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Abstract

Enhancing large models for complex multi-
hop question-answering has become a research
focus in the Retrieval-augmented generation
(RAG) area. Many existing approaches aim to
mimic human thought processes by enabling
large models to perform retrieval-augmented
generation step by step. However, these meth-
ods can only perform single chain reasoning,
which lacks the ability for multi-path explo-
ration, strategic look-ahead, stepwise evalua-
tion, and global selection. In addition, to ef-
fectively decompose complex problems, these
methods can only rely on labor-intensive inter-
mediate annotations for supervised fine-tuning.
To address these issues, we propose GRAT, an
algorithm guided by Monte Carlo Tree Search
(MCTS) and process rewards. GRAT not only
enables self-evaluation and self-correction but
also assigns fine-grained rewards to each in-
termediate step in the search path. These fine-
grained annotations can be used for model self-
training, which enables GRAT to continuously
self-update its problem analysis and reasoning
capabilities. We conducted experiments on four
multihop QA datasets: HotPotQA, 2WikiMul-
tiHopQA, MuSiQue, and Bamboogle, demon-
strating that GRAT outperforms various RAG-
based methods. Additionally, incorporating
self-training significantly enhances GRAT’s
reasoning performance. 1

1 Introduction

In recent years, retrieval-augmented generation
(RAG) has emerged as a key approach to address-
ing factual errors and hallucinations (Mallen et al.,
2023; Min et al., 2023), as it provides up-to-date
information for knowledge-intensive tasks (Chen,
2017; Petroni et al., 2021). However, for com-
plex multi-hop questions, directly using RAG is
challenging. On one hand, the complexity of natu-
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Figure 1: A illustrates the process of linearly decompos-
ing a multi-hop problem step by step. It can be observed
that any error in the intermediate steps will lead to an
incorrect final answer. In contrast, B demonstrates the
use of a tree-based search approach. Since the model
possesses self-evaluation and exploration capabilities, it
can abandon erroneous paths and select the correct one.

ral language questions makes it difficult to decom-
pose them. On the other hand, answering multi-
hop questions requires a rigorous reasoning pro-
cess and the ability to interact continuously with
external knowledge bases. Many methods have
been proposed to solve complex multi-hop prob-
lems: Self-Ask (Press et al., 2023) generates sub-
questions step by step through self-questioning.
IRCoT (Trivedi et al., 2023) interleaves retrieval
with CoT generation to improve reasoning. LPKG
(Wang et al., 2024) trains the model to parse the
original complex question into different templates.

However, these methods are limited to linear,
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left-to-right decision-making processes during in-
ference, making it difficult to explore and perform
strategic look-ahead for complex problems. At the
same time, these methods lack the ability to self-
evaluate and correct errors. If a mistake occurs in
an intermediate step, it will lead to an incorrect
final answer (Figure 1 A). Moreover, existing meth-
ods tend to focus only on historical information
during reasoning, lacking exploration and evalua-
tion of future steps. Additionally, due to the lack
of supervised training for intermediate reasoning
steps, models struggle to accurately decompose
complex questions. Nevertheless, high-quality su-
pervision data for intermediate steps requires costly
annotation, making it difficult to collect.

To address the above issues, we propose GRAT
(Figure 1 B), a method that: (1) Leverages the
Monte Carlo Tree Search (MCTS) algorithm to ex-
plore the vast search space while self-evaluating
each histroy reasoning step and future steps. It can
select the most promising reasoning path within
the constructed tree structure, allowing for the cor-
rection of erroneous exploration directions. (2)
Utilizes fine-grained process rewards generated by
GRAT to provide supervision signals for each step
of the reasoning process. We collect the correct rea-
soning paths generated by GRAT as training data
to perform self-training on the reasoning model,
enhancing its ability to analyze complex questions.
Through this unsupervised training approach, the
reasoning model can continuously refine its ability
to parse complex problems, and this self-update
capability is challenging for previous methods. (3)
Introduces a single-step simulation approach to ef-
ficiently complete rollouts, allowing the model to
focus on future reasoning steps at the same time.

We conducted various experiments on four
datasets: HotPotQA (Yang et al., 2018), 2Wiki-
MultiHopQA (Ho et al., 2020), MuSiQue (Trivedi
et al., 2022), and Bamboogle (Press et al., 2023),
demonstrating the effectiveness of our approach.
Additionally, we applied fine-tuning to self-train
GRAT with the generated data. The experimental
results show that GRAT achieves excellent perfor-
mance in solving complex multi-hop problems both
before and after training.

2 Method

2.1 Problem Setup

We first define this problem. Assume there is a
language model M designed for a downstream

question-answering task T = {⟨q, a⟩}, where q
represents a question and a represents the corre-
sponding answer. A retrieval-augmented gener-
ation (RAG) model first retrieves relevant docu-
ments from a knowledge base D using a retriever
R and then leverages them for answer generation.
The process can be expressed as follows:

y = M(q,R(q,D)) (1)

where y denotes the answer generated by the model
based on the documents retrieved by R that are
relevant to the question q.

In many previous works, the retrieval-
augmentation process in this procedure is
performed only once, making it difficult to
answer questions that require multi-step rea-
soning. Given a complex multi-hop question
qm, answering it requires a series of reasoning
steps T = {t0, t1, . . . , tn}, where each sub-step
ti = (qi, ai) consists of a sub-question qi and a
sub-answer ai. During the reasoning process, the
sub-question qi is often related to the sub-answer
ai−1 from the previous step (Figure 1 B). There-
fore, coherent multi-step retrieval-augmented
generation will be key to answering such complex
questions.

2.2 Multi-hop Question Inference and
Reasoning Model

According to the introduction in Section 2.1, we
assume that the model M used for inference should
accomplish two tasks: (1) generating next sub-
questions and (2) answering the sub-questions. In
practice, M can be instantiated using different pre-
trained autoregressive models. Therefore, the gen-
eration of sub-questions can be expressed as

qi = M(T0:i−1, q) (2)

And the answering of sub-questions can be ex-
pressed as

ai = M(qi, R(qi, D)) (3)

where (2) represents generating a new sub-question
based on the history reasoning steps T0:i−1 and
the original question q. (3) represents generating
the sub-answer based on the sub-question and the
knowledge retrieved using the sub-question. As-
suming the reasoning policy is π, our goal is to find
the optimal performance of the following expres-
sion (4) in order to solve the multi-hop question.
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Figure 2: (1) Figure A illustrates the search process of GRAT. On the left, the constructed search tree is shown,
where the path s0 → s3 → s4 → s5 represents the final correct reasoning path. The figure presents each step’s
sub-question and its corresponding answer. On the right, the processing details for completing step s4 are depicted.
(2) Figure B demonstrates the self-training process of GRAT, where the model selects the correct reasoning path for
self-update.

The tuple (t0, t1, . . . , tK) represents the generated
reasoning path, while a∗ denotes the ground truth
answer.

Pπ(y = a∗ | q) = E(t0,t1,...,tK)∼Pπ(T |q)
[P (y = a∗ | t0, t1, . . . , tK , q)] (4)

2.3 Evaluation Model

The purpose of the evaluation model is to self-
assess the feasibility of the already generated rea-
soning path. This helps the model evaluate whether
the current reasoning step can help to solve the
original question, thereby selecting a path more
likely to lead to the correct solution. The evalua-
tion model is represented as E, which can either be
instantiated with the same model as the reasoning
model or with a new model. It is expressed as:

vi = E(Ti, q) (5)

where the input consists of the current reasoning
path Ti and the original problem q, and vi repre-
sents the value of the current branch.

2.4 Monte Carlo Tree Search based RAG

In the process of complex problem answering, we
use Monte Carlo Tree Search (MCTS) to progres-
sively decompose the problem. It constructs a tree-
like reasoning framework, where each node rep-
resents the state, which contains the completed
history reasoning paths from root. And the transi-
tion from one node to another represents an action,
which includes the following steps: generating the

next sub-question, retrieving external knowledge to
answer the sub-question, and forming a new state.

Our MCTS-based model evaluates and scores
the reasoning path based on the current reason-
ing step and the future simulation results. It then
selects more valuable paths according to the evalua-
tion scores, balancing exploitation and exploration,
and efficiently finding high-reward reasoning paths.
The algorithm will perform multiple iterations until
a computational budget is reached. The following
part will introduce the components of the algo-
rithm.

Selection. The first phase is the selection phase,
where the search begins from the root node (s0 in
figure 2 A). In each selection iteration, the next
node is chosen based on the children’s values, in
order to identify more promising nodes for the next
expansion step. The selection phase ends when
a leaf node is reached. During this process, we
follow the method of Zhang et al. (2024), using
UCB (Upper Confidence Bound) to select nodes,
balancing exploitation and exploration, which is as
follows:

UCB(child) = vchild+w

√
2 · lnnparent

nchild
(6)

Here, vchild represents the value of the child node,
while nparent and nchild represent the number of
times the parent and child nodes have been visited,
respectively. w is a constant used to control the
weight between exploitation and exploration. Dur-
ing selection, the child node with the highest UCB
value is chosen each time. This approach allows
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for selecting the most valuable child node while
also balancing the exploration of unknown nodes.

Expansion. After the selection phase is com-
pleted, the current node is an unexplored leaf node.
Given the current node’s state si, the reasoning
model will generate d new actions, which are the
next sub-questions qi+1 = M(T0:i, q). Once the
sub-question is obtained, the retriever R is called
to retrieve documents related to the sub-question.
These documents, along with the sub-question, are
then fed back into the reasoning model to generate
the sub-answer: ai+1 = M(qi+1, R(qi+1, D)).

After completing the above steps, our method
will invoke the evaluation model E in 2.3 to self-
assess the newly generated child node. It is im-
portant to note that we set a threshold l (0.9 in
the experiment), and if the evaluation score ex-
ceeds l, the search will be prematurely termi-
nated. Finally, we generate d new child nodes
{(q1i+1, a

1
i+1, v

1
i+1), ..., (q

d
i+1, a

d
i+1, v

d
i+1)}. The

complete expansion process is shown in Figure
2 A.

Simulation. The simulation phase is designed
to evaluate the expected future rewards, providing
an assessment of the current node’s value from a
future perspective. After expansion, we select the
child node with the highest value for simulation.
Previous methods, such as those in Hao et al. (2023)
and Zhou et al., have used iterative generation and
evaluation rollout methods, but these approaches
incur significant generation and time costs. There-
fore, we use a one-step rollout approach, where the
reasoning model generates all the subsequent sub-
questions at once, retrieves the relevant documents,
and then answers the original question based on
the documents. Finally, all the reasoning steps are
input into the evaluation model to assess the value
of this path. Assuming the value of the node being
rolled-out is vi, and the evaluation value obtained
after simulation is v′i, we use formula (7) to update
the the original value of the node. At this point,
the updated value of the node takes into account
both the historical reasoning path and the future
reasoning path.

vi = vi · (1− α) + v′i · α (7)

Where α represents the parameter that controls the
update.

Back-propagation. When simulation is com-
pleted, every node from the root to the leaf node
with simulation has been visited once. Therefore,

the visit count of all nodes along this path needs
to be updated as ni = ni + 1. At the same time,
since the value of the child node has changed, the
value of its parent node should also change. Thus,
we perform a backward update of the values of the
nodes along this path, starting from the leaf node:

vparent =

∑d
i=1 nchildi · vchildi∑d

i=1 nchildi

(8)

Here, d represents the number of child nodes, nchild
represents the number of times the child node has
been visited, and vchildi represents the value of the
child node.

Final answer generation. When the computa-
tional budget is reached, or the search is prema-
turely terminated, the process will move to the final
answer generation stage. If the computational bud-
get is reached, we start from the root node and use
a greedy strategy to find the highest-value path as
the final answer path T ∗. If the value of a node ex-
ceeds the threshold l, leading to early termination,
the path containing that node will be taken as the
answer path T ∗. Then, this answer path is input
into the reasoning model to generate the final an-
swer, as shown in equation (9). Here, y represents
the final predicted answer.

y = M(T ∗, q) (9)

2.5 Reasoning model self-training
In order for the model to generate more reasonable
reasoning paths, we can use the generated correct
reasoning paths as training data to fine-tune the
reasoning model (Figure 2 B). We filter the paths
based on the correctness of the predicted answers
and the value of the reasoning paths, selecting the
paths with correct answers while also having higher
values as the training data. Let the original training
dataset be Dtrain , where (q, a∗) ∈ Dtrain. By
filtering the training data, we obtain the supervised
fine-tuning dataset: (q, a∗, T,D) ∈ DSFT, where
each data entry contains a reasoning path T that
leads to the correct answer and a set of documents
D relevant to each sub-question. During training,
we use the standard supervised fine-tuning method
and the following loss function:

L = − 1

N

N∑

i=1

logP (ri|h, r<i) (10)

Here, h is the input, which consists of the concate-
nation of information such as the question, sub-
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paths, documents, and prompts. r represents the
target output, and N denotes the length of r.

3 Experiments

3.1 Experimental Setting

Datasets. To evaluate the ability of different mod-
els to answer complex questions, we selected four
complex question answering datasets: (1) Hot-
PotQA (Yang et al., 2018), (2) 2WikiMultiHopQA
(Ho et al., 2020), (3) MuSiQue (Trivedi et al.,
2022), and (4) Bamboogle (Press et al., 2023).
Among these datasets, HotPotQA, 2WikiMulti-
HopQA, and MuSiQue include training, valida-
tion, and test sets, while Bamboogle is a smaller
dataset consisting of only 125 test examples. All
four datasets require reasoning over multiple differ-
ent Wikipedia paragraphs to answer the questions.
Following Wang et al. (2024) and Shao et al. (2023),
we randomly selected 500 samples from the Hot-
PotQA, 2WikiMultiHopQA, and MuSiQue datasets
for testing. For Bamboogle, we used all 125 test
examples. To ensure fair comparison, all methods
employed a simple sparse retrieval method: BM25
(Robertson and Walker, 1994), which is a classic
method based on term frequency statistics.

Evaluation metrics. Following Wei et al.
(2024), we use accuracy (acc) as the evaluation
metric, which measures whether the ground-truth
answers are included in the model generations
(Mallen et al., 2023,Schick et al., 2023).

Baselines. We used a total of five large language
models with different parameter sizes as both the
reasoning model and evaluation model (they are
instantiated using the same model in our setup).
These models include DeepSeek-R1(DeepSeek-AI
et al., 2025), GPT-3.5-turbo (Ouyang et al., 2022),
Llama3-Instruct-8B (AI@Meta, 2024), Qwen2.5-
Instruct-14B (Yang et al., 2024), and Llama3-
Instruct-70B(GPTQ INT4).

We use the following methods as baseline mod-
els: (1) No Retrieval: This approach directly uti-
lizes the backbone LLM for reasoning without re-
lying on external knowledge. It solely depends on
the model’s internal knowledge and reasoning ca-
pabilities. (2) With Retrieval: In this approach,
the model retrieves relevant documents from the ex-
ternal knowledge base using the given question and
then uses the backbone LLM to perform reasoning
grounded in these retrieved documents. (3) ToT
(Yao et al., 2023): The Tree of Thoughts method
is an approach that uses a tree structure for reason-

ing over complex problems. We use Breadth-First
Search (BFS) as the search algorithm. For effi-
ciency reasons, we set the maximum depth to 4
and the width to 3. (4) InstructRAG (Wei et al.,
2024): This method leverages the reasoning abil-
ity of LLMs to filter out the necessary documents
for inference through self-synthesized rationales
and generates a reasoning path. It also requires re-
trieving external knowledge. (5) ActiveRAG (Xu
et al., 2024): This approach mimics human learn-
ing through a multi-agent framework, enabling it
to comprehend retrieved knowledge from multiple
perspectives and complete the reasoning process.

3.2 Main Results
Table 1 provides the main results of our exper-
iments: Firstly, it can be observed that, as the
model parameters increase, the overall ability of
the model to solve complex problems improves.
Additionally, using external retrieval significantly
outperforms methods that do not rely on retrieval.
Specifically, for Llama3-Instruct-8B, Qwen2.5-
Instruct-14B, and Llama3-Instruct-70B, the With
Retrieval method achieves an average improvement
of 35.4%, 51.7%, and 6.8% over the No Retrieval
method respectively, across the four datasets.

Our model, GRAT, outperforms baseline mod-
els on the 2WikiMultiHopQA, HotPotQA, and
MuSiQue datasets when using Llama3-Instruct-8B,
Qwen2.5-Instruct-14B, and Llama3-Instruct-70B
as backbone models. Specially, on the 2WikiMul-
tiHopQA dataset, GRAT achieves improvements
of 4.8%, 7.3%, and 17.5% over the second-best
model across the three different backbone settings.
However, on the Bamboogle dataset, our method
does not surpass all baseline models, which may
be due to the limited dataset size (only 125 test
samples). Nevertheless, GRAT still demonstrates
competitive performance.

Additionally, we compare our approach with
the latest LLMs accessible via their APIs, such
as GPT3.5-Turbo2 and DeepSeek-R13. Notably,
GRAT only based on Llama3-Instruct-8B can sig-
nificantly outperform GPT-3.5-Turbo (both No Re-
trieval and With Retrieval) and achieves perfor-
mance comparable to DeepSeek-R1. Using a back-
bone model with a larger number of parameters
will achieve better results. These results demon-
strate that our method is highly effective in tackling
complex multi-hop reasoning tasks.

2https://platform.openai.com
3https://platform.deepseek.com
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Table 1: Performance of GRAT and other baselines on the four datasets, with the best values highlighted in bold.

Method Model Datasets

2MultiHopQA HotPotQA Bamboogle MuSiQue

No Retrieval DeepSeek-R1 53.2 45.4 61.6 22.2
No Retrieval

GPT-3.5
32.8 33.6 33.6 9.4

With Retrieval 38.0 42.4 15.2 9.6
No Retrieval

Llama3-Instruct-8B

30.4 22.8 15.2 4.8
With Retrieval 36.2 38.4 15.2 7.4

ToT 57.8 49.4 32.8 18.4
InstructRAG-ICL 51.4 51.4 32.0 15.2

ActiveRAG 53.2 51.2 45.0 15.8
GRAT 60.6 50.2 32.8 20.2

No Retrieval

Qwen2.5-Instruct-14B

30.0 24.8 28.8 6.8
With Retrieval 46.4 46.2 24.0 12.4

ToT 60.2 57.8 46.4 22.2
InstructRAG-ICL 53.4 53.0 45.6 18.8

ActiveRAG 58.8 56.8 52.0 22.6
GRAT 64.6 60.0 40.8 25.8

No Retrieval

Llama3-Instruct-70B

33.2 31.8 33.6 8.0
With Retrieval 34.8 41.8 27.2 9.8

InstructRAG-ICL 60.4 59.6 50.4 24.2
ActiveRAG 64.0 58.0 59.0 26.6

GRAT 75.2 61.8 52.0 29.2

3.3 Self-Training

As mentioned in Section 2.5, we use GRAT to per-
form reasoning and constructing a search tree, and
score each sub-path, which can generate reason-
ing paths with process rewards. We then select
the highest-scoring path among all correct paths
into training dataset while filtering out noisy paths
(e.g., those where the output contain "No relevant
information found in the document"). We gener-
ate training data using the train set of 2WikiMulti-
HopQA, ensuring that the data for generating does
not overlap with the test set. In our experiments,
we generate a total of 11,459 training samples and
use Llama3-Instruct-8B as the reasoning model,
applying LoRA for instruction fine-tuning. We
use InstructRAG as baseline, which includes both
an In-Context Learning version (No Training) and
a Fine-Tuning version (With Training). For the
fine-tuning version, we used the publicly available
model weights provided by Wei et al. (2024) for
testing. The final results are shown in Table 2.

From the results in Table 2, we can observe that
both InstructRAG and GRAT show significant im-
provement after training. GRAT achieves an in-
crease of 10.2% compared to the performance of
its No-training version, indicating that self-training

Table 2: Performance of GRAT and InstructRAG before
and after self-training on the 2MultiHopQA dataset. The
backbone model is Llama3-Instruct-8B.

Method Datasets

2MultiHopQA
InstructRAG(No Training) 51.4

GRAT(No Training) 60.6
InstructRAG(With Training) 59.4

GRAT(With Training) 66.8

can significantly enhance the model’s reasoning
and comprehension abilities. Additionally, GRAT
(With Training) outperforms InstructRAG (With
Training) by 12.5%, demonstrating that our model
still achieves better performance than baselines af-
ter training.

3.4 Influence of Computational Budget

Next, we experimented to find the impact of the
search iterations on the accuracy of the responses.
One search iteration means starting from the root
node and sequentially completing selection, expan-
sion, simulation, and back-propagation. We set
the computational budget from 1 to 10 and used
Llama3-Instruct-8B as both the reasoning and eval-
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Figure 3: Performance over Different Computational
Budget

uation model to conduct experiments on the 2Wiki-
MultiHopQA dataset. The results are shown in
Figure 3. It can be observed that the accuracy
increases as the number of iterations increases.
Specifically, the accuracy rises rapidly when the
number of searches increases from 1 to 3. This
is because most questions in the dataset require
two- or three-hop reasoning, making the accuracy
highly sensitive to the number of searches. The ac-
curacy peaks at 60.6 when the number of searches
reaches 8, likely due to the fact that more complex
questions require multiple iterations of reasoning
attempts to ultimately derive the correct answer.

3.5 Ablation

Table 3: Results of various ablation experiments.

Method Model Datasets

2MultiHopQA
Base(No Retrieval)

Llama3-Instruct-8B

30.4
w/o Simulate 57.6
w/o Retrieval 38.8
w. Gold-docs 70.4

GRAT 60.6

In the ablation experiments, we made the follow-
ing adjustments to GRAT to evaluate the impact of
each module on the final performance:

• w/o Simulation: This indicates the ablation of
the original simulation module in GRAT, meaning
the model’s ability to evaluate the future has been
removed. It can be observed that after removing
the Simulation module, the accuracy of GRAT
on 2WikiMultiHopQA drops from 60.6 to 57.6,
indicating that estimating future reasoning steps
helps in better solving complex problems.

• w/o Retrieval: This removes the retrieval mod-
ule in GRAT, meaning the model can rely solely on
its reasoning ability and internal knowledge during
reasoning. For comparison, we also present a base-
line, Base(No Retrieval), in Table 3, where the
base model directly answers the original question
without using external retrieval. We can observe
that w/o Retrieval shows a significant performance
drop compared to the full GRAT, indicating that
external retrieval plays a crucial role in answer-
ing complex questions. Meanwhile, w/o Retrieval
achieves an 8.4 accuracy improvement over Base
(No Retrieval) under the same condition of no
external retrieval, demonstrating the performance
gain brought by our tree-based search method.

• w. Gold-docs: This replaces the retrieved doc-
uments in GRAT with gold documents, which con-
tain all the necessary information to answer the
original question. This ensures that the model’s
performance is not constrained by missing exter-
nal information, demonstrating the upper bound
of our model’s potential performance. We can ob-
serve that under this condition, our model achieves
an accuracy of 70.4. This demonstrates the great
potential of GRAT in solving complex multi-hop
problems.

3.6 Case Study

Figure 4 illustrates a search tree constructed using
GRAT (Qwen2.5-Instruct_14B). The numbers indi-
cate the order of visits. Node 0 represents the ques-
tion and its correct answer. Starting from this root
node, nodes 1 and 2 are expanded first. Notably,
an error occurs when answering the sub-question
at node 1. However, in the next search step, the
model identifies this factual error and corrects it at
nodes 3 and 4. As a result, in the subsequent ex-
ploration, the model selects the higher-value path:
0-2-5. Ultimately it arrives at the correct answer.
In addition, the Appendix A presents the templates
of the prompts we used.

4 Related Work

Retrieval-Augmented Generation. Retrieval-
augmented generation (RAG) is a widely used tech-
nique across multiple areas that retrieves external
knowledge to obtain the latest and up-to-date infor-
mation. By providing LLMs with relevant informa-
tion, RAG helps LLMs generate more accurate and
useful content(Asai et al., 2023a; Chen et al., 2023;
Asai et al., 2023b; Jiang et al., 2023; Shao et al.,
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In what century did this Native warrior and chief, whose brother
Tenskwatawa led the Tippecanoe order of battle, become the

primary leader of a large, multi tribal confederacy?

The correct answer:  19th century

Who is the Native warrior and chief
referred to in the question?

The Native warrior and chief referred to in
the question is Opechancanough

Was Opechancanough the Native warrior
and chief who became the primary leader
of a large, multi-tribal confederacy after

his brother Tenskwatawa led the
Tippecanoe order of battle?

NO

Is Opechancanough the correct Native
warrior and chief who became the primary
leader of a large, multi-tribal confederacy

after his brother Tenskwatawa led the
Tippecanoe order of battle?

The question appears to be mixing up several
different historical figures and events.  The
documents clarify that Tecumseh was the

primary leader of the multi-tribal confederacy
before the Battle of Tippecanoe.

Who was the Native warrior and chief that
Tenskwatawa's brother became?
Based on the documents provided,

Tecumseh was the Native warrior and chief
that Tenskwatawa\'s brother became. 

In what century did Tecumseh become
the primary leader of a large, multi-tribal

confederacy?

Tecumseh became the primary leader of a
large, multi-tribal confederacy in the early

19th century. 

0

1 2

3 4 5

Figure 4: The detailed reasoning process by GRAT. The root node (Node 0) includes the original question and the
correct answer. In other nodes, the upper part of the node represents the generated sub-questions, and the lower part
shows the corresponding answers. The numerical labels indicate the order of visits.

2023). At the same time, RAG can also help mit-
igate the hallucination problem commonly found
in LLMs(Achiam et al., 2023; Guu et al., 2020;
Lewis et al., 2020). Many works have attempted
to optimize different stages of this process,for ex-
ample, (Yoran et al., 2023; Wang et al., 2023; Yu
et al., 2023) enhance model performance by re-
ducing noise in relevant documents and improv-
ing the model’s robustness to irrelevant content.
Chen et al. (2023), Jeong et al. (2024) and Asai
et al. (2023b) try to avoid irrelevant retrieval by
adjusting the granularity and timing of retrieval.
Some works also focus on optimizing prompts and
queries (Chan et al., 2024; Ma et al., 2023). Press
et al. (2023) proposes a Self-ask approach, where
the model continuously asks itself (and answers)
follow-up questions to analyze complex problems.
This essentially serves as an improved strategy for
the chain-of-thought method (Wei et al., 2022).
Wang et al. (2024) trains the model to parse the
question into a fixed template (plan), which can
then be further decomposed into sub-questions.
The LLM only needs to answer each sub-question
in sequence.

Large Language Model Reasoning. To an-
swer complex questions, many reasoning meth-
ods have been proposed. For example, Chain of
Thought (CoT) (Wei et al., 2022) try to generate
intermediate multi-step reasoning steps to provide
a step-by-step solution for complex problems. Self-
Consistency (Wang et al., 2022) generates multiple

reasoning steps using LLMs and selects the one
with the highest score, thereby improving the relia-
bility of the answer. Tree of Thoughts(ToT) (Yao
et al., 2024) improves upon Chain of Thought by
transforming linear reasoning into a tree structure,
allowing multiple reasoning paths to be explored
simultaneously, leading to more comprehensive
thinking. Hao et al. (2023) employed Monte Carlo
Tree Search to construct the reasoning tree under
the guidance of LLMs and rewards, enhancing the
model’s ability to select and evaluate paths while
balancing exploitation and exploration.

Large Language Model Training. To align
the content generated by LLMs with human pref-
erences, instruction-tuning can be performed us-
ing datasets that contain instructions and human-
written completions(Mishra et al., 2022; Sanh et al.,
2022; Chung et al., 2024). However, compared to
directly constructing human preference data, it is
easier to judge the relative quality of data for hu-
mans. Therefore, some works first optimize a neu-
ral network reward function and then fine-tune the
language model using reinforcement learning (RL)
algorithms (Ramamurthy et al., 2022; Kreutzer
et al., 2018). Another approach is to use LLMs
fine-tuned with human feedback to generate addi-
tional synthetic preference data, which is then used
to further fine-tune the original model (Bai et al.,
2022; Zhang et al., 2024).
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5 Conclusion

In this paper, we propose a novel retrieval-
augmented generation model called GRAT, which
is based on Monte Carlo Tree Search. GRAT
possesses the capabilities of multi-path explo-
ration, strategic look-ahead, stepwise evaluation,
and global selection, while also balancing exploita-
tion and exploration during the search process.
Compared to single-chain RAG methods, it offers
significant advantages. Additionally, GRAT can
perform self-training using high-quality stepwise
reasoning data generated by itself, continuously
refining its problem analysis capabilities. We con-
ducted extensive experiments on multiple datasets,
demonstrating the effectiveness and superiority of
our model.

Limitations

Our work has some limitations. For example, dur-
ing training, we only used correct data and did not
utilize the lower-quality generated data. In future
approaches, we will explore using this data for pref-
erence optimization. This is because, even though
incorrect sub-questions may not directly contribute
to the solution, they can help the model recognize
which actions lead to lower-value outcomes.

Additionally, for self-training, we conducted ex-
periments only on the 8B model. In the future, we
will explore the impact of self-training on perfor-
mance with larger-scale models.
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A Prompting Template

We present the prompt templates for reasoning pro-
cesses, subquestion answering, and self-evaluation
in Figures 5 , 6, and 7, respectively. These prompts
include example cases to help the model generate
more effectively.
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PROMPT FOR REASONING STEPS

INSTRUCTION
Given the following complex multi-hop question, you need to step through and determine what questions to ask at
each step. The input may already include some steps of sub-questions, and you need to continue generating the
next sub-question.

EXAMPLES
Question:
Which film came out first, Brudebuketten or Vibes (Film)?
Reasoning steps:
Step 1: when did film Brudebuketten come out?
Answer 1: 1953
Output: <when did film Vibes (Film) come out?>

Question:
Which film has the director who was born later, Glamour Boy (Film) or Night By The Seashore?
Reasoning steps:
Step 1: Who is the director of Glamour Boy (Film)?
Answer 1:   Ralph Murphy
Step 2: when did director Ralph Murphy born?
Answer 2: May 1, 1895
Step 3: Who is the director of Night By The Seashore?
Answer 3:   Erkko Kivikoski
Step 4: when did director Erkko Kivikoski born?
Answer 4: 2 July 1936
Output: <Which film has the director who was born later, Glamour Boy (Film) or Night By The Seashore?>

INPUT
Next, please continue to generate the next sub-question for the following question. Note that, you should put your
output in <>, like:  < your sub-question>
Question:
{##QUESTION}
Reasoning steps:
{##HISTORY REASONING STEPS}
Output:

Figure 5: Prompt for reasoning
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PROMPT FOR SUB-QUESTION ANSWERING

INSTRUCTION
Given an original complex multi-hop question, your task is to refer to the original reasoning steps and relevant
document content to answer the current sub-question. Note that you do not need to answer the original question or
sub-questions that have already been answered.

EXAMPLES
Original question: When did Charles Mathew's father die?
Reasoning steps:
Let's think step by step about the sub-questions that need to be queried.
Step 1: Who is Charles Mathew's father ?
Answer 1: James Mathews
Step 2 :When did James Mathews die?
Documents: Charles was born to James Mathews (died 1804), a Wesleyan Methodist bookseller, printer, and
pharmacist on the Strand, who also served as minister in one of the Countess of Huntingdon's chapels. Charles
was educated at Merchant Taylors' School in London, which had some openings for common boys. He was next
apprenticed to his father. For religious reasons, the father forbade his children from visiting theatres.
Current sub-question: When did James Mathews die?
Output: 1804

INPUT
Note: Please try to use the content from the original documents to answer, and provide a concise response without
any analysis. Output no more than 15 words.
Original question:{##QUESTION}
Reasoning steps:
{##HISTROY REASONING STEPS}
Documents:
{##DOCUMENTS}
Current sub-question:{##SUB-QUESTION}
Output:

Figure 6: Prompt for sub-question answering
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PROMPT FOR SELF-ESTIMATION

INSTRUCTION
Given a complex multi-hop question, answering this question may require answering multiple sub-questions. Your
task is to determine, based on the given complex question and existing reasoning steps, whether these existing
reasoning steps can help to solve some part of the problem and provide a score. The score should be a decimal
between 0 and 1. If all sub-questions are fully raised and answered, the score is 1. If no relevant sub-questions are
resolved, the score is 0. The more sub-questions that help answer the original question are resolved, the closer the
score is to 1; the fewer are resolved, the closer the score is to 0. First, provide a relevant analysis, then give the
score. Do not generate additional solving steps, only output scores to evaluate the current steps. Please learn from
the following example:

EXAMPLES
question 1: 
Which film came out first, Brudebuketten or Vibes (Film)?
reason steps: 
Let's think step by step about the sub-questions that need to be queried.
Step 1: when did film Brudebuketten come out?
Answer 1: 1953
Step 2: when did film Vibes (Film) come out?
Answer 2: 1988
analysis: 
To solve this problem, the first step is to answer when the movie Brudebuketten was released, the second step is to
answer when the movie Vibes (Film) was released, and the third step should be to compare the two release dates
and determine which movie was released first, need 3 steps. However, in the reasoning steps above, only the first
two steps were completed, and the reasoning for the final answer was not finished. Therefore, the final score is
<0.66>.

INPUT
Attention, you must put your score in <>, like <score>. Next, you need to analyze the following reasoning steps:

question:
{##QUESTION},
reason steps:
{##HISTORY REASONING STEPS},
analysis:

Figure 7: Prompt for self-estimation
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