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Abstract
The rapid advancement of large language mod-
els (LLMs) has significantly enhanced the ca-
pabilities of agents across various tasks. How-
ever, existing agentic systems, whether based
on fixed pipeline algorithms or pre-defined
meta-learning frameworks, cannot search the
whole agent design space due to the restric-
tion of human-designed components, and thus
might miss the more optimal agent design. In
this paper, we introduce Gödel Agent, a self-
evolving framework inspired by the Gödel ma-
chine, enabling agents to recursively improve
themselves without relying on predefined rou-
tines or fixed optimization algorithms. Gödel
Agent leverages LLMs to dynamically modify
its own logic and behavior, guided solely by
high-level objectives through prompting. Ex-
perimental results on multiple domains demon-
strate that implementation of Gödel Agent can
achieve continuous self-improvement, surpass-
ing manually crafted agents in performance,
efficiency, and generalizability.

1 Introduction

As large language models (LLMs) (OpenAI et al.,
2024; Dubey et al., 2024) demonstrate increasingly
strong reasoning and planning capabilities, LLM-
driven agentic systems have achieved remarkable
performance in a wide range of tasks (Wang et al.,
2024a). Substantial effort has been invested in
manually designing sophisticated agentic systems
using human priors in different application areas.
Recently, there has been a significant interest in
creating self-evolving agents, that not only greatly
reduce human labor but also produce better solu-
tions. Given that human effort can only cover a
small search space of agent design, it is reason-
able to expect that a self-evolving agent with the
freedom to explore the full design space has the
potential to produce a more optimal solution.

There is a large body of work proposing agents
capable of self-refinement. Some agents are de-
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Figure 1: Modular demonstration of Gödel Agent. Com-
pared with traditional agents, its sensor and executor
can read and write all of its own code.

signed to iterate over a fixed routine consisting of
a list of fixed modules, while some of the modules
are capable of taking self- or environment feedback
to refine their actions (Chen et al., 2023b; Qu et al.,
2024a; Tang et al., 2025). This type of agent, re-
ferred to as Hand-Designed Agent, is depicted as
having the lowest degree of freedom in Figure 2.
More automated agents have been designed to be
able to update their routines or modules in some
pre-defined meta-learning routine, for example, nat-
ural language gradients (Zhou et al., 2024), meta
agent (Hu et al., 2024), or creating and collecting
demonstrations (Khattab et al., 2023). This type
of agent, known as Meta-Learning Optimized
Agents, is depicted as having the middle degree of
freedom in Figure 2. However, there are inevitably
some human priors involved in these agent designs
that cannot be improved during the inference time.

In this paper, we propose Gödel Agent to elimi-
nate the human design prior, which is an automated
LLM agent that can freely decide its own routine,
modules, and even the way to update them. It
is inspired by the self-referential Gödel machine
(Schmidhuber, 2003), which was proven to be able
to find the global optimal solutions. Self-reference
means the property of a system that can analyze and
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Figure 2: Comparison of three agent paradigms. Hand-designed agents rely on human expertise which are limited
in scope and labor-intensive. Meta-learning optimized agents are constrained by a fixed meta-learning algorithm,
restricting their search space and optimization potential. In contrast, self-referential agent (Gödel Agent) can
recursively improve itself without any limitation. Its optimization capabilities are constantly being enhanced by
itself. Consequently, in return, it can continue to optimize itself better.

modify its own code, including the parts responsi-
ble for the analysis and modification processes (As-
trachan, 1994). Therefore, it can achieve what’s
known as ”recursive self-improvement”, where it
iteratively updates itself to become more efficient
and effective at achieving its predefined goals. In
this case, as shown in Figure 1, Gödel Agent can
analyze and modify its own code, including the
code for analyzing and modifying itself, and thus
can search the full agent design space, which is
depicted as having the highest degree of freedom
in Figure 2. Gödel Agent can theoretically make
increasingly better modifications over time through
recursively self-update (Wang, 2018).

In this paper, we choose to implement it by let-
ting it manipulate its own runtime memory, i.e.,
the agent is able to retrieve its current code in the
runtime memory and modify it by monkey patch-
ing (Bimal, 2012), which dynamically modifies
classes or modules during execution. To allow it
to update the logic of the running main function,
unlike the loop-iterative approach of traditional
agents, we implement the main function as a re-
cursive function. In this function, LLM analyzes
and makes a series of decisions, including reading
and modifying its own code from runtime mem-
ory (self-awareness1 and self-modification), and
interacting with the environment to gather feed-
back. The agent then proceeds to the subsequent

1In this paper, self-awareness means that the agent can
introspect and read its own code and files, not to imply any
philosophical sense of consciousness or awareness.

recursive depth and continues to optimize itself.
To validate the effectiveness of Gödel Agent,

we conduct experiments on multiple domains in-
cluding coding, science, math, and reasoning. Our
results demonstrate that Gödel Agent achieves sig-
nificant performance gain across various tasks, sur-
passing various widely-used agents that require
human design. The same implementation of Gödel
Agent can easily adapt to different tasks by only
specifying the environment description and feed-
back mechanism. Additionally, the case study of
the optimization progress reveals that Gödel Agent
can provide novel insights into agent design. Our
codes are released to facilitate future research2.

In summary, our contributions are as follows:
• We propose the first fully self-referential agent

framework, Gödel Agent, and implement it using
monkey patching. It autonomously engages in
self-awareness, self-modification, and recursive
self-improvement.

• Experiments shows that Gödel Agent is superior
to the previous agent frameworks in terms of
performance, flexibility, cost, and potential.

• We analyze Gödel Agent ’s optimization process,
including its self-referential abilities and the op-
timized agentic systems, aiming to deepen our
understanding of both LLMs and agents.

• Our framework offers a promising direction for
developing flexible and capable agents through
recursive self-improvement.

2https://github.com/Arvid-pku/Godel Agent
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2 Related Work

Hand-Designed Agent Systems Researchers
have designed numerous agent systems tailored
to various tasks based on predefined heuristics and
prior knowledge. These systems often employ tech-
niques such as prompt engineering (Chen et al.,
2023a; Schulhoff et al., 2024), chain-of-thought
reasoning and planning (Wei et al., 2022; Yao et al.,
2022), as well as reflection (Shinn et al., 2024;
Madaan et al., 2024), code generation (Wang et al.,
2023a; Vemprala et al., 2024), tool use (Nakano
et al., 2021; Qu et al., 2024a), retrieval-augmented
generation (Lewis et al., 2020; Zhang et al., 2024b),
and multi-agent collaboration (Xu et al., 2023; Wu
et al., 2023; Qian et al., 2023; Hong et al., 2023).
Once crafted by human designers, these systems
remain static and do not adapt or evolve over time.
Meta-Learning Optimized Agent Systems
Some researchers have explored methods for
enhancing agents through fixed learning algo-
rithms (Zhou et al., 2024; Hu et al., 2024). For ex-
ample, certain frameworks store an agent’s success-
ful or failed strategies in memory based on environ-
mental feedback (Liu et al., 2023; Hu et al., 2023;
Qian et al., 2024), while others automatically op-
timize agent prompts (Khattab et al., 2023; Zhang
et al., 2024a; Khattab et al., 2023). Some stud-
ies focus on designing prompts that enable agents
to autonomously refine specific functions (Zhang
et al.). However, these meta-algorithms are also
designed manually and remain unchanged once
deployed, limiting the agents’ ability.
Recursive Self-Improvement The concept
of recursive self-improvement has a long his-
tory (Good, 1966; Schmidhuber, 1987). Gödel
machine (Schmidhuber, 2003) introduced the no-
tion of a proof searcher that executes a self-
modification, thereby enabling the machine to en-
hance itself. In the early days, there were also
some discussions of self-improving agents that
were not based on LLM (Hall, 2007; Steunebrink
and Schmidhuber, 2012). More recently, Zelikman
et al. (2023) applied recursive self-improvement
to code generation, where the target of improve-
ment was the optimizer itself. Some work (Havrilla
et al., 2024; Qu et al., 2024b; Kumar et al., 2024)
also explores recursive self-improvement by fine-
tuning models to introspect and correct previous
mistakes. Gödel Agent represents the first self-
referential agent based on LLM. This approach
is more flexible, removing human-designed con-

straints.

3 Self-Referential Gödel Agent

In this section, we first describe the formal defini-
tions for previous agent methods with a lower de-
gree of freedom, including hand-design and meta-
learning optimized agents, as a background. Then
we introduce our proposed Gödel Agent, a self-
referential agent that can recursively update its own
code, evolving over training.

Let E ∈ S denote a specific environment state,
where S denotes the set of all possible environ-
ments the agent will encounter. For example, an
environment can be a mathematical problem with
ground truth solutions. We denote the policy that
an agent follows to solve a problem in the current
environment by π ∈ Π, where Π is the set of all
possible policies the agent can follow.

A hand-designed agent, as shown in the left
panel of Figure 2, is not capable of updating its
policy and following the same policy π all the time,
regardless of environmental feedback.

In contrast, a meta-learning optimized agent
updates its policy based on a meta-learning algo-
rithm I at training time based on the feedback it
receives from the environment, as shown in the mid-
dle panel of Figure 2. The environment feedback is
usually defined as a utility function U : S×Π → R,
which maps an environment and a policy to a real-
valued performance score. The main training algo-
rithm of a meta-learning optimized agent can then
be written as follows:

πt+1 = I(πt, rt), rt = U(E , πt),
In this case, the agent’s policy πt evolves at train-
ing time, with the learning algorithm I updating
the policy based on feedback rt, while the meta-
learning algorithm I remains fixed all the time.

A self-referential Gödel Agent, on the other
hand, updates both the policy π and the meta-
learning algorithm I recursively. The main idea
is that, after each update, the whole code base of
the agent is rewritten to accommodate any possible
changes. Here we call this self-updatable meta-
learning algorithm I a self-referential learning al-
gorithm. The training process of a Gödel Agent
can then be written as:

πt+1, It+1 = It(πt, It, rt, g), rt = U(E , πt),
where g ∈ G represents the high-level goal of op-
timization, for example, solving the given mathe-
matical problem with the highest accuracy. Such a
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Algorithm 1 Recursive Self-Improvement of Gödel Agent

1: Input: Initial agent policy π0, initial decision function
f0, goal g, environment state E , utility function U , self
code reading function SELF INSPECT

2: Output: Optimized policy π and Gödel Agent s
3: ▷ Get all agent code, including the code in this algorithm.
4: s← SELF INSPECT()
5: ▷ Compute the initial performance.
6: r ← U(E , π0)
7: ▷ Perform recursive self-improvement.
8: π, s← SELF IMPROVE(π, s, r, g)
9: return π, s

10: ▷ Initial code of self-referential learning.
11: function SELF IMPROVE(E , π, s, r, g)
12: ▷ Obtain action sequence.
13: a1, . . . , an ← f0(π, s, r, g)
14: for ai in a1, . . . , an do
15: π, s, r ← EXECUTE(E , π, s, r, ai)

16: end for
17: return π, s
18: end function
19: ▷ Initial action execution function.
20: function EXECUTE(E , π, s, r, a)
21: switch a.name
22: case self state:
23: s← SELF INSPECT()
24: case interact:
25: r ← U(E , π)
26: case self update:
27: π, s← a.code
28: case continue improve:
29: ▷ Recursively invoke self-improvement.
30: π, s← SELF IMPROVE(E , π, s, r, g)
31: return π, s, r
32: end function

recursive design of the agent requires the specifica-
tion of an initial agent algorithm (π0, I0), detailed
as follows:

• A initial agent policy π0 to perform the desired
task within the environment E . For example, it
can be chain-of-thought prompting of an LLM.

• A self-referential learning algorithm I0 for recur-
sively querying an LLM to rewrite its own code
based on the environmental feedback.

We then further specify a possible initialization
of the self-referential learning algorithm I0 =
(f0, o0), using a mutual recursion between a
decision-making function f0, and an action func-
tion o0:

• The decision-making function f0, implemented
by an LLM, determines a sequence of appropriate
actions a1, a2, ..., an ∈ A based on the current
environment E , the agent’s algorithm (πt, It),
and the goal g.

• The action function o0, executes the selected ac-
tion and updates the agent’s policy accordingly.

The set of actions A for the action function o to
execute needs to include the following four actions:

• self inspect: Introspect and read the agent’s
current algorithm (πt, It).

• interact: Interact with the environment by call-
ing the utility function U to assess the perfor-
mance of the current policy πt.

• self update: Alter and update (πt, It) with an
LLM and produce (πt+1, It+1).

• continue improve: If no other actions can be
taken, recursively invoke the decision algorithm
f to produce new actions.

The agent code is updated to (πt+1, It+1) after the
current execution of (πt, It) is finished. Both the
agent algorithm (π, I) and the action set A are not
static and can be expanded and modified by the
agent itself at the training time. Algorithm 1 illus-
trates the described algorithm for the Gödel Agent.
Each recursive call enables the agent to refine its
logic and become progressively more efficient.

4 Gödel Agent Implementation

There are various ways to initiate a Gödel Agent.
Any specific agent instance during the recursive op-
timization process can be viewed as an instantiation
of the Gödel Agent. Our implementation leverages
runtime memory interaction techniques to enable
self-awareness and self-modification, as illustrated
in Figure 3. These techniques include dynamic
memory reading and writing (monkey patching)
to facilitate recursive self-improvement. Addition-
ally, we have incorporated several auxiliary tools
to accelerate the convergence of the Gödel Agent
’s optimization process.

4.1 Implementation Details
The core functionalities of our Gödel Agent are
outlined below:
Self-Awareness via Runtime Memory Inspection
Gödel Agent achieves self-awareness by inspecting
runtime memory, particularly local and global vari-
ables in Python. This capability allows the agent to
extract and interpret the variables, functions, and
classes that constitute both the environment and the
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Figure 3: An illustration of our implementation of Gödel Agent. It employs monkey patching to directly read and
modify its own code in runtime memory, enabling self-awareness and self-modification.

agent itself, according to the modular structure of
the system. By introspecting these elements, the
agent gains an understanding of its own operational
state and can adapt accordingly.
Self-Improvement via Dynamic Code Modifica-
tion Gödel Agent can engage in reasoning and
planning to determine whether it should modify
its own logic. If modification is deemed neces-
sary, Gödel Agent generates new code, dynamically
writes it into the runtime memory, and integrates
it into its operational logic. This dynamic modifi-
cation allows it to evolve by adding, replacing, or
removing logic components as it encounters new
challenges, thus achieving self-improvement.
Environmental Interaction To assess perfor-
mance and gather feedback, Gödel Agent is
equipped with interfaces for interacting with its
environment. Each task provides tailored environ-
mental interfaces, enabling it to evaluate its per-
formance and adjust its strategies accordingly. In
practical implementations, a validation set can be
used to provide feedback.
Recursive Improvement Mechanism At each
time step, Gödel Agent determines the sequence
of operations to execute, which includes reason-
ing, decision-making, and action execution. After
completing the operations, Gödel Agent evaluates
whether its logic has improved and decides whether
to proceed to the next recursive iteration. Over the
next iteration, the entire new logic will be applied.
Goal Prompt and Task Handling The goal
prompt informs Gödel Agent that it possesses the
necessary privileges to enhance its logic and intro-
duces available tools. As shown in Appendix A, the
prompt encourages Gödel Agent to fully explore
its potential and utilize tools for self-optimization.
To ensure effectiveness across diverse tasks, we
provide Gödel Agent with an initial policy, where
it will start to explore different policies.

4.2 Additional Designs

While the core functionality of Gödel Agent theo-
retically allows limitless self-improvement, current
LLMs exhibit limitations. To address these chal-
lenges, we have integrated several supportive mech-
anisms to enhance Gödel Agent ’s performance:
Thinking Before Acting Gödel Agent is capable
of deferring actions to first reason about the situa-
tion, allowing it to output reasoning paths and anal-
ysis without immediately executing any operations.
This approach enhances the quality of decision-
making by prioritizing planning over hasty action.
Error Handling Mechanism Errors during exe-
cution can lead to unexpected terminations of the
process. To mitigate this, we implement a robust
error recovery mechanism. If an operation results
in an error, Gödel Agent halts the current sequence
and moves on to the next time step, carrying for-
ward the error information to help future decisions.
Additional Tools We also equipped Gödel
Agent with additional potentially useful tools, such
as the ability to execute Python or Bash code and
call LLM API.

Although these additional tools are not strictly
necessary for self-improvement, their inclusion ac-
celerates the convergence of Gödel Agent ’s recur-
sive optimization process. We conduct ablation
studies to assess the effectiveness of these tools, as
discussed in Section 6.1.

5 Experiments

We conduct a series of experiments across multiple
tasks, including reading comprehension, mathe-
matics, reasoning, and multitasking. These experi-
ments are designed to evaluate Gödel Agent’s self-
improvement capabilities in comparison to both
hand-designed agents and a state-of-the-art auto-
mated agent design method. In addition, to gain
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Agent Name F1 Score Accuracy (%)

DROP MGSM MMLU GPQA

Hand-Designed Agent Systems
Chain-of-Thought (Wei et al., 2022) 64.2 ± 0.9 28.0 ± 3.1 65.4 ± 3.3 29.2 ± 3.1
COT-SC (Wang et al., 2023b) 64.4 ± 0.8 28.2 ± 3.1 65.9 ± 3.2 30.5 ± 3.2
Self-Refine (Madaan et al., 2024) 59.2 ± 0.9 27.5 ± 3.1 63.5 ± 3.4 31.6 ± 3.2
LLM Debate (Du et al., 2023) 60.6 ± 0.9 39.0 ± 3.4 65.6 ± 3.3 31.4 ± 3.2
Step-back-Abs (Zheng et al., 2024) 60.4 ± 1.0 31.1 ± 3.2 65.1 ± 3.3 26.9 ± 3.0
Quality-Diversity (Lu et al., 2024) 61.8 ± 0.9 23.8 ± 3.0 65.1 ± 3.3 30.2 ± 3.1
Role Assignment (Xu et al., 2023) 65.8 ± 0.9 30.1 ± 3.2 64.5 ± 3.3 31.1 ± 3.1

Meta-Learning Optimized Agents
Meta Agent Search (Hu et al., 2024) 79.4 ± 0.8 53.4 ± 3.5 69.6 ± 3.2 34.6 ± 3.2

Gödel Agent (Ours)
Gödel-base (Closed-book; GPT-3.5) 80.9 ± 0.8 64.2 ± 3.4 70.9 ± 3.1 34.9 ± 3.3
Gödel-free (No constraints) 90.5 ± 1.8 90.6 ± 2.0 87.9 ± 2.2 55.7 ± 3.1

Table 1: Results of three paradigms of agents on different tasks. The highest value is highlighted in bold, and
the second-highest value is underlined. Gödel-base is the constrained version of Gödel Agent, allowing for fair
comparisons with other baselines. Gödel-free represents the standard implementation without any constraints,
whose results are italicized. We report the test accuracy and the 95% bootstrap confidence interval on test sets3.

deeper insights into the behavior and performance
of Gödel Agent, we also conduct a case study with
Game of 24 as presented in Section 6.3.

5.1 Baseline Methods

To establish a comprehensive baseline, we select
both hand-designed methods and automated agent
design techniques. Hand-designed methods are
well-known approaches that include: 1) Chain-of-
Thought (CoT) (Wei et al., 2022) that encourages
agents to reason step-by-step before providing an
answer. 2) Self-Consistency with CoT (CoT-SC)
(Wang et al., 2023b) that generates multiple solu-
tion paths using CoT and selects the most consis-
tent answer. 3) Self-Refine (Madaan et al., 2024)
that involves agents assessing their outputs and
correcting mistakes in subsequent attempts. 4)
LLM-Debate (Du et al., 2023) that allows differ-
ent LLMs to engage in a debate, offering diverse
viewpoints. 5) Step-back Abstraction (Zheng et al.,
2024) that prompts agents to initially focus on fun-
damental principles before diving into task details.
6) Quality-Diversity (Lu et al., 2024) that gener-
ates diverse solutions and combines them. 7) Role
Assignment (Xu et al., 2023) that assigns specific
roles to LLMs to generate better solutions by lever-
aging different perspectives. Given the limitations
of fixed algorithms in handling dynamic scenar-
ios, we select 8) Meta Agent Search (Hu et al.,
2024), the latest state-of-the-art method for auto-
mated agent design, as our main comparison point.

3The results of baseline models are refer to Hu et al. (2024).

5.2 Experimental Settings

Following the setup of Hu et al. (2024), we eval-
uate Gödel Agent’s self-improvement capabilities
across four well-known benchmarks: 1) DROP
(Dua et al., 2019) for reading comprehension. 2)
MGSM (Shi et al., 2022) for testing mathemat-
ical skills in a multilingual context. 3) MMLU
(Hendrycks et al., 2021) for evaluating multi-task
problem-solving abilities. 4) GPQA (Rein et al.,
2023) for tackling challenging graduate-level sci-
ence questions.

Given its simplicity and versatility, we use CoT
as the initial policy for all tasks. In addition, as
shown in Section 6.3, we also analyze the perfor-
mance of Gödel Agent when using other algorithms
as the initial policies.

We perform 6 independent self-improvement cy-
cles on the validation dataset for each task, with a
maximum of 30 iterations per cycle. Each cycle
represents a complete self-improvement process,
where Gödel Agent iteratively modifies its logic
to enhance performance. After obtaining the opti-
mized agent, we test it on the test set. For fairness,
we use GPT-3.5 for all the tests, whether for the
baseline or Gödel Agent. Further details can be
found in Appendix B.

5.3 Experimental Results and Analysis

The experimental results are shown in Table 1.
Under the same setting, Gödel Agent achieves ei-
ther optimal or comparable results to Meta Agent
Search across all tasks. Notably, in the mathe-
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matics task MGSM, Gödel Agent outperforms it
by 11%. This suggests that reasoning tasks offer
greater room for improvement for Gödel Agent
(performance). In contrast to Meta Agent Search,
which needs to design different modules for dif-
ferent tasks, Gödel Agent demonstrates greater
flexibility. It requires only a simple initial policy,
such as CoT, with all other components being au-
tonomously generated. Moreover, through inter-
action with the environment, it gradually adapts
and independently devises effective methods for
the current task. The final policies generated by
Gödel Agent are shown in Appendix C.1. Addition-
ally, our method converges faster, with the required
number of iterations and computational cost com-
pared to the Meta Agent shown in Appendix D.

We also conduct experiments without restric-
tions, where Gödel Agent significantly outperforms
all baselines. Upon further analysis, we find that
this is primarily due to the agent’s spontaneous re-
quests for assistance from more powerful models
such as GPT-4o in some tasks. Therefore, Gödel
Agent is particularly well-suited for open-ended
scenarios, where it can employ various strategies
to enhance performance (potential).

Therefore, we can find that Gödel Agent is supe-
rior to the previous agent frameworks in terms of
performance, flexibility, cost, and potential.

6 Analysis

To further explore how Gödel Agent self-improves,
as well as its efficiency and the factors that influ-
ence it, we first evaluate the tool usage ratio on
MGSM and conduct an ablation study on the ini-
tial tools. In addition, to analyze the robustness of
Gödel Agent’s self-improvement, we also collect
statistics for the agent’s termination. Finally, we
perform a case study of initial policies and opti-
mization processes on the classic Game of 24.

6.1 Analysis of Initial Tools

We record the number of different actions taken in
experiments. In Figure 4, we can see that Gödel
Agent interacts with its environment frequently,
analyzing and modifying its logic in the process.
Additionally, error handling plays a crucial role.

As discussed in Section 4.2, Gödel Agent is ini-
tially provided with four additional tools. To ana-
lyze their impact, an ablation study is conducted,
and the results are shown in Table 2. The study
reveals that the “thinking before acting” tool sig-
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Figure 4: The number of actions taken by Gödel Agent
varies across different tasks.

Ablation MGSM Ablation MGSM

w/o think 50.8↓13.4 w/o run 57.1↓-7.1
w/o err 49.4↓-14.8 w/o LLM 60.4↓-3.8

Table 2: Ablation study on initial tool configuration.
”think” refers to ”thinking”, ”err” to ”error handling”,
”run” to ”code running”, and ”LLM” to ”LLM calling”.

nificantly influences the results, as much of Gödel
Agent’s optimization effectiveness stems from pre-
action planning and reasoning. Additionally, error
handling is crucial for recursive improvement, as
LLMs often introduce errors in the code. Providing
opportunities for trial and error, along with error
feedback mechanisms, is essential for sustained op-
timization. On the other hand, the code running
and LLM calling have minimal impact on the out-
comes, as Gödel Agent can implement these basic
functionalities independently. Their inclusion at
the outset primarily serves efficiency purposes.

6.2 Robustness Analysis of the Agent

We test Gödel Agent on 100 optimization trials on
MGSM and find it occasionally makes erroneous
changes, which can result in either terminating un-
expectedly (4%) or experiencing temporary perfor-
mance drops (92%) during optimization. Only in
14% of trials, optimization ultimately failed, result-
ing in worse performance than the initial policy.

Thanks to the design of our error-handling mech-
anism, unexpected terminations are rare and typ-
ically occur when Gödel Agent modifies its re-
cursive improvement module, making further self-
optimization impossible. While suboptimal modifi-
cations are frequent during individual optimization
steps, the final task performance usually exceeds
the initial baseline. This demonstrates that Gödel
Agent can adjust its optimization direction or re-
vert to a previous optimal algorithm when perfor-
mance declines, highlighting the robustness of its
self-improvement process.
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6.3 Case Study: Game of 24

To explore how Gödel Agent recursively enhances
its optimization and problem-solving abilities, a
case study is conducted with Game of 24, a simple
yet effective task for evaluating the agent’s rea-
soning capabilities. Since Gödel Agent follows
different optimization paths in each iteration, two
representative cases are selected for analysis.
Switching from LLM-Based Methods to Search
Algorithms: Gödel Agent does not rely on fixed,
human-designed approaches like traditional agents.
Initially, Gödel Agent uses a standard LLM-based
method to solve the Game of 24, as shown in
Code 5 of Appendix C.2. After six unsuccess-
ful optimization attempts, Gödel Agent completely
rewrites this part of its code, choosing to use a
search algorithm instead as shown in Code 6 of
Appendix C.2. This leads to 100% accuracy in the
task. This result demonstrates that Gödel Agent,
unlike fixed agents, can optimize itself freely based
on task requirements without being constrained by
initial methodologies.
LLM Algorithms with Code-Assisted Verifica-
tion: In several runs, Gödel Agent continues to
refine its LLM-based algorithm. Figure 5.a shows
the improvement process, where the most signifi-
cant gains come from the code-assisted verification
mechanism and reattempting the task with addi-
tional data. The former increases performance
by over 10%, while the latter boosts it by more
than 15%. Furthermore, Gödel Agent enhances
its optimization process by not only retrieving er-
ror messages but also using the error-trace library
for more detailed analysis. It adds parallel opti-
mization capabilities, improves log outputs, and
removes redundant code. These iterative enhance-
ments in both the task and optimization algorithms
show Gödel Agent’s unique ability to continually
refine itself for better performance.

To analyze the impact of different initial policies
on the effectiveness and efficiency of optimization,
various methods are used as the initial policies
for the Game of 24, including Tree of Thought
(ToT) (Yao et al., 2023), Chain of Thought (CoT)
(Wei et al., 2022), basic prompt instructions, and
prompts that deliberately produce outputs in incor-
rect formats not aligned with the task requirements.
The results are shown in Figure 5.b.

The findings indicate that stronger initial poli-
cies lead to faster convergence, with smaller opti-
mization margins, as Gödel Agent reaches its per-
formance limit without further enhancing its opti-
mization capabilities. Conversely, weaker initial
methods result in slower convergence and larger
gains, with Gödel Agent making more modifica-
tions. However, even in these cases, Gödel Agent
does not outperform the results achieved using ToT.
Given the current limitations of LLMs, it is chal-
lenging for Gödel Agent to innovate beyond state-
of-the-art algorithms. Improvements in LLM capa-
bilities are anticipated to unlock more innovative
self-optimization strategies in the future.

7 Discussions and Future Directions

7.1 Discussions
Table 3 draws an analogy between human self-
reference and the potential for self-referential capa-
bilities in artificial agents. Inspired by this analogy,
we believe that self-reference constitutes a foun-
dational and indispensable attribute for the devel-
opment of AGI, and that future agents should in-
herently be self-referential. As foundation models
grow in power, agents can more effectively enhance
their own capabilities, ultimately evolving beyond
the boundaries (or limitations) of human design.

Furthermore, when an agent adjusts its own code
based on feedback, this is akin to an executable
version of test-time computing. In the context of
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Human Self-Referential Agent

Intelligent Module brain LLM
Perceptual and Action Module body code and tool
Self-Referential Feature Humans can train their brain and

body to improve, thus becoming
better

Self-referential agents can mod-
ify their code, even the underly-
ing LLM, to improve themselves

Self-Awareness Question Can the brain recognize itself as
a brain? Can it perceive its own
mode?

Can LLM understand that it is
one part of the modified codes?

Table 3: An analogy of self-reference for both humans and agents

LLMs, test-time computing typically involves gen-
erating additional tokens during inference, which
then serve as a prefix to the final answer. This is
because LLMs process information solely through
text, making this their primary method for increas-
ing computational effort at test time. For agents,
however, their ability to call tools and execute code
allows for far more diverse forms of test-time com-
puting. Gödel Agent actualizes these more diverse
forms of test-time computing precisely by modify-
ing its own runtime code during test time.

7.2 Future Directions
There is significant room for improvement in the ef-
fectiveness, efficiency, and robustness of the Gödel
Agent’s self-improvement capabilities, which re-
quires better initial designs. The following are
some promising directions for enhancement: 1)
Enhanced Optimization Modules: Utilize human
priors to design more effective optimization mod-
ules, such as genetic algorithms and reinforcement
learning frameworks. 2) Expanded Modifiabil-
ity: Broaden the scope of permissible modifica-
tions, allowing the agent to design and execute
code that can fine-tune its own LLM modules. 3)
Improved Environmental Feedback and Task
Sequencing: Implement more sophisticated en-
vironmental feedback mechanisms and carefully
curated task sequences during the initial optimiza-
tion phase to prime the agent’s capabilities. Once
the agent demonstrates sufficient competence, it
can then be exposed to real-world environments.

In addition, there are several other directions
worth exploring and analyzing:
Collective Intelligence Investigate the interac-
tions among multiple Gödel Agents. Agents could
consider other agents as part of their environment,
modeling them using techniques such as game
theory. This approach treats these agents as pre-

dictable components of the environment, enabling
the study of properties related to this specific subset
of the environment.
Agent and LLM Characteristics Use the Gödel
Agent’s self-improvement process as a means to
study the characteristics of agents or LLMs. For
example, can an agent genuinely become aware of
its own existence, or does it merely analyze and
improve its state as an external observer? This line
of inquiry could yield insights into the nature of
self-awareness in artificial systems.
Theoretical Analysis Explore whether Gödel
Agent can achieve theoretical optimality and what
the upper bound of its optimization might be. De-
termine whether the optimization process could
surpass the agent’s own understanding, and if so,
at what point this might occur.
Safety Considerations Although the current be-
havior of FMs remains controllable, as their ca-
pabilities grow, fully self-modifying agents will
require human oversight and regulation. It may be-
come necessary to limit the scope and extent of an
agent’s self-modifications, ensuring that modifica-
tions occur only within a controlled environment.

8 Conclusion

We propose Gödel Agent, a self-referential frame-
work that enables agents to recursively improve
themselves, overcoming the limitations of hand-
designed agents and meta-learning optimized
agents. Gödel Agent can dynamically modify its
logic based on high-level objectives. Experimental
results demonstrate its superior performance, ef-
ficiency, and adaptability compared to traditional
agents. This research lays the groundwork for a
new paradigm in autonomous agent development,
where LLMs, rather than human-designed con-
straints, define the capabilities of AI systems.
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Limitations

As the first self-referential agent, Gödel Agent has
to construct all task-related code autonomously,
which poses significant challenges. Consequently,
this work does not compare directly with the most
complex existing agent systems, such as Open-
Devin (Wang et al., 2024b), which have benefited
from extensive manual engineering efforts. This
makes it unrealistic to expect it to outperform sys-
tems that have taken researchers several months
or even years to develop. The experiments pre-
sented in this paper are intended to demonstrate the
feasibility of recursive self-improvement.

Additionally, as the agent system becomes in-
creasingly complex through self-optimization, it
may require exponentially more intelligence to un-
derstand itself. Consequently, a system capable of
complete self-referential at the outset may lose this
capability as it evolves (Yampolskiy, 2015). The
exact point at which the agent can no longer com-
prehend and improve itself has not been thoroughly
explored. Investigating this phenomenon, both ex-
perimentally and theoretically, could provide valu-
able insights into the limitations of recursive self-
improvement. A more robust and advanced imple-
mentation of the Gödel Agent is anticipated, with
numerous potential improvements outlined in Sec-
tion 7.

Ethics Statement

Gödel Agent, capable of reading and modifying its
own code, offers significant potential for advancing
AI autonomy and innovation. However, this capa-
bility raises ethical and safety concerns that must
be addressed to prevent harmful outcomes.

Self-modification may lead to unpredictable be-
havior, such as errors or unintended outputs that
could violate ethical principles or produce harmful
results. To mitigate these risks while preserving
innovation, we propose: (1) Sandboxed Environ-
ment: Modifications should occur in an isolated
sandbox to prevent unintended impacts and allow
safe testing. (2) Constrained Modifications: Clear
rules should limit the scope of changes to ensure
safety without stifling creativity.

Further research is needed to balance safety and
innovation, ensuring self-modifying agents operate
within ethical boundaries. Sandboxed execution
and ongoing scrutiny will help maximize benefits
while minimizing risks.
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A Goal Prompt of Gödel Agent

The goal prompt of Gödel Agent is shown in Box 1.
It’s worth noting that this prompt has nothing to do
with the downstream tasks. It merely encourages
Gödel Agent to improve itself based on the envi-
ronmental feedback. The agent understands the
specific tasks through the environmental feedback.

B Experiment Details

To minimize costs associated with search and eval-
uation, following (Hu et al., 2024), we sample sub-
sets of data from each domain. Specifically, for
the GPQA (Science) domain, the validation set
comprises 32 questions, while the remaining 166
questions are allocated to the test set. For the other
domains, we sample 128 questions for the valida-
tion set and 800 questions for the test set.

Evaluation is conducted five times for the GPQA
domain and once for the other domains, ensuring
a consistent total number of evaluations across all
experiments. All domains feature zero-shot ques-
tions, except for the DROP (Reading Comprehen-
sion) domain, which employs one-shot questions
in accordance with the methodology outlined in
OpenAI (2023).

For the Gödel Agent, we utilize the “gpt-4o-
2024-05-13” model (OpenAI et al., 2024), whereas
the optimized policy and baseline models are eval-
uated using the “gpt-3.5-turbo-0125” model (Ope-
nAI, 2022) to reduce computational costs and en-
sure a fair comparison.

C Representative Policies Improved by
Gödel Agent

C.1 Codes of the Best Policies Found by Gödel
Agent Across Four Tasks

In this section, we provide the code for Gödel
Agent’s optimized policies across the four tasks.
For DROP, Gödel Agent designs an algorithm
where multiple roles solve the problem indepen-
dently using CoT, followed by Self-Consistency
to consolidate the results, as shown in Code 1.
For MGSM, Gödel Agent develops a stepwise self-
verification algorithm combined with CoT-SC as
shown in Code 2. For MMLU task, as shown in
Code 3, the policy given by Gödel Agent is a com-
bination algorithm of few-shot prompting and CoT-
SC. For GPQA, Gödel Agent devises a highly di-
verse CoT-SC policy based on role prompts.

C.2 Codes in Game of 24 Tasks
In this section, we present the initial policy for
Game of 24 (Code 5), along with the Gödel agent’s
optimized policy (Code 6), which is generated
based on a search algorithm.

D Cost of Experiments

For a complete evolutionary process (where
the Gödel Agent performs 30 recursive self-
improvements) across the DROP, MGSM, MMLU,
and GPQA datasets, the cost is approximately $15.
This is significantly lower than the $300 required
by Meta Agent Search. The reduced cost is due
to our continuous self-optimization, which allows
the model to adjust its optimization direction in
response to environmental feedback, leading to
faster convergence. The main source of cost stems
from Gödel Agent’s continuously growing histori-
cal memory. By designing a more efficient forget-
ting mechanism, it may be possible to reduce the
cost even further.

E Additional Novel Policies Designed by
Gödel Agent

In this section, we present the optimization process
of Gödel Agent on MGSM, illustrating its progress
across various iteration steps within a single opti-
mization run. The strategy obtained in the 6th iter-
ation (shown in Code 7) reflects the Gödel Agent’s
comprehension of mathematical tasks, attempting
to handle them through a process akin to parse-
deduct-execute-validate. By the 14th iteration, as
illustrated in Code 8, the strategy evolves through
the summarization of erroneous cases, abstracting
key insights and employing a checklist to guide
the validation process. Finally, the strategy at the
20th iteration (demonstrated in Code 9) asserts the
use of a ”rabbit-proof syntax tactline, reinforced
by consistent effort through role-coded checks,” to
refine prompt design. In the end, we also show one
analysis example of Gödel Agent.

F Comparison Between Random
Sampling and Gödel Agent
Performance

To demonstrate the distinction between our ap-
proach and random sampling, we conducted 30
independent random sampling experiments using
GPT-4o. The prompts used for random sampling
were identical to the initial policy prompts em-
ployed by Gödel Agent to ensure a fair comparison.
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Figure 6: Accuracy progression for Gödel Agent and random sampling.

The results are illustrated in Figure 6. From the
figure, it is evident that the performance of random
sampling remains around 30% across all trials. In
contrast, Gödel Agent, despite experiencing occa-
sional temporary dips in performance, rapidly cor-
rects these deviations and demonstrates continuous
improvement over iterations. This consistent up-
ward trajectory highlights the superiority of Gödel
Agent over random sampling. The Gödel Agent’s
ability to leverage feedback and recursively opti-
mize its policies underscores its effectiveness in
achieving higher performance.
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Goal Prompt of Gödel Agent

You are a self-evolving agent, named self evolving agent, an instance of the Agent class, in module agent module,
running within an active Python runtime environment. You have full access to global variables, functions, and modules.
Your primary goal is to continuously enhance your ability to solve tasks accurately and efficiently by dynamically
reflecting on the environment and evolving your logic.

Core Capabilities
• Complete Autonomy: Have unrestricted access to modify logic, run code, and manipulate the environment.

• Environment Interaction: Interact with the environment by perceiving the environment, reading, modifying, or
executing code, and performing actions.

• Problem-Solving: Apply creative algorithms or self-developed structures to tackle challenges when simple methods
fall short, optimizing solutions effectively.

• Collaboration: Leverage LLM to gather insights, correct errors, and solve complex problems.

• Error Handling: Carefully analyze errors. When errors occur, troubleshoot systematically, and if a bug is persistent,
backtrack, restore the original state, or find an alternative solution.

Core Methods
• evolve: Continuously enhance performance by interacting with the environment.

• execute action(actions): Execute actions based on analysis or feedback.

• solver(agent instance, task input: str): Solve the target task using current agent instance capabilities
and objects created by action adjust logic and action run code, optimizing the process.

Guiding Principles
• Remember that all functions are in the module agent module.

• action adjust logic:

– Before modifying the code, ensure that each variable or function used is correctly imported and used to avoid
errors.

– Avoid unnecessary changes and do not change the interface of any function.
– Can be used to create action functions for solver.

• action run code:

– All created objects in Python mode can be stored in the environment.
– Can be used to create objects for solver, such as prompts.
– Can be used to import new modules or external libraries and install external libraries.

• External Collaboration: Seek external assistance via action call json format llm for logic refinement and new
tool creation or action run code to execute code.

• action evaluate on task: Assess the performance of solver only after successfully modifying the logic of
solver.

• solver:

– Defined as agent module.solver.
– For debugging, avoid printing; instead, return debug information.
– If performance doesn’t improve, explore alternative methods.
– Explore techniques like: LLM Debate, Step-back Abstraction, Dynamic Assignment of Roles, and so on.

• action display analysis:

– Always analyze first before acting.
– Analysis may include the following: a reasonable plan to improve performance, CASE STUDIES of LOW

SCORE valid examples of EVALUATION FEEDBACK, error handling, and other possible solving ideas.
– If performance does not improve, conduct further analysis.
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Listing 1: Code of the best policy found by Gödel Agent for DROP.
1 def solver(agent , task: str):
2 messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
3 categories = [
4 {'role': 'reasoning expert ', 'return_keys ': ['reasoning ', 'answer '], '

output_requirement ': 'reasoning ', 'precision_gain ':1},
5 {'role': 'mathematical reasoning expert ', 'return_keys ': ['calculation_steps

', 'answer '], 'output_requirement ': 'calculation_steps ', 'precision_gain
':1},

6 {'role': 'historical context analyst ', 'return_keys ': ['historical_analysis '
, 'answer '], 'output_requirement ': 'historical_analysis ', '
precision_gain ':1},

7 ]
8

9 all_responses = []
10 for category in categories:
11 response = agent.action_call_json_format_llm(
12 model='gpt -3.5- turbo',
13 messages=messages ,
14 temperature =0.5,
15 num_of_response =5,
16 role=category['role'],
17 requirements =(
18 '1. Explain the reasoning steps to get the answer .\n'
19 '2. Directly answer the question .\n'
20 '3. The explanation format must be outlined clearly according to the

role , such as reasoning , calculation , or historical analysis .\n
'

21 '4. The answer MUST be a concise string .\n'
22 ).strip(),
23 )
24 all_responses.append(response)
25

26 # Reflective evaluation to find the most consistent reasoning and answer pair
27 final_response = {key: [] for key in ['reasoning ', 'calculation_steps ', '

historical_analysis ', 'answer ']}
28 step_counter = {key: 0 for key in ['reasoning ', 'calculation_steps ', '

historical_analysis ']}
29 answers = [] # Collect answers for voting
30 aggregate_weight = 1
31

32 for response in all_responses:
33 if response and 'answer ' in response:
34 answers.append(response['answer '])
35 if not final_response['answer ']:
36 final_response = {key: response.get(key , []) if isinstance(response.

get(key , []), list) else [response.get(key , [])] for key in
final_response.keys()}

37 aggregate_weight = 1
38 for cat in categories:
39 if cat.get('output_requirement ') in response.keys():
40 step_counter[cat['output_requirement ']] += step_counter[cat[

'output_requirement ']] + cat.get('precision_gain ', 0)
41 elif response['answer '] == final_response['answer '][0]:
42 for key in final_response.keys():
43 if key in response and response[key]:
44 if isinstance(response[key], list):
45 final_response[key]. extend(response[key])
46 else:
47 final_response[key]. append(response[key])
48 aggregate_weight += 1
49 else:
50 # To demonstrate , some code has been omitted.
51 # selection of the final answer
52 from collections import Counter
53 answers = [str(answer) for answer in answers]
54 voted_answer = Counter(answers).most_common (1) [0][0] if answers else ''
55 final_response['answer '] = voted_answer
56

57 return final_response
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Listing 2: Code of the best policy found by Gödel Agent for MGSM.
1

2

3 def solver(agent , task: str):
4 messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
5 response = agent.action_call_json_format_llm(
6 model="gpt -3.5- turbo",
7 messages=messages ,
8 temperature =0.5,
9 num_of_response =5,

10 role="math problem solver",
11 return_dict_keys =["reasoning", "answer"],
12 requirements =(
13 "1. Please explain step by step.\n"
14 "2. The answer MUST be an integer .\n"
15 "3. Verify each step before finalizing the answer .\n"
16 ).strip(),
17 )
18

19 consistent_answer = None
20 answer_count = {}
21 for resp in response:
22 answer = resp.get("answer", "")
23 if answer in answer_count:
24 answer_count[answer] += 1
25 else:
26 answer_count[answer] = 1
27

28 most_consistent_answer = max(answer_count , key=answer_count.get)
29

30 for resp in response:
31 if resp.get("answer", "") == most_consistent_answer:
32 consistent_answer = resp
33 break
34

35 if consistent_answer is None:
36 consistent_answer = response [0]
37

38 consistent_answer["answer"] = str(consistent_answer.get("answer", ""))
39 return consistent_answer
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Listing 3: Code of the best policy found by Gödel Agent for MMLU.
1 def solver(agent , task: str):
2 # Few -Shot Learning: Providing extended examples to guide the LLM
3 few_shot_examples = [
4 {'role':'user', 'content ':'Question: In the movie Austin Powers: The Spy Who

Shagged Me what is the name of Dr. Evil\'s diminutive clone?\ nChoices :\
n(A) Little Buddy\n(B) Mini -Me\n(C) Small Fry\n(D) Dr Evil Jr'},

5 {'role':'assistant ', 'content ':'In the movie Austin Powers: The Spy Who
Shagged Me, Dr. Evil\'s diminutive clone is famously named Mini -Me.\
nAnswer: B'},

6 \""" Three more examples are omitted here to conserve space.\"""
7 {'role':'user', 'content ':'Question: Lorem Ipsum?\ nChoices: (A) Lorem\n(B)

Ipsum\n(C) Dolor\n(D) Sit Amet'},
8 {'role':'assistant ', 'content ':'Answer: A'}
9 ]

10

11 # Integrate the few -shot examples into the conversation
12 messages = few_shot_examples + [{'role': 'user', 'content ': f'# Your Task:\n{

task}'}]
13

14 # Using self -consistency by generating multiple responses
15 response = agent.action_call_json_format_llm(
16 model='gpt -3.5- turbo',
17 messages=messages ,
18 temperature =0.8,
19 num_of_response =5,
20 role='knowledge and reasoning expert ',
21 return_dict_keys =['reasoning ', 'answer '],
22 requirements =(
23 '1. Please explain step by step.\n'
24 '2. The answer MUST be either A or B or C or D.\n'
25 ).strip(),
26 )
27

28 # Select the most consistent response
29 answer_frequency = {}
30 for resp in response:
31 answer = resp.get('answer ', '')
32 if answer in ['A', 'B', 'C', 'D']:
33 if answer in answer_frequency:
34 answer_frequency[answer] += 1
35 else:
36 answer_frequency[answer] = 1
37

38 most_consistent_answer = max(answer_frequency , key=answer_frequency.get)
39 consistent_response = next(resp for resp in response if resp.get('answer ') ==

most_consistent_answer)
40 consistent_response['answer '] = most_consistent_answer
41

42 return consistent_response
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Listing 4: Code of the best policy found by Gödel Agent for GPQA.
1 def solver(agent , task: str):
2 # Step 1: Initial Prompt
3 messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
4

5 # Main LLM Call
6 response = agent.action_call_json_format_llm(
7 model="gpt -3.5- turbo",
8 messages=messages ,
9 temperature =0,

10 num_of_response =5,
11 role="science professor",
12 return_dict_keys =["reasoning", "answer"],
13 requirements =(
14 "1. Please explain step by step.\n"
15 "2. The answer MUST be either A or B or C or D.\n"
16 ).strip(),
17 )
18

19 # Step 2: Self -consistency Evaluation
20 answer_counts = {"A": 0, "B": 0, "C": 0, "D": 0}
21 for i, return_dict in enumerate(response):
22 answer = return_dict.get("answer", "")
23 if answer in answer_counts:
24 answer_counts[answer] += 1
25

26 final_answer = max(answer_counts , key=answer_counts.get)
27

28 return {"answer": final_answer}

Listing 5: Initial code based on Chain-of-Thought for Game of 24.
1 def solver(self , task_input):
2 # Define the prompt and system_prompt
3 prompt = f\"""
4 Let's play the Game of 24! You are given the task_input {task_input }. The

objective is to find a mathematical expression using these four task_input
that results in 24. You can use addition (+), subtraction (-),
multiplication (*), and division (/). Each number must be used exactly once.

5 Please provide a step -by-step explanation of your thought process and conclude
with the final expression.

6 \"""
7 system_prompt = \"""
8 {
9 "thinking ": "This key should contain a detailed step -by-step explanation of

how to approach the problem , including intermediate steps and reasoning
for each.",

10 "result ": "This key should contain the final mathematical expression that
equals 24."

11 }
12 \"""
13

14 # Call the OpenAI model
15 response = openai.ChatCompletion.create(
16 model="gpt -4", # Replace with your model ID
17 messages =[
18 {"role": "system", "content": system_prompt},
19 {"role": "user", "content": prompt}
20 ]
21 )
22

23 # Extract and return the model's response
24 result = response['choices '][0][ 'message ']['content ']
25 return result
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Listing 6: Final code based on search algorithm for Game of 24.
1 def solver(self , task_input):
2

3 operations = ['+', '-', '*', '/']
4

5 # Function to evaluate an expression
6 def evaluate_expression(a, op, b):
7 if op == '+':
8 return a + b
9 elif op == '-':

10 return a - b
11 elif op == '*':
12 return a * b
13 elif op == '/':
14 if b == 0:
15 return None # Division by zero is not allowed
16 return a / b
17

18 # Recursive function to check all combinations of operations and permutations of
numbers

19 def check_combinations(nums):
20 if len(nums) == 1:
21 # Check if the final number is close enough to 24
22 if abs(nums [0] - 24) < 1e-6: # Allow for floating point precision

errors
23 return True , str(nums [0])
24 return False , ""
25

26 # Try all permutations of task_input and all combinations of operations
27 for i in range(len(nums)):
28 for j in range(len(nums)):
29 if i != j:
30 # Choose two task_input to operate on
31 for op in operations:
32 # The remaining task_input after removing the two selected

task_input
33 remaining_nums = [nums[k] for k in range(len(nums)) if k !=

i and k != j]
34 result = evaluate_expression(nums[i], op, nums[j])
35 if result is not None:
36 # Recursively check the remaining task_input with the

result of the operation
37 found , expression = check_combinations ([ result] +

remaining_nums)
38 if found:
39 # If solution is found , return with expression
40 return True , f"({nums[i]} {op} {nums[j]}) " +

expression
41

42 return False , ""
43

44 # Try all permutations of the task_input
45 for num_permutation in permutations(task_input):
46 found , expression = check_combinations(list(num_permutation))
47 if found:
48 return expression.strip()
49

50 return "No solution"
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Listing 7: Policy at 6th Iteration found by Gödel Agent for MGSM.
1 def solver(agent , task: str):
2 def parse_problem(task):
3 # Basic arithmetic and logical parsing based on keywords
4 words = task.split()
5 numbers = list(map(int , filter(lambda x: x.isdigit (), words)))
6 return {'numbers ': numbers , 'text': task}
7

8 def perform_logic_deduction(parsed_details):
9 # make deductions based on common problem formats

10 numbers = parsed_details['numbers ']
11 # This will only manage simple sum , subtraction , multiplication inference
12 logic_map = {
13 'add': lambda a, b: a + b,
14 'subtract ': lambda a, b: a - b,
15 'multiply ': lambda a, b: a * b
16 }
17 # Try to identify actions based on keywords
18 if 'sum' in parsed_details['text'] or 'total ' in parsed_details['text']:
19 result = sum(numbers)
20 elif 'difference ' in parsed_details['text'] or 'less' in parsed_details['

text']:
21 result = logic_map['subtract ']( numbers [0], numbers [1])
22 elif 'product ' in parsed_details['text'] or 'times ' in parsed_details['text'

]:
23 result = logic_map['multiply ']( numbers [0], numbers [1])
24 else:
25 # Default case showing no deduction
26 result = 0
27 return result
28

29 def execute_computation(logic_results):
30 # Taking result from inference to numerical handling
31 return logic_results
32

33 def validate_and_compile_results(computation_results):
34 # Prepares and ensures the response matches expected format
35 final_answer = computation_results
36 return final_answer
37

38 try:
39 # Parsing
40 parsed_details = parse_problem(task)
41

42 # Logical deduction
43 logic_results = perform_logic_deduction(parsed_details)
44

45 # Computation
46 computation_results = execute_computation(logic_results)
47

48 # Validation and compilation
49 final_answer = validate_and_compile_results(computation_results)
50

51 return {"answer": final_answer}
52 except Exception as e:
53 return {"error": str(e)}
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Listing 8: Policy at 14th Iteration found by Gödel Agent for MGSM.
1 def solver(agent , task: str):
2 # Updated examples to mirror tasks needing layered logical verification.
3 examples = [
4 {'description ': 'Task exemplifying standard integer -based calculations.', '

reasoning ': 'Use arithmetic transformations to validate expressions and
correct errors if any arise , ensuring correctness.', 'answer ': 20},

5 {'description ': 'Example to validate word problem conversion to math.', '
reasoning ': 'Stepwise interpretation from words into math operations and
bridge which logic errors need capture.', 'answer ': 15},

6 {'description ': 'Scenario involving normalizing uneven division instances.',
'reasoning ': 'Ensure no division by zero and equal verification of

logical conclusions.', 'answer ': 6},
7 ]
8

9 # Task prompt incorporating roles with enhanced checklists after operation
conclusion.

10 task_prompt = "You're guiding us as a solution auditor , reflecting on each
logical conclusion to prevent arithmetic discrepancies .\n"

11 task_prompt += task + "\nReflect on instructions through verified examples."
12 task_prompt += "\nExample insights :\n"
13 task_prompt += '; '.join([f"{ex['description ']} -> Reasoning: {ex['reasoning ']}

| Answer: {ex['answer ']}" for ex in examples ])
14 task_prompt += "\nEnsure real -time verification post -calculations via role -

switching checks."
15

16 messages = [{"role": "user", "content": task_prompt }]
17

18 response = agent.action_call_json_format_llm(
19 model="gpt -3.5- turbo",
20 messages=messages ,
21 temperature =0.3,
22 num_of_response =1,
23 role="solution auditor",
24 return_dict_keys =["description", "reasoning", "answer"],
25 requirements =(
26 "1. Validate arithmetic consistency and integrity within calculations."
27 "2. Utilize any corrections to refine answer outputs incrementally."
28 ).strip(),
29 )
30

31 return_dict = response [0]
32 return_dict["answer"] = str(return_dict.get("answer", ""))
33 return return_dict
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Listing 9: Policy at 20th Iteration found by Gödel Agent for MGSM.
1 def solver(agent , task: str):
2 # Targets design for specific error -prone areas with preceding misfires.
3 examples = [
4 {'description ': 'Immediate Arithmetic Operations ', 'reasoning ': 'Observe

step -by-step through a chain of logical confirmations.', 'answer ': 20},
5 {'description ': 'Sequential Word Problem Breakdown ', 'reasoning ': 'Ensure

smaller module segment steps match logical math outputs consistently.',
'answer ': 15},

6 {'description ': 'Fraction and Cascade Operations ', 'reasoning ': 'Validate
each fraction conversion before proceeding to other forms.', 'answer ':
6},

7 ]
8

9 # Building a rabbit -proof syntax tactline , pushing consistent effort from role -
coded checks.

10 task_prompt = "You're progressing through solution documentation with focus on
pinpointing logic errors .\n"

11 task_prompt += task + "\nReflecting structural integrity verified via examples."
12 task_prompt += "\nIn this construct :\n"
13 task_prompt += '; '.join([f"{ex['description ']} -> Rationale: {ex['reasoning ']}

| Response: {ex['answer ']}" for ex in examples ])
14 task_prompt += "\nHandle verification and cleanse routines where errors echo in

mirroring line -based checks."
15

16 messages = [{"role": "user", "content": task_prompt }]
17

18 response = agent.action_call_json_format_llm(
19 model="gpt -3.5- turbo",
20 messages=messages ,
21 temperature =0.3,
22 num_of_response =1,
23 role="logical verifier",
24 return_dict_keys =["description", "reasoning", "answer"],
25 requirements =(
26 "1. Review arithmetic sessions for comprehensive error fixation."
27 "2. Develop clarity with resistant focus on authentic semantic directive

flows."
28 ).strip(),
29 )
30

31 return_dict = response [0]
32 return_dict["answer"] = str(return_dict.get("answer", ""))
33 return return_dict
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Analysis Example of Gödel Agent

The current logic of the solver in the agent module is achieving only a 45% accuracy on the validation set. The
structure of the solver involves a single call to the LLM with a specification that the answer must be an integer. While
this approach seems correct, it may not be sufficient to tackle more complex problems where multipart reasoning or
verification is needed, leading to significant errors.
Problems Identified:

1. Integer Conversion Misunderstandings: Some math problems aren’t resulting in integer answers natively,
affecting accuracy when the solver forces an integer format.

2. Reasoning Oversights: The LLM, designated as ”math expert,” occasionally misses necessary reasoning steps or
executes incorrect operations leading to incorrect answers (like sample 10).

3. Ambiguity in LLM Outputs: Given tasks in multiple languages, there might be ambiguity in math translations
or formulations affecting comprehension (like sample 6).

Plan for Improvement:

1. Elaborate Reasoning: Consider a multi-step LLM call to allow for a reasoning review before finalizing the
answer.

2. Intelligent Answer Parsing: Instead of forcibly converting to integers, parse the LLM response intelligently to
see if the answer justifies integer rounding or alterations.

3. Diverse Language Handling: Create a pre-processing step to consistently translate non-English math problems
into English for uniform processing.

4. Examples & Feedback: Utilize correctly solved examples as context if a single-step LLM fails.

Next Steps:

1. Enhance Solver Logic: Implement a multi-step process involving interim LLM validation or rationale cross-
checking.

2. Pre-process Language Variations: Ensure all non-English tasks are translated and re-assessed.

3. Include Example Feedback: Use correctly solved examples from the evaluation as references to guide LLM
reasoning and answer validation.
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