
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 27962–27994
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Rethinking the Role of Prompting Strategies in LLM Test-Time Scaling:
A Perspective of Probability Theory

Yexiang Liu1,2, Zekun Li3, Zhi Fang1,2, Nan Xu1,4, Ran He1,2*, Tieniu Tan1,2,5

1MAIS, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3University of California, Santa Barbara
4Beijing Wenge Technology Co., Ltd 5Nanjing University

{liuyexiang2023, fangzhi2023, xunan2015, ran.he, tieniu.tan}@ia.ac.cn
zekunli@cs.ucsb.edu

Abstract

Recently, scaling test-time compute on Large
Language Models (LLM) has garnered wide
attention. However, there has been limited in-
vestigation of how various reasoning prompting
strategies perform as scaling. In this paper, we
focus on a standard and realistic scaling set-
ting: majority voting. We systematically con-
duct experiments on 6 LLMs × 8 prompting
strategies × 6 benchmarks. Experiment results
consistently show that as the sampling time
and computational overhead increase, compli-
cated prompting strategies with superior ini-
tial performance gradually fall behind sim-
ple Chain-of-Thought. We analyze this phe-
nomenon and provide theoretical proofs. Ad-
ditionally, we propose a probabilistic method
to efficiently predict scaling performance and
identify the best prompting strategy under
large sampling times, eliminating the need for
resource-intensive inference processes in prac-
tical applications. Furthermore, we introduce
two ways derived from our theoretical analy-
sis to significantly improve the scaling perfor-
mance. We hope that our research can promote
to re-examine the role of complicated prompt-
ing, unleash the potential of simple prompt-
ing strategies, and provide new insights for en-
hancing test-time scaling performance. Code is
available at https://github.com/MraDonk
ey/rethinking_prompting.

1 Introduction

Over the past few years, how to enhance the reason-
ing abilities of large language models (LLMs) has
been a topic of widespread interest (Dubey et al.,
2024; Anil et al., 2023; Touvron et al., 2023; Open
AI, 2024a; Team et al., 2024). Researchers have
introduced various prompting strategies to improve
the reasoning capacity of LLMs, such as Chain of
Thought (CoT) (Wei et al., 2022) and so on (Zheng
et al., 2024; Yasunaga et al., 2024; Madaan et al.,

*Corresponding author.

2023). Recently, many studies have shown that
scaling LLM test-time compute can also effectively
improve reasoning (Snell et al., 2025; Open AI,
2024b; Ji et al., 2025; Bi et al., 2024).

However, how different prompting strategies be-
have when scaling test-time compute is less ex-
plored. In this paper, we focus on a standard and
effective scaling setting: majority voting.We com-
prehensively evaluate the performance of 8 main-
stream prompting strategies under equivalent sam-
pling time or computation overhead. We test 4
open-sourced and 2 closed-sourced LLMs on 6 rea-
soning benchmarks, finding that simple CoT con-
sistently performs best on all LLMs across bench-
marks with given budgets as scaling increases, even
if it falls behind at the beginning. This indicates
that current LLMs can achieve remarkable reason-
ing capabilities by only relying on simple CoT with-
out other complicated prompting strategies. It also
reminds us to reflect on the necessity of compli-
cated prompting for scaling and fairly compare
different strategies under the same budget.

We systematically analyze this phenomenon and
provide theoretical and experimental proofs. We
conclude that this is caused by two reasons. One is
that there are more easy questions and fewer hard
questions for CoT compared to other strategies.
Easy questions are more likely to get right solu-
tions, and the error possibility decreases until 0%
as scaling. In comparison, hard questions are the
opposite. The other is that CoT is less likely to be
affected by wrong answers. Although CoT some-
times has lower pass@1 accuracy, its probability of
obtaining the correct answer is more prominent in
the result distribution. In contrast, other strategies
have higher disturbed peaks in the distribution of
incorrect answers. These two reasons enable CoT
to improve reasoning performance more rapidly
and gradually dominate as scaling.

What’s more, we propose a method with the
complexity O(1) according to probability theory

27962

https://github.com/MraDonkey/rethinking_prompting
https://github.com/MraDonkey/rethinking_prompting

to quickly predict the scaling performance, which
can serve as the test-time scaling law for major-
ity voting. Experiments show that our method can
accurately estimate the scaling performance and se-
lect the best strategy with arbitrary sampling time.

Furthermore, we explore two ways to signifi-
cantly improve scaling performance with our theo-
ries. (1) Adaptively scaling according to the ques-
tion difficulty. (2) Dynamically selecting the op-
timal prompting strategy. Extensive experiments
verify their general effectiveness and superiority,
e.g., improving Majority@10 accuracy from 86.0%
to 97.4% and 15.2% to 61.0% for LLaMA-3-8B-
Instruct (Dubey et al., 2024) on GSM8K (Cobbe
et al., 2021) and MATH-500 (Hendrycks et al.,
2021b) by combining (1) and (2), respectively.

Our contributions can be summarized as follows:

• We comprehensively study the test-time scal-
ing performance on 6 LLMs × 8 prompting
strategies × 6 benchmarks. (Section 2)

• We find that CoT consistently performs best
under the equivalent sampling time and com-
putation overhead. (Section 3)

• We analyze this phenomenon and provide the-
oretical and experimental proofs. (Section 4)

• We propose a method to quickly predict the
scaling performance and the best strategy un-
der given sampling times. (Section 5)

• Based on the above analysis, we introduce
two ways to significantly improve the scaling
performance. (Section 6)

2 Scaling System Designs

We focus on a straight and effective setting of test-
time scaling, majority voting, i.e., Self-Consistency
(Wang et al., 2023b), which selects the most con-
sistent answer among several samples. Our goal
is to study what prompting strategy performs best
under the equivalent scaling overhead, particularly
when largely increasing the scaling extent.

2.1 Models

We conduct experiments on 4 open-sourced
LLMs including Qwen2.5-7B-Instruct (Yang et al.,
2024a), LLaMA-3-8B-Instruct (Dubey et al., 2024),
GLM-4-9B-Chat (GLM et al., 2024) and Phi-3.5-
mini-Instruct, and 2 closed-sourced LLMs includ-
ing Gemini-1.5-Flash (Team et al., 2024) and GPT-
4o-mini (Open AI, 2024a).

2.2 Prompting Strategies

We mainly focus on generalizable reasoning
prompting strategies, excluding those individually
designed for specific tasks or involving fine-tuning,
training auxiliary models, or incorporating other
models, tools, or human assistance. In this setting,
the model’s performance is only related to the input
prompt, thus making it fairly compare the scaling
performance of those prompting strategies. The
prompting strategies we test are listed as follows.

Direct Prompting (DiP): Directly input the ques-
tion to the model, without any additional instruc-
tion or restrictions to the output.

Chain-of-Thought (CoT) (Wei et al., 2022; Ko-
jima et al., 2022): Use the prompt “Let’s think
step by step.” to solve the problem step by step.

Least-to-Most (L2M) (Zhou et al., 2023):
Break down the question into progressive sub-
questions. Answer the sub-questions and get the
final result according to them and their answers.

Tree-of-Thoughts (ToT) (Yao et al., 2023): Ex-
plore multiple reasoning paths to get several solu-
tions, then analyze each solution and decide which
one is the most promising.

Self-Refine (S-RF) (Madaan et al., 2023): First,
answer the question to get an initial answer. Next,
evaluate the previous answer and get feedback. Fi-
nally, refine the previous answer according to feed-
back. This will last for several rounds.

Step-Back Prompting (SBP) (Zheng et al., 2024):
First, extract the discipline concepts and principles
involved in solving the problem. Then, solve the
problem step by step by following the principles.

Analogous Prompting (AnP) (Yasunaga et al.,
2024): Recall relevant problems as examples. Af-
terward, solve the analogous problems and proceed
to solve the initial problem according to them.

Multi-Agent Debate (MAD) (Du et al., 2024):
Set three model instances as different agents to
debate for several rounds, and select the most con-
sistent result among them.

2.3 Benchmarks

We evaluate across 6 reasoning benchmarks used
in the original papers of the above prompting strate-
gies, including GSM8K (Cobbe et al., 2021), GSM-
Hard (Gao et al., 2023), MATH-500 (Hendrycks

27963

et al., 2021b; Lightman et al., 2024), MMLU-high-
school-biology, chemistry and physics (Hendrycks
et al., 2021a).

2.4 Formal Expression

We divided the prompting strategies into two
groups: iterative methods (S-RF, MAD, and ToT)
and the other non-iterative methods. For S-RF
and MAD, we run them N rounds and get the
final result in the N th round. For ToT, we set
the model to explore and evaluate N different
reasoning paths to get the best one. For oth-
ers, we parallel sample N generations and get
their most consistent answer with majority vot-
ing. For convenience, we refer to all of the above
processes as sampling N times. Therefore, we
can categorize those iterative strategies that re-
quire multiple rounds or reasoning paths as P2 =
{S-RF, MAD, ToT}, and other non-iterative ones
as P1 = {DiP, CoT, L2M, SBP, AnP}.

Formally, assuming that we have n prompting
strategies {Pi | i = 1, 2, ..., n}, when using the
prompt strategy Pi to answer a text question x on
a model M, we can get the answered result of one
sample with an answer extractor ϕ, which extracts
the answer in the output sentence using regular
expressions. Then we can formalize the process of
getting the final answer when sampling N times as
ϕ[M(x |Pi);N] =

{
mode{ϕ[M(x |Pi)]}N1 ,Pi ∈ P1

ϕ[M(x |Pi;N)], Pi ∈ P2

}
(1)

With a fixed sampling time N , the best prompt-
ing strategy P∗

N on the dataset D is

P∗
N = argmax

Pi

Ex∈D 1{ϕ[M (x |Pi);N] = y},
(2)

where y is the ground truth answer for x. However,
sampling with distinct Pi may cause different com-
putation overhead. It would be fairer to compare
them with a fixed overhead O. To calculate the
overhead of using a model M to answer a ques-
tion x by sampling N times with the prompting
strategy Pi, we can consider it as a function of
x,M,Pi, N , noted as C(x |M;Pi;N). Under a
fixed overhead O, the best prompting strategy P∗

O

on the dataset D is

P∗
O=argmax

Pi

max
N

Ex∈D1{ϕ[M (x |Pi);N] = y},

s.t.
∑

x∈D
C(x |M;Pi;N) ≤ O. (3)

Given that completion tokens are more computa-
tionally expensive than prompt tokens, we define
the overhead as the weighted sum of prompt to-
kens and completion tokens (Cost). For the mod-
els Gemini-1.5-Flash and GPT-4o-mini, we utilize
their respective pricing metrics.1 For other open-
sourced models, we adopt the pricing of GPT-4o-
mini as a proxy.

3 CoT Dominates as Test-Time Scaling

Under each sampling time N , we test five times to
obtain the average performance of majority voting.
We evaluate under two kinds of budget constraints:
(1) a fixed sampling time budget N , and (2) a fixed
inference cost budget O. Figure 1 and 2 summa-
rize the average performances across benchmarks
of different Pi under constrained sampling time
N and cost O on each model, and display the best
prompting strategy P∗

N under different values of N
and P∗

O under different values of O, respectively.2

We can see that when scaling test-time compute,
CoT performs best among all prompting strategies
under a constrained N and O most of the time.
Although some complicated prompting strategies
perform best under lower N and O, CoT dominates
without exception on all models when largely scal-
ing. We theoretically and experimentally analyze
this phenomenon, whose reasons come from two
aspects. We explain these in detail in Section 4.

What’s more, we find that about 80% of the re-
sults conform to this trend on each model and each
benchmark. On certain datasets and LLMs, DiP
also performs best as largely scaling. This is partic-
ularly evident on powerful models, such as Gemini-
1.5-Flash and GPT-4o-mini. More detailed results
can be found in Appendix C. These indicate that
simple CoT is more efficient and has the potential
to surpass other complicated prompting strategies
under the same scaling setting. Current LLMs can
achieve remarkable reasoning capabilities by only
relying on simple prompting strategies. Compli-
cated prompting with superior pass@1 accuracy
may not always be better as test-time scaling.

1The price of Gemini-1.5-Flash: $0.075/1M prompt to-
kens, $0.3/1M completion tokens. The price of GPT-4o-mini:
$0.15/1M prompt tokens, $0.6/1M completion tokens.

2We don’t test the performance with very large N for Pi ∈
P2, as this will lead to extremely long context, large cost and
computation time, and marginally increased or even decreased
performance, which is no better than Self-Consistency (Smit
et al., 2024). S-RF performs poorly even with multiple rounds.
This is consistent with the results of (Huang et al., 2024),
which points out the limitations of S-RF.

27964

Figure 1: Average performances of distinct prompting strategies and the best one P∗
N across benchmarks on each

LLM under constrained sampling time N . As increasing the sample time N , the accuracy of CoT grows rapidly and
it dominates on all models when N is large enough.

Figure 2: Average performances of distinct prompting strategies and the best one P∗
O across benchmarks on each

LLM under constrained cost O. Under the equal cost O, CoT performs best most of the time. When O grows larger,
CoT gradually becomes the best prompt strategy P∗

O on all models.

4 Why CoT Performs Worse with Lower
N while Better with Larger N?

Let us consider a specific input question x, note
the answer space A = {a1, a2, . . . , am} as the set
of all probable values of ϕ[M(x |Pi)] for all Pi,
i.e., ϕ[M(x |Pi)] ∈ A for ∀ Pi. We omit N = 1
in ϕ[M(x |Pi)] for brevity. {pi,1, pi,2, . . . , pi,m}
denotes the corresponding probabilities, i.e., pi,j =
Pr (ϕ[M(x |Pi)] = aj). Note a∗i as the final
result of Pi by scaling sampling N times, i.e.,
a∗i = ϕ[M(x |Pi);N]. Then the occurrence num-
ber Xi = (xi,1, . . . ,xi,m) of each probable an-
swer for Pi follows a multinomial distribution, i.e.,
Xi ∼ Mult(N, pi,1, pi,2, . . . , pi,m). The process
of getting the final result a∗i of Pi by sampling N
times can be formalized as:

Ji = {j |xi,j = max{Xi}}
k ∼ Uniform(Ji), a∗i = ak

(4)

Next, we will introduce several lemmas and the-
orems to explain the two reasons why CoT some-
times performs worse with lower N while bet-
ter with larger N . In the following proof, we
omit the input x, assume a1 is the correct answer,
and note the probability of getting a1 when sam-
pling N times with Pi as Pr(a1|Pi;N), which
can be regarded as the expectation of the accuracy
1{ϕ[M (x |Pi);N] = y}. Details about the proof
process can be found in Appendix B.
Definition 1. Note pmax = max{pi,1, ..., pi,m},
S = {aj | pi,j = pmax}, we can define the dif-
ficulty of the input question x for Pi. If a1 ∈

27965

S and |S| = 1, we call x an easy question for
Pi. If a1 ∈ S and |S| > 1, we call x a moder-
ate question for Pi. If a1 /∈ S, we call x a hard
question for Pi.

Theorem 1. If x is an easy question for
Pi, Pr(a1|Pi;N) is non-decreasing w.r.t. N ,
lim

N→+∞
Pr(a1|Pi;N) = 1.

Theorem 2. If x is a moderate question for
Pi, Pr(a1|Pi;N) is non-decreasing w.r.t. N ,
lim

N→+∞
Pr(a1|Pi;N) = 1/|S|.

Theorem 3. If x is a hard question for Pi,
Pr(a1|Pi;N) exhibits a general declining trend
w.r.t. N , lim

N→+∞
Pr(a1|Pi;N) = 0.

Lemma 1. Consider a specific condition with
answer space |A| = 3. For N = 3,
Pr(a1|Pi;N) = 3p2i,1 − 2p3i,1 + 2pi,1pi,2pi,3. For
N = 5, Pr(a1|Pi;N) = 6p5i,1 − 15p4i,1 + 10p3i,1 +

15p2i,1pi,2pi,3(pi,2 + pi,3).

Theorem 4. For two prompting strategies Pi and
Pi′ , note pi,q = max{pi,2, . . . , pi,m}, pi′,q′ =
max{pi′,2, . . . , pi′,m}, if pi,1 − pi,q < pi′,1 − pi′,q′

and pi,1+pi,q−p2i,1−p2i,q > pi′,1+pi′,q′ −p2i′,1−
p2i′,q′ , there exits a sufficiently large N0 such that
for N > N0, Pr(a1|Pi;N) < Pr(a1|Pi′ ;N).

4.1 CoT Has More Easy Questions and Fewer
Hard Questions

We identify two primary reasons why CoT some-
times performs worse with lower sample sizes
(N) but achieves better performance among these
prompting approaches with larger N . The first
reason relates to the distribution of question diffi-
culty for CoT. CoT has more easy questions and
fewer hard questions. When sampling with lower
N , Pi still has a small probability of obtaining the
right answer for hard questions, while the proba-
bility diminishes to zero as increasing N . This is
the opposite of easy questions. Figure 39 shows
an example of the accuracy changes on easy/hard
questions. The prompting strategy with fewer hard
questions and more easy questions will improve
performance more rapidly when scaling. Accord-
ing to Theorem 1 to 3, we can calculate the extreme
performance of Pi according to the difficulty pro-
portion of questions, i.e.,

∑
x∈D

lim
N→+∞

Pr(a1|Pi;N).

Table 1 summarizes the difficulty proportion of the
questions and extreme performance for each Pi on
each model. It can be observed that CoT has more
easy questions and fewer hard questions, and can

N=1

𝐏𝑵
∗=SBP

N=3

𝐏𝑵
∗=SBP

N=5

𝐏𝑵
∗=CoT

Moderate:

0.2%

Hard:

11.6%

Easy:

88.1%

CoT

Moderate:

0.3%

Hard:

12.3%

Easy:

87.4%

L2M

Moderate:

0.1%

Hard:

12.8%

Easy:

87.1%

SBP SBP

SBP

SBP

CoT

CoT

CoT

0.64

0.35

0.01

0.6

0.2 0.2

0.709

0.2862

0.0048

0.696

0.152 0.152

0.7568 0.76896

0.2428

0.0004

0.11552 0.11552

Figure 3: Illustration of the two reasons why CoT
sometimes performs worse with lower N while bet-
ter with larger N . Left: CoT has more easy questions
and fewer hard questions. For example, the probabil-
ity distribution of L2M is {0.4, 0.5, 0.1, 0.0, 0.0} (hard
question), and {0.3, 0.2, 0.2, 0.2, 0.1} (easy question)
for CoT. Although L2M has higher pass@1 accuracy,
its accuracy reduces until 0% as scaling while CoT in-
creases until 100%. Right: CoT is less likely to be
affected by wrong answers due to their relatively uni-
form distribution. The probability of obtaining the right
answer a1 grows more rapidly as increasing N .

reach the best extreme performance on all models,
thus making CoT gradually dominate as increasing
N even if it has a lower pass@1 accuracy.

4.2 CoT is Less Likely to be Affected by
Wrong Answers

The second reason for this phenomenon is that
CoT is less likely to be affected by wrong answers.
Pr(a1|Pi;N) is not a function of only the proba-
bility pi,1 of the right answer a1, but also related to
the probability distribution of other wrong answers.
According to Theorem 4, even if pi,1 > pi′,1, i.e.,
Pr(a1|Pi;N = 1) > Pr(a1|Pi′ ;N = 1), there
still may exist an N0 that Pr(a1|Pi;N = N0) >
Pr(a1|Pi′ ;N = N0). Considering a question x in
GSM8K as an example and a1 is the correct an-
swer, the result probability distribution of Pi =
SBP is {0.64, 0.35, 0.01}, and {0.6, 0.2, 0.2} for
Pi′ = CoT, which satisfies the condition in Theo-
rem 4. According to Lemma 1, Pr(a1|Pi;N =
1) = 0.640 > Pr(a1|Pi′ ;N = 1) = 0.600,
Pr(a1|Pi;N = 3) = 0.709 > Pr(a1|Pi′ ;N =
3) = 0.696, while Pr(a1|Pi;N = 5) = 0.757 <
Pr(a1|Pi′ ;N = 5) = 0.769. This means, although

27966

Table 1: Difficulty proportion of questions and extreme peformance (denote by “Acc”) for each Pi and LLM
across benchmarks. CoT has more easy questions and fewer hard questions, and can reach the best extreme
performance on all LLMs.

Pi Easy Moderate Hard Acc Easy Moderate Hard Acc Easy Moderate Hard Acc

Qwen2.5-7B-Instruct LLaMA-3-8B-Instruct GLM-4-9B-Chat
DiP 86.3% 0.3% 13.4% 86.4 69.7% 1.0% 29.3% 70.2 79.8% 0.6% 19.6% 80.1
CoT 88.1% 0.2% 11.6% 88.2 70.9% 0.9% 28.2% 71.3 82.8% 0.8% 16.5% 83.1
L2M 87.4% 0.3% 12.3% 87.6 70.3% 1.6% 28.1% 71.0 81.9% 0.4% 17.7% 82.1
SBP 87.1% 0.1% 12.8% 87.2 67.3% 1.3% 31.3% 68.0 81.4% 0.9% 17.6% 81.9
AnP 81.1% 0.5% 18.4% 81.3 67.5% 1.4% 31.1% 68.2 76.4% 1.2% 22.4% 77.0

Phi-3.5-mini-Instruct Gemini-1.5-Flash GPT-4o-mini
DiP 78.4% 0.6% 21.1% 78.6 91.0% 0.0% 9.0% 91.0 89.7% 0.4% 9.9% 89.9
CoT 81.2% 0.4% 18.4% 81.4 91.2% 0.2% 8.6% 91.3 89.8% 0.3% 9.9% 90.0
L2M 80.2% 0.6% 19.2% 80.5 90.9% 0.2% 89.8% 90.9 89.8% 0.3% 10.0% 89.9
SBP 79.0% 0.6% 20.4% 79.3 90.6% 0.4% 9.0% 90.8 81.4% 0.2% 10.4% 89.5
AnP 77.0% 1.2% 21.8% 77.6 80.5% 0.6% 18.8% 90.9 81.4% 1.1% 17.5% 81.9

Table 2: Quantity of questions described in Section
4.2. The value vii′ in the ith row and i′th column rep-
resents the quantity of data that satisfies Theorem 4.
Results prove that CoT has greater potential to signifi-
cantly increase performance as scaling.

Qwen2.5-7B-Instruct

Pi

Pi′ DiP↓ CoT↓ L2M↓ SBP↓ AnP↓ Sum ↓

DiP ↑ - 447 414 457 393 1711
CoT ↑ 423 - 374 416 361 1574
L2M ↑ 505 510 - 494 403 1912
SBP ↑ 599 601 564 - 429 2193
AnP ↑ 800 817 799 776 - 3192

Sum ↑ 2327 2375 2151 2143 1586 -

LLaMA-3-8B-Instruct

Pi

Pi′ DiP↓ CoT↓ L2M↓ SBP↓ AnP↓ Sum↓

DiP ↑ - 816 794 459 513 2582
CoT ↑ 620 - 646 382 408 2056
L2M ↑ 639 677 - 432 393 2141
SBP ↑ 1316 1433 1398 - 923 5070
AnP ↑ 1243 1381 1380 871 - 4875

Sum ↑ 3818 4307 4218 2144 2237 -

complicated prompting strategies may have higher
pass@1 accuracy, they are easier to be affected
by wrong answers. In contrast, simple CoT has a
relatively flat distribution on wrong answers, thus
making it focus more on the correct answer, which
makes it more rapidly improve performance in easy
questions and more slowly reduce accuracy in hard
questions as increasing N , as shown in Figure 3.
We record the quantity of such questions for each
two prompting strategies and display the results of
Qwen2.5-7B-Instruct and LLaMA-3-8B-Instruct in
Table 2. If CoT is Pi′ , there are the most data satis-

Table 3: Average KL divergence between the erroneous
answer distribution and uniform distribution of each Pi

across all tested 6 benchmarks on each LLM.

Qwen LLaMA GLM Phi Gemini GPT

DiP 0.0774 0.0830 0.0655 0.0770 0.0679 0.0649
CoT 0.0668 0.0829 0.0575 0.0678 0.0674 0.0624
L2M 0.0708 0.0857 0.0572 0.0724 0.0692 0.0647
SBP 0.0794 0.0952 0.0603 0.0821 0.0757 0.0647
AnP 0.1357 0.1154 0.1137 0.1097 0.1990 0.1593

fying Theorem 4. If CoT is Pi, there are the least
such questions. These demonstrate that CoT has
greater potential to significantly increase scaling
performance compared with other strategies.

To quantify the uniformity of the erroneous an-
swer distributions, we measure the KL divergence
between them and the uniform distribution, where
lower values indicate closer alignment with greater
uniformity. Table 3 shows the average KL diver-
gence on each Pi and LLM across all benchmarks.
We can see that CoT has the most uniform distribu-
tion in most cases. While L2M achieves the lowest
KL divergence on GLM-4-9B-Chat, CoT exhibits
a marginal difference of merely 0.0003, indicating
near-identical uniformity.

As for why CoT has a more uniform probability
distribution, we speculate this stems from its sim-
pler approach that avoids imposing specific con-
straints or guidance on reasoning patterns, com-
pared with other specifically designed prompting
approaches. By minimizing explicit guidance, it
preserves the model’s natural exploration of the
solution space. While DiP is also simple, it fails
to adequately activate the model’s step-by-step rea-
soning capabilities and free exploration potential.
In contrast, more complex prompting strategies

27967

introduce explicit guidance mechanisms that con-
strain reasoning patterns and narrow search direc-
tions. This results in probability mass concentrat-
ing around specific potential correct solutions at the
expense of broader exploratory behavior, ultimately
leading to less uniform answer distributions.

5 Predicting Scaling Performance and P∗
N

In practice, evaluating the test-time scaling per-
formance requires significantly intensive resource
consumption, especially with very large sampling
time N . For pretraining, it is feasible to predict the
train-time scaling performance based on the scal-
ing law (Kaplan et al., 2020) through a series of
low-cost experiments, while maintaining the model
architecture largely unchanged and minimizing the
risks associated with large-scale training. Simi-
larly, we can also use the sample results of Pi

with fewer N to approximately get the distribu-
tion {pi,1, pi,2, . . . , pi,m} to predict the test-time
scaling performance with larger N . Directly, one
can utilize the multinomial distribution probability
calculation formula (Equation 13 and 14) to cal-
culate Pr(a1|Pi;N) with enumeration or leverage
numerical simulation to estimate. However, their
computational complexities are both O(N), and
the former needs to traverse all situations and is dif-
ficult to operate. Therefore, we propose a method
with the computational complexity O(1) to quickly
predict the scaling performance of majority voting
for arbitrary Pi, which can serve as the test-time
scaling law for majority voting. It can also select
the best prompting strategy P∗

N according to the
predicted performances of each Pi.

Here we omit the prompting index i and input
question x, and assume a1 is the correct answer
in the following. According to Khinchin’s Law
of Large Numbers and Lindeberg-Levy Central
Limit Theorem, when N is large enough, each
occurrence number xj can be approximated by a
normal distribution. Specifically, for x1, we have

x1 ∼ N (Np1, Np1(1− p1)), (5)
i.e., a normal distribution with mean Np1 and vari-
ance Np1(1 − p1). Considering the maximum
value among all other xj (j ̸= 1), denoted as
M = max(x2, ...,xm), when N is large enough,
the distribution of M can be approximated by

M ∼ N (Npmax, Npmax(1− pmax)), (6)

where pmax is the second highest probability ex-
cluding p1. We now need to calculate P (x1 > M),

which can be approximated by comparing two nor-
mal distributions. Let Z = x1 − M , then the
distribution of Z is

N (N(p1−pmax), N(p1(1−p1)+pmax(1−pmax)).
(7)

Therefore,

Pr(a∗ = a1) ≈ Pr(Z > 0), (8)
where a∗ is the final sample result. Using properties
of the standard normal distribution, we can write

Pr(Z > 0) = Pr

(
Z − E[Z]√

Var[Z]
>

−E[Z]√
Var[Z]

)

= 1− Φ

(
−E[Z]√

Var[Z]

)
,

(9)

E[Z] = N(p1 − pmax),

V[Z] = N(p1(1− p1) + pmax(1− pmax)),
where Φ is the standard normal cumulative distri-
bution function. Thus, we can quickly predict the
scaling performance and select the best prompting
strategy P∗

N with given N by

Pr(a1|Pi;N)≈1−Φ


 −(p1 − pmax)√

p1(1−p1)+pmax(1−pmax)
N


,

(10)
Accuracy(Pi, N) = Ex∈D Pr(a1|Pi, N), (11)

P∗
N = argmax

Pi

Accuracy(Pi, N). (12)

Experiment. We verify our method on LLaMA-
3-8B-Instruct on GSM8K, only using 40 samples
to estimate pi,j . Results are shown in Figure 4. We
can see that our method can accurately estimate the
scaling performance, and the error decreases until
0% as scaling sampling time. When N ≥ 10, the
error is already less than 1%. This makes sense
as our method is based on the assumption that N
is large enough. Although the prediction accuracy
is not very high when N is small, the difference
in predicted performances between distinct Pi is
similar to that in true performances, so our method
can correctly select the best prompting strategy P∗

N

with arbitrary N , as shown in Table 4.

6 Improving Scaling Peformance

According to the analysis in Section 4, we can
further improve the scaling performance in two
ways. Extensive experiments confirm their effec-
tiveness, leading to significant improvements. We
will further explore them in the future. All follow-
ing results are conducted on Qwen-2.5-7B-Instruct
on GSM8K. Please refer to Appendix D for more
results on other LLMs and benchmarks.

27968

100 101 102 103

Sampling Time

74
76
78
80
82
84
86
88

Pe
rf

or
m

an
ce

 (
%

)
DiP

Real
Predicted

100 101 102 103

Sampling Time

80

82

84

86

88

Pe
rf

or
m

an
ce

 (
%

)

CoT

Real
Predicted

100 101 102 103

Sampling Time

80

82

84

86

88

Pe
rf

or
m

an
ce

 (
%

)

L2M

Real
Predicted

100 101 102 103

Sampling Time

70

75

80

85

90

Pe
rf

or
m

an
ce

 (
%

)

SBP

Real
Predicted

100 101 102 103

Sampling Time

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Pe
rf

or
m

an
ce

 (
%

)

AnP

Real
Predicted

Figure 4: Real and predicted performance using our method of different Pi under various sampling time constraints.
Our method can accurately estimate the scaling performance of arbitrary Pi, especially with large N .

Table 4: The true best prompting strategy P∗
N and the predicted P∗

N using our method under various sampling time
constraints. Our method can correctly predict the best prompting strategy under any constraints evaluated.

P∗
N

Sampling Time N

1 3 5 10 20 30 40 50 60 100 1000

Oracle L2M CoT CoT CoT SBP SBP SBP SBP SBP SBP SBP
Predicted (Ours) L2M CoT CoT CoT SBP SBP SBP SBP SBP SBP SBP
Correctness ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6.1 Adaptively Scaling Based on the Difficulty

According to Theorem 1 to 4, it will lead to de-
creased performance when scaling sampling time
on hard questions. Performances only continuously
improve on easy questions. Therefore, when fac-
ing a hard question, we can force LLMs to only
answer it once without scaling more. If the ques-
tion is a moderate or easy question, LLMs scale
sampling time as usual. We evaluate the perfor-
mance both when forcing the LLM to determine
the question difficulty itself (noted as “Adaptive”)
and providing the difficulty oracle to the LLM as
an upper bound reference (noted as “Oracle”), as
shown in Figure 5. “Adaptive” performance is al-
most equal to the usual scaling performance (noted
as “Vanilla”), which is because the LLM is more
inclined to believe a question is easy, especially
on more complicated Pi such as SBP and AnP.
Nevertheless, all Pi can significantly improve their
scaling performances with question difficulty ora-
cles, proving the potential of this method.

6.2 Dynamically Choosing the Optimal Pi

For a question x, it may be a hard question for a
prompting strategy Pi with higher accuracy, while
an easy question for another strategy Pi′ with
lower accuracy. So if we can choose the opti-
mal prompting strategy for each question, it will
largely improve the performance. We test the
scaling performance both when forcing the LLM to
choose the most suitable Pi (noted as “Dynamic”)
and providing the oracles as an upper bound (noted
as “Oracle”), i.e., telling the LLM which Pi max-

imizes Pr(a1|Pi;N), as shown in Figure 6. “Dy-
namic” performance is almost equal to CoT. This is
because Qwen believes CoT is the best Pi among
8 prompting strategies in 99.7% of the questions.
However, it can achieve significant improvement
with oracles. This means that selecting the best Pi

for each question is more effective than majority
voting, as “Oracle” performance with only N = 1
is much higher than ∀Pi with even N → +∞.
However, “Oracle” performance does not increase
with scaling. This is because there are questions
that are hard for all Pi. Even if we select the best
Pi on a question, its accuracy still reduces with
scaling. So if we can combine the two methods in
Section 6.1 and 6.2, it would lead to much more
improvement.

6.3 Combining Adaptively Scaling and
Dynamically Choosing the Optimal Pi

Figure 7 reports the peformance upper bounds of
each Pi ∈ P1 + “Adaptive”, “Dynamic”, and com-
bining “Adaptive” and “Dynamic”. Experiment
results demonstrate the powerful potential of the
combined method. We will explore more feasible
methods to reach this upper bound in future work.

7 Related Work

Reasoning Prompting Strategies. CoT series
carefully design exemplars or 0-shot prompts to
unleash the potential of step-by-step solving (Wei
et al., 2022; Kojima et al., 2022; Zhang et al., 2023;
Fu et al., 2023). (Zhou et al., 2023; Dua et al., 2022;
Khot et al., 2023) break down the question into

27969

0 20 40 60 80 100
Sampling Time

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)
DiP

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

91

92

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

90

91

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)

L2M

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

90

91

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

90

91

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 5: Results of adaptively scaling for each Pi ∈ P1 based on oracle and predicted question difficulty.

Figure 6: Results of dynamically choosing the optimal Pi.

Figure 7: Results of combining adaptively scaling and
dynamically choosing the optimal Pi with oracles.

smaller, more manageable subproblems. (Madaan
et al., 2023; Kim et al., 2023) force LLMs to self-
evaluate and correct. (Du et al., 2024; Liang et al.,
2024; Chan et al., 2024; Liu et al., 2025; Huang
et al., 2025) utilize multi-agent debate to collabo-
rate reasoning. (Yasunaga et al., 2024; Yu et al.,
2024) guide LLMs to draw experience from anal-
ogous problems. (Zheng et al., 2024; Gao et al.,
2025) promote LLMs on abstract reasoning.

Scaling Test-Time Compute. Self-Consistency
is a simple but effective scaling method (Wang
et al., 2023b). (Li et al., 2023; Hosseini et al.,
2024) train a verifier to evaluate samples and select
the best solution. Some use iterative refinement
(Madaan et al., 2023) or multiple rounds of de-
bate(Du et al., 2024). Others leverage the theory
of tree search (Yao et al., 2023; Ding et al., 2024;
Zhang et al., 2024a) and graph search (Besta et al.,
2024a; Jin et al., 2024a) to expand and aggregate
reasoning paths (Besta et al., 2024b).

Several studies have shown that scaling test-time
compute optimally can be more effective than scal-
ing model parameters (Snell et al., 2025; Open
AI, 2024b). (Snell et al., 2025) investigates the
most effective test-time scaling approach with the
basic fixed standard prompting given auxiliary re-
sources, e.g., available datasets for training, specifi-
cally trained verifiers, and fine-tuned models. They
analyze two kinds of test-time scaling approaches:
1) searching against verifier reward models, and 2)
sequential revisions with specifically trained mod-
els. In contrast, our aim is, completely relying on
the LLM itself, which prompting strategy is the
most effective with the basic majority voting scal-
ing. We provide new perspectives and theories to 1)
understand, 2) predict, and 3) improve the scaling
performance of different prompting strategies with
the most basic test-time scaling setting.

8 Conclusion

We comprehensively study the behavior of various
prompting strategies when scaling majority vot-
ing. Our experiments on 6 LLMs × 8 prompting
strategies × 6 benchmarks consistently show that
CoT has the potential to perform best as scaling.
Theoretical analysis reveals that it benefits from
fewer hard questions, more easy questions, and less
susceptibility to incorrect answers, enabling more
rapid performance gains. Additionally, our pro-
posed method for predicting scaling performance
offers a practical tool to select the optimal prompt-
ing strategy under given sampling time budgets.
What’s more, we introduce two effective methods
to further improve scaling performance.

We also extend experiments on two more chal-
lenging reasoning benchmarks, GPQA (Rein et al.,
2024) and AIME (Mathematical Association of
America, 2024), further verifying the generality of
our findings and methods. Our combined method
can achieve a significant boost, elevating accu-
racy from just over 30% (majority@100) to 75.7%.
Please refer to Appendix E for more details.

27970

Limitations

In this paper, we mainly focus on majority voting,
which is a simple but effective scaling approach.
However, we don’t test on other more complex scal-
ing approaches such as Monte Carlo Tree Search.
Our finding that CoT dominates as scaling most of
the time does not always hold for every LLM on
every dataset, e.g., Table 4. Nevertheless, 80% of
the results conform to this rule. In fact, it depends
on the composition of the dataset. If we specifically
collect hard questions for Pi as a dataset, it will
lead to a continuous decline performance of Pi.
Our experiments and analysis indicate that, even
though some Pi may perform poorly with lower
sampling time, they hold the potential to exhibit
superior performance than other prompting strate-
gies as test-time scaling. We propose two superior
methods according to rigorous theories, which can
significantly improve scaling performance on each
model and each benchmark we test, and we are con-
fident in the universality of our methods. However,
our experiment results indicate that LLMs alone
cannot readily achieve the intended effects, push-
ing us to explore more practicable and effective
methods in our future work.

Ethical Considerations

There are many potential societal consequences
of our work, none which we feel must be specifi-
cally highlighted here. The sole potential risk we
acknowledge is that scaling compute may result
in substantial electricity consumption and carbon
dioxide emissions.

Acknowledgment

We thank Jie Cao and Huaibo Huang for their in-
sightful discussions. The work is supported by Na-
tional Natural Science Foundation of China (Grant
No. 62425606, 32341009, U21B2045) and the
Strategic Priority Research Program of Chinese
Academy of Sciences (Grant No. XDA0480302).

References
Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al.

2023. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with
llms. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 12375–12396.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak

Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024a. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682–17690.

Maciej Besta, Florim Memedi, Zhenyu Zhang, Robert
Gerstenberger, Nils Blach, Piotr Nyczyk, Marcin
Copik, Grzegorz Kwaśniewski, Jürgen Müller, Lukas
Gianinazzi, et al. 2024b. Topologies of reasoning:
Demystifying chains, trees, and graphs of thoughts.
arXiv preprint arXiv:2401.14295.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and
Yunhe Wang. 2024. Forest-of-thought: Scaling test-
time compute for enhancing llm reasoning. arXiv
preprint arXiv:2412.09078.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better llm-based evaluators
through multi-agent debate. In The Twelfth Interna-
tional Conference on Learning Representations.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter
Bailis, Ion Stoica, Matei Zaharia, and James Zou.
2024a. Are more llm calls all you need? towards the
scaling properties of compound ai systems. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Lingjiao Chen, Matei Zaharia, and James Zou. 2024b.
Frugalgpt: How to use large language models while
reducing cost and improving performance. Transac-
tions on Machine Learning Research.

Qiguang Chen, Libo Qin, WANG Jiaqi, Jingxuan Zhou,
and Wanxiang Che. 2024c. Unlocking the capabil-
ities of thought: A reasoning boundary framework
to quantify and optimize chain-of-thought. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. 2024d. Do
not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and
Jingren Zhou. 2024e. A simple and provable scal-
ing law for the test-time compute of large language
models. arXiv preprint arXiv:2411.19477.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

27971

Yingqian Cui, Pengfei He, Xianfeng Tang, Qi He, Chen
Luo, Jiliang Tang, and Yue Xing. 2024. A theoretical
understanding of chain-of-thought: Coherent reason-
ing and error-aware demonstration. In The 28th In-
ternational Conference on Artificial Intelligence and
Statistics.

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea
Bobu, and Jacob Andreas. 2025. Learning how hard
to think: Input-adaptive allocation of lm computa-
tion. In The Thirteenth International Conference on
Learning Representations.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu,
Minghua Ma, Wei Zhang, Si Qin, Saravan Rajmohan,
Qingwei Lin, and Dongmei Zhang. 2024. Everything
of thoughts: Defying the law of penrose triangle for
thought generation. In Findings of the Association
for Computational Linguistics: ACL 2024, pages
1638–1662. Association for Computational Linguis-
tics.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2024. Improving factual-
ity and reasoning in language models through multia-
gent debate. In Forty-first International Conference
on Machine Learning.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt
Gardner. 2022. Successive prompting for decom-
posing complex questions. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 1251–1265.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,
Di He, and Liwei Wang. 2024. Towards revealing the
mystery behind chain of thought: a theoretical per-
spective. Advances in Neural Information Processing
Systems, 36.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, pages 10764–
10799.

Silin Gao, Jane Dwivedi-Yu, Ping Yu, Xiaoqing Ellen
Tan, Ramakanth Pasunuru, Olga Golovneva, Kous-
tuv Sinha, Asli Celikyilmaz, Antoine Bosselut, and
Tianlu Wang. 2025. Efficient tool use with chain-
of-abstraction reasoning. In Proceedings of the 31st
International Conference on Computational Linguis-
tics, pages 2727–2743.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. In Conference On Language Modeling.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations.

Ziyang Huang, Jun Zhao, and Kang Liu. 2025. Towards
adaptive mechanism activation in language agent. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 2867–2885.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian
Mo, and Min Zhang. 2025. Test-time computing:
from system-1 thinking to system-2 thinking. arXiv
preprint arXiv:2501.02497.

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar
Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng Tang,
Suhang Wang, Yu Meng, and Jiawei Han. 2024a.
Graph chain-of-thought: Augmenting large language
models by reasoning on graphs. In Findings of the As-
sociation for Computational Linguistics: ACL 2024,
pages 163–184.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao,
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. 2024b. The impact of reasoning step
length on large language models. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 1830–1842.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh

27972

International Conference on Learning Representa-
tions.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks. In
Advances in Neural Information Processing Systems,
volume 36, pages 39648–39677.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in neural information processing systems, volume 35,
pages 22199–22213.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,
Xinglin Wang, Bin Sun, Heda Wang, and Kan Li.
2024. Escape sky-high cost: Early-stopping self-
consistency for multi-step reasoning. In The Twelfth
International Conference on Learning Representa-
tions.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2024. Encouraging divergent thinking
in large language models through multi-agent debate.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Yexiang Liu, Jie Cao, Zekun Li, Ran He, and Tieniu
Tan. 2025. Breaking mental set to improve reasoning
through diverse multi-agent debate. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: iterative refinement with
self-feedback. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing
Systems, pages 46534–46594.

Mathematical Association of America. 2024. American
invitational mathematics examination (AIME).

Open AI. 2024a. GPT-4o-mini. https://openai.com
/ja-JP/index/gpt-4o-mini-advancing-cost-e
fficient-intelligence.

Open AI. 2024b. Introducing openai o1. https://op
enai.com/o1/.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2025. Mutual reasoning
makes smaller llms stronger problem-solvers. In
The Thirteenth International Conference on Learning
Representations.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpqa:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Marija Šakota, Maxime Peyrard, and Robert West. 2024.
Fly-swat or cannon? cost-effective language model
choice via meta-modeling. In Proceedings of the
17th ACM International Conference on Web Search
and Data Mining, pages 606–615.

Andries Petrus Smit, Nathan Grinsztajn, Paul Duck-
worth, Thomas D Barrett, and Arnu Pretorius. 2024.
Should we be going mad? a look at multi-agent de-
bate strategies for llms. In Forty-first International
Conference on Machine Learning.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2025. Scaling llm test-time compute optimally
can be more effective than scaling model parame-
ters. In The Thirteenth International Conference on
Learning Representations.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez,
Dongwei Jiang, Manya Wadhwa, Prasann Singhal,
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur-
rett. 2025. To cot or not to cot? chain-of-thought
helps mainly on math and symbolic reasoning. In
The Thirteenth International Conference on Learning
Representations.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2023a.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. In The 61st An-
nual Meeting Of The Association For Computational
Linguistics.

27973

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://openai.com/ja-JP/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/ja-JP/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/ja-JP/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/o1/
https://openai.com/o1/

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce llms step-
by-step without human annotations. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9426–9439.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In Advances in
neural information processing systems, volume 35,
pages 24824–24837.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Chenxiao Yang, Zhiyuan Li, and David Wipf. 2024b.
An in-context learning theoretic analysis of chain-
of-thought. In ICML 2024 Workshop on In-Context
Learning.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu
Wei. 2025. Towards thinking-optimal scaling of
test-time compute for llm reasoning. arXiv preprint
arXiv:2502.18080.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: deliberate
problem solving with large language models. In
Proceedings of the 37th International Conference
on Neural Information Processing Systems, pages
11809–11822.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong
Pasupat, Jure Leskovec, Percy Liang, Ed H Chi, and
Denny Zhou. 2024. Large language models as ana-
logical reasoners. In The Twelfth International Con-
ference on Learning Representations.

Junchi Yu, Ran He, and Zhitao Ying. 2024. Thought
propagation: An analogical approach to complex rea-
soning with large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Zishun Yu, Tengyu Xu, Di Jin, Karthik Abinav
Sankararaman, Yun He, Wenxuan Zhou, Zhouhao
Zeng, Eryk Helenowski, Chen Zhu, Sinong Wang,
et al. 2025. Think smarter not harder: Adaptive
reasoning with inference aware optimization. arXiv
preprint arXiv:2501.17974.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu
Yao. 2024. Large language model cascades with

mixture of thought representations for cost-efficient
reasoning. In The Twelfth International Conference
on Learning Representations.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang
Li, and Wanli Ouyang. 2024a. Accessing gpt-4
level mathematical olympiad solutions via monte
carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394.

Kexun Zhang, Shang Zhou, Danqing Wang,
William Yang Wang, and Lei Li. 2024b. Scal-
ing llm inference with optimized sample compute
allocation. arXiv preprint arXiv:2410.22480.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H Chi, Quoc V Le, and Denny
Zhou. 2024. Take a step back: Evoking reasoning via
abstraction in large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. 2023.
Least-to-most prompting enables complex reasoning
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

27974

Appendix

In Appendix, we present broader related work,
proofs for our theorems, detailed results on each
benchmark, more discussions on improving the
scaling performance, results of extended experi-
ments, implementation details and prompts. The
content structure is outlined as follows:

• Appendix A - Broader Related Work

• Appendix B - Proofs

• Appendix C - Detailed Results

• Appendix D - More Discussions on Improving
the Scaling Performance

– Appendix D.1 - Adaptively Scaling
Based on the Difficulty

– Appendix D.2 - Dynamically Choosing
the Optimal Pi

– Appendix D.3 - Combining Adaptively
Scaling and Dynamically Choosing the
Optimal Pi

• Appendix E - Extended Experiments

• Appendix F - Implementation Details and
Prompts

A Broader Related Work

Efficient Reasoning. (Aggarwal et al., 2023; Li
et al., 2024; Chen et al., 2024a) improve the reason-
ing efficiency with majority voting by adjusting the
sampling time. (Damani et al., 2025; Zhang et al.,
2024b) learn to dynamically allocate resources un-
der limited sampling time budgets. (Chen et al.,
2024b; Yue et al., 2024; Šakota et al., 2024) lever-
age multiple models with different prices to reduce
cost while maintaining performance. (Yang et al.,
2025; Chen et al., 2024d; Yu et al., 2025) reduce
the length of the thinking process to alleviate the
overthinking issue, to achieve efficient reasoning.

Role and Mechanism of CoT and Test-Time Scal-
ing. (Jin et al., 2024b) studies the impact of rea-
soning step length of CoT. (Wang et al., 2023a)
studies what makes CoT prompting effective, indi-
cating that being relevant to the query and correctly
ordering the reasoning steps are more important.
(Feng et al., 2024; Cui et al., 2024) analyze the
mechanism of CoT from a theoretical perspective.
(Sprague et al., 2025) points out that CoT helps
mainly on math and symbolic reasoning by sorting

and analyzing a large number of experimental re-
sults. (Chen et al., 2024c) proposes a framework
to quantify the reasoning boundary of CoT. (Yang
et al., 2024b) provides an in-context learning anal-
ysis of CoT. (Chen et al., 2024a) investigates and
analyzes the performance changes with more LLM
calls. (Chen et al., 2024e) proves that the failure
probability of test-time scaling decays to zero ex-
ponentially or by a power law.

B Proofs

Theorem 1. If x is an easy question for
Pi, Pr(a1|Pi;N) is non-decreasing w.r.t. N ,
lim

N→+∞
Pr(a1|Pi;N) = 1.

Theorem 2. If x is a moderate question for
Pi, Pr(a1|Pi;N) is non-decreasing w.r.t. N ,
lim

N→+∞
Pr(a1|Pi;N) = 1/|S|.

Theorem 3. If x is a hard question for Pi,
Pr(a1|Pi;N) exhibits a general declining trend
w.r.t. N , lim

N→+∞
Pr(a1|Pi;N) = 0.

Proof. The occurrence number Xi =
(xi,1, . . . ,xi,m) of each probable answer for Pi

follows a multinomial distribution, i.e., Xi ∼
Mult(N, pi,1, pi,2, . . . , pi,m). When sampling N
times, the specific probability of a certain occur-
rence number can be calculated with Equation 13.
For brevity, we omit the input x, sampling time N ,
and the prompting index i in xi,j and pi,j in the
following equations.

Pr (x1 = k1,x2 = k2, . . . ,xm = km)

=
N !

k1!k2! · · · km!︸ ︷︷ ︸
coefficient

pk11 pk22 · · · pkmm︸ ︷︷ ︸
probability term

︸ ︷︷ ︸
a term in Pr(a1|Pi;N)

s.t.
∑m

j=1 kj = N,
∑m

j=1 pj = 1

(13)

Assuming the correct answer is a1, M =
max(k2, . . . , km), the probability of obtaining the
right answer by sampling N times with Pi is

Pr (a1|Pi) = Pr (x1 > M) +
∑m−1

|J |=1

Pr (x1 = xj > xq for all j ∈ J , q /∈ {1} ∪ J)

|J |+ 1
,

(14)
where J is the set of all indexes j (j ̸= 1) of xj

27975

that satisfies xj = x1.

Pr1 = Pr (x1 > M) =
∑

m∑
j=1

kj=N

N !

k1! · · · km!
pk11
∏m

j=2 pj1(kj < k1),

(15)

Pr2=Pr(x1=xj>xq for all j ∈ J , q /∈ {1}∪J))

=
∑

m∑
j=1

kj=N

N !

k1!
|J |∏
q /∈{1}∪J

kk!
p1
∏
j∈J

pj
∏

q /∈{1}∪J
pk1(kk < k1),

(16)
Pr1 represents the probability that x1 is the only

maximum number in Xi. Pr2 denotes the probabil-
ity that there exists more than one maximum num-
ber and correctly obtains a1 by randomly choosing
from them.

Here we present a generalized representation. As
shown in Equation 14, Pr (a1|Pi) only includes the
cases where Xi,1 is the maximum value (maybe
not the only one). Therefore, for a certain oc-
currence number Xi = (x1, . . . ,xm) of each
probable answer {a1, . . . , am}, we can reorder
a2, . . . , am to obtain x1 = x2 = · · · = xl >
xl+1, xl+2, . . . ,xm, where 1 ≤ l ≤ m. When
l = 1, x1 is the only maximum value. So each
term in Pr(a1|Pi;N) can be written as

1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm ,

(17)
where k1 = k2 = · · · = kl = k > kj , j =
l + 1, ...,m and lk +

∑m
j=l+1 kj = N .

Now we prove Theorem 1 and 2. We
aim to prove that given the set of answers
{a1, a2, . . . , am} with associated probabilities
{p1, p2, . . . , pm} from Pi, we have Pr(a1|Pi;N +
1) ≥ Pr(a1|Pi;N) for any N ∈ N+. Due to∑m

j=1 pj = 1, the given proposition can be restated
as

Pr(a1|Pi;N + 1)− (

m∑

j=1

pj) · Pr(a1|Pi;N) ≥ 0.

(18)
We consider the probability term

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm in each term in
Pr(a1|Pi;N), i.e, Equation 17. When it times∑m

j=1 pj , there will be three cases.

Case 1: When it times p1, x1 is the only maxi-
mum value. The probability term becomes

pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm ,

Case 2: When it times ps, where s ∈ {2, ..., l},
xs become the only maximum value. In this situa-
tion, its final result would be an incorrect answer.
If l = 1, case 2 will not exist. The probability term
becomes

pk1p
k
2 · · · pks−1p

k+1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

Case 3: When it times pt, where t ∈ {l +
1, ...,m}, the value of xt changes from kt to kt+1.
If kt = k − 1, xt becomes a new maximum value.
If l = m, case 3 will not exist. The probability
term becomes

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm .

It can be seen that case 1 and case 3 are
also present in Pr(a1|Pi;N + 1), whereas case
2 does not. We begin by considering case 1 and
case 2. The terms in Pr(a1|Pi;N + 1) corre-
sponding to case 1 pk+1

1 pk2 · · · pkl p
kl+1

l+1 p
kl+2

l+2 · · · pkmm
are shown in Equation 19, and no term in
Pr(a1|Pi;N + 1) involves case 2. The
terms in (

∑m
j=1 pj) · Pr(a1|Pi;N) involving

case 1 are shown in Equation 20. The
terms in (

∑m
j=1 pj) · Pr(a1|Pi;N) involving case

2 pk1p
k
2 · · · pks−1p

k+1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm
are shown in Equation 21. Based on the fact of
Equation 22, we can establish the inequality Equa-
tion 23, i.e., the terms corresponding to case 1 and
case 2 in Pr(a1|Pi;N+1) are greater than or equal
to those in (

∑m
j=1 pj) · Pr(a1|Pi;N).

Now we consider case 3
pk1p

k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm ,
which can be analyzed by splitting it into two
distinct scenarios: kt + 1 < k and kt + 1 = k.

For scenario kt + 1 < k, the terms in
Pr(a1|Pi;N + 1) corresponding to case 3 are
shown in Equation 24. The terms in (

∑m
j=1 pj) ·

Pr(a1|Pi;N) corresponding to case 3 are shown in
Equation 25. Evidently, we can obtain Equation 26
similar to Equation 22, and then we can get Equa-
tion 27, which proves the terms corresponding to
the scenario kt + 1 < k in Pr(a1|Pi;N + 1) are
equal to those in (

∑m
j=1 pj) · Pr(a1|Pi;N).

For scenario kt + 1 = k, in a similar man-
ner, according to the Equation 28, we obtain the
same result as the above scenario, i.e., the terms
corresponding to the scenario kt + 1 = k in
Pr(a1|Pi;N +1) are equal to those in (

∑m
j=1 pj) ·

27976

(
lk + 1 +

∑m
j=l+1 kj

)
!

(k + 1) · (k!)l ·∏m
j=l+1 (kj !)

pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm (19)

p1 ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

+
l∑

s=2

ps ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
k · (k!)l ·∏m

j=l+1(kj !)
pk+1
1 pk2 · · · pks−1p

k−1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

+

m∑

t=l+1

pt ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
kt

· (k!)l ·∏m
j=l+1(kj !)

pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt−1
t p

kt+1

t+1 · · · pkmm

(20)

l∑

s=2

ps ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

pk1p
k
2 · · · pks−1p

k
sp

k
s+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm (21)

(
lk + 1 +

∑m
j=l+1 kj

)
!

(k + 1) · (k!)l ·∏m
j=l+1 (kj !)

=

[
(k + 1) + (l − 1)k +

∑m
t=l+1 kt](lk +

∑m
j=l+1 kj

)
!

(k + 1) · (k!)l ·∏m
j=l+1 (kj !)

=
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

+ (l − 1) ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
k · (k!)l ·∏m

j=l+1(kj !)

+

m∑

t=l+1

(
lk +

∑m
j=l+1 kj

)
!

k+1
kt

· (k!)l ·∏m
j=l+1(kj !)

+ (l − 1) · 1
l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

(22)

Pr(a1|Pi;N).

Thus far, let us revisit the proof steps. In the
first step, we expand the expression (

∑m
j=1 pj) ·

Pr(a1|Pi;N) and divide it into three cases, where
case 1 and case 3 are present in Pr(a1|Pi;N + 1)
whereas case 2 does not. It has been proven that
the coefficients of the terms in Pr(a1|Pi;N + 1),
where case 3 appears as the probability term part,
are identical to those in (

∑m
j=1 pj) · Pr(a1|Pi;N).

Consequently, these terms cancel out in the expres-
sion Pr(a1|Pi;N+1)− (

∑m
j=1 pj) ·Pr(a1|Pi;N).

However, case 2 is not present in Pr(a1|Pi;N +
1), which implies that the terms in (

∑m
j=1 pj) ·

Pr(a1|Pi;N), where case 2 appears as the proba-
bility term part, cannot be combined with any terms
in Pr(a1|Pi;N+1) by extracting the exponent and
performing subtraction on the coefficients like the

terms containing case 3. It is fortunate that the
terms in Pr(a1|Pi;N + 1), where case 1 appears
as the probability term part, cancel out with the
corresponding terms in (

∑m
j=1 pj) · Pr(a1|Pi;N)

which share the same probability terms and the re-
maining terms have coefficients identical to those
of the terms in (

∑m
j=1 pj) · Pr(a1|Pi;N), where

case 2 appears as the probability terms. There-
fore, these terms can be combined by factoring
out the shared coefficients and partial probabil-
ity terms. The remaining part after factoring
out the common factor is

∑l
s=2(p1 − ps). It

is undeniable that p1 ≥ ps when x is an easy
question or moderate question for Pi, therefore
Pr(a1|Pi;N +1)− (

∑m
j=1 pj) ·Pr(a1|Pi;N) ≥ 0.

Namely, Pr(a1|Pi;N) is strictly non-decreasing
w.r.t. N if x is an easy or moderate question.

27977

(
lk + 1 +

∑m
j=l+1 kj

)
!

(k + 1) · (k!)l ·∏m
j=l+1 (kj !)

pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

−p1 ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

−
l∑

s=2

ps ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
k · (k!)l ·∏m

j=l+1(kj !)
pk+1
1 pk2 · · · pks−1p

k−1
s pks+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

−
m∑

t=l+1

pt ·

(
lk +

∑m
j=l+1 kj

)
!

k+1
kt

· (k!)l ·∏m
j=l+1(kj !)

pk+1
1 pk2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt−1
t p

kt+1

t+1 · · · pkmm

−
l∑

s=2

ps ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

pk1p
k
2 · · · pks−1p

k
sp

k
s+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm

=
l∑

s=2


1
l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

pk1p
k
2 · · · pks−1p

k
sp

k
s+1 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm


 · (p1 − ps) ≥ 0

(23)

1

l
·

(
lk + 1 +

∑m
j=l+1 kj

)
!

(kt + 1) · (k!)l ·∏m
j=l+1 (kj !)

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm (24)

l∑

s=2

ps
1

l − 1

(
lk +

∑m
j=l+1 kj

)
!

kt+1
k (k!)l

∏m
j=l+1(kj !)

pk1p
k
2...p

k
s−1p

k−1
s pks+1...p

k
l p

kl+1

l+1 p
kl+2

l+2 ...p
kt−1

t−1 pkt+1
t p

kt+1

t+1 ...pkmm

+

m∑

r=l+1,r ̸=t

pr
1

l

(
lk +

∑m
j=l+1 kj

)
!

kt+1
kr

(k!)l
∏m

j=l+1(kj !)
pk1p

k
2...p

k
l p

kl+1

l+1 p
kl+2

l+2 ...p
kr−1

r−1 pkr−1
r p

kr+1

r+1 ...p
kt−1

t−1 pkt+1
t p

kt+1

t+1 ...pkmm

+pt
1

l

(
lk +

∑m
j=l+1 kj

)
!

(k!)l
∏m

j=l+1(kj !)
pk1p

k
2...p

k
l p

kl+1

l+1 p
kl+2

l+2 ...pkmm

(25)

1

l
·

(
lk + 1 +

∑m
j=l+1 kj

)
!

(kt + 1) · (k!)l ·∏m
j=l+1 (kj !)

=

l∑

s=2

1

l − 1
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
k · (k!)l ·∏m

j=l+1(kj !)

+
m∑

r=l+1,r ̸=t

pr ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
kr

· (k!)l ·∏m
j=l+1(kj !)

+
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

(26)

27978

1

l
·

(
lk + 1 +

∑m
j=l+1 kj

)
!

(kt + 1) · (k!)l ·∏m
j=l+1 (kj !)

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkt−1

t−1 pkt+1
t p

kt+1

t+1 · · · pkmm

−
l∑

s=2

ps
1

l − 1

(
lk +

∑m
j=l+1 kj

)
!

kt+1
k (k!)l

∏m
j=l+1(kj !)

pk1p
k
2...p

k
s−1p

k−1
s pks+1...p

k
l p

kl+1

l+1 p
kl+2

l+2 ...p
kt−1

t−1 pkt+1
t p

kt+1

t+1 ...pkmm

−
m∑

r=l+1,r ̸=t

pr
1

l

(
lk +

∑m
j=l+1 kj

)
!

kt+1
kr

(k!)l
∏m

j=l+1(kj !)
pk1p

k
2...p

k
l p

kl+1

l+1 p
kl+2

l+2 ...p
kr−1

r−1 pkr−1
r p

kr+1

r+1 ...p
kt−1

t−1 pkt+1
t p

kt+1

t+1 ...pkmm

−pt ·
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

pk1p
k
2 · · · pkl p

kl+1

l+1 p
kl+2

l+2 · · · pkmm = 0

(27)

1

l + 1
·

(
lk + 1 +

∑m
j=l+1 kj

)
!

(kt + 1) · (k!)l ·∏m
j=l+1 (kj !)

=

l∑

s=2

1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

+
m∑

r=l+1,r ̸=t

pr ·
1

l + 1
·

(
lk +

∑m
j=l+1 kj

)
!

kt+1
kr

· (k!)l ·∏m
j=l+1(kj !)

+
1

l
·

(
lk +

∑m
j=l+1 kj

)
!

(k!)l ·∏m
j=l+1(kj !)

(28)

For sufficiently large N , the strong law of large
numbers implies that Pr(lim

N→+∞
xj/N = pj) = 1.

When x is an easy question, p1 > pj ,x1/N >
xj/N for j = 2, 3, ...,m. As N is sufficiently
large, it is sure that x1 is the only maximum value,
making the final result must be the correct an-
swer a1. Therefore, if x is an easy question, N ,
lim

N→+∞
Pr(a1|Pi;N) = 1. If x is a moderate ques-

tion, there are |S| equivalent answers in the prob-
ability sense, whose probabilities are all the max-
imum value. Therefore, lim

N→+∞
Pr(a1|Pi;N) =

1/|S|. Similarly, if x is a hard question, the max-
imum probability is not p1, the final result must
be a wrong answer, so lim

N→+∞
Pr(a1|Pi;N) = 0.

Theorem 1 to 3 is proved.

Lemma 1. Consider a specific condition
with answer space |A| = 3. For N = 3,
Pr(a1|Pi;N) = 3p2i,1 − 2p3i,1 + 2pi,1pi,2pi,3. For
N = 5, Pr(a1|Pi;N) = 6p5i,1 − 15p4i,1 + 10p3i,1 +

15p2i,1pi,2pi,3(pi,2 + pi,3).

Proof. For N = 3, we can calculate

Pr(a1|Pi;N) with Equation 14 as follows:

Pr(a1|Pi;N = 3) =

(
3

3

)
p3i,1 +

(
3

2

)
p2i,1(1− pi,1)

+A(3, 1) pi,1pi,2pi,3

=3p2i,1 − 2p3i,1 + 2pi,1pi,2pi,3 ,

(29)

where A(n, k) is the permutation number formula
A(n, k) = n!

(n−k)! . For N = 5, we can get

Pr(a1|Pi;N = 5) =

(
5

5

)
p5i,1 +

(
5

4

)
p4i,1(1− pi,1)

+

(
5

3

)
p3i,1(1− pi,1)

2 +

(
5

2

)
p2i,1

(
3

2

)
(p2i,2pi,3+

p2i,3pi,2) = 6p5i,1 − 15p4i,1 + 10p3i,1 + 15p2i,1pi,2pi,3

(pi,2 + pi,3).

(30)

Lemma 1 is proved.
Theorem 4. For two prompting strategies Pi

and Pi′ , note pi,q = max{pi,2, . . . , pi,m}, pi′,q′ =
max{pi′,2, . . . , pi′,m}, if pi,1 − pi,q < pi′,1 − pi′,q′

and pi,1+pi,q−p2i,1−p2i,q > pi′,1+pi′,q′ −p2i′,1−
27979

p2i′,q′ , there exits a sufficiently large N0 such that
for N > N0, Pr(a1|Pi;N) < Pr(a1|Pi′ ;N).

Proof. According to Khinchin’s Law of
Large Numbers and Lindeberg-Levy Central
Limit Theorem, when N is sufficiently large,
each Xi can be approximated by a nor-
mal distribution. Specifically, for each xi,j ,
we have xi,j ∼ N (Npi,j , Npi,j(1 − pi,j)).
Note Mi = max(xi,2, ...,xi,m) and pi,q =
max{pi,2, . . . , pi,m}, the distribution of Mi can
be approximated by Mi ∼ N (Npi,n, Npi,1(1 −
pi,1)). So xi,j −Mi obey the normal distribution
N (N(pi,1−pi,q), N(pi,1(1−pi,1)+pi,q(1−pi,q))).
Thus, we can get Equation 31:

Pr(xi,1 > Mi)

= Pr(xi,1 −Mi > 0)

= 1− Φ(f(pi,1, pi,q, N)),

Φ(f(pi,1, pi,q, N)) =

Φ(

√
N

pi,1(1− pi,1) + pi,q(1− pi,q)
(pi,q − pi,1)),

(31)

where Φ is the standard normal cumulative dis-
tribution function. This also holds for any
other Pr(xi′,1 > M ′

i). If pi,1 − pi,q <
pi′,1 − pi′,q′ and pi,1 + pi,q − p2i,1 − p2i,q >

pi′,1 + pi′,q′ − p2i′,1 − p2i′,q′ , we can get pi,q −
pi,1 > pi′,q − pi′,1 and pi,1(1 − pi,1) + pi,q(1 −
pi,q) < pi′,1(1 − pi′,1) + pi′,q′(1 − pi′,q′), and
Φ(f(pi,1, pi,q, N)) > Φ(f(pi′,1, pi′,q′ , N)). So
there exists a large N0 such that for N >
N0, Pr(xi′,1 > M ′

i) > Pr(xi,1 > Mi), i.e.,
Pr(a1|Pi;N) > Pr(a1|Pi′ ;N). Theorem 4 is
proved.

C Detailed Results

Here we display the scaling performance of differ-
ent prompting strategies on each LLM and bench-
mark under given sampling time N and cost O,
as shown in Figures 8 to 15. We find that, aside
from CoT, DiP also exhibits superior performance
compared to other complex prompting strategies on
certain models and datasets, e.g., GPT-4o-mini on
MATH. This also comes from the two reasons, i.e.,
DiP has more hard questions and easy questions,
and a flat probability distribution of wrong answers
on the specific dataset. This phenomenon is particu-
larly prominent on powerful LLMs such as Gemini-
1.5-Flash on GSM8K and GSM-Hard, where DiP

and CoT exhibit comparable performance. Almost
83% of results satisfy that CoT or DiP performs
best as significantly scaling. Besides, this trend is
also observed on other prompting strategies on few
datasets and models. This encourages us to fully
unleash the potential of simple prompting strate-
gies, and indicates that the scaling performance
does not only depend on the prompting strategies’
pass@1 accuracy.

D More Discussions on Improving the
Scaling Performance

In this section, we will discuss more about our fur-
ther exploration of the two ways to improve the
scaling performance. We display more results of
(1) adaptively scaling based on the question diffi-
culty, (2) dynamically choosing the optimal Pi and
(3) combining adaptively scaling and dynamically
choosing the optimal Pi in Section D.1, D.2 and
D.3, respectively.

D.1 Adaptively Scaling Based on the Difficulty

We use the following prompt to force the LLM to
determine if the question is hard for given Pi.

Question:
{question}

Using the method #{method}# to solve the ques-
tion:

{description}

If the method is more likely to get the right an-
swer, the question is easy. Otherwise, if the method
is more likely to get the wrong answer, the ques-
tion is hard. Please determine the difficulty of the
question for the used method, and answer in the
following JSON format.

{"Difficulty": "Easy or Hard", "Reason": ""}

Figures 16 to 20 report the results of each
prompting strategy when adaptively scaling based
on the question difficulty. Our experiment results
show that LLMs cannot accurately judge the diffi-
culty of the input question most of the time, thus
even leading to reduced performance. Nevertheless,
this method is theoretically capable of enhancing
the scaling performance, thereby motivating us to
explore other approaches to accurately assess the
question difficulty.

27980

Figure 8: Performance of each prompting strategy under given sampling time N on GSM8K.

Figure 9: Performance of each prompting strategy under given cost O on GSM8K.

D.2 Dynamically Choosing the Optimal Pi

Figures 21 to 25 display the results on GSM8K on
LLaMA-3-8B-Instruct, GLM-4-9B-Chat, Phi-3.5-
mini-Instruct, Gemini-1.5-Flash and GPT-4o-mini,
respectively. It can be observed that all LLMs
tend to believe that CoT is the best prompting
strategy, while CoT does not excel at every ques-
tion. With oracles to provide the optimal Pi labels,
all LLMs demonstrate significant performance im-
provements, even with only one sampling time,
proving the enormous potential of this method. we
will explore how to approach this upper bound in
the future.

D.3 Combining Adaptively Scaling and
Dynamically Choosing the Optimal Pi

Figures 26 to 30 display the results of combining
adaptively scaling and dynamically choosing the
optimal Pi on GSM8K on LLaMA-3-8B-Instruct,
GLM-4-9B-Chat, Phi-3.5-mini-Instruct, Gemini-
1.5-Flash, and GPT-4o-mini, respectively. Figures
31 to 36 show the results on each LLM on MATH,
respectively. Extensive experiments demonstrate
the general effectiveness and superiority of this
method, which has an extremely high upper bound.

27981

Figure 10: Performance of each prompting strategy under given sampling time N on GSM-Hard.

Figure 11: Performance of each prompting strategy under given cost O on GSM-Hard.

Figure 12: Performance of each prompting strategy under given sampling time N on MATH.

27982

Figure 13: Performance of each prompting strategy under given cost O on MATH.

Figure 14: Performance of each prompting strategy under given sampling time N on MMLU.

Figure 15: Performance of each prompting strategy under given cost O on MMLU.

27983

0 25 50 75 100
Sampling Time

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Pe
rf

or
m

an
ce

 (
%

)
DiP

Vanilla
Adaptive
Oracle

0 25 50 75 100
Sampling Time

80

82

84

86

88

90

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 25 50 75 100
Sampling Time

78

80

82

84

86

88

Pe
rf

or
m

an
ce

 (
%

)

L2M

Vanilla
Adaptive
Oracle

0 25 50 75 100
Sampling Time

70

75

80

85

90

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 25 50 75 100
Sampling Time

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 16: Results of adaptively scaling based on the question difficulty on Llama-3-8B-Instruct on GSM8K.

0 20 40 60
Sampling Time

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

DiP

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

82

84

86

88

90

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

L2M

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

80

82

84

86

88

90

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

82

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 17: Results of adaptively scaling based on the question difficulty on GLM-4-9B-Chat on GSM8K.

0 20 40 60
Sampling Time

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

DiP

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

75

80

85

90

Pe
rf

or
m

an
ce

 (
%

)

L2M

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

84

86

88

90

92

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 20 40 60
Sampling Time

82

84

86

88

90

92

94

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 18: Results of adaptively scaling based on the question difficulty on Phi-3.5-mini-Instruct on GSM8K.

0 10 20
Sampling Time

93.0

93.5

94.0

94.5

95.0

95.5

96.0

Pe
rf

or
m

an
ce

 (
%

)

DiP

Vanilla
Adaptive
Oracle

0 10 20
Sampling Time

93.5

94.0

94.5

95.0

95.5

96.0

Pe
rf

or
m

an
ce

 (
%

)

CoT
Vanilla
Adaptive
Oracle

0 10 20
Sampling Time

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

L2M
Vanilla
Adaptive
Oracle

0 10 20
Sampling Time

92

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 10 20
Sampling Time

92

93

94

95

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 19: Results of adaptively scaling based on the question difficulty on Gemini-1.5-Flash on GSM8K.

0 5 10 15 20 25
Sampling Time

92

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

DiP

Vanilla
Adaptive
Oracle

0 5 10 15 20 25
Sampling Time

93

94

95

96

97

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 5 10 15 20 25
Sampling Time

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

L2M
Vanilla
Adaptive
Oracle

0 5 10 15 20 25
Sampling Time

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

SBP
Vanilla
Adaptive
Oracle

0 5 10 15 20 25
Sampling Time

92

93

94

95

96

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 20: Results of adaptively scaling based on the question difficulty on GPT-4o-mini on GSM8K.

27984

Figure 21: Results of dynamically choosing the optimal
Pi on LLaMA-3-8B-Instruct on GSM8K.

Figure 22: Results of dynamically choosing the optimal
Pi on GLM-9B-Chat on GSM8K.

Figure 23: Results of dynamically choosing the optimal
Pi on Phi-3.5-mini-Instruct on GSM8K.

Figure 24: Results of dynamically choosing the optimal
Pi on Gemini-1.5-Flash on GSM8K.

Figure 25: Results of dynamically choosing the optimal
Pi on GPT-4o-mini on GSM8K.

Figure 26: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on LLaMA-3-8B-
Instruct on GSM8K.

Figure 27: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on GLM4-9B-
Chat on GSM8K.

Figure 28: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Phi-3.5-mini-
Instruct on GSM8K.

27985

Figure 29: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Gemini-1.5-
Flash on GSM8K.

Figure 30: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on GPT-4o-mini
on GSM8K.

0 10 20 30 40 50 60 70
Sampling Time

60

64

68

72

76

80

84

88

Ac
cu

ra
cy

DiP
CoT
L2M
SBP

AnP
Dynamic w/ Oracle
Adaptive + Dynamic w/ Oracle

Figure 31: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Qwen2.5-7B-
Instruct on MATH.

0 20 40 60 80 100
Sampling Time

8

16

24

32

40

48

56

64

72

Ac
cu

ra
cy

DiP
CoT
L2M
SBP

AnP
Dynamic w/ Oracle
Adaptive + Dynamic w/ Oracle

Figure 32: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on LLaMA-3-8B-
Instruct on MATH.

0 10 20 30 40 50 60 70
Sampling Time

45

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

DiP
CoT
L2M
SBP

AnP
Dynamic w/ Oracle
Adaptive + Dynamic w/ Oracle

Figure 33: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on GLM-4-9B-
Instruct on MATH.

0 10 20 30 40 50 60 70
Sampling Time

40

45

50

55

60

65

70

75

Ac
cu

ra
cy

DiP
CoT
L2M
SBP

AnP
Dynamic w/ Oracle
Adaptive + Dynamic w/ Oracle

Figure 34: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Phi-3.5-mini-
Instruct on MATH.

0 5 10 15 20 25
Sampling Time

74

76

78

80

82

84

86

88

90

Ac
cu

ra
cy

DiP
CoT
L2M
SBP

AnP
Dynamic w/ Oracle
Adaptive + Dynamic w/ Oracle

Figure 35: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Gemini-1.5-
Flash on MATH.

0 5 10 15 20 25
Sampling Time

66

69

72

75

78

81

84

87

Ac
cu

ra
cy

DiP
CoT
L2M
SBP

AnP
Dynamic w/ Oracle
Adaptive + Dynamic w/ Oracle

Figure 36: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on GPT-4o-mini
on MATH.

27986

E Extended Experiments

We extend experiments with Qwen2.5-7B-Instruct
on two more challenging reasoning benchmarks,
GPQA (Rein et al., 2024) and AIME2024 (Mathe-
matical Association of America, 2024), further ver-
ifying the generality of our findings and methods.
Figure 37 displays the accuracy of each Pi with
Qwen2.5-7B-Instruct on GQPA and AIME. Simple
CoT and DiP gradually dominate as scaling sam-
pling times on GPQA and AIME, respectively. On
GPQA, we can see that the performance fluctuates
as scaling, rather than constantly increasing. This
can be attributed to the ratio of easy/hard questions
and their accuracies in the entire dataset. Given
AnP as an example, Figure 39 reports its scaling
performance on the easy/hard question subsets of
GPQA. Performance on easy questions monoton-
ically improves with increasing sampling times,
while accuracy on hard questions exhibits a corre-
sponding decline. This fundamental trade-off in-
duces characteristic oscillation in the aggregate ac-
curacy, with consistent replication across all tested
prompting strategies, substantiating our theoretical
framework.

Figure 38 shows the results of adaptively scaling
on each Pi. “Adaptive” approach demonstrates ev-
ident performance gains over “Vanilla” baselines
across CoT, L2M, SBP, and AnP, indicating the
model’s intrinsic capability to assess question dif-
ficulty. Under “Oracle” conditions, it can achieve
further performance amplification.

Figure 40 reports the results of dynamically
choosing the optimal Pi on Qwen2.5-7B-Instruct
on GPQA. “Dynamic” approach achieves median-
range performance across all tested Pi, quantita-
tively confirming the model’s suboptimal strategy
selection capacity. Strikingly, “Oracle” interven-
tion enables dramatic performance elevation, with
65.4% accuracy at N = 1.

Figure 41 summarizes the results of combin-
ing adaptively scaling and dynamically choosing
the optimal Pi on Qwen2.5-7B-Instrcut on GPQA,
which further enormously enhances the scaling per-
formance, with 75.7% accuracy at N = 100.

F Implementation Details and Prompts

We use vllm (Kwon et al., 2023) to deploy open-
sourced LLMs, with top-p = 0.9 and temperature =
0.7. For closed-sourced LLMs, we use their APIs
with default settings. We set the content safety
detection threshold of Gemini-1.5-Flash to zero to
prevent erroneous judgments that may result in null
outputs.

Following (Wang et al., 2024; Lightman et al.,
2024; Qi et al., 2025), we use MATH-500, a subset
of representative problems from the MATH dataset
to speed up the evaluation. We use the test split
of each dataset. The license for all datasets is CC-
BY 4.0 or others for open academic research. The
number of samples on each dataset is shown in
Table 5. We ensure our use of existing artifacts
is aligned with their intended purposes. All of
them are public English datasets for academic re-
search. On GSM8K and GSM-Hard, we use the
same 1-shot prompt in the original paper of Least-
to-Most (Zhou et al., 2023) shown in Figure 44
and Figure 45. On other datasets, we use the 0-
shot prompt shown in Figure 46. We use the same
prompt in Analogous Prompting (Yasunaga et al.,
2024), and guide the LLM to recall one analogous
problem. We use the same 1-shot prompt in Step-
Back Prompting (Zheng et al., 2024) on MMLU,
and apply their prompt designed for reasoning tasks
on other datasets. We use the same prompt in 0-
shot Chain-of-Thought (Kojima et al., 2022), Multi-
Agent Debate (Du et al., 2024) and Self-Refine
(Huang et al., 2024) on all datasets. The prompts
are shown in Figures 42 to 51.

Table 5: The number of samples in each dataset.

Dataset Samples

GSM8K 1318
GSM-Hard 1318
MATH-500 500

MMLU-Biology 310
MMLU-Chemistry 203

MMLU-Physics 151

27987

GPQA AIME

Figure 37: Accuracy of each Pi with Qwen2.5-7B-Instruct on GQPA and AIME2024.

0 20 40 60 80 100
Sampling Time

30

32

34

36

38

40

Pe
rf

or
m

an
ce

 (
%

)

DiP
Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

34

36

38

40

42

44

Pe
rf

or
m

an
ce

 (
%

)

CoT

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

32

34

36

38

40

42

44

Pe
rf

or
m

an
ce

 (
%

)

L2M

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

34

36

38

40

42

44

Pe
rf

or
m

an
ce

 (
%

)

SBP

Vanilla
Adaptive
Oracle

0 20 40 60 80 100
Sampling Time

30

32

34

36

38

40

42

Pe
rf

or
m

an
ce

 (
%

)

AnP

Vanilla
Adaptive
Oracle

Figure 38: Results of adaptively scaling based on the question difficulty on Qwen2.5-7B-Instruct on GPQA.

0 20 40 60 80 100
Sampling time

0

5

10

15

20

25

30

Ac
cu

ra
cy Easy Questions

Hard Questions
Overall

Figure 39: Scaling performance of AnP on the easy/hard
question subsets of GPQA. The accuracy on easy ques-
tions is non-decreasing with the sampling time, while
it exhibits a general declining trend on hard questions.
This also holds for all other prompting strategies.

0 20 40 60 80 100
Sampling Time

32

36

40

44

48

52

56

60

64

Ac
cu

ra
cy

DiP
CoT
L2M
SBP

AnP
Dynamic
Oracle

Figure 40: Results of dynamically choosing the optimal
Pi on Qwen2.5-7B-Instruct on GPQA.

0 20 40 60 80 100
Sampling Time

30

35

40

45

50

55

60

65

70

75

Ac
cu

ra
cy DiP + Adaptive

CoT + Adaptive
L2M + Adaptive
SBP + Adaptive

AnP + Adaptive
Dynamic w/ Oracle
Adaptive + Dynamic w/ Oracle

Figure 41: Results of combining adaptively scaling and
dynamically choosing the optimal Pi on Qwen2.5-7B-
Instrcut on GPQA.

27988

User:
<question>

Assistant:
<answer>

Direct Prompting

Figure 42: Prompt of DiP.

User:
Question:
<question>

Answer:
Let’s think step by step.

Assistant:
<answer>

Chain-of-Thought prompt

Figure 43: Prompt of CoT.

User:
Question: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they
have together?
Answer: Let's break down this problem: 1. How many apples does Anna have? 2. How
many apples do they have together?
1. Anna has 2 more apples than Elsa. So Anna has 2 + 5 = 7 apples.
2. Elsa and Anna have 5 + 7 = 12 apples together.
The answer is: \\boxed{12}.

Question:
<question>
Answer:

Assistant:
<answer>

Least-to-Most prompt on GSM8K

Figure 44: Prompt of L2M on GSM8K.

27989

User:
Question: Elsa has 524866 apples. Anna has 432343 more apples than Elsa. How many
apples do they have together?
Answer: Let's break down this problem: 1. How many apples does Anna have? 2. How
many apples do they have together?
1. Anna has 432343 more apples than Elsa. So Anna has 524866 + 432343 = 957209 apples.
2. Elsa and Anna have 524866 + 957209 = 1482075 apples together.
The answer is: \\boxed{1482075}.

Question:
<question>
Answer:

Assistant:
<answer>

Least-to-Most prompt on GSM-Hard

Figure 45: Prompt of L2M on GSM-Hard.

User:
In order to solve the question more conveniently and efficiently, break down the question
into progressive sub-questions. Answer the sub-questions and get the final result according
to sub-questions and their answers.

Question:
<question>
Answer:

Assistant:
<answer>

Least-to-Most prompt

Figure 46: Prompt of L2M on MATH and MMLU.

27990

User:
Question:
<question>

Answer:
Let’s think step by step.

Assistant:
<answer>

User:
Given the question and several solutions, decide which solution is the most promising.
Analyze each solution in detail, then conclude in the last line "The index of the best solution
is x", where x is the index number of the solution.

<Solution 1>
<Solution 2>
......

Tree-of-Thoughts prompt

Figure 47: Prompt of ToT.

User:
<question>

Assistant:
<previous answer>

User:
Review your previous answer and find problems with your answer.

Assistant:
<feedback>

User:
Based on the problems of your previous answer, improve your answer.

Assistant:
<revised answer>

Self-Refine Prompt

Figure 48: Prompt of S-RF.

27991

User:
You are an expert at <subject>. Your task is to extract the mathematics concepts and
principles involved in solving the problem.

Question:
<question>

Principles involved:

Assistant:
<answer>

User:
You are an expert at <subject>. You are given a <subject> problem and a set of principles
involved in solving the problem. Solve the problem step by step by following the principles.

Question:
<question>

Principles:
{principles}

Answer:

Assistant:
<answer>

Step-Back Prompting

Figure 49: Prompt of SBP.

27992

User:
Your task is to tackle mathematical problems. When presented with a math problem, recall
relevant problems as examples. Afterward, proceed to solve the initial problem.

Initial Problem:
{question}

Instructions:
Relevant Problems:
Recall an example of the math problem that is relevant to the initial problem. Your
problem should be distinct from the initial problem (e.g., involving different numbers and
names). For the example problem:
- After "Q: ", describe the problem.
- After "A: ", explain the solution and enclose the ultimate answer in \\boxed{}.

Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \\boxed{} here.

Assistant:
<answer>

Analogous Prompting

Figure 50: Prompt of AnP.

27993

User:
<question>

Assistant:
<solving process>
<answer>

User:
These are the answers to the question from other agents:

One agent answer: ...
One agent answer: ...
...

Using the answers from other agents as additional information, can you provide your
answer to the question?
<question>

Assistant:
<answer>

User:
...

Assistant:
...

Multi-Agent Debate

Figure 51: Prompt of MAD.

27994

