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Abstract

Various metrics exist for evaluating sequence
labeling problems (strict span matching, to-
ken oriented metrics, token concurrence in se-
quences, etc.), each of them focusing on certain
aspects of the task. In this paper, we define
a comprehensive set of formal properties that
captures the strengths and weaknesses of the
existing metric families and prove that none of
them is able to satisfy all properties simultane-
ously. We argue that it is necessary to measure
how much information (correct or noisy) each
token in the sequence contributes depending
on different aspects such as sequence length,
number of tokens annotated by the system, to-
ken specificity, etc. On this basis, we introduce
the Sequence Labelling Information Contrast
Model (SL-ICM), a novel metric based on in-
formation theory for evaluating sequence label-
ing tasks. Our formal analysis and experimen-
tation show that the proposed metric satisfies
all properties simultaneously.

1 Introduction

Span identification tasks are a type of NLP problem
in which relevant spans of text are retrieved from
sentences (Papay et al., 2020). Named entity recog-
nition (NER) is a prime example of a span identifi-
cation task, but there are many others in the field of
Information Extraction (such as multiword expres-
sion extraction, time expression extraction, term
extraction, toxic language detection, opinion min-
ing, etc.) and in language processing (semantic role
labeling, chunking, etc.). Span identification tasks
are usually framed as a sequence labeling problem,
in which each token of the sequence receives a tag
and the tag assignment is done contextually: each
assigned tag will depend on the nature of the sur-
rounding tokens and tags, and token-level prefixes
(such as BIO or BILOU) will be added to the tag
to denote the boundary of the span (Ramshaw and
Marcus, 1999; Ratinov and Roth, 2009).

Multiple evaluation approaches have been pro-
posed for sequence labeling, such as strict span
matching, token-oriented metrics, token concur-
rence in sequences, etc. Each of these approaches
addresses the problem in a different way, and con-
sequently they reward and penalize outputs dif-
ferently. However, the mismatch between the na-
ture of the problem (in which spans of text are the
unit of interest) and its token-based implementa-
tion leads to inescapable problems when evaluating
span-identification tasks: strict span-based evalua-
tion will disregard altogether any predicted spans
that partially overlap with the gold standard. On
the other hand, token-based evaluation may not
adequately account for span boundaries and it dis-
plays an imperfect treatment of overlapping spans.
In addition, none of the existing metrics takes into
account the degree of informativeness of each to-
ken.

We argue that the key issue when evaluating span
identification tasks is to measure how much infor-
mation (correct or noisy) each token contributes to
the span, depending on different aspects such as
span length, the number of tokens annotated by the
system, the token specificity, etc. On this basis, we
first define a set of formal properties and we char-
acterize existing evaluation metrics according to
them (section 2). Our analysis shows that existing
metrics sacrifice some properties in favor of others,
and that some properties are not captured by any
of the existing metrics.

We claim that the natural way of addressing
this problem is in terms of information quanti-
ties. We introduce SL-ICM (Sequence Labelling
Information Contrast Model), an information the-
ory based metric for evaluating sequence labeling
problems (section 3). This metric is grounded on
the ICM similarity measure, which is a linear com-
bination of the single and joint information content
of the elements in the comparison. Finally, we con-
duct a series of experiments on manually selected
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examples and on real existing data in order to sys-
tematically assess how metrics behave on different
scenarios (Section 4). Our results prove that SL-
ICM is the only metric capable of satisfying all
properties simultaneously.

2 A Formal Analysis of Sequence
Labeling Metrics

In this section we introduce a set of formal proper-
ties for sequence labeling evaluation and analyze
whether existing metrics satisfy them.

The following notation will be used to formalize
the metrics: let W be the ordered set of tokens that
make up a text, and let s be a subsequence (not
necessarily continuous) of W. We denote S’t as the
set of sequences annotated by a system with label ¢,
and S; as the annotated set in the gold standard. A
sequence labeling evaluation metric measures the
similarity between the sets of sequences S; and S,
for all labels t € T'.

In order to formalize the properties, we will
denote a gold standard sequence annotation as
{(z1,y1,t1), -, (T, Yn, tn)} Where x;, y; repre-
sent the start and end token positions of the i** la-
beled sequence and ¢; represents the assigned label.
Then, a system output represented as {(z3, y3 —
1,t)} is an output that includes the third sequence
annotated as ¢ but without the last token of the
reference sequence (position y3). For the sake of
simplicity, we formalize the properties on continu-
ous sequences. We use the symbol ">" to express
that one sequence of labels should receive a higher
score than another. Table 1 summarizes the prop-
erties satisfied by each metric, and Table 2 shows
particular examples for each property.

2.1 Strict Span-based Evaluation

Exact matching based evaluation can be formal-
ized with the following two properties, which state
that the score should be higher when more correct
sequences are predicted, and lower when more in-
correct sequences are predicted.

Property 1. [CORRECT SEQUENCE MONOTONICITY ]
Adding a correct sequence to the system output
should increase its score:

{(1'1,2/1), ) (xj—lvyj—l)v ('rj? yj)}
> {(@1,91)5 0 (Tj-1,Y5-1)}

"The metric software and related documentation are avail-
able at: https://sites.google.com/view/enriqueamigo

Property 2. [WRONG SEQUENCE MONOTONICITY]
Adding an incorrect sequence to the output should
decrease the system score. Assuming y; < k <1 <
Tit1-

{-(@i wi), (B, D), (25, 95)--}
< {, (.%'Z‘,yi), (.’I}j, y])}

F-measure over exact matching spans (Tjong
Kim Sang and De Meulder, 2003) complies with
these two properties. It is a combination of the
following precision and recall metrics:

Span Pre.(S:, S;) = wy
Zt |St|

G Zt |SfﬂSt|

S Rec.(8;, S;) = =2t 120
pan Rec.(St, St) Zt 5]

Awasthy et al. (2020) proposed another exact
matching based metric for NER tasks called Span
Similarity. However, it can be proved that it is
equivalent to span F-measure.

215N 5]

SpanSim(St,St) = ~ ~ ~
2 1St () Se| + 1St \ Se| + St \ St

These metrics, and in general the rest of metrics
described in this paper, can be computed for each
label ¢ and then averaged (macro average) or con-
sidering all annotated sequences as a whole. The
first approach avoids underestimating infrequent
labels.

2.2 Token-based Evaluation

The main drawback of exact matching metrics is
that they do not capture partial sequence predic-
tions, which is especially relevant when dealing
with long sequences. The following properties for-
malize the ability to capture single tokens within
sequences. Let ¢ be an integer value such that
0<e<y —uw.

Property 3. [OVErRLAP MoONOTONICITY] Adding a
correct token to a sequence prediction should in-
crease the system score. Assuming € > e:

{iy(miteyite),..} >{ ., (z;+€,yiLte), ...}

Property 4. [Noise MonotoniciTY] Adding an in-
correct token to a sequence prediction should de-
crease the score. Assuming € > e:

{in(mi—eyite), ..} >{.. (vi—€,yi Le), ...}
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Table 1: Metrics and Formal Properties

Metrics Formal Properties
2 8 .
g 3 S , ¢
w B % T 2% E
z . -~ B & 5 Z = =
o  Z e z =2 3 3 v E
= 8 = 82 5 z § & %
., = 7 Z = . . % 2 =
g . o BT Ij 2] 2 O o &
w ¥ 2 Z & & 7 7 Z2 = g
E v s & =2 =2 z z o 2 9z
Q &) < E ©] o [8a] m < — —
2 2 4 Hm E O 49O a 4 o z
= g E 2 5 5 o o B 2 9%
c & > O > O
C 2 & zZ & & & & & =z &
Span Matching based Metrics
F-measure over exact matches v Vv X X v VvV X X X X X
Token based metrics
Token Tag F-measure (I0) vV Vv v vV X X X X X X X
Token Tag F-measure (BIO,BIOE) vV VvV X Vv Vv Vv X X X X X
Token Tag F-measure (I0%*) v Vv v v v VvV X X X X X
Link based metrics
Link based F-measure v Vv v v Vv VvV X X X X X
BCubed metrics (extended) v Vv v Vv VvV Vv X X X v X
Partial Matching based Metrics
Intersection-based F-measure vV v VvV v X X Vv Vv X Vv X
Information-based Metrics
Information Contrast Model (ICM) v v v v Vv Vv Vv Vv Vv Vv V

Tag accuracy and token based F1-measure sat-
isfy these two properties. Under these metrics,
sequence labeling is evaluated as a token classifi-
cation task with one category per tag plus “no tag”
(Ratnaparkhi, 1996; Molina et al., 2016).

sES
E §€§t ‘§|
2 sEslsnsl
S sesis]
However, considering sequence labeling as a to-
ken classification task has the limitation of missing
boundaries in contiguous sequences. The following

properties focus on this issue:

N 5€5t15N s
Token Pre.(St, St) = M

Token Rec.(gt, St) =

Property 5. [SEQUENCE HOMOGENEITY] Correctly
splitting a predicted sequence into two contiguous
sequences which are in the gold standard must
increase the score. Supposing r; < y; < x; < ¥;
and x; = y; + 1:

{..., (:z:i,yi), (a:j,yj)...} > {, (J}Z‘, yj)...}

Property 6. [SEQUENCE COMPLETENESS] Splitting a
correct sequence prediction into two contiguous
sequences must decrease the score. Supposing
T < k< Yi

{..., (l’l,yz)} > {, (l’i, k‘), (k +1, y2>}

In token-based prediction, this problem has com-
monly been solved by using prefixed labels to indi-
cate whether the token is at the beginning or inside
the sequence (BIO encoding), and additionally in-
cluding prefixes for tokens at the end of sequences
(BIOE encoding) or for single token spans (BILOU,
BIOES or BMES encoding). However, this may re-
sult in certain cases in OVERLAP MONOTONICITY
not being satisfied: a system using BIO encoding
that identifies only a single token in the middle of a
sequence may not be rewarded, since the identified
token will be labeled with a B tag instead of an I
tag.

In order to capture sequence boundaries while
still allowing for partial matching, Esuli and Se-
bastiani (2010) proposed an alternative format that
considers whitespaces as taggable units that can be
in or out of the sequences. We refer to this as [O*
format in Table 1.

2.3 Link-based metrics

Another way of capturing sequence boundaries is
treating the labeled sequences as links between
tokens (Vilain et al., 1995; Schneider et al., 2014).
While in the case of exact matching-based metrics
the sequence labeling problem is understood as a
classification problem, link-based metrics frame
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sequence labeling as a clustering problem. Two
tokens are linked if there is an annotated sequence
labeled as t in which both tokens appear. This
allows for partial matches being taken into account.

wi—w; =3I €T, s € St(wi7wj €5s)

wi—w; =3t €T, s e St(wi,wj € s)
LinkPrecision(Sy, §) = [12d Wit A wi—w;}|
{i,7 @ wi—=w;}|

LinkRecall(S;, ;) = 119 Wity A wi—w; }]
i, 5 : wi—w;}|

The main problem with link F-measure is the
combinatorial explosion of links in large sequences,
which may bias the evaluation.

BCubed metrics partially solve this problem by
calculating link recall and precision at the token
level (Amig6 et al., 2009). BCubed precision mea-
sures the quality of the links established by the
system for each token, and BCubed recall repre-
sents the proportion of links covered for that token
compared to those present in the gold standard. Let-
ting Wy and W, be the sets of tokens annotated in
any sequence in the system output and the gold
standard respectively:

H{J : witw; A wi—w; }|

BC-Pre. (St, St) =

1
- ‘W51,| Z

= i : witw;}|
N 1 {j : wi~w; A wi—w;j }|
BC-Rec. (S, S;) =
eS80 = g | wzév 10 wi—w; |

2.4 Partial Matching based Metrics

Link-based metrics have certain limitations. Since
the evaluation is performed at token-pair level, the
sequence length is ignored. But the shorter a se-
quence is, the more a single token provides infor-
mation about the sequence: capturing the last token
mind in the span Eternal sunshine of the spotless
mind contributes less information than capturing
the last token York in the span New York. There-
fore, predicting a correct token (or an incorrect one)
should have less impact on a long sequence than
on a short sequence. The following two properties
formalize this idea. Assuming the i*" sequence in
the gold standard be longer than the j* sequence,
Le. y; —x; > yj — T8

Property 7. [SEQUENCE LENGTH VS. CAPTURED
Worps] The benefit of predicting a correct term
is higher in shorter sequences.

{..., (JJZ +1, yi), ey ([Ej,yj), }
> {, (:BZ', yi), e (.Cl?j + 1,yj), }

Property 8. [SEQUENCE LENGTH Vs. NOISY WORDS]
The penalty of predicting an incorrect term is
higher in shorter sequences.

{,([Bz — 17yi)7 ceny (.T,'j,yj), }
> {, (xz-,y,-), e (.iL‘j — 1,.%'), }

Link F-measure does not consider sequence
length and cannot satisfy these properties. BCubed
metrics do, but produce the opposite effect to that
described in these properties?.

In order to correctly account for sequence length,
it is necessary to evaluate at sequence level instead
of token or link level, while keeping the sensitivity
to partial sequence prediction. Metrics from MUC
evaluation campaigns distinguished between total
or partial hits, but without considering the length
of the sequence (Chinchor and Sundheim, 1993).

Johansson and Moschitti (2013) proposed an
intersection-based precision and recall to evaluate
the detection of polarity expressions. These metrics
have subsequently been used for propaganda detec-
tion (Da San Martino et al., 2019) and toxic span
detection (Pavlopoulos et al., 2021). First, they
formalize the token coverage on gold standard se-

. o _ |5ns]
quences, i.e., span coverage (C(s, s,h) = =5~
where h is normalization factor which represents
the predicted or true sequence length. Then the
intersection-based precision and recall are defined
as the span coverage C' regarding the sequence
length sum in the system output and the gold stan-
dard respectively:

LS 05,5, 180)
‘St‘ 3€8:
sESi
Int—Based—Rec(S’t, Sy) = ﬁ Z C(3,s,]s])
t

3€8;
s€S

Int-Based-Pre(S’t, St) =

However, since these metrics aggregate the in-
tersections of each sequence of the system output
with different sequences of the gold standard and
vice versa, SEQUENCE HOMOGENEITY and SE-
QUENCE COMPLETENESS are not satisfied. An-
other partial matching based metric is the Loss per
Sequence Nguyen and Guo (2007), but it exclu-
sively focuses on recall.

%For instance, missing a token in a sequence of length 10
reduces the recall associated with that token to zero and the
recall associated with the rest of the tokens in the sequence
by 1/10 (i.e. 1/10 - 9 = 9/10). This effect is greater than in
3-long sequences, in which case it would affect 1/3 recall on
two tokens (i.e. 1/3 -2 =2/3).
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Table 2: Formal Property Examples: Prediction A is
better than prediction B for each of the properties.

Property | Gold | Sys.A | Sys.B
-3 13
CORRECT SEQ. MON. 10-13 10-13 1-3
20-23 ;
1-3 13 1-3
WRONG SEQ. MON. 10-13 10_‘13 10-13
20-23 30-33
1-7 1-6 1-5
OVERLAP MON. 10-13 10-13 10-13
20-23 20-23 20-23
1-7 1-8 1-9
NOISE MON. 10-13 10-13 10-13
20-23 20-23 20-23
ég 1-5 1-7
SEQ. HOMOGENEITY . 6-7 .
10-13 10-13 10-13
20-23
1-7 1.7 1-5
SEQ. COMPLETEDNESS 10-13 ]0'13 6-7
20-23 ; 10-13
10-16 10-15 10-16
SEQ. L. vs. CAPT. W. ‘ 2023 ‘ 20-23 ‘ 20-22
10-16 10-17 10-16
SEQ. L. vs. NoIsY W. ‘ 20-23 ‘ 20-23 ‘ 20-24
10-16 10-14 10-13
OVERLAP INC. MON. ‘ 20-26 ‘ 20-25 ‘ 20-26
10-16 10-17 10-18
NOISE INC. MON. ‘ 20-26 ‘ 20-31 ‘ 2030

3 SL-ICM: An Information Theory based
Metric

Despite all properties defined in the previous sec-
tion, there are still some aspects which no metric
captures. One is that the credit earned by a system
for detecting the nt" token in a sequence should
depend on n. For instance, if the ground truth is
"Pope John Paul 11", then adding “Paul” to “Pope
John” is more important than adding “I/I” to “Pope
John Paul”, because “Paul” adds one third of the
content while “II” adds one fourth.

This idea is formalized by the following proper-
ties. Let the i*" and the j** sequences in the gold
standard be of the same size (y; — x; = y; — x;)
and let n be an integer:

Property 9. [OVERLAP INCREASING MONOTONICITY ]
The benefit of capturing a token decreases with the
amount of tokens already captured in the sequence:

{.os(@i,yi —n), ..., (zj,y; — ), ...}
>{.,(zyi—n—1),...,(zj,y; —n+1),..}
In the same way, each token incorrectly pre-

dicted is increasingly less harmful:

Property 10. [NOISE INCREASING MONOTONICITY ]
The penalty for incorrect term predictions de-

I 1 I 1 I 1 r 1
S
SnS"l 1 I 1 I 1
Tokens © e o o o o oo o006 00600000

Figure 1: Illustration of sequence set intersection.

creases with the number of noisy words already
predicted in the sequence:

{0 @iy +n), o (25,95 + 0+ 2),0)

BC-metrics and intersection-based F-measure
satisfy NOISE INCREASING MONOTONICITY be-
cause precision decreases more smoothly as we
introduce noisy tokens into the predicted sequence,
but they do not satisfy OVERLAP INCREASING
MONOTONICITY.

Another aspect that previous metrics ignore is
token specificity: missing the token 7he in the span
The Ohio State University is less serious than miss-
ing University, because the latter is more infor-
mative. On the other hand, missing University in
Harvard University is a less serious mistake than
missing Harvard. In other words, the more specific
the token is, the more information it contributes
to the sequence. This can be formalized as fol-
lows: Being P(n) the probability of the n* token
in the language model from which sequences are
extracted:

Property 11. [TokEN INFORMATIVENESS] The re-
ward or penalty for noisy tokens decreases with
their likelihood. Being P (y;)<P(y;):

Lo @i 9i), oo (2,5 — 1), .0}
> {7 (wivyi - 1), ceey (.ZL'j,yj), }

At the end of the day, the properties we have
just presented revolve around the information quan-
tity that each token contributes (correctly or in-
correctly) to the span being predicted. Generally,
we can assume that: (i) the longer the sequence,
the less information a single token provides; (ii)
the more tokens the system has identified, the less
a new token provides additional information (or
noise) and (iii) the more infrequent or specific the
token, the more information (or noise) the token
will add. Therefore, our claim is that sequence
labeling should be evaluated in terms of textual
information quantities.
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Table 3: Examples of compliance with formal properties. Each cell contains scores for predictions A/B defined in
Table 2. Scores that comply with the properties appear in bold.

Property | Span F Token-F (I0)  Token-F (BIOE) Link-F BC-F Int-F SL-ICM

CORRECT SEQ. MON. ‘ 0.8/0.5 0.778 7 0.429 0.778 7 0.429 0.762/0.375  0.778/0.429 0.8/0.5 0.653/0.306
WRONG SEQ. MON. ‘ 0.8/0.667 0.778 7 0.636 0.778 7 0.636 0.762/0.615  0.778/0.636 0.8/0.667 0.653/0.479
OVERLAP MON. ‘ 0.667/0.667  0.966/0.929 0.897/0.857 0.921/0.843  0.934/0.871 0.976/0.95 0.979/0.954
NOISE MON. ‘ 0.667/0.667  0.968/0.938 0.903/0.875 0.923/0.85 0.938/0.883  0.979/0.962  0.991/0.983
SEQ. HOMOGENEITY ‘ 0.857/0.333  0.846/0.846 0.846/0.692 0.848/0.737  0.846/0.737  0.857/0.857 0.738/0.53
SEQ. COMPLETEDNESS ‘ 0.8/0.333 0.846/0.846 0.846 / 0.692 0.884/0.737  0.846/0.704 0.8/0.8 0.692/0.535
SEQ. L. vS. CAPT. W. | 0.5/70.5 0.952/0.952 0.857/0.857 0.899/0.944  0.908/0.914  0.963/0.933  0.969/0.947
SEQ. L. vs. NoIsY W. | 0.5/0.5 0.957/0.957 0.87/0.87 0.905/0.938 0.915/0919  0.968/0.947  0.987/0.979
OVERLAP INC. MON. | 0/0.5 0.88/0.88 0.72/0.8 0.783/0.809  0.767/0.798 0.88/0.88 0.913/0.902
NOISE INC. MON. | 0/0 0.824/0.824 0.706 / 0.706 0.659/0.671  0.676/0.662  0.843/0.828  0.939/0.936

To account for this, we propose to define a par-
ticularization of the general Information Contrast
Model (ICM) (Amig6 et al., 2020) to the problem
of sequence labeling. The derivation of the metric
and all related details are described in Appendix A.
In this section, we summarize the resulting metric.

In sequence labeling, ICM measures similarity
in terms of the amount of information (according to
Information Theory) provided by the system output
labeled sequence set S, the gold standard labeled
sequence set S, and their intersection:

SLICM =3-I(S 0 S) — I(8) — I(S).

The intersection S ﬁ S requires mapping the
system output sequences in S with the correspond-
ing gold standard sequence in .S, if they exist. We
take the sequence intersections that maximize the
information in both directions (as illustrated in Fig-
ure 1). The directional intersection S 3 S repre-
sents the maximal information intersection between
each output sequences in S and the true sequences
in S:

A & N — A
SNS=(SnNS)N(SnNS)
S’HS:{éﬂargmaxsesl(éﬂs):éeg}

SL-ICM can be normalised between 0 and 1 by
using the amount of information provided by the
ground truth as reference, where 1 corresponds to
the maximum score (I(.5)) and O corresponds to
an empty output (—1(S5)):

SL-ICM(S, S) + I(S)
2-1(S) '

SL-ICM norm(S, S) =

On the basis of Information Theory and cer-
tain assumptions (see Appendix A), the informa-
tion content I(s,t) of labeling a sequence s =
(wy, ..., w;) as t can be computed as:

I(s,t) = —log % ‘H P(w;)7
i=1..1

Where N and NV represent the amount of se-
quences annotated as t and the total amount of se-
quences annotated in the gold standard. P(w;) rep-
resents the probability of the token w; in the corpus.
If P(w;) is unknown, we can assume an unitary in-
formation content per token, i.e. —log(P(w)) = 1.
Therefore:

Ny 1
I(s,t) = —log (N) + Z A
i=1..1

According to SL-ICM, a system that does not
provide any information (i.e. that makes no predic-
tions) is penalized based on the amount of informa-
tion provided in the gold standard. A system that
generates the same output as the gold standard is
rewarded according to the amount of information in
the gold standard (i.e. I(S) = 0 = SL-ICM =
—I(S)and § = S = SL-ICM = I(S)).

ICM can be normalized between 0 and 1 by us-
ing the amount of information provided by the gold
standard as reference, where 1 corresponds to the
maximum score (I(5)) and O corresponds to an
empty output (—1(S)). (See supplementary materi-
als for the metric derivation details and the formal
proofs of its satisfied properties.)

4 Empirical results

We now conduct a series of experiments to assess
how metrics behave in relation to the properties we
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Table 4: Metric scores for gold standard transformations in MULTICONER data set.

Output | Span-F  Token-F I0) Token-F (BIOE) Link-F  BC-F Int-F  SL-ICM
Gold Standard 1 1 1 1 1 1 1
Sequence split 0.368 1 0.743 0.91 0.906 1 0.704
Maximum Overlap 0.766 0.918 0.754 0.859 0.859  0.932 0.976
Minimum Overlap 0.766 0.863 0.698 0.76 0.793  0.902 0.961
Long Sequence Truncation 0.961 0.993 0.979 0.984  0.988  0.996 0.998
Short Sequence Truncation 0.961 0.993 0.979 0.99 0.988 0.993 0.997
Long Sequence Extension 0.961 0.993 0.98 0.981 0.988 0.997 0.999
Short Sequence Extension 0.961 0.994 0.98 0.988 0.989 0.996 0.999
-1 Token 0.961 0.993 0.979 0.984 0.988  0.996 0.998
-2 Token 0 -0.007 -0.007 -0.014  -0.01  -0.004  -0.002
-3 Token 0 -0.014 -0.014 -0.024  -0.018 -0.008 -0.005
+1 Token 0.548 0.926 0.779 0.874 0.866  0.933 0.985
+2 Token 0 -0.037 -0.032 -0.072 -0.059 -0.023  -0.006
+3 Token 0 -0.072 -0.061 -0.145  -0.107 -0.038  -0.012

presented in sections 2 and 3.

4.1 Metric Results on Selected Examples

In our first experiment, we exemplify formal prop-
erties compliance with particular cases. Table 2
shows an example of gold standard, system output
A and output B that fit the conditions of each formal
property definition. The sequences are expressed
by their first and last token position. According to
the corresponding property (first column), System
A should outperform System B.

Table 3 shows the scores achieved by the systems
A and B according to each metric in each case.
Results that conform to the property (i.e. when
System A outperforms System B) are highlighted
in bold.

For the sake of simplicity we have excluded To-
KEN INFORMATIVENESS since no metric quan-
tifies this aspect except SL-ICM. In the case of
SL-ICM, we state a constant token probability
k = P(w) = 1/N, where N represents the amount
of sequences in the gold standard. SL-ICM is nor-
malized with respect to the gold standard informa-
tion content.

The results displayed in Table 3 are perfectly
aligned with the formal analysis carried out
above. For instance, all metrics satisfy COR-
RECT SEQUENCE MONOTONICITY and WRONG
SEQUENCE MONOTONICITY; exact span based
metrics fail in all other properties, except for SE-
QUENCE HOMOGENEITY and SEQUENCE COM-
PLETENESS, etc.

4.2 Metric Results on Real Data

For our second experiment, we used the develop-
ment set of the Spanish section of the MultiCoNER
dataset (Malmasi et al., 2022).

The original set was used as a gold standard.
We then performed a series of systematic transfor-
mations to the original annotation (adding a noisy
token, removing a correct token, shifting the labels
one token to the left, etc.) in order to generate syn-
thetic outputs that would allow us to test each of
the properties described in sections 2 and 3.

Table 4 shows the metric scores for each of the
transformations. For instance, in order to check
SEQUENCE COMPLETENESS, we split all multi-
token entities into two adjacent sequences. All
metrics penalize these mistakes except for token F1
with IO encoding and Int-F, which are not sensitive
to sequence boundaries.

In order to assess compliance with OVERLAP
MONOTONICITY and NOISE MONOTONICITY, the
annotation of sequences of more than 2 tokens was
extended one position (Maximum Overlap), so a
maximal yet imperfect overlap between the gold
standard and the output was achieved. We then ap-
plied a Minimum Overlap transformation, where
sequences overlap one token only with the gold
standard. All metrics are sensitive to varying de-
grees of overlap, except for span F1. Notice also
that token-oriented and link-oriented metrics report
a larger difference than Int-F or SL-ICM. The rea-
son is that, for the latter two, the first detected token
in a sequence has more effect than the rest, satisfy-
ing OVERLAP INCREASING MONOTONICITY and
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NOISE INCREASING MONOTONICITY).

In order to check SEQUENCE LENGTH VS. CAP-
TURED WORDS, we removed the last token of
sequences longer than 4 (46 sequences in the
data set). Similarly, we did the same for 46 se-
quences of length 2. These are the Long Sequence
Truncation and Short Sequence Truncation
transformations. In order to check SEQUENCE
LENGTH VS. NOISY WORDS, we added one con-
tiguous token to the 46 sequences of length 4 (Long
Sequence Extension) and to the 46 sequences of
length 2 (Short Sequence Extension). As the ta-
ble shows, only Int-F and SL-ICM are sensitive
to the sequence length effect on captured or noisy
tokens, but to a lesser extent than to previous trans-
formations.

In order to check for OVERLAP INCREASING
MONOTONICITY, we produced three synthetic
outputs, namely, -1 Tokens, -2 Tokens, and
-3 Tokens, where 1, 2 or 3 correct tokens are
removed from the sequence. We considered se-
quences that appeared alone in a sentence (532
affected sequences). According to the OVERLAP
INCREASING MONOTONICITY property, the score
difference between the first and second outputs
should be smaller than the difference between the
second and third output. The only metric that satis-
fies this property is SL-ICM. In fact, the token-pair
combination produces the opposite effect in link
based metrics (i.e. link F1 and BC F1).

Similarly, in order to assess NOISE INCREAS-
ING MONOTONICITY, we generated +1 Token,
+2 Tokens, and +3 Tokens transformations, where
1, 2 and 3 noisy tokens are added to the sequence.
According to the NOISE INCREASING MONO-
TONICITY property, the score difference between
+1 Token and +2 Tokens should be larger than be-
tween +2 Tokens and +3 Tokens. In this case, SL-
ICM, Intersection based F-measure and BCubed
metrics satisfy the property. In addition, Token-F
and Link-F do not strictly satisfy the property, as
they do not consider the sequence as an evaluation
unit. However, the test is defined homogeneously
for all sequence transformations and the property
is empirically satisfied.

5 Conclusions

In this paper we have introduced a set of desir-
able formal properties when evaluating sequence
labeling tasks. We have investigated which exist-
ing metrics satisfy each property and proposed a

INIT

Short or explicit YES
sequences — Span-F-measure
- Token Tag F-measure(lO format)
? NO
Sequence NO High sequence
length variability ><.__density in text
'L YES
YES
Token Tag F-measre(BIOE or 10°)
Link-F-measure, BCubed F-measure
Very long
sequences NO o .
or token spacificity — Intersection-based F-measure
variability.

Labelling ICM

Figure 2: Metric selection flow.

new metric (SL-ICM) based on information theory.
Finally, we have conducted a series of experiments
to assess how different metrics behave on different
evaluation scenarios. Our theoretical and empirical
results show that the new SL-ICM is the only met-
ric compliant with all properties in all experiments.

As a result of the analysis conducted in this pa-
per, Figure 2 provides a guide to select the most
suitable metric depending on the task and scenario.
If exact matching between the system output and
the gold standard is the main requisite, then span F-
measure should be the metric of choice. This may
occur in situations where the sequences are very
short (one or two tokens per sequence). If the se-
quences are long and partial matching plays a role,
then token F-measure with a simple annotation
format (I0) may be appropriate, unless there are
contiguous sequences. Then, it is better to use to-
ken F-measure with BIO or BIOE encoding, which
consider the sequence boundaries. This is likely
in applications such as text chunking. If there is a
large variance in the length of the sequences, then
we may want to give more weight to each token
when the sequence is short, and it is more advis-
able to use a metric such as Intersection-based F-
measure. This is the case of heterogeneous Named
Entity Recognition, which includes short names
and long descriptors. Finally, some sequence label-
ing scenarios include very long sequences (answer
retrieval or quotation detection, for instance). Then
we need to consider not only the length of the se-
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quence but also the number of tokens that have been
previously identified in the sequence, and SL-ICM
should be the metric of choice. SL-ICM is also
suitable when there is a high token specificity vari-
ability within sequences, for instance, stopwords
in named entities.

6 Limitations

In this work we have introduced a set of formal
properties that can be applied to sequence labeling
evaluation metrics, and a novel metric for evalu-
ating sequence labeling tasks that satisfies all the
desired properties. The properties we have pre-
sented may help characterize metrics and get a
better understanding of the evaluation results of a
system.

These properties, however, may not be exhaus-
tive, and other researchers may identify additional
properties that may be relevant in certain scenarios.
Similarly, the metric we have proposed can be use-
ful in certain scenarios and tasks, but no evaluation
metric is definitive or perfect for every case: the
suitability of a metric is defined by the use case and
our proposed metric should not be taken as the best
suited for any usage scenario.

Another limitation is that the proposed metric
satisfies all desirable formal properties identified in
our formal analysis, but it comes at the cost of in-
terpretability: compared with span exact matching,
for instance, SL-ICM results are harder to inter-
pret. There is usually a tradeoff between metric
simplicity and metric adequacy, which may hinder
adoption. We provide an open-source implemen-
tation of the metric to facilitate adoption?, but in-
terpretation will always be more challenging than
span-based Precision and Recall.

Finally, our paper covers three of the four general
methods proposed in the methodology taxonomy
by Amigé et al. (2018): (i) Theoretical top-down,
consisting of defining a priori properties to be satis-
fied by metrics, (ii) theoretical bottom-up, consist-
ing of formally generalizing metrics such as span
F-measure and Span Similarity, and (iii) empirical
top-down, consisting of checking metrics on syn-
thetic data generated from formal property example
cases and transformations of the gold standard in
a real data set. The fourth methodology, i.e., em-
pirical bottom-up (which would consist of testing
the metrics on real systems and data), is outside the
scope of this article due to space limitations, but

Shttps://sites.google.com/view/enriqueamigo

will be considered for future developments.
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Supplementary Material

Appendix A: SL-ICM Derivation

SL-ICM is based on the Information Contrast Model similarity
scheme (Amigo et al., 2020) which is a linear combination of
the information content of the compared elements and their
union:

ICM(A, B) = aI(A) + a2 I(B) — BI(A, B)

In order to satisfy general similarity formal properties, the
parameters must comply with a1, a2 < 8 < a1 + az. We
set the parameters vy = avg = 2 and § = 3.

SL-ICM = 2-I(S) +2-I(S) — 3-I(5,5)

The motivation for these parameters is that they fit into the
legal theoretic ranges. In addition, according to these pa-
rameters A system that does not provide any information is
penalized based on the amount of information provided in
the gold standard. A system that generates the same output
as the gold standard is rewarded according to the amount of
information in the gold standard.

I(S) =0 = I(5,8) = I(S) = 0 = SQ-ICM = —I(S)
§=5= I(5) =1(S) = I(3, 5) = SQ-ICM = I(S)

In the calculation of aggregate information it is necessary
to discard redundant information. For example, if S = S then
I(S,S) = I(S). On the contrary, if S and S are totally dis-
joint sequences, then we can sum their information content to
quantify the joint information. In order to avoid redundant in-
formation, we approach the joint information quantity / (5' ,S)
as the sum of the information quantities from the system out-
put and the gold standard (I(S) and 1(.S)), minus the amount
of redundant information, which is the information content of
the intersection between both sets of sequences.

1(S8,8) = I(S)+ I(S) - I(SN S)

Leaving SL-ICM defined as:

SL-ICM(S,S) =2-I(S) 4+ 2-I(S) —3-1(S,5)
=2.1(8)+2-I(S5) = 3(I(S) + I(S) — I(SNS))
=3.-1(SNS) — I(S) — I(S)
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Computing intersection between SN S is not obvious. The
intersection of sequences should have less information than
the original ones. For this reason, it is necessary to map each
sequence in system output with a corresponding sequence
in the gold standard. For example, if the system output is
one sequence S = {John Mike} and the gold consists of two
sequences, S = {John, Smith}, the intersection should be
either S NS = {John} or S N S = {Smith}, since otherwise,
we would have more information in the intersection (two
sequences) than in the original S. The fundamental problem
is that we cannot intersect a long sequence with multiple
short ones, but only with one. SL-ICM takes the sequence
intersections that maximize the information in both directions.
S.US, represents the set of sequences in S; intersected with
the sequence in .S; with which it shares the most information.
5,08, is the opposite:

5,08, = U {s} Nargmax g, (I(5Ns,t))
§€5‘t

5,08, = U {s} Nargmax, g, (I(sN 3,t))
sESt

where (s, t) represents the information quantity associ-
ated to labelling a sequence s as t. Then we consider the
sequences that fit in both directions:

Sin S = (808 n $.08;)

t

Figure 1 illustrates the sequence set intersection. Notice
that we could find some counter samples for this approach.
For example, it could be the case that, when many contiguous
sequences of S and S cross each other like bricks, the bidi-
rectional intersection never coincides and the intersection is
lost. This could be solved by a more complex algorithmic pro-
cess, but we believe that in sequence labeling these situations
are too infrequent. Therefore, we have preferred a simpler
option. For the sake of clarity, the figure does not include
discontinuous sequences, but the behavior in that case would
be similar.

Once S N St is solved, there are no overlapping sequences
left. That is, no token belongs simultaneously to two se-
quences with the same tag. This fits in the intersection set
5',5 N S, the system output set S’t, and the gold standard S;.
Under this condition, the information of sequence sets can
be quantified as the sum of their information contents, i.e.
I(Se) =3 ics, 1(3).

Now, the next issue is to compute the information content
of assigning a tag t to the sequence s. We compute the in-
formation content of a sequence labelling (s, ¢) according to
Shannon’s information content definition (I(x) = log %).
We assume that the probability of a sequence s to be tagged
as t is the joint probability of the label and the word sequence.
Assuming independence:

P(s,t) = P(t) - P(s) ~ — -

And therefore:
I(s,t) = —log (%) + 1(s)

where Ny = > ¢ [s|,and N = > o |s| represent the
amount of tokens annotated as ¢ in the goldstandard and the

total amount of tokens respectively. The component % makes
the metric reward hits in infrequent tags.

According to the properties defined in this paper, the word
information should decrease asymptotically with respect to
the sequence length (OVERLAP INCREASING MONOTONIC-
ITY). We assume that the information contribution decreases
according to % being [ the sequence length. That is,

I, wd) = I({ws, o w 1)) + 7 T({wn))

In terms of probability, this implies that the conditional
probability of a token given the previous sequence is the I-th
root of the isolated token probability:

I(wh. . ,wl,hwl)

1
.,wl_l) —+ 7I(wl)

l
1
S Wi-1)) — 7

:I(wl,..

= —log(P(wr, ... log(P(wr))

Given that

..,wl) :P(wl|w1,...,wl_1) -P(w1,...,wl_1))

W) = — 2 log(P(wn))

—log(P(wi|wn, .. i

which implies that

=

P(wl|w1, Ceey wz_1) = P(wl)

For example, if the probability of a token in a specific
domain is Wlo = 0.01, then it is assumed that the conditional
probability of that token as the second element of a sequence
is 0.1. After 10 tokens, it would be 0.63, providing much less
information.

Therefore, being s € S, the corresponding information
quantity is:

I(s,t) = —log (JJVV I1 P(wiﬁ) $))

7

If the single token probability is unkown, we can assume a
constant probability P(w) = k where k is less than one:

I(s,t) = —log (ZZ\\[; H k:1>

i=1..1

Finally, being .S, and S the sequences sets in the system
output and the goldstandard, SL-ICM(S, .S) can be expressed
as:

> (s

teT

Z I(s,t) — Z I(s,t) — Z I(s,t))

s€St N St SESt s€S
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Appendix B:SL-ICM Properties

First, if S and S do not present partial matches, the SQ-ICM
lead to the (non hierarchical) multilabel classification metric
ICM (Amigo and Delgado, 2022). Being W the total set of
words in the text and being §(w) and s(w) the labels assigned
to w by the system output and the gold standard respectively:

_ |V |
SQICM = ) 3 A > log ( V]
weWw tes(w)Ns(w)
\Nt|) | Nt |
— —log (— — —log |
2w 2 e

-y | = ()
weW \tes(w)Ns(w) |N|
S (M)

. [N
tes(w)\s(s)

tes(w)\3(s)

satisfying CORRECT SEQUENCE MONOTONICITY and
WRONG SEQUENCE MONOTONICITY. In addition, other clas-
sification oriented properties described in (Amigo and Del-
gado, 2022) are satisfied, such as TRUE CATEGORY SPECI-
FICITY and WRONG CATEGORY SPECIFICITY.

In addition, according to Equation 1 the more a sequence is
short, the more adding a new word to the sequence increases
the information quantity, given that:

() (o (5.0.)
i=1..1 i=1..1—1
Nt 1 Nt 1
>—log< H ki>—<—log< H kl))
N i=1..14+1 N 1=1..1

Therefore, the rest of properties are satisfied:

* Adding correctly labeled words to a sequence, increases
I(S N S) and, to a lower extent, I(.S), but not I(.S),
complying with OVERLAP MONOTONICITY.

+ Adding wrong tokens to a sequence, increases I(.5)
but not I(S N S) and I(S), complying with NOISE
MONOTONICITY.

* When splitting a sequence incorrectly, (S N S) de-

creases and I (.5) increases, satisfying SEQUENCE COM-
PLETEDNESS.

* When joining incorrectly correct sequences into two
contigous sequences, I(S N S) decreases to the same

extent than I(.5), satisfying SEQUENCE HOMOGENE-
ITY due to the metric parameters.

* The information content changes to a greater extent in
short sequences when adding or removing words. There-
fore, SEQUENCE LENGTH VS. CAPTURED WORDS
and SEQUENCE LENGTH VS. NOISY WORDS are satis-
fied.

* The information content changes to a greater extent in
short sequences when adding or removing words. There-
fore, OVERLAP INCREASING MONOTONICITY are sat-
isfied via the length of I(S N S) and I(.S). NOISE IN-
CREASING MONOTONICITY are satisfied via the length

of I(S).
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