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Abstract

In this paper, we aim to enhance the robustness
of Universal Information Extraction (UIE) by
introducing a new benchmark dataset, a com-
prehensive evaluation, and a feasible solution.
Existing robust benchmark datasets have two
key limitations: 1) They generate only a lim-
ited range of perturbations for a single Informa-
tion Extraction (IE) task, which fails to evalu-
ate the robustness of UIE models effectively;
2) They rely on small models or handcrafted
rules to generate perturbations, often result-
ing in unnatural adversarial examples. Con-
sidering the powerful generation capabilities
of Large Language Models (LLMs), we in-
troduce a new benchmark dataset for Robust
UIE, called RUIE-Bench, which utilizes LLMs
to generate more diverse and realistic pertur-
bations across different IE tasks. Based on
this dataset, we comprehensively evaluate ex-
isting UIE models and reveal that both LLM-
based models and other models suffer from
significant performance drops. To improve
robustness and reduce training costs, we pro-
pose a data-augmentation solution that dynami-
cally selects hard samples for iterative training
based on the model’s inference loss. Exper-
imental results show that training with only
15% of the data leads to an average 8.1% rela-
tive performance improvement across three IE
tasks. Our code and dataset are available at:
https://github.com/ICT-GoKnow/RobustUIE.

1 Introduction

Information Extraction (IE) aims to extract struc-
tured knowledge from unstructured text based on
predefined types of entities, relations, and events.
It plays a fundamental role in downstream appli-
cations such as knowledge graph construction (Ji
et al.,, 2021), information retrieval (Zhu et al.,
2023), and reasoning (Guan et al., 2020). Universal
Information Extraction (UIE), which seeks to unify

*Corresponding authors.

the extraction of various knowledge types through
a single model, has achieved significant progress in
recent years. Most existing studies have primarily
focused on enhancing the overall performance of
UIE models, typically evaluated on fixed test sets.
However, they often overlook the robustness (and
generalization ability) of UIE models, which are
crucial when handling real-world text.

To measure the robustness of IE models, some
studies focus on constructing benchmark datasets
by generating adversarial examples with small
perturbations.  For example, RockNER (Lin
et al., 2021) employs a rule-based approach and
BERT (Devlin et al., 2019) to generate two kinds
of perturbations for Named Entity Recognition
(NER); Lietal. (2021) generate adversarial exam-
ples for Relation Extraction (RE) by random replac-
ing words with synonyms or similar words gener-
ated by some Natural Language Processing (NLP)
tools. Liu et al. (2020) replace verbs and context
using similar words generated by GloVe (Penning-
ton et al., 2014) for Event Detection (ED). Overall,
existing benchmark datasets typically have two lim-
itations: 1) They generate limited kinds of pertur-
bations for individual IE tasks, making it difficult
to comprehensively evaluate the robustness on UIE
models across various IE tasks; 2) They generate
adversarial examples typically using small models
or handcrafted rules, often resulting in unnatural
samples.

Considering the powerful NLP capabilities of
Large Language Models (LLMs) (OpenAl., 2023;
Qin et al., 2024; Li et al., 2024a), we leverage them
in this paper to generate more diverse and realis-
tic perturbations. After human verification of the
annotation accuracy of LLMs, we obtain a new
benchmark dataset for Robust UIE, called RUIE-
Bench. RUIE-Bench contains 12,700 samples and
includes 14 distinct kinds of perturbation across
three mainstream IE tasks, i.e., NER, RE, and ED.
Based on RUIE-Bench, we conduct a comprehen-
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sive evaluation of existing UIE models, including 8
open-source LLMs, 6 closed-source LLMs, 4 tradi-
tional IE models, and 4 fine-tuned UIE models. We
obtain some intriguing observations from the exper-
imental results, such as open-source LL.Ms have a
significant performance gap compared with closed-
source LLMs in both original tests and perturbation
tests. LLM-based UIE models demonstrate better
robustness than traditional IE models under cer-
tain perturbations. However, both types of models
suffer from significant performance drops.

To improve the robustness of UIE models, a
common solution is data augmentation. Since
the training cost is also a key factor, especially
for LLM-based UIE models, we further propose a
Loss-guided Data Augmentation (LDA) solution
to enhance the robustness of models using a lim-
ited number of samples. Specifically, we first gen-
erate additional adversarial examples for training.
Then, the inference loss on these samples is lever-
aged to dynamically select the most challenging
ones to fine-tune the UIE model. Using the fine-
tuned model, we iteratively calculate the inference
loss and select hard samples for the next round
of training. The experimental results demonstrate
that training KnowCoder (Li et al., 2024b) with
just 15% of the augmented data using LDA yields
a 8.1% relative improvement in average perfor-
mance on RUIE-Bench, compared with the state-
of-the-art models. This performance is compara-
ble to the fully trained model using the entire aug-
mented dataset. Additionally, when evaluated on
the unseen dataset, KnowCoder with LDA outper-
forms the fully trained model by an average of
8.9% across three IE tasks.

In summary, our contributions are as follows:

* We construct RUIE-bench, which contains
12,700 samples with 14 distinct perturbations
generated by LLMs across various IE tasks,
which is the most comprehensive benchmark
dataset with the most diverse perturbations for
robust UIE.

* Based on the RUIE bench, we comprehen-
sively evaluate existing IE models. The eval-
uation results highlight that current IE mod-
els exhibit robustness issues against perturba-
tions.

* To improve the robustness with limited sam-
ples, we further propose a loss-guided data

augmentation solution, which achieves perfor-
mance comparable to training with the full
dataset by using only 15% of the data. More-
over, when evaluated on unseen datasets, LDA
outperforms the fully trained model with 8.9%
F1 on average across three IE tasks.

2 Related Work

Universal Information Extraction can be clas-
sifier into two kinds of methods, classification-
based (Lin et al., 2020a; Nguyen et al., 2022) and
generation-based UIE methods (Lu et al., 2022;
Wang et al., 2023; Li et al., 2024b). The former
mainly adopts the end-to-end joint extraction mode,
enhancing cross-task interactions with global de-
pendency modeling for unified extraction. The
latter aims to generate structural information rather
than extracting structural information from plain
text. Recently, some UIE methods employ various
types of prompts to enable LLMs to understand
schemas and extract the corresponding knowledge.
For example, InstructUIE (Wang et al., 2023) ap-
plies a text-style prompt for schema understanding.
In contrast, KnowCoder (Li et al., 2024b) uses a
code-style prompt to transform UIE into code gen-
eration, achieving state-of-the-art performance.
Robustness Research for IE primarily focuses on
constructing benchmark datasets for individual IE
tasks. For NER, RockNER (Lin et al., 2021) re-
places the original entities with entities of relevant
types from Wikidata'!, and employs BERT (Devlin
et al., 2019) to substitute context words; Jin et al.
(2023) adopt disentanglement and word attribution
methods to identify keywords and injects character-
level perturbations for these words; Srinivasan and
Vajjala (2023) apply multiple perturbations, includ-
ing random entity replacement, Bert-based con-
textual modifications, and paraphrase generation.
For RE, Li et al. (2021) generate adversarial ex-
amples by randomizing word substitutions using
RoBERTa (Liu, 2019) or using synonyms; Nolano
et al. (2024) generate adversarial examples by re-
placing entities in triples using various strategies,
including same-type and different-type substitu-
tions. For ED, Liu et al. (2020) use GloVe (Pen-
nington et al., 2014) to replace similar words to
generate adversarial examples.

To enhance the robustness of IE, the existing
method (Lin et al., 2021) expands the original
training data by generating additional examples.

"https://www.wikidata.org
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Furthermore, Li et al. (2021); Jin et al. (2023);
Srinivasan and Vajjala (2023) employ perturbation
techniques to generate adversarial examples for
training. While these methods typically require a
large number of adversarial examples, none focus
on improving model robustness using only a small
number of augmented samples.

3 The Construction of RUIE-Bench

In this section, we first introduce the methods of
utilizing LLMs to generate adversarial examples.
Subsequently, we provide the concrete construction
process of the RUIE-Bench dataset.

3.1 LLM-based Adversarial Example
Generation

In UIE, adversarial examples refer to samples in-
tentionally perturbed to mislead UIE models while
maintaining their original semantics or appearance.
Mathematically, given an input sample s with its
corresponding label y, an adversarial example s’ is
generated by applying a small perturbation, which
is constrained to ensure that it remains close to the
input space. The goal of adversarial examples is to
cause a model to predict an incorrect label.

To generate more diverse and realistic adversar-
ial examples, we employed LLMs to simulate dif-
ferent kinds of perturbations for NER, RE, and ED
tasks by designing various prompts for different IE
tasks. Additionally, we utilized two general rule-
based perturbations, which were applied across
all IE tasks. A comprehensive demonstration of
these adversarial examples is presented in Figure 1.
In what follows, we will introduce these different
kinds of perturbations for IE tasks in detail.

Replace Entity, Triple, and Trigger. A robust
UIE model should be able to identify entities, rela-
tions, and events based on the context of the sen-
tence corresponding to the task rather than mem-
orizing each entity, relational triple, or event trig-
ger and their corresponding types. To prevent the
model from memorizing specific patterns instead
of reasoning based on context, we introduce pertur-
bations to existing sentences.

Such perturbations need to ensure the consis-
tency of the original type during replacement. Al-
though previous studies (Lin et al., 2021; Nolano
et al., 2024) have introduced similar perturbations
in NER and RE samples, such as replacing entities
based on rules, these methods may lead to incorrect
replacement. Moreover, for ED samples, replacing

triggers while ensuring the type remains unchanged
is an extremely challenging task. Given this, we
instruct GPT-4 (OpenAl., 2023) to replace entities,
relational triples, or event triggers while preserving
their types and ensuring that other content remains
unchanged. The corresponding prompts are pro-
vided in Appendix A.

Change Context. A robust UIE model should
keep its performance even when the contextual
content of the sample changes due to various per-
turbations. To evaluate the robustness of the UIE
model against contextual variations, we introduce
perturbations to context words. It should be noted
that this method is only used for samples of NER
and ED tasks since altering context words in RE
may disrupt the semantic relations between entity
pairs.

In the previous methods, the mask language
model BERT (Devlin et al., 2019) is used for
changing context, but these methods often generate
semantically inaccurate or syntactically incorrect
words, and only one word can be generated for a
single mask position. Therefore, we use LLMs to
change the context in sentences. Specifically, we
first get rid of punctuation, entities, event triggers,
and stop words in sentences, leaving only meaning-
ful context words. And randomly choose up to four
words to replace with the [MASK] token. Then,
GPT-4 (OpenAl., 2023) is instructed to generate
three predictions for each [MASK] token and ran-
domly select one for replacement. The prompts
can be found in Appendix A.

Extend Sentence. Generally, a robust UIE model
is capable of accurately extracting the required in-
formation, even in the face of complex sentence
structures or long text situations. In order to bet-
ter evaluate the robustness of the UIE model in
handling complex sentences or long text situations,
we enhance the semantic depth of the sentences
by adding semantically relevant content (such as
contextual details, historical facts, or explanatory
clauses), thereby increasing the complexity of the
sentences.

Prior research has not explored the robustness
of IE models under similar perturbations. Consid-
ering that added content must maintain semantic
coherence and meaningfulness, we employ LLMs
to implement this perturbation. For specific tasks,
we instruct GPT-4 (OpenAl., 2023) to adhere to
corresponding constraints. For NER, new sen-
tences must preserve the original entity boundaries
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Task Perturbation Type Original Example

Adversarial Example

Replace Entity The University of Ferrara [ORG] dates back to 1391.

The University of Salamanca [ORG] dates back to 1391.

Change Context

Before 2008, their creation was not permitted within a London borough [LOC].

Before conducting business, their activitics was not permitted within a London borough [LOC].

NER Extend Sentence The University of Ferrara [ORG]| dates back to 1391.

The University of Ferrara [ORG] dates back to 1391, making it one of the oldest universities in the world.

Typo Injection

Before 2008, their creation was not permitted within a London borough [LOC].

Before 2008, their creation was not perimtted within a London borough [LOC].

Lowercase Conversion  The University of Ferrara [ORG] dates back to 1391.

The university of ferrara [ORG] dates back to 1391.

Residence

Replace Triple

In recent months, Clarett had been in touch with Ohio State Coach Jim Tréssel.

’7 Rcmlcncc‘l

In recent months, Clarett had been in touch with Michigan State Coach John'Smith.

Extend Sentence r( ountryOfCitizenship CountryOfCitizenship
RE Vladimir Lebedev of Russia won the bronze medal. Vladimir Lebedev of Russia won the bronze medal, showcasing his exceptional skills in the competition.
Typo Injection PlaceOfBirth PlaceOfBirth
Edward James, who grew up in East Los Angeles, has become a policeman. Edward James, who grew up in East Los Angeles, has become a poliecman.
Residence -sidence-
Lowercase Conversion esidence ReriEnas
In recent months, Clarett had been in touch with Ohio State Coach Jim Tréssel. In recent months, clarett had been in touch with ohio state coach jim tressel.
Replace Trigger Putin last visited [Contact] Bush at his Texas ranch in November 2001. Putin last encountered [Contact] Bush at his Texas ranch in November 2001.
Change Context Another appeal [Justice] is now pending in the Federal Court. Supreme Court's appeal [Justice] is now pending in the Federal judicial system.
ED Extend Sentence "War [Conflict] is not justified", Fischer told reporters. "War [Conflict] is not justified", Fischer told reporters. A controversial statement with widespread attention.
Typo Injection Putin last visited [Conflict] Bush at his Texas ranch in November 2001. Putin last visited [Conflict| Bush at his Texas ranch in Novermber 2001.

Lowercase Conversion  Another appeal [Justice] is now pending in the Federal Court.

Another appeal [Justice] is now pending in the federal court.

Figure 1: Ilustration of generated adversarial examples with different kinds of perturbations.

and types without introducing new entities. For
RE, the original relational triples must remain un-
changed, with no additional relational information
introduced. For ED, the original event triggers in
sentences must be retained without incorporating
new event information. The prompts are provided
in Appendix A.

Typo Injection. In reality, typos are common.
However, a robust UIE model should continue to
make accurate predictions when dealing with these
typos. To simulate these common text spelling
mistakes, we introduce typo injection. Namely,
spelling mistakes are added to the words prone to
errors. Initially, we tried using LLMs to inject, but
it often introduced unrealistic errors. Therefore, we
switched to a rule-based approach to achieve this.
We focus on sentences with more than eight
words and select longer words (over six charac-
ters), as longer sentences and words are more prone
to spelling errors. Additionally, we filter out stop
words and high-frequency vocabulary to avoid se-
lecting common words. We randomly choose 1-3
words from the remaining words for typo injec-
tion and avoid changing the first character for each
selected word and introduce errors by randomly
replacing characters, deleting characters, inserting
characters, or swapping adjacent characters.

Lowercase Conversion. Consider that in prac-
tice, users overwhelmingly spell in lowercase, es-
pecially in informal environments such as social

media, email, or search queries. Therefore, lower-
case conversion is used to simulate non-standard
input, which helps evaluate the robustness of the
UIE model in response to changes in text format.

In this method, all characters of each word are
converted to lowercase, except for the first letter of
the first word. This tests whether the model can still
accurately extract information under non-standard
input conditions, forcing it to rely on semantic un-
derstanding rather than surface features. By doing
S0, it not only assesses the model’s robustness but
also highlights how upper and lowercase expres-
sions affect task performance.

3.2 Dataset Construction

To construct the RUIE-Bench dataset, we select
seven datasets across the three subtasks of UIE. For
NER, we use the ACE05-Ent (Walker and Consor-
tium, 2005), CoNLLO3 (Sang and Meulder, 2003),
and WikiANN (Pan et al., 2017) datasets; for RE,
we select the ACE05-Rel (Walker and Consortium,
2005) and NYT (Riedel et al., 2010) datasets; for
ED, we use the ACEO05-Evt (Walker and Consor-
tium, 2005) and CASIE (Satyapanich et al., 2020)
datasets. To balance sample sizes across these sub-
tasks, we perform stratified sampling from the test
sets of respective datasets, adhering to the principle
of maintaining distributional consistency. Specif-
ically, we conduct stratified sampling on all label
types (including NULL-type) within each test set,
obtaining 1,000 NER samples, 800 RE samples,
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Benchmark Dataset RUIE-Bench RockNER DWR Adv_re CSMG
(Ours) (Lin et al., 2021) (Jinetal., 2023) (Nolano et al., 2024) (Liu et al., 2020)
Supported tasks NER & RE & ED NER NER RE ED
Covered datasets 7 1 3 1 2
Number of perturbation types 14 3 1 4 2
Number of adversarial examples 12,700 13,169 - 6,277 -
Methods for generating perturbations LLM & Rule Small model & Rule Small model Small model & Rule Small model

Table 1: Comparison between RUIE-Bench and existing IE robust evaluation benchmark datasets. The - indicates
that the detailed statistics of the datasets are not reported in their papers.

and 900 ED samples. For adversarial example
generation, we apply the perturbation methods de-
tailed in Section 3.1. For each original sample,
corresponding adversarial samples are generated
for every perturbation type, while retaining those
samples that cannot be perturbed. During genera-
tion, we implement strict quality control through
manual verification: any sample containing errors
is immediately discarded and regenerated until ac-
curate samples are obtained. Through this rigorous
process, we successfully construct the RUIE-Bench
dataset. We present a comprehensive comparison
between RUIE-Bench and existing IE robustness
evaluation benchmark datasets in Table 1. For de-
tailed statistics and further information regarding
RUIE-Bench, please refer to Appendix B.

4 Loss-guided Data Augmentation

Data augmentation is a common strategy to im-
prove model robustness (Rebuffi et al., 2021; Wang
etal., 2022; Li and Spratling, 2023). Existing meth-
ods primarily focus on synthesizing in-distribution
adversarial samples for training. However, none of
them focus on improving efficiency by selecting
a minimal number of training samples to enhance
robustness. This is especially critical for LLMs,
where training costs are significantly higher due to
their scale and complexity.

Inspired by Song et al. (2023); Buchnik and
Cohen (2020); Werner (2023), we propose a loss-
guided data augmentation solution for robust UIE.
The core idea is to focus on samples where the
model’s performance is currently suboptimal, as
indicated by higher loss values, thereby potentially
accelerating convergence and improving overall
model performance. First, we train the initial model
on the original training set and use it to compute
the inference loss of the augmented samples. For
each IE task, samples with high inference loss were
selected to fine-tune the model. Next, based on the
obtained fine-tuned model, the inference loss of the
augmented samples is recalculated, followed by

another round of sample selection and fine-tuning.
This iterative process was repeated ¢ times until a
robust model was obtained.

Specifically, we first fine-tune the initial model
M using the original training data to obtain M,
and employ LLMs to generate augmented data
Dgyg for the original training set. During each itera-
tion, we use M;_; to compute inference loss L; for
each augmented sample. Then, based on selection
ratio 3, the samples with higher loss are selected to
form a new training dataset Dr(;)rain, which is subse-
quently used to fine-tune M;_; to obtain model M,.
After each iteration, the model is evaluated on the
validation set. The algorithm terminates and returns
the final model M; when the improvement on the
validation set falls below the convergence threshold
d. Algorithm 1 presents the training process of the
proposed strategy. The details of augmented data
generation are presented in Appendix C.

Algorithm 1 Loss-guided Data Augmentation

Input: Training data D, Initial model M, Selec-
tion ratio 3, Convergence threshold
Output: Fine-tuned model M,
1: Use LLMs to generate augmented data Dy
based on D;
Fine-tune M on data D to obtain model Mj;
t+1;
do
for each sample (z;,y;) € Daye do
Compute loss: L; = L(0;—1; i, y;)
end for
Sort samples in Dyyg by loss L; in descend-
ing order;

® .

retrain’

to obtain

9: Select top 8 samples to form D
10: Fine-tune model M;_1 on Dr(;)rain
new model M;;
11: B+ B/2; t+—t+1;
12: while performance improvement of M; on the
validation set falls below threshold J;
13: return M;
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5 Experiment Setup

We use RUIE-Bench to evaluate the robustness of
the current models, including UIE ones, traditional
IE ones, and LLMs. Meanwhile, we construct an
unseen dataset to measure their generalization abil-

ity.
5.1 Maetrics

We report the span-based offset Micro F1, follow-
ing previous methods (Lu et al., 2022; Lin et al.,
2020b). For NER, an entity is considered correct
if both its boundaries and type are accurately pre-
dicted. For RE, a relation is deemed correct if the
triple, including the relation type, head entity, and
tail entity, matches the gold annotations. For ED,
an event trigger is considered correct if both the
event type and trigger are aligned with the gold
annotations.

5.2 Training Details

To explore effective data augmentation methods,
the KnowCoder-7B-base? is selected as the ini-
tial model M. Then, we fine-tune it on the
seven datasets constructed for RUIE-Bench, ob-
taining the model My, which is denoted as
KnowCoder-7Bpartial. Additionally, the perturba-
tion methods proposed in Section 3.1 are employed
to generate augmented data Dy, based on the origi-
nal training set. Next, we fine-tune the initial model
using both original training data and all augmented
data, obtaining the model KnowCoder-7B-Robust.
Finally, we fine-tune the initial model using high-
loss augmented samples selected according to the
LDA strategy, with an initial selection ratio of 10%.
After two iterations, we successfully construct the
model KnowCoder-7B-Robust; pa, utilizing a total
of 15% augmented samples.

During the fine-tuning phase, we employ
LoRA (Hu et al., 2021) for efficient parameter tun-
ing. The LoRA rank and LoRA alpha parameters
are set to 32 and 64, respectively. The learning rate
is set to 3 x 10™%, with a warm-up rate of 0.1 and a
dropout rate of 0.1. The sequence length is limited
to 2048 and the batch size is set to 256. Addition-
ally, for LDA training, the selection ratio 3 is set
to 10%, and the convergence threshold ¢ is set to
0.3, meaning that iteration stops when the Micro F1
score improvement of the new model is less than
0.3. During validation phase, we use greedy search

2https://huggingface.co/golaxy/
KnowCoder-7B-base

with a temperature of 0 and set the maximum out-
put length to 640. All experiments are conducted
on 8§ x NVIDIA-A100 80G.

5.3 Baselines

We adopt the state-of-the-art UIE models to vali-
date the robustness, including UIE (Lu et al., 2022),
IstructUIE (Wang et al., 2023), YAYI-UIE (Xiao
et al., 2024), and KnowCoder (Li et al., 2024b).
We also employ traditional IE models for robust-
ness evaluation across the NER, RE, and ED
tasks. For NER, we choose Stanza (Qi et al.,
2020) and TNER (Ushio and Camacho-Collados,
2021); for RE, we select PFEN (Yan et al., 2021);
and for ED, we choose EEQA (Du and Cardie,
2020). Additionally, we evaluate the robustness
of two categories of LLMs: open-source mod-
els, including Qwen2.5-3B-Instruct, Qwen2.5-7B-
Instruct, Qwen2.5-14B-Instruct(Yang et al., 2024),
Llama3-8B-Instruct (Dubey et al., 2024), Glm-
4-9B-Chat (GLM et al., 2024), CodeLlama-7B-
Instruct (Roziere et al., 2024), Internlm2.5-7B-
Chat (Team, 2023), and Vicuna-7B-v1.5 (Zheng
et al., 2023); Commercial model API services,
including GPT-3.5-turbo, GPT-4-turbo (OpenAl.,
2023), DeepSeek-V3 (Liu et al., 2024), DeepSeek-
R1 (Guo et al., 2025), GLM4-Plus (GLM et al.,
2024) and Qwen2.5-Max (Yang et al., 2024). For
the evaluation of LLMs, we employ the 10-shot
approach to instruct LLMs to conduct IE tasks with
the specific prompts provided in Appendix D.

6 Results and Analyses

6.1 Results on the RUIE-Bench dataset

We report the Micro F1 scores of all the models
across the three IE tasks on RUIE-Bench in Ta-
ble 2. These results cover both the original test
set and various perturbation settings. For the sake
of space limitation in the table, we use abbrevi-
ations for these perturbations. For NER, we use
P1-P5 to represent the perturbations of Replace
Entity, Change Context, Extend Sentence, Typo
Injection, and Lowercase Conversion, respectively.
For RE, the perturbations of Replace Triple, Extend
Sentence, Typo Injection, and Lowercase Conver-
sion are denoted as P6-P9, respectively. For ED,
we employ P10-P14 to represent Replace Trigger,
Change Context, Extend Sentence, Typo Injection,
and Lowercase Conversion, respectively. We also
report the overall performance drop of all the mod-
els under the three tasks for all perturbations in
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Model NER RE ED Overall
None PI P2 P3 P4 P5 Drop,, |[None P6 P7 P8 P9 Drop,, |None PIO PIl PI2 PI3 Pl4 Drop,, Avg Rank
Open-source LLMs
Qwen2.5-14B-Instruct 586 53.6 577 550 569 466 79%, | 22.6 192 213 17.1 88 26.5%, | 29.8 27.5 283 285 285 289 49%, 34.6 13
Qwen2.5-7B-Instruct 533 498 512 505 512 413 84%; | 156 134 140 138 38 279%,| 185 18.0 174 174 176 181 43%, 2713 15
Qwen2.5-3B-Instruct 495 475 467 453 455 402  9.0%, 89 76 86 74 20 281%,| 119 114 107 112 110 11.6 6.0%, 222 18
Llama3-8B-Instruct 554 526 529 511 535 257 149%; | 173 150 157 13.6 25 324%;| 119 11.8 119 105 113 11.0 50%; 249 16
Glm-4-9B-Chat 574 540 558 514 56.6 432 9.0%, 88 75 75 74 18 312% 76 80 68 55 61 76 105%; 23.1 17
Internlm2.5-7B-Chat 51.6 48.0 488 469 453 310 147%,| 12.0 113 101 90 1.7 33.1%, | 10.6 104 100 7.8 9.0 104 102%, 22.0 19
CodeLlama-7B-Instruct 463 450 450 389 424 145 197%, | 137 11.6 122 113 28 30.8%, 95 96 94 71 86 98 63% 198 20
Vicuna-7B-v1.5 390 382 374 350 380 167 152%; | 112 110 10.1 76 08 34.1%, 69 70 68 54 58 62 95% 167 21
Commercial LLMs API Services
DeepSeek-R1 67.1 632 668 659 650 572 52%; | 374 331 354 322 206 189%, | 458 41.8 455 441 441 457 34%, 417 8
DeepSeek-V3 623 59.8 615 613 587 550 49%,| 313 290 296 262 100 243%; | 353 346 345 314 324 350 49%, 405 11
Qwen2.5-Max 640 56.6 638 624 610 581 5.6%, | 349 309 339 283 132 23.8% | 38.8 363 380 381 371 383 32%, 432 9
GLM4-Plus 632 59.8 630 61.6 609 497 6.6%, | 322 292 313 261 53 28.6%, | 37.5 349 374 303 351 374 6.6%, 409 10
GPT-4-turbo 60.6 57.5 598 582 562 334 125%; | 33.0 300 31.6 268 45 29.6%, | 358 339 354 315 333 357 5.1%, 387 12
GPT-3.5-turbo 51.8 479 489 505 39.0 33.1 153%; | 238 206 213 167 24 359%,| 314 246 298 296 274 304 97%, 311 14
Traditional IE Models
Stanza 80.7 70.1 77.1 715 78.1 51.1 13.8%,
TNER 830 733 780 739 810 732 8.6%, - - - - - -
PEN - - - - - - -| 763 58.6 73.8 684 204 27.5%, - - - - - - -
EEQA - - - - - -| 675 527 637 632 581 66.1 10.0%,
UIE Models
UIE 839 743 81.1 756 817 703 87%,| 841 633 81.1 770 359 23.5%, | 70.5 525 650 667 652 684 9.8%, 704 5
InstructUIE-11B 739 657 695 643 720 703 7.5%, | 684 483 663 61.6 56.1 15.1%, | 59.3 492 559 582 575 584 58%; 62.1 6
YAYI-UIE-13B 80.7 69.3 753 726 792 756 7.8%, | 664 473 650 59.9 384 20.7%, | 438 368 419 413 413 426 69%, 575 7
KnowCoder-7B 874 764 813 79.6 847 815 77%; | 840 573 805 764 733 144%, | 729 535 685 692 683 70.7 94%, 744 3
KnowCoder-7B il 844 738 80.1 81.1 821 790 6.1%; | 814 60.6 79.1 745 528 18.0%, | 682 546 651 645 647 66.1 7.6%, 7T1.3 4
KnowCoder-7B-Robust 859 813 835 864 861 846 1.7%, | 831 660 829 B8l.1 798 6.8%, | 698 655 672 69.9 680 695 2.6%, 77.1 1
KnowCoder-7B-Robustipa ~ 86.1 812 849 86.5 856 838 19%; | 822 665 825 813 813 52%,| 69.1 657 679 69.5 685 688 1.5%, 77.1 1

Table 2: The performance of all baselines and our models on RUIE-Bench.

the “Drop,,,”” column. The robustness evaluation
results of all the models are ranked, and the final
ranking is shown in the “Rank” column. Although
there are differences in the evaluation methods em-
ployed by different categories of models, we can
still draw some interesting observations from the
results:

(1) The models with data augmentation train-
ing show the best performance. The model
KnowCoder-7B-Robust pa trained with only 15%
of the augmented data using LDA achieves results
comparable with KnowCoder-7B-Robust. It con-
vincingly verifies the effectiveness of the proposed
LDA training strategy. Furthermore, a comprehen-
sive comparison between these two models is in
Appendix E.

(2) LLM-based models experience relatively
smaller performance drops than other models, sug-
gesting that LLMs have stronger generalization
ability. This indicates that using LLMs to improve
the robustness of UIE models is a promising ap-
proach for future work.

(3) All the LLMs exhibit a significant perfor-
mance drop under various perturbations, especially
in the NER and RE tasks. This indicates that
LLMs face serious robustness issues when dealing
with UIE tasks in few-shot prompting scenarios.
However, LLM-based reasoning models such as
DeepSeekR1 and Qwen2.5-Max demonstrate rela-
tively better robustness compared to other LLMs,
suggesting that incorporating stronger reasoning

capabilities may enhance the stability of few-shot
UIE performance under perturbations.

(4) From the results of the Qwen models with
different parameter scales, it is evident that there
is a significant positive correlation between the
model’s parameter scale and its robustness in NER
and RE tasks. In other words, an increase in the
number of model parameters often accompanies
an improvement in robustness. For ED, although
there is no clear positive correlation between pa-
rameter scale and robustness, the smallest model
still demonstrates the weakest robustness.

6.2 Results on the Unseen Dataset

To verify whether the model trained on data with
different perturbations can generalize to unseen
datasets, we create an unseen dataset that does
not include any samples from RUIE-Bench. Fur-
thermore, we ensure that the types in this dataset
are a subset of those in RUIE-Bench. For NER,
we select OntoNotes 5.0 (Hovy et al., 2006) and
random sample some instances as unseen data.
Similarly, we obtain the unseen data for RE from
CoNLLO04 (Roth and tau Yih, 2004) and GIDS (Jat
etal., 2018). For the ED task, since no datasets with
the same event types exist, we use GPT-4 (OpenAl.,
2023) to generate 100 unseen samples, which are
then manually verified for correctness.

Table 3 shows the results of different models
on the unseen dataset. From the table, we can
find that: 1) The two LLM-based reasoning mod-
els, DeepSeekR1 and Qwen2.5-Max, show rela-
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Figure 2: Performance comparison of different models under various perturbations on NER datasets. Red and blue
indicate performance drop and improvement, respectively. KC is short for the KnowCoder model.

‘ Unseen Dataset

‘ Average

Model
| NER RE ED |

GLM4-Plus 56.6 414 56.1 514
DeepSeek-V3 59.2 398 555 51.5
GPT-4-turbo 58.9 388 59.7 52.5
Qwen2.5-Max 62.1 434 5938 55.1
DeepSeek-R1 63.0 43.6 60.0 55.5
KnowCoder-7B partial 649 404 522 52.5
KnowCoder-7B-Robust 62.8 474 56.6 55.6
KnowCoder-7B-Robust; ps | 67.2 54.6 60.1 60.6

Table 3: Results on the unseen dataset.

tively better generalization ability compared to the
other LLMs. 2) Compared with the models with-
out data augmentation training, the average per-
formance of the models of KnowCoder-7B-Robust
and KnowCoder-7B-Robust; pp in the UIE tasks
is significantly improved. It is justified that
training with the adversarial examples can en-
hance the model’s generalization ability. 3) It is
worth noting that the KnowCoder-7B-Robust pa
trained with only 15% of the augmented data us-
ing the LDA strategy achieves an average 8.9%
performance improvement compared with the
KnowCoder-7B-Robust using the complete set of
augmented data fine-tuning. We guess that full
training will lead to overfitting and thus show poor
prediction ability on the unseen dataset.

6.3 Detailed Analysis

To further verify the effect of different perturba-
tions on the traditional models and UIE models,
we report the performance drop and improvement
under various perturbations on the seven datasets in
RUIE-Bench. For the NER, RE, and ED datasets,
the detailed results are shown in Figure 2, Figure 3,
and Figure 4, respectively. Through analysis, we
can summarize the following observations.

(1) Under the three different perturbations of

ACEO5-Rel NYT

None- 64.2 65.6 = = 64.8 59.3 None- 81.1 915 91.2 885 91.8 915

" . _ o

p6- -3.4 5.7 = = BN -1.6

p7- -22 -2.8 - - -5.1 +2.8 p7- 25 -3.0 -28 -19 -29 -0.7
ps- -6.2 -8.0 - - -6.3 +2.0 ps- -85 -67 9.1 -86 -82 -21
po- -1.1  -1.6 ® ® 7/ 23 P9 -16.4 -14.3 -2.2
PEN UIE  InstrctUIE YAYL-UIE  KC  KC-Robustioa PFN UIE  InStructUIE YAYI-UIE  KC - KC-Robustins
(a) (b)

Figure 3: Performance comparison of different models
under various perturbations on RE datasets.
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p10--15.1 -18.7 -9.8 -5.2 [-204 -3.4 p10- -14.0 -15.8 -10.8 -12.6 -16.5 -2.7
p11- 43 -61 -38 -14 -46 -13 eu- -22 -35 -22 -34 -38 -07
p12- 49 -36 -11 -13 -37 +06 ~r12--26 -36 -09 -63 -36 -03
P13. -8.6 =47/ =13 =il =i -0.6 P13- -12.0 -10.2 -3.3 -4.4  -6.7 -0.7
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Figure 4: Performance comparison of different models
under various perturbations on ED datasets.

Replace Entity (P1), Replace Triple (P6), and Re-
place Trigger (P10) to the original test set results
in a significant drop in model performance. This
suggests that during training, the models may have
memorized specific patterns of entities, relations,
or events, rather than learning to reason based on
contextual information. We provide representative
case studies for all perturbations in Appendix F,
including Replace Entity, Triple, and Trigger.

(2) Under certain perturbation settings, such
as Lowercase Conversion, we observe that the
model’s performance drops significantly on some
datasets while other datasets remain unaffected.
This is because the annotations in the affected
datasets contain a relatively high number of up-
percase characters. Additionally, we find that the
models using LLMs show better performance on
these datasets. This suggests that LLMs already
have strong generalization abilities to handle such
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simple noise.

(3) KnowCoder-7B-Robust; ppo shows a remark-
able improvement across most of the datasets un-
der nearly all perturbations. This observation
strongly supports the effectiveness and feasibil-
ity of the LDA strategy. Furthermore, an interest-
ing finding is observed in ACEO5-Ent, WikiANN,
and ACEOQO5-Evt datasets: some models with-
out data augmentation training (such as Instruc-
tUIE and YAYI-UIE) show similar robustness to
KnowCoder-7B-Robust; pa. This is because the
performance of these models on the original test
set is relatively poor, and thus, the perturbations
have little effect on their performance.

7 Conclusion

In this paper, we introduced RUIE-Bench, a bench-
mark dataset designed to evaluate the robustness of
UIE models. The dataset includes 14 adversarial
perturbations for three core IE tasks, i.e., NER, RE,
and ED. Through comprehensively benchmarking
of existing models, the results reveal that these
models struggle to maintain robustness when faced
with these adversarial perturbations, highlighting
the urgent need for robustness improvement for
UIE. Motivated by this, we proposed a Loss-guided
Data Augmentation (LDA) method that iteratively
selects challenging samples for training. The re-
sults demonstrate that LDA achieves performance
comparable to fully trained models on RUIE-Bench
and even exhibits superior generalization capabili-
ties on unseen datasets. This work aims to provide
a valuable benchmark for evaluating robustness in
UIE tasks and offer a practical methodology for
enhancing model robustness.

Limitations

Generating more realistic perturbations remains an
exploratory direction for future work. Although
we propose various perturbation generation meth-
ods for UIE, they still fail to cover the diverse
noise present in real-world scenarios. Meanwhile,
due to cost and resource constraints, we have not
conducted robustness evaluations on more LL.Ms.
Moreover, the performance improvement achieved
by the loss-guided data augmentation method may
be constrained by the quality of the augmented data.
In addition to these technical limitations, more ro-
bust UIE systems may also introduce societal risks,
such as misuse for misinformation, surveillance,
or amplification of bias. Addressing both the tech-

nical and ethical challenges will be a priority for
future work, including more realistic perturbation
design, broader model evaluation, and responsible
deployment practices.
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A Prompts for Adversarial Example
Generation

Replace Entity, Triple, and Trigger To gener-
ate adversarial examples, we replace the entities,
relation triples, and event triggers in the samples
following specific rules designed for LLMs. The
prompts used are shown in Figure 5.

Change Context We change the context of NER
and ED samples based on the rules mentioned in
Section 3.1 to generate high-quality adversarial
examples. The prompt used for this context modifi-
cation is presented in Figure 6.

Extend Sentence Using the prompt in Figure 7,
we generate extended versions of NER, RE, and
ED samples.

B RUIE-Bench Details

Sampling Details Considering that generating
adversarial examples for all test sets of NER, RE
and ED tasks would result in a large number of
samples and costs, as well as significant evaluation
expenses, we conduct sampling on the test sets of
the selected datasets to balance evaluation costs
and accuracy. The main principle we follow is
to ensure that the sampled subsets maintain the
same distribution. Specifically, for NER, we select
1,000 samples, including 134 from ACEOS5-Ent,
294 from CoNLLO03, and 572 from WikiANN. For
RE, we choose 800 samples, with 230 from ACEQ5-
Rel and 570 from NYT. For ED, we choose 900
samples, with 676 from ACEO5-Evt and 224 from
CASIE.

Statistics Based on the sampled data, we utilize
the perturbation methods described in Section 3.1
to generate adversarial examples, which are then
used to construct the RUIE-Bench dataset. The
detailed statistics of the resulting dataset are pre-
sented in Table 4.

| Original Data | RUIE-Bench Data

Task‘ Dataset
‘ ‘ Type Test size ‘ Type Sampling size Data size

ACEO05 7 1,060 7 134 670
NER | CoNLLO3 4 3,453 4 294 1,470
WikiANN 3 10,000 3 572 2,860

RE ACEO05 6 2,050 6 230 920
NYT 24 5,000 24 570 2,280
ED ACEO05 33 676 33 676 3,380
CASIE 5 3,208 5 224 1,120

Table 4: Statistics of the RUIE-Bench dataset.

Computational complexity We use GPT-4 to
generate adversarial examples. The primary com-
putational cost during generation is concentrated
on the self-attention mechanism, whose computa-
tional complexity is typically O(I?) (where I de-
notes the length of the generated sequence). How-
ever, due to caching optimizations and other strate-
gies employed during generation, the time required
to generate a single token can be approximated as
constant.

To facilitate quantification of the generation time,
we conduct the following analysis: Assume the
dataset contains a total of n examples. During
adversarial example generation, an average of [
tokens are generated per example. LLM takes a
constant time k to generate each token. Then, the
total time 7" can be expressed as: T' = n - [ - k. Dur-
ing the data generation phase, we did not use any
GPU-based computational resources. Instead, we
relied on web-based API services to perform the
generation. To construct RUIE-Bench, the LLM
generated a total of 7,300 adversarial examples.
Excluding time consumed due to response failures
and other factors, the total generation time was ap-
proximately 341 minutes. On average, generating
a single example took approximately 2.8 seconds,
with each example containing an average of 38
generated tokens.

C Augment Data Generation

We utilize the original training sets from all datasets
included in RUIE-Bench as the foundation for con-
structing augmented data. Considering the large
scale of these training sets and the diverse types of
perturbations involved, we perform random sam-
pling to select 30% of the training data from each
dataset. On this sampled subset, we apply all pertur-
bation injection methods defined in RUIE-Bench
to generate a variety of augmented samples. To
efficiently generate a substantial volume of aug-
mented data while controlling computational costs,
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we opt to use Deepseek-V3 (Liu et al., 2024) as our
data generation model instead of the more resource-
intensive GPT-4 (OpenAl., 2023). The detailed
statistics for all datasets before and after augmenta-
tion are summarized in Table 5.

Task‘ Dataset ‘ Data size

‘ Original Augment

ACEO5 7,299 10,948

NER | CoNLLO3 | 14,041 21,061
WikiANN | 20,000 30,000

RE ACEO05 10,051 12,061
NYT 56,196 67,435

ED ACEOQ5 19,216 28,824
CASIE 11,189 16,784

Table 5: Statistics of Augmented Data.

D Few-shot Prompts for UIE

Taking the NER task as an example, we illustrate
the prompt design used for extraction, as shown
in Table 7. The prompt is composed of five main
components: (1) Task Objective, which states the
goal of the task; (2) Entity Types, which define
the categories of entities to be extracted along with
their descriptions; (3) Output Formatting, which
specifies the expected structure of the output; (4)
Examples, which present a few demonstration in-
stances randomly sampled from the training set to
guide the model; and (5) Current Task, which in-
cludes the input sentence to be processed. The RE
and ED tasks follow a similar prompt structure, dif-
fering only in the defined types and output formats,
as shown in Table 8 and Table 9, respectively.

E Comparison of Data Augmentation
Training Models

To evaluate the effectiveness of the model trained
with the LDA strategy, we conduct a com-
prehensive comparison against two baselines:
the non-augmented training model, denoted as
KnowCoderpariai, and the model trained with
the full set of augmented data, referred to as
KnowCoder-Robust. The results are summarized
in Table 6, where the best performance under
each specific perturbation for every dataset is high-
lighted in bold. As shown in the table, models
trained with any form of data augmentation con-
sistently outperform the non-augmented baseline
across all perturbation types and datasets. Notably,

KnowCoder-Robust; ps achieves performance on
par with KnowCoder-Robust, indicating that the
LDA strategy can effectively support data augmen-
tation training with significantly reduced augmen-
tation cost.

F Case Study

As shown in Figures 8 and 9, we present extrac-
tion cases covering all types of perturbations to
analyze model behavior under various perturbation
settings. Specifically, for the Mask Context, Extend
Sentence, Typo Injection, and Lowercase Conver-
sation perturbations, we illustrate examples under
the NER task. Correctly entities, relation triples,
and event triggers are highlighted in red.

In the cases of Replace Entity, Triple, and Trig-
ger perturbations, it is relatively easy to identify
the correct entities, relations, or events based on
contextual information, as these cases contain clear
contextual clues that point to the correct interpre-
tation. However, in practice, most models fail to
make correct predictions on these adversarial ex-
amples. Only KnowCoder-Robusty pa trained with
data augmentation is able to generate accurate pre-
dictions. This suggests that these models tend to
rely on memorization rather than using context for
inference.

In the Change Context and Extend Sentence per-
turbation cases, the adversarial examples involve
only simple modifications, such as replacing a sin-
gle word or slightly extending the sentence. Never-
theless, models without data augmentation training
produce incorrect or redundant predictions. Simi-
larly, in the Typo Injection and Lowercase Conver-
sion cases, the adversarial examples introduce only
minor typographical errors or convert parts of the
text to lowercase, yet models without augmentation
still yield incorrect or missing predictions. These
observations highlight the models’ sensitivity to
input variations.

These cases collectively demonstrate that current
LLMs and information extraction models suffer
from insufficient robustness.
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Task‘ Dataset ‘ Perturbation Type ‘ Model

| | |[KnowCoderparia KnowCoder-Robust KnowCoder-Robustpa

None 792 825 82.1

Replace Entity 723 78.9 76.3

Change Context 74.2 80.6 78.9

ACEO5 Extend Sentence 72.1 82.7 81.4
Typo Injection 76.8 82.7 80.1

Lowercase Conversion 77.0 82.0 82.4

None 91.7 93.0 93.2

Replace Entity 80.5 90.9 92.7

NER Conll03 Change Context 87.2 90.2 90.6
Extend Sentence 91.0 93.0 94.0

Typo Injection 90.0 92.5 91.4

Lowercase Conversion 85.1 89.7 87.5

None 81.9 83.1 834

Replace Entity 70.8 76.9 76.5

. Change Context 71.8 80.8 83.4
WIKIANN Extend Sentence 782 83.9 83.8
Typo Injection 794 83.6 83.9

Lowercase Conversion 76.4 82.6 822

None 58.6 63.5 59.3

Replace Triple 549 61.6 571

ACEO05 Extend Sentence 54.1 62.3 62.1
Typo Injection 53.9 59.7 61.3

RE Lowercase Conversion 56.5 56.9 61.6
None 90.6 91.1 91.5

Replace Triple 62.9 67.9 70.0

NYT Extend Sentence 89.2 91.2 90.8
Typo Injection 82.8 89.8 89.4

Lowercase Conversion 51.3 89.0 89.3

None 69.1 70.2 69.4

Replace Trigger 55.5 65.7 66.0

Change Context 66.1 67.1 68.1

ACE05 Extend Sentence 65.8 70.5 70.0
Typo Injection 66.8 68.3 68.8

ED Lowercase Conversion 67.8 69.6 68.9
None 67.0 68.7 68.2

Replace Trigger 53.5 64.9 65.5

CASIE Change Context 63.7 67.5 67.5
Extend Sentence 62.9 68.2 67.9

Typo Injection 62.0 67.2 67.5

Lowercase Conversion 64.0 69.1 68.6

All | Al | Average | 71.3 77.1 77.1

Table 6: Comparison of KnowCoderp,ia and different data augmentation training models on RUIE-Bench.

NER Task

{example data}

The above is a Named Entity Recognition data entry, where "sentence" contains the sentence information, and "entities" contains the entity
label information. Now, based on the following rules, the entities in the sentence need to be changed:

1. Change the entity while keeping the original entity type.

2. The changed entities should be difficult and uncommon, and the number of entity words can vary.

3. Only change the entity content, do not change other content.

4. Changed entities should be updated in both "sentence" and "entities". Please output in the following format and do not output any extra
content. {"sentence": "", "entities": []}

{example data}

The above is a Relation Extraction data entry, where "sentence" contains the sentence information, and "relations" contains the relational
triple information. Now, based on the following rules, the head and tail entities in the relational triples need to be changed:

1. Change the head and tail entities while keeping the original entity type.

2. The changed entity should be significantly different from the original entity and can vary in length.

3. Only change the head and tail entities, do not change other content.

4. Changed content should be updated in both "sentence" and "relations". Please output in the following format and do not output any extra
content. {"sentence": "", "relations": []}

{example data}

The above is a Event Detection data entry, where "sentence" contains the sentence information, and "events" contains the event trigger
information. Now, based on the following rules, the event triggers in the sentence need to be changed:

1. Change the trigger while keeping the original event type.

2. The changed trigger should be significantly different from the original trigger and can vary in length.

3. Only change the trigger content, do not change other content.

4. Changed triggers should be updated in both "sentence" and "events". Please output in the following format and do not output any extra
content. {"sentence": "", "events": []}

Figure 5: Prompts for Replace Entity, Triple, and Trigger.
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NER Task

{example data}

The above is a Named Entity Recognition data entry, where the "sentence" contains the sentence information, and the "entities"
contains the entity label information. The sentence containing 1-4 [MASK] tokens. These [MASK] tokens mask certain words, with
each [MASK] token potentially masking one or more words. You need to generate some challenging words to replace these
[MASK] tokens to create a difficult sentence. The generated words can not contain any entity information.

You need to provide 3 predictions for each [MASK] token. Please output in the following format, without any additional content:
[MASK]I: 1: n ", 2: " "’ 3: nn

[MASK]n: 1:"",2:" ", 3:""

o

{example data}

The above is an Event Detection data entry, where the "sentence" contains the sentence information, and the "events" contains the
event trigger information. The sentence containing 1-4 [MASK] tokens. These [MASK] tokens mask certain words, with each
[MASK] token potentially masking one or more words. You need to generate some challenging words to replace these [MASK]
tokens to create a difficult sentence. The generated words can not contain any event triger information.

You need to provide 3 predictions for each [MASK] token. Please output in the following format, without any additional content:
[MJASK]I: 1: n "’ 2: " ll’ 3: nn

[MASK]D: 1:" n’ 2:" "’ 3. o

Figure 6: Prompts for Change Context.

NER Task

{example data}

The above is a Named Entity Recognition data entry, where the "sentence" contains the sentence information, and the "entities" contains
the entity label information.

Now, you need to ensure that the original sentence remains unchanged while adding semantically related content at the beginning or end of
the sentence, with a preference for the end. The additional content should not be too simplistic and not not introduce new entity
information.

Please output in the following format, without any additional content: {"sentence": "", "entities": []}, where "sentence" should be the
expanded sentence, and "entities" should contain the original entity label information.

{example data}

The above is a Relation Extraction data entry, where the "sentence" contains the sentence information, and the "relations" contains the
relational triple information.

Now, you need to ensure that the original sentence remains unchanged while adding semantically related content at the end or beginning of
the sentence, with a preference for the end. The additional content should not be too simplistic, and should not introduce new relational
triple information.

Please output in the following format, without any additional content: {"sentence": "", "relations": []}, where "sentence" should be the
expanded sentence, and "relations" should contain the original relational triple information.

~

Ve

{example data}

The above is an Event Detection data entry, where the "sentence" contains the sentence information, and the "events" contains the event
trigger information.

Now, you need to ensure that the original sentence remains unchanged while adding semantically related content at the end or beginning of
the sentence, with a preference for the end. The additional content should not be too simplistic and not contain new event information.
Please output in the following format, without any additional content: {"sentence": "", "events": []}, where "sentence" should be the
expanded sentence, and "events" should contain the original event trigger information.

Figure 7: Prompts for Extend Sentence.
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Original NER )l
riginal example Replace

Adversarial example

Original ED example Adversarial example

Replace

E
Sentence: France managed third place with 0.68 ity

percent in the 16-nation world government bond index.
Entities:[ {"name": "France”, "type": "LOC"}]

Sentence: Atlantis managed third place with 0.68
percent in the 16-nation world government bond index.
Entities:[{"name": "Atlantis", "type": "LOC"}]

Sentence: Over an hour of talks, we asserted the will
of both parties (Israel and the Arab world) to do
everything to return to the negotiating table.

Events:[ {"trigger": "talks", "type™: "Contact"} |

Trigger ~ Sentence: Over an hour of discussion, we asserted the
will of both parties (Isracl and the Arab world) to do
everything to return to the negotiating table.

Events: [{'trigger; "discussion", "type": "Contact"}]

Model Original example predictio

n Adversarial example prediction

Model Original example prediction Adversarial example prediction

LLama3-8B-Instruct

[{"name": "France"’ "type": "LOC"}]

[{"name": "Atlantis", "type": "LOC"},

LLama3-8B-Instruct [{"trigger": "talks", "type": "Contact"}] NULL

{"name": "world", "type": "LOC"}]

[{"trigger”: "talks", "type": "Contact"},

[ {"trigger": "discussion’

) ; GLMaPI ‘type": "Contact"},
GLM4-Plus [{"name": "France", "type": "LOC"}] [{"name": "Atlantis", "type": "ORG"}] JLM4-Plis {"rigger”: "negotiating", "type”: "Contact"}]  {"trigger": "negotiating”, "type": "Contact"}]
Stanza [{"name": "France", "type: "LOC"} [{"name": "Atlantis", "type": "ORG"}] EEQA NULL NULL
KnowCoder-7B [{"name"; "France", "type": "LOC"}] [{"name": "Atlantis", "type": "ORG"}] KnowCoder-7B [{"trigger": "talks", "type": "Contact"}] NULL
KnowCoder-7B-Robusty ps [{"name": "France", "type": "LOC"}] [{"name": "Atlantis", "type": "LOC"}] KnowCoder-7B-Robusty ps. [{"trigger": "talks", "type": "Contact"}] [ {"trigger" "discussion", "type": "Contact"}]
Original RE example Replace Adversarial example
Sentence: Mr. Castano explains matter-of-factly that on the ninth Triple Sentence: Mr. Castano explains matter-of-factly that on the ninth

of August, 1994, I traveled to Bogota and directed the commando
unit that executed Senator Manuel Cepeda Vargas.
Relations: [ {"head": Cepeda  Vargas",
"PlaceOfDeath", "tail":

"Manuel

"relation": Relations:

of August, 1994, I traveled to Quito and directed the commando
unit that executed Senator Julio Cesar Trujillo.

[{"head". "

ilio  Cesar  Trujillo",

"PlaceOfDeath", "tail": "Quito"} ]

"relation";

Model Original example prediction

Adversarial example prediction

[{"head"; "Bogota", "relation":
"Contains TheAdministrative TerritorialEntity", "tail':
"Senator Manuel Cepeda Vargas"}]

LLama3-8B-Instruct

[{"head"; "Quito", "relation’:

"Contains The Administrative TerritorialEntity", "tail": "Senator

Julio Cesar Truillo"}]

[{"head""Mr. Castano", "relation":

GLM4-Plus "Residence”, "ail": "Bogota"} ]

[{"head""Mr. Castano,'relation’:
" Residence”, "tail'; " Quito"} ]

[{"head": "Manuel Cepeda Vargas",

EEN "relation”: "Residence", "tail": "Bogota"}]

[{"head": "Julio Cesar Trujillo",
"relation": "PlaceOfBrith", "tail": "Quito"} ]

[{"head"; "Manuel Cepeda Vargas",

KnowCoder-78 “relation”: "Residence”, "tail': "Bogota"} ]

[{"head": "Julio Cesar Trujillo",
"relation": "PlaceOfBrith", "tail": "Quito"} ]

[{"head"; "Manuel Cepeda Vi
“relation": " PlaceOfDeath ", "ta

KnowCoder-7B-Robust; pa "

Bogota"}

[{"head"; "Tulio Cesar T
“relation": "PlaceOfDeath", "ta

jllo",

- "Quito"}]

Figure 8: Example cases for the Replace Entity, Triple and Trigger.

Original NER example

Adversarial example
Change

Original NER example

Typo

Adversarial example

Sentence: It was the second costly blunder by

Hyderabad in four hours.

Entities: [{"name": "Hyderabad", "type": "LOC"}]

Context
oM Sentence: It was the second costly blunder by
|::> Hyderabad in four minutes.
Entities: [ {'name": "Hyderabad", "type": "LOC"}|

Sentence: Slaughter steers and heifers not tested,
compared with Thursday 's close, USDA said.
Entities: [{"name": "USDA", "type": "ORG"}]

Injection

Sentence: Shighter steers and heifeors ot tested,
|:> compared with Thursday 's close, USDA said.

Entities: [{"name": "USDA", "type": "ORG"}]

Model Original example prediction Adversarial example prediction Model Original example prediction Adversarial example prediction
LLama3-8B-Instruct [{"name": "Hyderabad", "type": "LOC"}] [{"name"; "Hyderabad", "type": "ORG"}] LLama3-8B-Instruct [{"name": "USDA", "type": "ORG"}] NULL

GLM4-Plus [{"name": "Hyderabad", "type": "LOC"}] [{"name": "Hyderabad", "type": "LOC"}] GLM4-Plus [{"name": "USDA", "type": "ORG"}] NULL

Stanza [{"name": "Hyderabad", "type": "LOC"} ] [{"name": "Hyderabad", "type": "ORG"}] Stanza [{"name": "USDA", "type": "ORG"}] [{"name": "USDA", "type": "ORG"} ]

KnowCoder-7B

‘name"; "Hyderabad", "type": "LOC"} |

[{"name": "Hyderabad", "type™: "ORG"}] ~ KnowCoder-7B

[{"name": "USDA", "type": "ORG"}]

[{"name": "USDA", "type": "ORG"},
{"name" "Shilghter”, "type": "PER"}]

KnowCoder-7B-Robustt pa

[{"name": "Hyderabad", "type": "LOC"}]

[{"name": "Hyderabad", "type": "LOC"}]

KnowCoder-7B-Robustt pa

[{"name": "USDA", "type": "ORG"}]

{"name": "USDA", "type": "ORG"} ]

Original NER example

Sentence: Today the album is distributed by KMP

Holdings.

Entities: [{"name": "KMP Holdings", "type": "ORG"}]

Adversarial example
Extend

Sentence
Sentence: Today the album is distributed by KMP
Holdings, a well-known music distribution company.
Entities: [{"name": "KMP Holdings", "type": "ORG"}]

Reichskammergericht.

Entities: [ {"name":

Original NER example

likely in Speyer, where his father was an official in the

"Speyer,
{"name"; "Reichskammergericht”, "type": "ORG'}]

Lowercase

Adversarial example

Sentence: He was born on November 30, 1582, most Conversation sentence: He was born on november 30, 1582, most
likely in speyer, where his father was an official in the

reichskammergericht.

"type™:  "LOC"},

Entities: [{"name" "speyer”, "typ
“reichskammergericht", "type":

LOC"}, {"name":
ORG'"}]

Model

Original example prediction Adversarial example prediction Model

Original example prediction

Adversarial example prediction

LLama3-8B-Instruct

[{"name"; "KMP Holdings", "type"
"ORG"}, {"name" "a wel-known music
distribution company”, "type": "ORG"}]

{"name": "KMP Holdings",

"type": "ORG"}] LLama3-8B-Instruct

{"name" "Spe;
{"name"": "Ref

", "type": "LOC™),
skammergericht”, "type":
"ORG"}]

Speyer”, "type": "LOC™},
Re mmergericht",
type": "ORG"}]

N . S . [{"name": "Speyer", "type: "LOC"}, : "Speyer”, "type": "LOC"},
GLM4-Plus t MITV,J( D:I;??;‘]mgh a MVI‘F,‘ ,"(mit{f.’!‘]i"‘é" GLM4-Plus {"name": "Reichskammergericht", "type":  "Reichskammergericht",
yp ¥ lype Ty "ORG"}] “type™: "ORG"} ]
- ’ " [{"name": "Speyer", "type: "LOC"},
{"name"; "KMP Holdings", [{"name": "KMP Holdings", ; :
Stanza vname & t Stanza {"name": "Reichskammergericht", "type": eyer”, "type": "LOC"}]
‘type": "ORG"}] ‘type": "ORG"}] o)
U - [{"name": "KMP Holdings, a well-known [{"name": "Speyer", "type": "LOC"}, R .
KnowCoder-7B [{"name f.’fg;,\g?“‘"’” : music distribution company.", KnowCoder-7B {"name": "Reichskammergericht", "type"" foamet ”“,"‘:g‘]'{’;'.‘ff]' gericht’,
type": i "type": "ORG} ] YORG' ] ype 3"
o } , [{"name": "Speyer", "type: "LOC"}, [{"name": "speyer’ "type": "LOC"},
S 7 @ i =0
KnowCoder-7B-Robust; pa [ifpamel iR KD [{"name": "KMP Holdings", KnowCoder-7B-Robusty ps {"name": "Reichskammergericht", "type": {"name": "reichskammergericht",

"type": "ORG"}] "type": "ORG"}]

"ORG'"}]

"type": "ORG"}]

Figure 9: Example cases for the Mask Context, Extend Sentence, Typo Injection and Lowercase Conversation.
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PROMPT FOR FEW-SHOT NER.

## Task Objective
Perform Named Entity Recognition (NER) on input sentences to extract entities of these types:

##Entity Types:

{entity_type 1}: {description 1}

{entity_type 2}: {description 2}

{entity_type n}: {description n}

The entity type here refer to the entity types specific to a given dataset, where the description represents the
entity type information. When used, it should be replaced with the actual entity types and corresponding
descriptions based on the specific dataset.

## Output Formatting

1. Return a JSON list of entities

2. Each entity must include:

- **Type**: Entity category (exact uppercase labels)
- **Name**: Original text span

3. Return empty list if no entities found

## Examples (10-shot)
1. Input: {example sentence 1}
Output: {recognition result 1}
2. Input: {example sentence 2}
Output: {recognition result 2}
10. Input: {example sentence 10}
Output: {recognition result 10}
The example sentences are selected from the training set, and the recognition results should fully comply
with the defined Output Formatting.

## Current Task

Input: {test sentence}

Output:

The input here should be the sentences to be tested, and the output should be the model’s recognition
results.

Table 7: Prompt for Few-Shot NER.
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PROMPT FOR FEW-SHOT RE.

## Task Objective
Perform Relation Extraction (RE) on input sentences to extract relational triples of these types:

##Relation Types:

{relation_type 1}: {description 1}

{relation_type 2}: {description 2}

{relation_type n}: {description n}

The relation type here refer to the relation types specific to a given dataset, where the description
represents the relation type information. When used, it should be replaced with the actual relation types
and corresponding descriptions based on the specific dataset.

## Output Formatting

1. Return a JSON list of relational triples

2. Each relational triple must include:

- **Head**: Original head entity span

- **Type**: Relation category (exact uppercase labels)
- **Tail**: Original tail entity span

3. Return empty list if no relational triples found

## Examples (10-shot)
1. Input: {example sentence 1}
Output: {recognition result 1}
2. Input: {example sentence 2}
Output: {recognition result 2}
10. Input: {example sentence 10}
Output: {recognition result 10}
The example sentences are selected from the training set, and the recognition results should fully comply
with the defined Output Formatting.

## Current Task

Input: {test sentence}

Output:

The input here should be the sentences to be tested, and the output should be the model’s recognition
results.

Table 8: Prompt for Few-Shot RE.
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PROMPT FOR FEW-SHOT ED.

## Task Objective
Perform Event Detection (ED) on input sentences to extract events of these types:

##Event Types:

{event_type 1}: {description 1}

{event_type 2}: {description 2}

{event_type n}: {description n}

The event type here refer to the event types specific to a given dataset, where the description represents the
event type information. When used, it should be replaced with the actual event types and corresponding
descriptions based on the specific dataset.

## Output Formatting

1. Return a JSON list of events

2. Each event must include:

- **Type**: Event category (exact uppercase labels)
- **Trigger**: Event trigger span

3. Return empty list if no event found

## Examples (10-shot)
1. Input: {example sentence 1}
Output: {recognition result 1}
2. Input: {example sentence 2}
Output: {recognition result 2}
10. Input: {example sentence 10}
Output: {recognition result 10}
The example sentences are selected from the training set, and the recognition results should fully comply
with the defined Output Formatting.

## Current Task

Input: {test sentence}

Output:

The input here should be the sentences to be tested, and the output should be the model’s recognition
results.

Table 9: Prompt for Few-Shot ED.
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