such
an objective function—efficiently find a tokeniser
which maximises it. Byte pair encoding (BPE;
Gage, 1994; Sennrich et al., 2016), for instance, is
a greedy solution to find a tokeniser which max-
imises a text’s compression. UnigramLM (Kudo,
2018) is a heuristic method to find a tokeniser
that maximises its tokenised text’s unigram log-
probability. Both these methods, however, are ap-
proximate: they do not necessarily find an opti-
mal tokeniser according to their objective function.
This raises the question of whether finding such
optimal tokenisers efficiently is even possible.

In this paper, we answer this question (at least
partially), proving the NP-completeness of several
variants of this tokenisation problem. Specifically,
we focus on finding tokenisers that maximise the

compression of a text.1 Given this objective, we
then define the tokenisation problem as the task
of finding a tokeniser which compresses a dataset
to at most δ symbols. Notably, prior work imposes
different constraints on how tokenisers are defined;
here we consider two variants. In direct tokeni-
sation, the desired compression must be reached
by choosing a vocabulary (i.e., a set of subwords)
which is directly used to represent the text. In
bottom-up tokenisation, the desired compression
must be reached by finding a sequence of merge op-
erations instead, which we apply to the input text.

We prove the NP-hardness of both of these to-
kenisation problems (as well as of some variants
thereof) by reducing from the max 2-satisfiability
problem.2 Practically speaking, our results im-
ply that we are unlikely to discover an efficient
algorithm for the problem of finding optimal to-
kenisers, and that we should focus on approximate
algorithms (such as BPE or UnigramLM) instead.

2 How to Choose a Tokeniser?

Given a tokeniser, any character-level distribution
has an equivalent subword-level distribution (Pi-
mentel and Meister, 2024; Phan et al., 2024; Giu-
lianelli et al., 2024). Ergo, despite the distribution
we may wish to language model, a sufficiently ex-
pressive model should be able to represent it ex-
actly; this is true regardless which tokeniser is used.
In theory, thus, a researcher’s choice of tokeniser
should not influence their language model’s quality.

In practice, however, a bad choice of tokeniser
can have undesirable effects on downstream appli-

1The compression achieved by a tokeniser correlates with
downstream language modelling performance (Gallé, 2019;
Zouhar et al., 2023a) and computational efficiency.

2We note two related concurrent works. Kozma and Voder-
holzer (2024) also prove the NP-completeness of bottom-up
tokenisation; in fact, they prove something stronger: its APX-
hardness. Lim et al. (2025) prove the NP-completeness of
a restricted variant of direct tokenisation, in which a set of
candidate tokens is previously specified.
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cations. For instance, performing standard arith-
metic tasks (e.g., 317 + 421) can be difficult even
for large models (Nogueira et al., 2021; Muffo et al.,
2022) due to the arbitrary splitting of numbers into
subwords. Indeed, simple changes in how numbers
are tokenised can improve performance in such
tasks (Singh and Strouse, 2024). Similar issues
arise when prompting language models to count
letters, where even advanced models such as GPT-4
infamously cannot correctly count the number of
occurrences of the letter r in the word strawberry.3

This raises the question of how to select a good
tokeniser. Ideally, we would choose the tokeniser
which maximises downstream language modelling
performance. Unfortunately, we do not know how
to measure such performance without fully train-
ing a model, making its direct maximisation com-
putationally infeasible. Rather, we thus optimise
proxy objectives—assumed to correlate with down-
stream performance. Among these are unigram log-
probability (Kudo, 2018), Rényi efficiency (Zouhar
et al., 2023a), and compression (Gallé, 2019).

We focus on compression in this paper. Denot-
ing our tokenisation’s objective function as G, we
write this objective as: G(s) = −|s|. Improved
compression leads to: (i) more efficient training
and inference, due to shortened inputs;4 (ii) im-
proved downstream performance, at least to a cer-
tain extent (Gallé, 2019; Rust et al., 2021; Zouhar
et al., 2023a; Goldman et al., 2024);5 and (iii) fairer
multilingual treatment—assuming similar compres-
sion across languages—given models’ limited con-
text lengths and the per-token costs to use propri-
etary models (Petrov et al., 2023; Ahia et al., 2023).

Our Notation’s Colour-coding

• Blue for raw data (i.e., characters c ∈ Σ∗);

• Magenta for tokeniser-specific data (i.e., subwords
s∈S∗ and merges m∈M∗);

• Orange for functions (e.g., tok).

3In a recent paper, Lesci et al. (2025) show that tokenisa-
tion strongly influences language models’ outputs: a character-
string c is assigned up to 17 times less probability by language
models if tokenised into two subwords than if represented as
a single subword; a difference of 2.88 nats.

4Recent work tries to improve the computational efficiency
of byte-level models (Yu et al., 2023; Pagnoni et al., 2024).

5Although, see Ali et al. (2024), who argue that compres-
sion might be a necessary but not sufficient condition for
good downstream performance, and Schmidt et al. (2024),
who argue that compression and downstream performance
have a more complex relationship than prior work suggests.

3 Defining a Tokeniser

A tokeniser can be defined as a 3-tuple
⟨S, tok, detok⟩, composed of a vocabulary, a to-
kenisation and a detokenisation function. Before
defining these terms, however, we require some no-
tation. Let c ∈ Σ∗ be a character-string,6 i.e., a se-
quence of characters c from alphabet Σ, which we
write as c = c1c2 · · · c|c|. Further, let D={cn}Nn=1

be a dataset of character-strings.7 A subword s∈S
represents a non-empty character-string c (where
sequence c can have length one). Finally, let
s ∈ S∗ be a subword-string. Just like a single
subword, a subword-string s = ⟨s1, s2, · · · , s|s|⟩
represents a character-string via the concatenation
of its subwords’ characters:

concat(s) = s1 ◦ s2 ◦ ... ◦ s|s| (1)

and we say that a pair of character and subword
strings are equivalent if:

c
◦
= s ⇐⇒ c = concat(s) (2)

Given the notation above, we can now define
the items in tuple ⟨S, tok, detok⟩. A tokeniser’s
vocabulary is a set of subwords S ⊂ Σ+ such that
Σ ⊆ S;8 we say its size is |S| = |Σ|+K. Further,
a detokenisation function is defined as detok :
S∗ → Σ∗ and given a subword-string it outputs the
character-string it represents. This function thus is
simply defined as detok(s) def

= concat(s).
Finally, we are left with defining a tokenisa-

tion function tok : Σ∗ → S∗, which maps
from character- to subword-strings. Notably, these
functions always ensure the equivalence c

◦
= s for

s= tok(c). Several tokenisation functions, how-
ever, are compatible with this constraint, as given
a vocabulary, many subword-strings may be equiv-
alent to the same character-string. For instance,
given S = {a, c, t, at}, the string c= c, a, t could
be tokenised as s = ⟨c, a, t⟩ or as s = ⟨c, at⟩. Most
researchers define tokenisation functions in one of
two ways, which we term direct and bottom-up
tokenisation functions; we define these next.

6We note that Σ∗ denotes the Kleene star of Σ (i.e.,
∪∞

i=0Σ
i), and Σ+ denotes its Kleene plus (i.e., ∪∞

i=1Σ
i).

7We note that we use set notation here, but our datasets
are actually multisets—datasets can include the same string c
multiple times. We show that tokenisation is still NP-complete
for datasets with no repetitions in §6.3. Further, we impose no
constraint on the kind of string present in these datasets: each
cn can be either a raw or pre-tokenised character-string (i.e.,
either a full document or a whitespace-separated word).

8Σ⊆S is typically enforced to guarantee that every c∈Σ∗

can be represented by at least one subword-string s ∈ S∗.
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3.1 Direct Tokenisation Functions
In direct tokenisation, a character-string is directly
replaced by an optimal subword-string. To
implement this, one must thus first define what
optimal means; this is done through an objective
function G which, given a subword-string, returns
a score. Given a previously chosen vocabulary
S (we discuss how to find S in §5), a direct
tokenisation function then encodes string c as:

tok	[S](c) = argmax
s∈S∗

G(s) (3)

s.t. s
◦
= c

In words, given a vocabulary S, function tok	
returns the optimal subword-string s ∈ S∗ which
is equivalent to the input character-string c. We
then set tok(c) def

= tok	[S](c). Different choices
of G recover methods such as UnigramLM’s
tokenisation function (Kudo, 2018) or PathPiece
(Schmidt et al., 2024). Notably, in general, this
function is not efficiently computable.9

In this paper, we are concerned with tokenisers
that use compression as their objective: that is, for
which G(s) = −|s|. In this case, we can rewrite
the direct tokenisation function as:

tok	[S](c) = argmin
s∈S∗

|s| (4)

s.t. s
◦
= c

Importantly, in the case of compression, this equa-
tion can be computed efficiently (as shown in §5.1).

3.2 Bottom-up Tokenisation Functions
In bottom-up tokenisation, one starts with a set
of character-strings, and merges their symbols
bottom-up, one pair at a time.10 Formally, let
m ∈ M be a merge, defined as a pair of sub-
words: m = ⟨s1, s2⟩. Further, let M def

= Σ+×Σ+.
Now, let merge be a functional; given merge
m = ⟨s1, s2⟩, it returns a function merge[m] :
S∗ → (S ∪ {s1 ◦ s2})∗ which operates on string s
left-to-right, replacing every occurrence of s1 fol-
lowed by s2 in it with subword s′ = s1 ◦ s2. E.g.,
given s = ⟨wo, r, ld⟩ and m = ⟨wo, r⟩, the output
of merge[m](s) is ⟨wor, ld⟩.

9In fact, Geh et al. (2024) shows that it is NP-complete for
G(s)=

∑|s|
t=1 log pθ(st |s<t), where pθ is a language model.

10Currently, this is likely the most common tokenisation
function, being used in popular tokenisers such as, e.g., GPT-
4’s (OpenAI, 2023), LLaMA’s (Touvron et al., 2023a,b), and
Pythia’s (Biderman et al., 2023).

Consider now m ∈ M∗, a sequence of merges.
Given a character-string c ∈ Σ∗, a bottom-up to-
kenisation function compresses it as:

tok↑[m](c) =

( |m|⊙

z=1

merge[mz]

)
(c) (5)

where
⊙

represents function composition, e.g.,⊙2
z=1 merge[mz] = merge[m2] ⊙ merge[m1].

Bottom-up tokenisers then set tok def
= tok↑[m].

Further, a merge sequence m is also used to set
a bottom-up tokeniser’s vocabulary as:

S = Σ ∪ {s1 ◦ s2 | ⟨s1, s2⟩ ∈ m} (6)

where |m| = K implies this vocabulary has size
|S| = |Σ|+K, as before.

4 Maximum 2-Satisfiability

Our paper’s goal is to prove the NP-completeness
of tokenisation. To show this, we must reduce
an NP-hard problem to tokenisation in polyno-
mial time. We will rely on the maximum 2-
satisfiability problem (max-2-SAT) for this, whose
definition we provide here. The NP-hardness of
max-2-SAT was proven by Garey et al. (1974).

Definition 1. Let X = {Xj}Jj=1 be a set of vari-
ables; each of these variables are assigned values
xj ∈ {F, T}, and we write x = {xj}Jj=1 ∈ {F, T}J .
Let C={(L1

i ∨L2
i )}Ii=1 be a set of clauses,11 where

each literal L represents either a variable Xj or its
negation ¬Xj . The max-2-SAT decision problem
requires deciding whether there exists an assign-
ment for which at least γ clauses are satisfied:

γ ≤ max
x ∈{F,T}J

I∑

i=1

1x {L1
i ∨ L2

i } (7)

where 1x is an indicator function which evaluates
the clause and returns one if the clause is satisfied
by x and zero otherwise.

For mathematical convenience, we will write
M2S(X , C, γ) for a function which returns T

if its input is satisfiable under a max-2-SAT
decision problem, and F otherwise. As a con-
crete example, consider the set of variables
X = {X1, X2} and the set of clauses C =
{X1 ∨X2,¬X1 ∨X2, X1 ∨¬X2,¬X1 ∨¬X2}.

11max-2-SAT also allows clauses to have a single literal Li.
In this case, we can always rewrite the clause as (Li ∨ Li)
with no change to the solution of this decision problem.

28135



The assignment x1= T, x2= T leads to 3 clauses
being satisfied, which is the optimum. For this
example, we thus have that M2S(X , C, 3) = T, but
that M2S(X , C, 4) = F.

5 Finding Optimal Direct Tokenisers

We are now left with the task of finding an optimal
tokeniser. We do this by selecting either: its vocab-
ulary in direct tokenisation, since tok = tok	[S];
or its merge sequence in bottom-up tokenisation,
since tok = tok↑[m] and since its vocabulary is
chosen according to Eq. (6). (Note that in §3, we
only showed how to apply tokenisers at inference
time, but not how to find them.) In this section,
we focus on direct tokenisation, defining its op-
timisation and decision problems; we then prove
its NP-completeness. The optimisation problem is
defined as follows.
Definition 2. Given a dataset D and a vocabu-
lary size K, the direct tokenisation optimisation
problem is to find a vocabulary Sopt ⊂ Σ+ which
maximally compresses D:

Sopt =argmin
S⊂Σ+

∑

c∈D
|tok	[S](c)| (8)

s.t. |S| = |Σ|+K

We can similarly define direct tokenisation’s de-
cision problem.
Definition 3. Given a dataset D and a vocabulary
size K, the direct tokenisation decision problem
requires deciding whether there exists a vocabulary
S ⊂ Σ+ which compresses D to at most δ symbols:

δ ≥ min
S⊂Σ+

∑

c∈D
|tok	[S](c)| (9)

s.t. |S| = |Σ|+K

We write Tok	(D,K, δ) for a function which
returns T if a direct tokenisation decision problem
with those inputs is satisfiable, and F otherwise.
Note that, whenever |D| ≤ K, the solution to the
problem above is trivial, as an optimal solution sim-
ply requires including all strings cn in vocabulary
S. As we show next, however, in the general case
the above decision problem is NP-complete. We
now state this as a theorem, which we will prove
in the next two sections.
Theorem 1. The direct tokenisation decision prob-
lem, as in Definition 3, is NP-complete.

Proof. A decision problem is considered to be NP-
complete if: (i) it is in NP; (ii) it is NP-hard. We
prove these conditions in §5.1 and §5.2.

5.1 Direct Tokenisation is in NP
A decision problem is in the nondeterministic poly-
nomial time class (NP) if, given a certificate of
polynomial length, one can verify that certificate in
polynomial time. Specifically, a certificate usually
encodes a decision problem’s solution, allowing
us to verify its satisfiability. In the case of direct
tokenisation, this certificate would be a vocabulary
S which leads a dataset D to be compressed to at
most δ symbols. Verifying this certificate simply
requires computing the sum in Eq. (9), i.e.:

∑

c∈D
|tok	[S](c)| (10)

Lemma 1. The direct tokenisation decision prob-
lem, as in Definition 3, is in NP.

Proof. As noted above, whenever |D| ≤ K, each
cn ∈ D can be included in the vocabulary S and
fully compressed to a single symbol; we can thus
verify the problem’s satisfiability by simply check-
ing that δ ≥ |D| as this is the best reachable com-
pression. Assuming K to be bounded by |D|—and
therefore polynomial in the input—we have that
the certificate S also has polynomial length. Given
such a certificate S, verifying it simply requires
computing the sum in Eq. (10). In turn, comput-
ing this sum requires |D| calls to function tok	. It
follows that, if function tok	 runs in polynomial
time, then direct tokenisation is in NP. Luckily, this
function can indeed be computed efficiently using
Schmidt et al.’s (2024) PathPiece method, which
runs in O(|c|2) time. This is achieved by first con-
verting c into a directed acyclic graph where nodes
represent string positions [0, 1, . . . , |c|] and where
two nodes t, t′ are connected if there exists a sub-
word s ∈ S for which ct:t′

◦
= s. E.g., for a string c

and S = Σ ∪ {c0:2, c1:t}, we build a graph:

0 1 2 · · · t · · · |c|

The shortest path from node 0 to |c| in this graph
then gives us tok	[S](c). As the shortest path
of a directed acyclic graph can be computed in
O(N +V ) time, the time complexity of finding the
shortest path in this directed acyclic graph is thus
bounded by O(|c|2).

5.2 Direct Tokenisation is NP-hard
We now use a reduction from max-2-SAT to prove
the NP-hardness of direct tokenisation.
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Reduction 1. Let us have an instance of the
max-2-SAT decision problem as in Definition 1.
To reduce this instance to an instance of the direct
tokenisation decision problem, as in Definition 3,
we first define an alphabet Σ = {⊚}∪{xTj , xFj}Jj=1.
We then construct three sets of strings:

D1 = {⊚xTj⊚}Jj=1 ∪ {⊚xFj⊚}Jj=1 (11a)

D2 = {⊚xTj ⊚ xFj⊚}Jj=1 (11b)

D3 = {⊚L1
i⊚L2

i⊚}Ii=1 (11c)

In these strings Li is replaced by either character
xTj or xFj , depending on whether it represents Xj or
¬Xj , respectively. We then construct our dataset
D, and choose K and δ as:

D =

( f⋃

_=1

D1

)
∪
( f ′⋃

_=1

D2

)
∪ D3 (12a)

K = J, δ = (4f + 3f ′) J + 5 I − 2γ (12b)

where we set f ′ def
= 2I +1 and f

def
= 4f ′J +4I +1.

We write R1(X , C, γ) to represent a function
which, given an instance of max-2-SAT, returns an
instance of the tokenisation problem given by our
reduction (i.e., D,K, δ). For our reduction to be
correct, we must have that:

M2S(X , C, γ) ⇐⇒ Tok	(R1(X , C, γ)) (13)

meaning that a max-2-SAT instance is satisfiable if
and only if its reduced direct tokenisation instance
is as well. We now set out to prove this. We start
by proving the forward direction of this iff clause.

Lemma 2. If a max-2-SAT instance is satisfiable,
then the direct tokenisation instance output by Re-
duction 1 is also satisfiable. Formally:

M2S(X , C, γ) =⇒ Tok	(R1(X , C, γ)) (14)

Proof sketch. See a formal proof in App. A. Our
proof works by first fixing a satisfying solution to
max-2-SAT with values x⋆j . Given this solution,
for each variable, we add to our vocabulary S a
subword ⊚xTj⊚ if x⋆j is true, or ⊚xFj⊚ if x⋆j is false.
Given these subwords, strings in D1 and D2 occupy
a total length of (4f + 3f ′) J . Further, since at
least γ of the max-2-SAT clauses are satisfied by
x⋆j , the strings in D3 will occupy a total length
smaller or equal to 5 I − 2γ. This solution to the
tokenisation problem thus gives us a total length
which is smaller or equal to δ = (4f + 3f ′) J +
5 I − 2γ.

Now, we are left with proving the backward di-
rection of the iff clause in Eq. (13). We do so in the
following lemma.
Lemma 3. If the direct tokenisation instance out-
put by Reduction 1 is satisfiable, the max-2-SAT
instance which generated it is as well. Formally:

Tok	(R1(X , C, γ)) =⇒ M2S(X , C, γ) (15)

Proof sketch. See a formal proof in App. B. Our
proof works in three steps. First, we show that
any satisfying solution must only have subwords
of the form ⊚xTj⊚ or ⊚xFj⊚, since this is required
to compress strings in D1 to at most 4fJ symbols.
Second, we show that any satisfying solution must
only have either subword ⊚xTj⊚ or ⊚xFj⊚ for any
variable Xj ; this is required to compress strings in
D2 to at most 3f ′J symbols. Finally, we show that
if a tokeniser compresses strings in D3 to 5I − 2γ,
then there is an assignment x which satisfies at
least γ of the original max-2-SAT problem.

Given both lemmas above, we can now trivially
prove that direct tokenisation is NP-hard.
Lemma 4. The direct tokenisation decision prob-
lem, as in Definition 3, is NP-hard.

Proof. First, it is easy to see that Reduction 1 runs
in polynomial time. Second, max-2-SAT is an NP-
hard problem (Garey et al., 1974). This lemma
then follows trivially from Lemmas 2 and 3, which
together show that an instance of the tokenisation
problem generated through Reduction 1 is satisfi-
able if and only if the max-2-SAT instance used to
produce it is also satisfiable.

6 Finding Optimal Bottom-up Tokenisers

We now shift our attention to bottom-up tokenisa-
tion. We define both its optimisation and decision
problems, and then prove its NP-completeness. We
start with defining the optimisation problem.
Definition 4. Given a dataset D and a vocabulary
size K, the bottom-up tokenisation optimisation
problem is to find a merge sequence mopt ∈ M∗

which maximally compresses D:

mopt =argmin
m∈M∗

∑

c∈D
|tok↑[m](c)| (16)

s.t. |m| = K

As can be seen, this optimisation problem is sim-
ilar to the direct tokenisation problem, albeit its
target is to find a merge sequence instead of a vo-
cabulary. We similarly define a decision problem.
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Definition 5. Given a dataset D and a vocabulary
size K, the bottom-up tokenisation decision prob-
lem requires deciding whether there exists a merge
sequence m ∈ M∗ which compresses D to at most
δ symbols:

δ ≥ min
m∈M∗

∑

c∈D
|tok↑[m](c)| (17)

s.t. |m| = K

We write Tok↑(D,K, δ) for a function which
returns T if a bottom-up tokenisation decision prob-
lem with those inputs is satisfiable, and F other-
wise. We spend the rest of this section showing
that bottom-up tokenisers are NP-complete.

Theorem 2. The bottom-up tokenisation decision
problem, as in Definition 5, is NP-complete.

Proof. We prove this in two steps below. We first
prove that this problem is in NP, in §6.1. We then
prove that this problem is NP-hard, in §6.2.

6.1 Bottom-up Tokenisation is in NP
We can verify this using a solution, the merge se-
quence m ∈ M∗, as a certificate. By showing that
this certificate has polynomial length and that it can
be verified in polynomial time, we prove this prob-
lem is in NP. To verify this certificate, we simply
need to compute the sum in Eq. (17), i.e.:

∑

c∈D
|tok↑[m](c)| (18)

which we show now can be done efficiently.

Lemma 5. The bottom-up tokenisation decision
problem, as in Definition 5, is in NP.

Proof. First, if K is larger than the total number
of characters in D, i.e.,

∑
c∈D |c|, then this dataset

can be compressed to |D| by merging each string
down to a single symbol; further, compressing D
more than that is not possible independently of K.
Verifying the satisfiability of such an instance of the
tokenisation problem is thus trivial, only requiring
checking if δ ≥ |D|. Second, if K is bounded by∑

c∈D |c|—and therefore polynomial in the input—
the certificate m has polynomial length. Given
such a certificate m, verifying it then simply re-
quires computing the sum in Eq. (18). In turn,
computing this sum requires |D| calls to function
tok↑. It follows that, if function tok↑ runs in poly-
nomial time, then bottom-up tokenisation is in NP.
The computation of tok↑, can be done in polyno-
mial time following the structure described in §3.2.

For each m = ⟨s1, s2⟩ in m, scan the current c and
replace each occurrence of s1, s2 by s′. This takes
time O(|c|) for each merge. Afterwards, the result-
ing string can be compared against the desired size.
We obtain a total runtime of O(|D||c||m|).

6.2 Bottom-up Tokenisation is NP-hard
As before, we use a reduction from max-2-SAT to
prove bottom-up tokenisation’s NP-hardness.

Reduction 2. Let us have an instance of the
max-2-SAT decision problem as in Definition 1. To
reduce this instance to an instance of the bottom-up
tokenisation decision problem, as in Definition 5,
we first define an alphabet Σ={⊚,⊗}∪{xTj ,xFj}Jj=1.
We then construct five sets of strings:

D1={⊚xTj}Jj=1∪{xFj⊚}Jj=1∪{xTj⊚}Jj=1 (19)

∪ {⊚xFj}Jj=1∪{xTj⊗}Jj=1∪{⊗xFj}Jj=1

D2={⊚xTj⊚}Jj=1 ∪ {⊚xFj⊚}Jj=1

∪ {⊚xTj⊗}Jj=1 ∪ {⊗xFj⊚}Jj=1

D3={⊚xTj ⊚ xFj⊚}Jj=1∪{⊗xFj ⊚ xTj⊗}Jj=1

D4={⊚xFj ⊚ xTj⊗}Jj=1∪{⊗xFj ⊚ xTj⊚}Jj=1

D5=





⊚xT
j ⊚ xF

j′⊚ if L1
i = Xj and L2

i = ¬Xj′

⊚xT
j′ ⊚ xF

j⊚ if L1
i = ¬Xj and L2

i = Xj′

⊗xF
j ⊚ xF

j′⊚ if L1
i = ¬Xj and L2

i = ¬Xj′

⊚xT
j ⊚ xT

j′⊗ if L1
i = Xj and L2

i = Xj′





I

i=1

We then construct our dataset D, and choose K
and δ as:

D =

f⋃

_=1

D1∪
f ′⋃

_=1

D2∪
f ′′⋃

_=1

D3∪
f ′′′⋃

_=1

D4∪D5 (20)

K = 8J, δ = (6f+6f ′+4f ′′+4f ′′′) J+3 I−γ

where we set:

f ′′′ def
= 5I, f ′′ def

= 10f ′′′J + 5I (21a)

f ′ def
= (10f ′′ + 10f ′′′) J + 5I (21b)

f
def
= (12f ′ + 10f ′′ + 10f ′′′) J + 5I (21c)

As before, we write R2(X , C, γ) for a function
which, given an instance of the max-2-SAT prob-
lem, returns an instance of the bottom-up tokenisa-
tion problem. For our reduction to be correct, we
must have that:

M2S(X , C, γ) ⇐⇒ Tok↑(R2(X , C, γ)) (22)

We follow the same proof strategies as before, start-
ing by proving the forward direction of this iff
statement.
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Lemma 6. If a max-2-SAT instance is satisfiable,
then the bottom-up tokenisation instance output by
Reduction 2 is also satisfiable. Formally:

M2S(X , C, γ) =⇒ Tok↑(R2(X , C, γ)) (23)

Proof sketch. See a formal proof in App. C. With-
out loss of generality, let a satisfying solution to
max-2-SAT have values x⋆j . Our proof works by
first defining the three following lists of merges,
which must be included in any satisfying solution
to this tokenisation problem:

m1 = ⃝J
j=1[⟨⊗, xFj ⟩, ⟨xTj ,⊗⟩] (24a)

m3 = ⃝J
j=1[⟨xFj ,⊚⟩, ⟨⊚, xTj ⟩] (24b)

m5 = ⃝J
j=1[⟨⊚, xFj ⟩, ⟨xTj ,⊚⟩] (24c)

We then construct two other lists of merges,
which depend on the satisfying assignments to
max-2-SAT:

m2 = ⃝J
j=1

[ ⟨⊚, xTj⊗⟩ if x⋆j = T

⟨⊗xFj ,⊚⟩ else

]
(25a)

m4 = ⃝J
j=1

[ ⟨⊚xTj ,⊚⟩ if x⋆j = T

⟨⊚, xFj⊚⟩ else

]
(25b)

Finally, we create a merge sequence by concatenat-
ing these lists in order:

m = m1 ◦m2 ◦m3 ◦m4 ◦m5 (26)

Note that we have exactly K = 8J merges in this
list. Given this merge sequence, it is easy to verify
that strings in D1 to D4 will use exactly (6f +
6f ′+4f ′′+4f ′′′) J symbols after being tokenised.
Further, since at least γ of the max-2-SAT’s clauses
are satisfied by x⋆j , the strings in D5 will occupy
a total length smaller or equal to 3 I − γ. This
solution to the tokenisation problem thus gives us
a tokeniser which will compress D to at most δ =
(6f+6f ′+4f ′′+4f ′′′) J + 3 I − γ.

We now prove the backward direction of the iff
clause in Eq. (22).

Lemma 7. If the bottom-up tokenisation instance
output by Reduction 2 is satisfiable, the max-2-SAT
instance which generated it is as well. Formally:

Tok↑(R2(X , C, γ)) =⇒ M2S(X , C, γ) (27)

Proof sketch. See a formal proof in App. D. Our
proof works in five steps. First, we show that all
satisfying solutions must include merges m1, m3,
and m5 from Eq. (24), since this is required to

compress strings in D1 to at most 6fJ symbols.
Second, we show the other merges of any satisfying
solution must be of the form:

m⊚
j =

{ ⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}
(28a)

m⊗
j =

{ ⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩

}
(28b)

this is required to compress strings in D2 to at most
6f ′J symbols. Third, we show that any satisfying
solution will have at least one merge of each set
m⊚

j and one of each set m⊗
j ; this is required to

compress strings in D3 to at most 4f ′′J symbols.
Fourth, we show that any satisfying solution will
have—for each j ∈ {1, ..., J}—both its merges
in sets m⊚

j and m⊗
j containing character xTj or

character xFj ; this is required to compress strings in
D4 to at most 4f ′′′J symbols. Finally, we show that
if a tokeniser compresses strings in D5 to 3I − γ,
then there is an assignment x which satisfies at
least γ of the original max-2-SAT problem.

Finally, given both lemmas above, we can now
prove that bottom-up tokenisation is NP-hard.

Lemma 8. The bottom-up tokenisation decision
problem, as in Definition 5, is NP-hard.

Proof. First, it is easy to see that Reduction 2 runs
in polynomial time. Second, max-2-SAT is an NP-
hard problem (Garey et al., 1974). This lemma then
follows trivially from Lemmas 6 and 7.

6.3 Other Definitions of Tokenisation

We now expand our discussion to consider varia-
tions of the above tokenisation problems.

Deduped Datasets. Our definitions of both
direct and bottom-up tokenisation allow datasets
D to include repeated entries. It is common,
however, to deduplicate datasets in NLP—thus
removing repeated entries. A small change to
both our reductions is enough to adapt it to this
deduplicated dataset case: simply append each
string in the repeated datasets (either D1 and
D2 in Reduction 1 or D1 to D4 in Reduction 2)
with a unique character {ay}∞y=1 and increase
the target compression size δ accordingly (by
f + f ′ or f + f ′ + f ′′ + f ′′′, respectively). These
new characters will never be included in optimal
tokenisers’ solutions, and thus the previous proofs
hold, with the difference that each dataset will
require extra symbols once compressed.
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A Single Long String. In the previous sections,
we considered tokenisers trained on a dataset D.
Work on compression, however, usually considers
a single long string c as its input. It is easy to see
that direct tokenisation is not an NP-complete prob-
lem if its input is a single long string; including
this string in vocabulary S already achieves opti-
mal compression. Bottom-up tokenisation, how-
ever, is still NP-complete even when given a single
string as input. As before, this can be shown with
a similar strategy to Reduction 2, but where we
first append each string in dataset D with a unique
character {ay}∞y=1 and then concatenate all these
strings. As in the deduped case above, characters
ay will never be merged by any optimal tokeniser;
they will thus serve as virtual string delimiters and
will not affect our proofs beyond an increase to the
target compression size δ.

A Hybrid Approach. Finally, the last variant we
consider is a hybrid between direct and bottom-up
tokenisation, where we find a merge sequence m
which—when we extract a vocabulary from it as
S = Σ∪{s1 ◦s2 | ⟨s1, s2⟩ ∈ m}—optimally com-
presses a dataset D using the direct tokenisation
function in Eq. (4). We can easily prove the NP-
hardness of this tokenisation variant by relying on
Reduction 2; as our proof in Lemma 8 did not make
use of the order of merges in m, only of the sub-
words composed by it, this lemma’s proof strategy
can be similarly applied to this hybrid variant.

7 Tokenisation and Compression

The variants of tokenisation that we consider here—
with compression as their objective function—are
closely related to the field of dictionary compres-
sion. In both fields, we wish to reduce the size
of an input (c or D) by exploiting repetitive ele-
ments. In fact, the most popular tokenisation algo-
rithm to date, BPE, was originally proposed as a
compression algorithm (Gage, 1994) and has only
somewhat recently been ported into NLP to find
tokenisers (by Sennrich et al., 2016).

Not surprisingly, prior work has also consid-
ered, from a theoretical perspective, the compres-
sion tokenisers achieve. Zouhar et al. (2023b),
for instance, analyse bottom-up tokenisation and
prove an approximation bound on the compression
achieved by the tokenisers found using BPE. More
recently, Kozma and Voderholzer (2024) also analy-
ses bottom-up tokenisation, proving a tighter bound
on this compression achieved by BPE.

A popular dictionary compression method, the
straight-line program (SLP; Kieffer and Yang,
2000; Charikar et al., 2005), can be used to illus-
trate the similarities and differences between to-
kenisers and compressors.12 Given a string c, an
SLP describes a context-free grammar from which
c can be uniquely derived. Formally, an SLP in
Chomsky normal form (CNF) is a set of rules of
form X → a or X → AB, where X,A,B are
called nonterminals and a is a terminal.13 Start-
ing from a special nonterminal S, applying these
rules exhaustively—until only terminals are left—
produces exactly the desired string c. Notably,
given a string c, it is NP-complete to find the small-
est SLP which generates it (Charikar et al., 2005).

On the one hand, SLPs in CNF are closely linked
to bottom-up tokenisation; each of its rules expands
to two nonterminals, and thus corresponds to a
merge. However, while SLPs must find the mini-
mum number of merges (or rules) to fully compress
a string into a single symbol, bottom-up tokenisers
must maximally compress the string given a fixed
number of merges. On the other hand, SLPs which
are not in CNF (that is, for which other context-
free production rules are allowed, as long as the
decoding stays unique) are closely linked to direct
tokenisation. In this case, a direct tokeniser could
be converted into an SLP with depth two; this gram-
mar has a start rule S → s, and a rule from each
subword to its characters s → c. Again, while
SLPs must find a minimal grammar representing
the string, direct tokenisers must minimise the size
of rule S → s given a fixed number of rules s → c.

The paragraphs above highlights two important
differences between tokenisers and compressors.
First, tokenisers aim to reduce only the size of the
resulting tokenised text (i.e., |s|), whereas compres-
sors also consider the size of the compression infor-
mation (e.g., considering the size required to store
S, which would be

∑
s∈S |detok(s)|). This is be-

cause tokenisers must create shorter inputs for NLP
algorithms, while compressors must make informa-
tion compact. Second, tokenisers and compressors
have different optimisation parameters. Compres-
sion algorithms always compress a string to the
best extent possible (e.g., for SLPs, until a single

12See Lohrey (2012) for an overview of straight-line pro-
grams, and Kempa and Prezza (2018); Kociumaka et al. (2023)
for a more detailed overview of compression in general.

13Although not originally defined that way, SLP’s gram-
mars are typically assumed to be in CNF, for simplicity. This
does not make a big difference for compression, but will be
important for our purposes.
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nonterminal is reached), whereas tokenisation algo-
rithms are given a maximum vocabulary size (i.e.,
K) and find tokenisers which only compress their
input as much as possible until this limit is reached.

8 Conclusion

In this work, we proved the NP-completeness of
two variants of tokenisation. These results under-
line that finding optimal tokenisers most likely will
remain a difficult quest and that research should
focus on approximate algorithms instead. Regard-
ing those, there is potential both in improving the
analysis of currently used algorithms, such as BPE,
as well as in designing new ones.

Limitations

While we prove the NP-completeness of multi-
ple variants of the tokenisation problem—which is
an important part of modern language modelling
pipelines—we must note a few limitations in our
work. First, we only prove NP-completeness of to-
kenisation with compression as its objective. This
is a popular objective function, frequently used
to judge the quality of tokenisers (e.g., Liu et al.,
2025); however, it is not perfectly correlated with
downstream language modelling performance, as
discussed in §2.14 Investigating the complexity
of tokenisation under other objective functions is
important. Second, our proofs do not assume a
fixed alphabet size, so for fixed alphabets tokenisa-
tion might not be NP-complete. Tokenisers are
frequently run at the byte level, for which spe-
cialised, more efficient algorithms might exist. Fi-
nally, while we investigated the complexity of the
tokenisation problem for two types of tokenisation
functions, similar results for other variants (with
other tokenisation functions) remain open; we be-
lieve this would be exciting future work.
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A Proof of Lemma 2

Lemma 2. If a max-2-SAT instance is satisfiable, then the direct tokenisation instance output by Reduc-
tion 1 is also satisfiable. Formally:

M2S(X , C, γ) =⇒ Tok	(R1(X , C, γ)) (14)

Proof. First, note that if M2S(X , C, γ), then we have that Eq. (7) holds: γ≤maxx ∈{F,T}J
∑I

i=11{L1
i∨L2

i }.
Now, without loss of generality, let a satisfying solution have values x⋆j . In this case, for each variable Xj ,
we construct token ⊚xTj⊚ if x⋆j is true, or ⊚xFj⊚ if x⋆j is false. This gives us a total of J new tokens, so
satisfies the |S| = |Σ| +K condition. Now we just need to count the symbols output by this solution
to see if Eq. (9) is satisfied, since any given tokenisation tok(·,S) will provide an upper bound on the
optimal tokenisation in terms of compression:

∑

c∈D
|tok	[S](c)| ≥ min

S′⊂Σ+

∑

c∈D
|tok	[S ′](c)| (29)

s.t. |S ′| = |Σ|+K

For each pair of strings ⊚xTj⊚ and ⊚xFj⊚ in D1, one is compressed into a single subword while the other
is kept as originally—using 3 symbols. We thus have that the strings in D1 will occupy a total of (1+ 3)J
characters, and:

∑

c∈(⋃f
_=1 D1)

|tok	[S](c)| = 4fJ (30)

Similarly, for each string in D2 of form ⊚xTj ⊚ xFj⊚, we have that either token ⊚xTj⊚ or ⊚xFj⊚ exists. So
each of these strings is compressed from 5 into 3 symbols. We thus have:

∑

c∈(⋃f ′
_=1 D2)

|tok	[S](c)| = 3f ′J (31)

Finally, we have strings in D3 of form ⊚L1
i ⊚ L2

i⊚. These strings will be compressed into 3 symbols if
⊚L1

i⊚ or ⊚L2
i⊚ (or both) exist, and kept with 5 symbols otherwise. We thus have:

∑

c∈D3

|tok	[S](c)| =
I∑

i=1

(
5− 21

{⊚L1
i⊚ ∈ S
or

⊚L2
i⊚ ∈ S

})
(32a)

= 5I − 2
I∑

i=1

1





⊚xTj⊚ ∈ S and L1
i = Xj

or
⊚xFj⊚ ∈ S and L1

i = ¬Xj

or
⊚xTj′⊚ ∈ S and L2

i = Xj′

or
⊚xFj′⊚ ∈ S and L2

i = ¬Xj′





(32b)

= 5I − 2

I∑

i=1

1x ⋆{L1
i ∨ L2

i } (32c)

≤ 5I − 2γ (32d)

where, by construction, we have that a subword ⊚Li⊚ ∈ S if and only if its associated variable (Xj or
¬Xj) is true. Summing together the lengths in Eqs. (30) to (32), we get that

∑

c∈D
|tok	[S](c)| ≤ δ = (4f + 3f ′) J + 5 I − 2γ (33)

which concludes the proof.
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B Proof of Lemma 3

Lemma 3. If the direct tokenisation instance output by Reduction 1 is satisfiable, the max-2-SAT instance
which generated it is as well. Formally:

Tok	(R1(X , C, γ)) =⇒ M2S(X , C, γ) (15)

Proof. First, note that the dataset D output by Reduction 1 has a total number of characters:
∑

c∈D
|c| = (6f + 5f ′)J + 5I (34)

Further, let:

toklen(D,S) def
=
∑

c∈D
|tok	[S](c)|, S0 = Σ ∪

J⋃

j=1

{⊚xTj⊚,⊚xFj⊚} (35)

The maximum number of symbols in this dataset after compression is set to δ = (4f + 3f ′) J + 5 I − 2γ.
This means that, to satisfy this objective, there must exist a vocabulary whose tokeniser compresses the
text by at least (2f + 2f ′) J + 2γ symbols. We now prove this lemma in three steps: 1 we show that any
solution which compresses the text by at least 2fJ symbols must only have nontrivial subwords15 of the
form ⊚xTj⊚ or ⊚xFj⊚; 2 we show that any solution which compresses the text by at least (2f + 2f ′)J
symbols must only have either subword ⊚xTj⊚ or ⊚xFj⊚ for any variable Xj ; 3 we show that any solution
which compresses the text by at least (2f + 2f ′)J + 2γ symbols must be produced by a max-2-SAT
instance which has at least γ clauses that are simultaneously satisfiable.

LemmaProofStep 1. (Step 1 ). Any solution which compresses the text by at least 2fJ symbols must
only have nontrivial subwords of the form ⊚xTj⊚ or ⊚xFj⊚, i.e.,:

(
toklen(D,S) ≤ (4f + 5f ′)J + 5I︸ ︷︷ ︸∑

c∈D |c|−2fJ

)
=⇒ S ⊂ S0 (36)

Proof. First, given a solution with S ⊂ S0, each subword s ∈ S\Σ, where S\Σ
def
= S \ Σ, will replace at

least f strings in D1—i.e., with form ⊚xTj⊚ or ⊚xFj⊚—for a single subword, thus saving 2f characters.
Since we have |S\Σ| = K = J tokens, we save exactly 2fJ symbols in D1:

S ⊂ S0 =⇒
(
toklen(D1,S ′) = 4fJ︸︷︷︸∑

c∈D1
|c|−2fJ

)
(37)

Note now that any solution S ′ for which S ′ ̸⊂ S0 has at least one nontrivial subword which is not of
the form ⊚xTj⊚ or ⊚xFj⊚; this subword s /∈ S0 will thus not compress strings in D1 by 2f symbols, but
by at most f symbols:

S ′ ̸⊂ S0 =⇒
(
toklen(D1,S ′) ≥ 4f(J − 1) + 5f︸ ︷︷ ︸∑

c∈D1
|c|−2fJ+f

)
(38)

Even if this new subword were able to fully compress strings in D2 and D3 to a single symbol each, it
would reach a compression of at most 4f ′J + 4I . Since by design f = 4f ′J + 4I + 1, we get that:

S ′ ̸⊂ S0 =⇒
(
toklen(D,S ′) ≥ 4fJ + f + f ′J + I > (4f + 5f ′)J + 5I

)
(39)

which concludes this step of the proof.
15We define nontrivial subwords as subwords with more than one character. Remember that by definition Σ ⊆ S, so all

characters are always included in tokenisers’ vocabularies. Also note that |S| = |Σ| +K, so those trivial subwords are not
counted towards vocabulary size K.
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LemmaProofStep 2. (Step 2 ). Any solution which compresses the text by at least (2f + 2f ′)J symbols
must only have either subword ⊚xTj⊚ or ⊚xFj⊚ for any variable Xj , i.e.,:

(
toklen(D,S) ≤ (4f + 3f ′)J + 5I︸ ︷︷ ︸∑

c∈D |c|−(2f+2f ′)J

)
=⇒ ∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1 (40)

Proof. In this step of the proof, we show that satisfying solutions must have one and only one of subwords
⊚xTj⊚ and ⊚xFj⊚ for any variable Xj . As before, it’s easy to see that a solution of the form described
achieves at least (2f + 2f ′)J symbol compression. Each subword of form ⊚xTj⊚ or ⊚xFj⊚ saves exactly
2f characters in the strings in D1. Further, because we always have either subword ⊚xTj⊚ or ⊚xFj⊚ for
each value of j, we also get 2f ′ compression in the strings in D2:

∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1 (41)

=⇒
(
toklen(D1,S) = 4fJ︸︷︷︸∑

c∈D1
|c|−2fJ

)
and

(
toklen(D2,S) = 3f ′J︸︷︷︸∑

c∈D2
|c|−2f ′J

)

Now note that this is not true if both ⊚xTj⊚ and ⊚xFj⊚ exist for a single j; in this case, only one of
the tokens can be applied to ⊚xTj ⊚ xFj⊚, and thus both tokens together lead to a benefit of 2 instead
of 4. If both ⊚xTj⊚ and ⊚xFj⊚ exist for any token Xj , this implies that neither of ⊚xTj′⊚ and ⊚xFj′⊚
exists for some other Xj′ , resulting in an uncompressed string. Then, we get at most a compression of
2fJ + 2f ′(J − 1) + 4I:

∃j∈{1,...,J} |S ′ ∩ {⊚xTj⊚,⊚xFj⊚}| ≠ 1 =⇒
(
toklen(D,S ′) ≥ (4f + 3f ′)J + 2f ′ + I︸ ︷︷ ︸∑

c∈D |c|−(2f+2f)′J+2f ′−4I

)
(42)

By construction f ′ = 2I + 1, which leads to:

∃j∈{1,...,J} |S ′ ∩ {⊚xTj⊚,⊚xFj⊚}| ≠ 1 =⇒
(
toklen(D,S ′) > (4f + 3f ′)J + 5I

)
(43)

This concludes the proof.

LemmaProofStep 3. (Step 3 ). Any instance of the tokenisation problem with a solution which com-
presses the text by at least (2f + 2f ′)J + 2γ symbols must be produced by a max-2-SAT problem with at
least γ satisfied clauses, i.e.,:

(
toklen(D,S) ≤ (4f + 3f ′)J + 5I − 2γ︸ ︷︷ ︸∑

c∈D |c|−(2f+2f ′)J+2γ

)
=⇒ M2S(X , C, γ) (44)

Proof. Finally, we now know any solution with this compression must have—for any variable Xj—
either subword ⊚xTj⊚ or ⊚xFj⊚. We can thus create a bijection ConvS→x between the set of possible
vocabularies respecting this condition, and the set of T/F assignments to SAT variables x :

ConvS→x (S) =
{

T if⊚xTj⊚ ∈ S
F if⊚xFj⊚ ∈ S

}J

j=1

(45)

Further, note that vocabularies of this form (as shown in Eq. (41)) lead to exactly (2f + 2f ′)J symbols
being compressed in D1 and D2. To achieve the target compression, a solution must thus compress D3

by at least 2γ symbols. Now note that for any string ⊚L1
i ⊚ L2

i⊚ in D3 we have three compression
options: ⊚L1

i⊚ will be compressed, saving 2 symbols; ⊚L2
i⊚ will be compressed, also saving 2 symbols;

or nothing will be compressed. More specifically, ⊚L1
i⊚ can be compressed if L1

i represents Xj

and subword ⊚xTj⊚ exists, or if L1
i represents ¬Xj and subword ⊚xFj⊚ exists; the same is true for
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⊚L2
i⊚. They cannot both be compressed, however, as there is only one symbol ⊚ between the literals.

We thus get a compression of 2 symbols for each of these strings if at least one of its literals has an
associated subword in S . Note thus that whenever a string ⊚L1

i ⊚ L2
i⊚ is compressed by 2 symbols using

vocabulary S , the max-2-SAT disjunction L1
i ∨L2

i will also be satisfied by assignment x = ConvS→x (S);
similarly, whenever this string suffers no compression (i.e., having a compression of zero), the max-2-SAT
disjunction will not be satisfied. As our condition assumes a compression of at least 2γ symbols, we know
that we have at least γ strings for which a literal has an associated subword. We can thus write:

2γ ≤ max
S⊂Σ+

∑

c∈D3

|c| − |tok	[S](c)| (46a)

s.t. |S| = |Σ|+ J and ∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1

= max
S⊂Σ+

∑

⊚L1
i⊚L2

i⊚∈D3

21

{ ⊚L1
i⊚ ∈ S
or

⊚L2
i⊚ ∈ S

}
(46b)

s.t. |S| = |Σ|+ J and ∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1

= max
x ∈{0,1}J

I∑

i=1

21x {L1
i ∨ L2

i } (46c)

=⇒ M2S(X , C, γ) (46d)

We thus know that, if a satisfying tokenisation solution exists, then the associated max-2-SAT problem
will also be satisfiable. This concludes the proof.

C Proof of Lemma 6

Lemma 6. If a max-2-SAT instance is satisfiable, then the bottom-up tokenisation instance output by
Reduction 2 is also satisfiable. Formally:

M2S(X , C, γ) =⇒ Tok↑(R2(X , C, γ)) (23)

Proof. Our proof starts by first defining the three following lists of merges, which will be included in any
satisfying solution to the tokenisation problem:

m1 =
J
⃝
j=1

[
⟨⊗, xFj ⟩, ⟨xTj ,⊗⟩

]
, m3 =

J
⃝
j=1

[
⟨xFj ,⊚⟩, ⟨⊚, xTj ⟩

]
, m5 =

J
⃝
j=1

[
⟨⊚, xFj ⟩, ⟨xTj ,⊚⟩

]
(47)

Now, without loss of generality, let a satisfying solution to max-2-SAT have values x⋆j . We then construct
two other lists of merges, which depend on this max-2-SAT solution:

m2 =
J
⃝
j=1

[ ⟨⊚, xTj⊗⟩ if x⋆j = T

⟨⊗xFj ,⊚⟩ else

]
, m4 =

J
⃝
j=1

[ ⟨⊚xTj ,⊚⟩ if x⋆j = T

⟨⊚, xFj⊚⟩ else

]
(48)

In words, we create merges ⟨⊚, xTj⊗⟩ and ⟨⊚xTj ,⊚⟩ if x⋆j is true, or ⟨⊗xFj ,⊚⟩ and ⟨⊚, xFj⊚⟩ if x⋆j is false.
We then create a merge sequence by concatenating these lists in order:

m = m1 ◦m2 ◦m3 ◦m4 ◦m5 (49)

This gives us a total of |m| = K = 8J merges. Now we just need to count the symbols output by this
solution to see if Eq. (17) is satisfied, since any given tokenisation tok↑[m] will provide an upper bound
on the optimal tokenisation in terms of compression:

∑

c∈D
|tok↑[m](c)| ≥ min

m′∈M∗

∑

c∈D
|tok↑[m′](c)| (50)

s.t. |m′| = K
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c tok↑[m1](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4 ◦m5](c) |tok↑[m](c)|
⟨⊚, xT

j⟩ · ⟨⊚xT
j⟩ · 1

⟨xF
j ,⊚⟩ · ⟨xF

j⊚⟩ · 1
⟨xT

j ,⊚⟩ · · ⟨xT
j⊚⟩ 1

⟨⊚, xF
j⟩ · · ⟨⊚xF

j⟩ 1
⟨xT

j ,⊗⟩ ⟨xT
j⊗⟩ · · 1

⟨⊗, xF
j⟩ ⟨⊗xF

j⟩ · · 1

Table 1: Example of applying m in D1 of bottom-up tokenisation problem obtained from Reduction 2. The dot
symbol · denotes the string not changing under the given merge.

c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4](c) |tok↑[m](c)|
x⋆
j = T x⋆

j = F x⋆
j = T x⋆

j = F x⋆
j = T x⋆

j = F

⟨⊚, xT
j ,⊚⟩ · · · ⟨⊚xT

j ,⊚⟩ ⟨⊚xT
j⊚⟩ ⟨⊚xT

j ,⊚⟩ 1 2
⟨⊚, xF

j ,⊚⟩ · · · ⟨⊚, xF
j⊚⟩ ⟨⊚, xF

j⊚⟩ ⟨⊚xF
j⊚⟩ 2 1

⟨⊚, xT
j ,⊗⟩ ⟨⊚, xT

j⊗⟩ ⟨⊚xT
j⊗⟩ ⟨⊚, xT

j⊗⟩ · · · 1 2
⟨⊗, xF

j ,⊚⟩ ⟨⊗xF
j ,⊚⟩ ⟨⊗xF

j ,⊚⟩ ⟨⊗xF
j⊚⟩ · · · 2 1

Table 2: Example of applying m in D2 of bottom-up tokenisation problem obtained from Reduction 2. The dot
symbol · denotes the string not changing under the given merge. m5 is not depicted as it does not affect this dataset.

By applying the merges m, each string in D1 will be compressed into a single subword; note that m2

and m4 will have no effect on these strings. This is easy to see by applying merges sequentially to these
strings, as displayed in Tab. 1. leading to:

∑

c∈(⋃f
_=1 D1)

|tok↑[m](c)| = 6fJ (51)

For each pair of strings ⊚xTj⊚ and ⊚xFj⊚ in D2, one is compressed into a single subword while the
other is only compressed to two subwords—the one with xTj is compressed to a single symbol if x⋆j = T

and the one with xFj otherwise. The same is true for each pair of strings ⊚xTj⊗ and ⊗xFj⊚, also in D2.
This is displayed in Tab. 2. We thus have that, for each variable Xj , the strings in D2 will occupy a total
of (1 + 2 + 1 + 2)J characters, and:

∑

c∈(⋃f
_=1 D2)

|tok↑[m](c)| = 6f ′J (52)

Similarly, each string in D3 and D4 will be compressed into only 2 symbols after this tokeniser is applied
to it. We thus have:

∑

c∈(⋃f ′′
_=1 D3)

|tok↑[m](c)| = 4f ′′J,
∑

c∈(⋃f ′′′
_=1 D4)

|tok↑[m](c)| = 4f ′′′J (53)

Finally, we have the strings in D5. These strings are constructed such that they will be compressed into 2
symbols if either L1

i or L2
i evaluates to T, and kept with 3 symbols otherwise; see Tab. 4 for a detailed

simulation of why this is the case. We thus have:

∑

c∈D5

|tok↑[m](c)| =
I∑

i=1




3− 11





L1
i = Xj and ⟨⊚, xTj⊗⟩, ⟨⊚xTj ,⊚⟩ ∈ m

or
L1
i = ¬Xj and ⟨⊗xFj ,⊚⟩, ⟨⊚, xFj⊚⟩ ∈ m

or
L2
i = Xj′ and ⟨⊚, xTj′⊗⟩, ⟨⊚xTj′ ,⊚⟩ ∈ m

or
L2
i = ¬Xj′ and ⟨⊗xFj′ ,⊚⟩, ⟨⊚, xFj′⊚⟩ ∈ m








(54a)

= 3I −
I∑

i=1

1x ⋆{L1
i ∨ L2

i } (54b)

≤ 3I − γ (54c)

28148



D c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4](c) tok↑[m1 ◦m2 ◦m3 ◦m4 ◦m5](c) |tok↑[m](c)|
x⋆j = T x⋆j = F x⋆j = T x⋆j = F x⋆j = T x⋆j = F x⋆j = T x⋆j = F

D3 ⟨⊚, xTj ,⊚, xFj ,⊚⟩ · · · ⟨⊚xTj ,⊚, xFj⊚⟩ ⟨⊚xTj⊚, xFj⊚⟩ ⟨⊚xTj ,⊚xFj⊚⟩ · · 2
D3 ⟨⊗, xFj ,⊚, xTj ,⊗⟩ ⟨⊗xFj ,⊚, xTj⊗⟩ ⟨⊗xFj ,⊚xTj⊗⟩ ⟨⊗xFj⊚, xTj⊗⟩ · · · · · · 2
D4 ⟨⊚, xFj ,⊚, xTj ,⊗⟩ ⟨⊚, xFj ,⊚, xTj⊗⟩ ⟨⊚, xFj ,⊚xTj⊗⟩ · · ⟨⊚, xFj⊚, xTj⊗⟩ · ⟨⊚xFj⊚, xTj⊗⟩ ⟨⊚xFj ,⊚xTj⊗⟩ · 2
D4 ⟨⊗, xFj ,⊚, xTj ,⊚⟩ ⟨⊗xFj ,⊚, xTj ,⊚⟩ · ⟨⊗xFj⊚, xTj ,⊚⟩ ⟨⊗xFj ,⊚xTj ,⊚⟩ · ⟨⊗xFj ,⊚xTj⊚⟩ · · ⟨⊗xFj⊚, xTj⊚⟩ 2

Table 3: Example of applying m in D3 and D4 of the bottom-up tokenisation problem obtained from Reduction 2.
The dot symbol · denotes the string not changing under the given merge.

Assignment Condition c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4](c) |tok↑[m](c)|

L1
i = Xj and L2

i = ¬Xj′

x⋆j = T ∧ x⋆j′ = T

⟨⊚, xTj ,⊚, xFj′ ,⊚⟩
· ·

⟨⊚xTj ,⊚, xFj′⊚⟩
⟨⊚xTj⊚, xFj′⊚⟩ 2

x⋆j = F ∧ x⋆j′ = T · · ⟨⊚xTj ,⊚, xFj′⊚⟩ 3
x⋆j = T ∧ x⋆j′ = F · · ⟨⊚xTj⊚, xFj′⊚⟩ 2
x⋆j = F ∧ x⋆j′ = F · · ⟨⊚xTj ,⊚xFj′⊚⟩ 2

L1
i = ¬Xj and L2

i = Xj′

x⋆j = T ∧ x⋆j′ = T

⟨⊚, xTj′ ,⊚, xFj ,⊚⟩
· ·

⟨⊚xTj′ ,⊚, xFj⊚⟩
⟨⊚xTj′⊚, xFj⊚⟩ 2

x⋆j = F ∧ x⋆j′ = T · · ⟨⊚xTj′⊚, xFj⊚⟩ 2
x⋆j = T ∧ x⋆j′ = F · · ⟨⊚xTj′ ,⊚, xFj⊚⟩ 3
x⋆j = F ∧ x⋆j′ = F · · ⟨⊚xTj′ ,⊚xFj⊚⟩ 2

L1
i = ¬Xj and L2

i = ¬Xj′

x⋆j = T ∧ x⋆j′ = T

⟨⊗, xFj ,⊚, xFj′ ,⊚⟩ ⟨⊗xFj ,⊚, xFj′ ,⊚⟩
· ⟨⊗xFj ,⊚, xFj′⊚⟩ · 3

x⋆j = F ∧ x⋆j′ = T ⟨⊗xFj⊚, xFj′ ,⊚⟩ ⟨⊗xFj⊚, xFj′⊚⟩ · 2
x⋆j = T ∧ x⋆j′ = F · ⟨⊗xFj ,⊚, xFj′⊚⟩ ⟨⊗xFj ,⊚xFj′⊚⟩ 2
x⋆j = F ∧ x⋆j′ = F ⟨⊗xFj⊚, xFj′ ,⊚⟩ ⟨⊗xFj⊚, xFj′⊚⟩ · 2

L1
i = Xj and L2

i = Xj′

x⋆j = T ∧ x⋆j′ = T

⟨⊚, xTj ,⊚, xTj′ ,⊗⟩ ⟨⊚, xTj ,⊚, xTj′⊗⟩
⟨⊚, xTj ,⊚xTj′⊗⟩ ⟨⊚xTj ,⊚xTj′⊗⟩ ⟨⊚xTj ,⊚xTj′⊗⟩ 2

x⋆j = F ∧ x⋆j′ = T 2
x⋆j = T ∧ x⋆j′ = F · ⟨⊚xTj ,⊚, xTj′⊗⟩ ⟨⊚xTj⊚, xTj′⊗⟩ 2
x⋆j = F ∧ x⋆j′ = F · 3

Table 4: Example of applying m in D5 of the bottom-up tokenisation problem obtained from Reduction 2. The dot
symbol · denotes the string not changing under the given merge. m5 is not depicted as it does not affect this dataset.

where, by construction, we have a merge in our sequence (e.g., ⟨⊚, xTj⊗⟩ or ⟨⊗xFj ,⊚⟩) if and only if its
value is in a satisfying assignment (e.g., x⋆j = T or x⋆j = F respectively). Summing together the lengths in
Eqs. (51) to (54), we get that:

∑

c∈D
|tok↑[m](c)| ≤ δ = (6f + 6f ′ + 4f ′′ + 4f ′′′) J + 3 I − γ (55)

which concludes the proof.

D Proof of Lemma 7

Lemma 7. If the bottom-up tokenisation instance output by Reduction 2 is satisfiable, the max-2-SAT
instance which generated it is as well. Formally:

Tok↑(R2(X , C, γ)) =⇒ M2S(X , C, γ) (27)

Proof. First, note that:
∑

c∈D
|c| = (12f + 12f ′ + 10f ′′ + 10f ′′′) J + 5 I (56)

Further, let:

toklen(D,m)
def
=
∑

c∈D
|tok↑[m](c)| (57)

m1 = ⃝J
j=1[⟨⊗, xFj ⟩, ⟨xTj ,⊗⟩], m3 = ⃝J

j=1[⟨xFj ,⊚⟩, ⟨⊚, xTj ⟩], m5 = ⃝J
j=1[⟨⊚, xFj ⟩, ⟨xTj ,⊚⟩]

m⊚
j =

{ ⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}
, m⊗

j =

{ ⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩

}

mT
j =

{ ⟨⊚xTj ,⊚⟩, ⟨⊚, xTj⊗⟩,
⟨⊚, xTj⊚⟩, ⟨⊚xTj ,⊗⟩,

}
, mF

j =

{ ⟨⊚, xFj⊚⟩, ⟨⊗xFj ,⊚⟩,
⟨⊚xFj ,⊚⟩, ⟨⊗, xFj⊚⟩,

}
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The maximum number of symbols in this dataset after compression is set to δ = (6f+6f ′+4f ′′+4f ′′′) J+
3 I−γ. This means that to satisfy this objective, there must exist a vocabulary whose tokeniser compresses
the text by at least (6f + 6f ′ + 6f ′′ + 6f ′′′) J + 2I + γ symbols. We now prove this lemma in five steps:
1 we show that any solution which compresses the text by at least 6fJ symbols must include all merges

in m1, m3, and m5; 2 we show that any solution which compresses the text by at least (6f + 6f ′)J
symbols must only include either merges in m1, m3, m5, or in either m⊚

j or m⊗
j ; 3 we show that

any solution which compresses the text by at least (6f + 6f ′ + 6f ′′)J symbols must include, for each
j ∈ {1, . . . , J}, exactly one merge in set m⊚

j and one in set m⊗
j ; 4 we show that any solution which

compresses the text by at least (6f +6f ′ +6f ′′ +6f ′′′)J symbols must include, for each j ∈ {1, . . . , J},
exactly two merges in either set mT

j or in set mF
j ; 5 we show that any solution which compresses the text

by at least (6f +6f ′ +6f ′′ +6f ′′′)J +2I + γ symbols must be produced by a max-2-SAT problem with
at least γ satisfied clauses.

LemmaProofStep 1. (Step 1 ). Any solution which compresses the text by at least 6fJ symbols must
include all merges in m1, m3, and m5, i.e.,:
(
toklen(D,m) ≤ 6fJ + (12f ′ + 10f ′′ + 10f ′′′) J + 5 I︸ ︷︷ ︸∑

c∈D |c|−6fJ

)
(58)

=⇒ ⃝J
j=1[⟨⊗, xFj ⟩, ⟨xTj ,⊗⟩]

︸ ︷︷ ︸
m1

⊂ m, ⃝J
j=1[⟨xFj ,⊚⟩, ⟨⊚, xTj ⟩]︸ ︷︷ ︸

m3

⊂ m, ⃝J
j=1[⟨⊚, xFj ⟩, ⟨xTj ,⊚⟩]

︸ ︷︷ ︸
m5

⊂ m

Proof. We prove this statement by contradiction. Assume that one of the subwords above is not present
in the tokenisers’ merge sequence m. In that case, the strings in D1 which contain this character string
will not be compressed, and will thus still be represented with 2 symbols. There will thus be at most
6J − 1 strings in D1 represented with a single symbol, and at least one represented with two symbols.
The minimum length achievable would thus be:

toklen(D,m) =
∑

c∈⋃f
_=1 D1

|tok↑[m](c)|

︸ ︷︷ ︸
≥(6J−1)f+2f

+
∑

c∈D\(⋃f
_=1 D1)

|tok↑[m](c)|

︸ ︷︷ ︸
>0

(59a)

> (6J + 1)f By construction f = (12f ′ + 10f ′′ + 10f ′′′) J + 5I (59b)

= (6f + 12f ′ + 10f ′′ + 10f ′′′) J + 5I (59c)

which contradicts the proof’s statement.

LemmaProofStep 2. (Step 2 ). Any solution which compresses the text by at least (6f + 6f ′)J symbols
must only include either merges in m1, m3, m5, or in either m⊚

j or m⊗
j , i.e.,:

(
toklen(D,S) ≤ (6f + 6f ′)J + (10f ′′ + 10f ′′′) J + 5 I︸ ︷︷ ︸∑

c∈D |c|−(6f+6f ′)J

)
(60)

=⇒ m \ (m1 ◦m3 ◦m5) ⊆
{ ⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩, ⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩, ⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}J

j=1︸ ︷︷ ︸
⋃J

j=1(m
⊚
j ∪m⊗

j )

Proof. We again prove this statement by contradiction. Assume that m has all merges m1,m3,m5,
but one of its other merges is in neither of the sets m⊚

j and m⊗
j . This means that at least one of the

sets m⊚
j ∪ m⊗

j will not have at least two merges in the solution; this is because there are J such sets
(m⊚

j ∪ m⊗
j ), which—coupled together with the 6J already selected merges in m1,m3,m5—would

amount to the maximum of 8J merges. In that case, the strings (e.g., ⊚xTj⊚, ⊚xFj⊚, ⊚xTj⊗ and ⊗xFj⊚) in
D2 containing the characters this absent merge represents will not be fully compressed to a single symbol,
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being represented with 2 symbols instead. Out of the 4J strings in D2 then, there will thus be at most
2J − 1 represented with a single symbol, and at least 2J + 1 represented with two symbols—resulting in
a total of at least 2J − 1+2(2J +1) = 6J +1 symbols. The minimum length achievable would thus be:

toklen(D,m) =
∑

c∈⋃f
_=1 D1

|tok↑[m](c)|

︸ ︷︷ ︸
=6fJ

+
∑

c∈⋃f ′
_=1 D2

|tok↑[m](c)|

︸ ︷︷ ︸
≥(6J+1)f ′

+
∑

c∈D\(D1∪D2)

|tok↑[m](c)|

︸ ︷︷ ︸
>0

(61a)

> 6fJ + (6J + 1)f ′ By construction f ′ = (10f ′′ + 10f ′′′) J + 5I (61b)

= (6f + 6f ′ + 10f ′′ + 10f ′′′) J + 5 I (61c)

which contradicts the proof’s statement.

LemmaProofStep 3. (Step 3 ). Any solution which compresses the text by at least (6f + 6f ′ + 6f ′′)J
symbols must include all merges in m1, m3, m5, and, for each j ∈ {1, . . . , J}, exactly one merge in set
m⊚

j and one in set m⊗
j , i.e.,:

(
toklen(D,m) ≤ (6f + 6f ′ + 4f ′′)J + 10f ′′′ J + 5 I︸ ︷︷ ︸∑

c∈D |c|−(6f+6f ′+6f ′′)J

)
(62)

=⇒ ∀j∈{1,...,J}
∣∣∣∣m ∩

{ ⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}

︸ ︷︷ ︸
m⊚

j

∣∣∣∣ = 1 and

∣∣∣∣m ∩
{ ⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩

}

︸ ︷︷ ︸
m⊗

j

∣∣∣∣ = 1

Proof. We again prove this statement by contradiction. First, assume that m contains all the merges in
m1,m3,m5; further, assume all its other merges are contained in sets m⊚

j and m⊗
j . Note now that, if any

merge in m⊗
j is in the selected merges m, the string ⊗xFj ⊚ xTj⊗ in D3 will be compressed to 2 symbols

(e.g., ⟨⊗xFj ,⊚xTj⊗⟩); if none of these merges is present, however, this string will only be compressed
to 3 symbols (e.g., ⟨⊗xFj ,⊚, xTj⊗⟩). The same is true for strings ⊚xTj ⊚ xFj⊚ and merges in m⊚

j . Now,
assume the contradictory case: for a value of j ∈ {1, . . . , J}, m does not satisfy the condition above.
As, by construction, our solution has K = 8J merges, and because |m1 ◦m3 ◦m5| = 6J , we know
that we have 2J merges in sets m⊚

j and m⊗
j . As there are exactly 2J such sets, if the condition above

does not hold, at least one of these sets must have no merge present in m. In that case, the strings in
D3 which contain the character string represented by these absent merges will be compressed to three
symbols, while others will be compressed to two symbols. There will thus be at most 2J − 1 strings in
D3 represented with two symbols, and at least one represented with three symbols. The minimum length
achievable would thus be:

toklen(D,m) =
∑

c∈
f⋃

_=1
D1∪

f ′⋃
_=1

D2

|tok↑[m](c)|

︸ ︷︷ ︸
=(6f+6f ′)J

+
∑

c∈
f ′′⋃

_=1
D3

|tok↑[m](c)|

︸ ︷︷ ︸
≥(2J−1)2f ′′+3f ′′

+
∑

c∈
f ′′′⋃
_=1

D4∪D5

|tok↑[m](c)|

︸ ︷︷ ︸
>0

(63a)

> (6f + 6f ′)J + (4J + 1)f ′′ By construction f ′′ = 10f ′′′ J + 5I (63b)

= (6f + 6f ′ + 4f ′′ + 10f ′′′) J + 5 I (63c)

which contradicts the proof’s statement.

LemmaProofStep 4. (Step 4 ). Any solution which compresses the text by at least (6f + 6f ′ + 6f ′′ +
6f ′′′)J symbols must include all merges in m1, m3, m5, and, for each j ∈ {1, . . . , J}, exactly one merge
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in set m⊚
j and one in set m⊗

j , such that either both these merges are in mT
j or both are in mF

j , i.e.,:
(
toklen(D,m) ≤ (6f + 6f ′ + 4f ′′ + 4f ′′′)J + 5 I︸ ︷︷ ︸∑

c∈D |c|−(6f+6f ′+6f ′′+6f ′′′)J

)
(64)

=⇒ ∀j∈{1,...,J} |m ∩
{ ⟨⊚xTj ,⊚⟩, ⟨⊚, xTj⊗⟩,
⟨⊚, xTj⊚⟩, ⟨⊚xTj ,⊗⟩,

}

︸ ︷︷ ︸
mT

j

| = 2 or |m ∩
{ ⟨⊚, xFj⊚⟩, ⟨⊗xFj ,⊚⟩,
⟨⊚xFj ,⊚⟩, ⟨⊗, xFj⊚⟩,

}

︸ ︷︷ ︸
mF

j

| = 2

Proof. First, note that the conditions of the step of our proof are stricter than previous ones, so we assume
the conditions of steps 1 to 3 hold—i.e., m contains all merges in m1,m3,m5; further, it has one and
only one merge from each set m⊚

j and m⊗
j . (Note that m⊚

j ∪m⊗
j = mT

j ∪mF
j , and that the just-mentioned

condition implies |m ∩ (mT
j ∪mF

j )| = 2.) We now again prove this statement by contradiction. Consider
now the case:

∣∣∣∣m ∩
{ ⟨⊚xTj ,⊚⟩, ⟨⊚, xTj⊗⟩,
⟨⊚, xTj⊚⟩, ⟨⊚xTj ,⊗⟩,

}

︸ ︷︷ ︸
mT

j

∣∣∣∣ = 2 or

∣∣∣∣m ∩
{ ⟨⊚, xFj⊚⟩, ⟨⊗xFj ,⊚⟩,
⟨⊚xFj ,⊚⟩, ⟨⊗, xFj⊚⟩,

}

︸ ︷︷ ︸
mF

j

∣∣∣∣ = 2 (65)

If this is true, then strings ⊚xFj ⊚ xTj⊗ and ⊗xFj ⊚ xTj⊚ in D4 will be compressed to 2 symbols each (e.g., to
⟨⊚xFj ,⊚xTj⊗⟩ and ⟨⊗xFj ,⊚xTj⊚⟩ or ⟨⊚xFj⊚, xTj⊗⟩ and ⟨⊗xFj⊚, xTj⊚⟩ ); if this condition is false, however,
one of these strings will only be compressed to 3 symbols (e.g., to ⟨⊚xFj ,⊚xTj⊗⟩ and ⟨⊗xFj ,⊚, xTj⊚⟩).
Now, assume the contradictory case: for a value of j ∈ {1, . . . , J}, m does not satisfy the condition
above. In that case, the strings in D4 for which the condition does not hold will be compressed to 3 + 2
symbols, while others will be compressed to 2 + 2 symbols. There will thus be at most 2J − 1 strings in
D4 represented with two symbols, and at least one represented with three symbols. The minimum length
achievable would thus be:

toklen(D,m) =
∑

c∈
f⋃

_=1
D1∪

f ′⋃
_=1

D2∪
f ′′⋃

_=1
D3

|tok↑[m](c)|

︸ ︷︷ ︸
=(6f+6f ′+4f ′′)J

+
∑

c∈
f ′′′⋃
_=1

D4

|tok↑[m](c)|

︸ ︷︷ ︸
≥(2J−1)2f ′′′+3f ′′′

+
∑

c∈D5

|tok↑[m](c)|
︸ ︷︷ ︸

>0

(66a)

> (6f + 6f ′ + 4f ′′)J + (4J + 1)f ′′′ By construction f ′′′ = 5I (66b)

= (6f + 6f ′ + 4f ′′ + 4f ′′′) J + 5 I (66c)

which contradicts the proof’s statement.

LemmaProofStep 5. (Step 5 ). Any instance of the tokenisation problem with a solution which com-
presses the text by at least (6f +6f ′+6f ′′+6f ′′)J +2I + γ symbols must be produced by a max-2-SAT
problem with at least γ satisfied clauses, i.e.,:

(
toklen(D,S) ≤ (6f + 6f ′ + 4f ′′ + 4f ′′′)J + 3I − γ︸ ︷︷ ︸∑

c∈D |c|−(6f+6f ′+6f ′′+6f ′′′)J−2I−γ

)
=⇒ M2S(X , C, γ)

Proof. Finally, we now know any solution with this compression must have—for any variable Xj—either
two merges in mT

j or in mF
j (and never both). We can thus create a bijection Convm→x between the set

of possible merge sequences respecting this condition, and the set of T/F assignments to SAT variables x :

Convm→x (m) =

{
T if |m ∩mT

j | = 2

F if |m ∩mF
j | = 2

}J

j=1

(67)

Further, note that merge sequences of this form (as shown in Eq. (41)) lead to exactly (6f + 6f ′ + 6f ′′ +
6f ′′′)J symbols being compressed in datasets D1 to D4. To achieve the target compression, a solution
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must thus compress D5 by at least 2I + γ symbols. Now note that for any string in D5, e.g., ⊚xTj ⊚ xFj′⊚,
we have three compression options: ⊚xTj⊚ and xFj′⊚ will be compressed, saving 3 symbols; ⊚xTj and
⊚xFj′⊚ will be compressed, also saving 3 symbols; or only ⊚xTj and xFj′⊚ will be compressed saving only
2 symbols. More specifically, ⊚xTj⊚ will be compressed to a single symbol if merge ⟨⊚, xTj⊚⟩ exists;
similarly, ⊚xFj′⊚ will be compressed to a single symbol if merge ⟨⊚xFj′ ,⊚⟩ exists. They cannot both
be compressed, however, as there is only one symbol ⊚ between the literals. We thus get a reduction
of 3 symbols for each of these strings if at least one of its literals has an associated merge in m. Note
thus that whenever a string ⊚xTj ⊚ xFj′⊚ is compressed by 3 symbols using merges m, the max-2-SAT
disjunction Xj ∨ ¬Xj′ will also be satisfied by assignment x = Convm→x (m); similarly, whenever this
string is only compressed by two symbols, the max-2-SAT disjunction will not be satisfied. A similar
logic applies to all potential strings in D5: ⊚xTj ⊚ xFj′⊚, ⊚xTj′ ⊚ xFj⊚, ⊗xFj ⊚ xFj′⊚, and ⊚xTj ⊚ xTj′⊗. As
our condition assumes a compression of at least 2I + γ symbols, we know that we have at least γ strings
for which a literal has an associated merge. Now, let m⋆ ∈ M∗ be a valid solution to Tok↑(R2(X , C, γ))
and x ⋆ = Convm→x (m

⋆) the equivalent max-2-SAT assignment. We can thus write:

2I + γ ≤
∑

c∈D5

|c| − |tok↑[m⋆](c)| (68a)

=2I +
∑

c∈D5

1





(
xTj ∈ c

)
and

(
|mT

j ∩m⋆| = 2
)

or(
xFj ∈ c

)
and

(
|mF

j ∩m⋆| = 2
)

or(
xTj′ ∈ c

)
and

(
|mT

j′ ∩m⋆| = 2
)

or(
xFj′ ∈ c

)
and

(
|mF

j′ ∩m⋆| = 2
)





(68b)

=2I +
I∑

i=1

1x ⋆{L1
i ∨ L2

i } (68c)

=⇒ M2S(X , C, γ) (68d)

where 1x ⋆{L1
i ∨ L2

i } evaluates L1
i ∨ L2

i using assignments x ⋆. We thus know that, if a satisfying
tokenisation solution exists, then the associated max-2-SAT problem will also be satisfiable. This concludes
the proof.
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