@inproceedings{peng-wei-2025-grat,
title = "{GRAT}: Guiding Retrieval-Augmented Reasoning through Process Rewards Tree Search",
author = "Peng, Xianshu and
Wei, Wei",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.1352/",
pages = "27861--27875",
ISBN = "979-8-89176-251-0",
abstract = "Enhancing large models for complex multi-hop question-answering has become a research focus in the Retrieval-augmented generation (RAG) area. Many existing approaches aim to mimic human thought processes by enabling large models to perform retrieval-augmented generation step by step. However, these methods can only perform single chain reasoning, which lacks the ability for multi-path exploration, strategic look-ahead, stepwise evaluation, and global selection. In addition, to effectively decompose complex problems, these methods can only rely on labor-intensive intermediate annotations for supervised fine-tuning. To address these issues, we propose GRAT, an algorithm guided by Monte Carlo Tree Search (MCTS) and process rewards. GRAT not only enables self-evaluation and self-correction but also assigns fine-grained rewards to each intermediate step in the search path. These fine-grained annotations can be used for model self-training, which enables GRAT to continuously self-update its problem analysis and reasoning capabilities. We conducted experiments on four multihop QA datasets: HotPotQA, 2WikiMultiHopQA, MuSiQue, and Bamboogle, demonstrating that GRAT outperforms various RAG-based methods. Additionally, incorporating self-training significantly enhances GRAT{'}s reasoning performance."
}
Markdown (Informal)
[GRAT: Guiding Retrieval-Augmented Reasoning through Process Rewards Tree Search](https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.1352/) (Peng & Wei, ACL 2025)
ACL