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Abstract

The evolution of speech technology has been
spurred by the rapid increase in dataset sizes.
Traditional speech models generally depend on
a large amount of labeled training data, which
is scarce for low-resource languages. This pa-
per presents GigaSpeech 2, a large-scale, multi-
domain, multilingual speech recognition cor-
pus. It is designed for low-resource languages
and does not rely on paired speech and text data.
GigaSpeech 2 comprises about 30,000 hours
of automatically transcribed speech, including
Thai, Indonesian, and Vietnamese, gathered
from unlabeled YouTube videos. We also in-
troduce an automated pipeline for data crawl-
ing, transcription, and label refinement. Specif-
ically, this pipeline involves Whisper for initial
transcription, MMS for forced alignment, and
multi-dimensional filtering for data quality as-
surance. A modified Noisy Student Training
is developed to further refine flawed pseudo
labels iteratively, thereby enhancing model per-
formance. Experimental results on our manu-
ally transcribed evaluation set and two public
test sets from Common Voice and FLEURS
confirm our corpus’s high quality and broad
applicability. Notably, ASR models trained on
GigaSpeech 2 can reduce the word error rate for
Thai, Indonesian, and Vietnamese on our chal-
lenging and realistic YouTube test set by 25%
to 40% compared to Whisper large-v3, with
merely 10% model parameters. Furthermore,
our ASR models trained on GigaSpeech 2 yield
superior performance compared to commercial
services. We hope that our newly introduced
corpus and pipeline will open a new avenue
for low-resource speech recognition and signif-
icantly facilitate research in this area.

1 Introduction

In recent years, the scaling of model parameters
and data size has prevailed and proven effective
in a range of areas, including language (Kaplan

*Corresponding author.

et al., 2020; Hoffmann et al., 2022), vision (Betker
et al., 2023; Dehghani et al., 2023), as well as
speech processing (Pratap et al., 2024; Zhang et al.,
2023; Radford et al., 2023). Consequently, pur-
suing superior AI models is now closely associ-
ated with expanding model size and leveraging
larger, high-quality datasets. In the realm of Au-
tomatic Speech Recognition (ASR), several large-
scale open-source labeled speech datasets (Chen
et al., 2021; Kang et al., 2024; Zhang et al., 2022;
Galvez et al., 2021; Pratap et al., 2020b; Ardila
et al., 2020) have been proposed. However, these
extensive datasets are only available for several
mainstream languages, such as English and Man-
darin, hindering speech recognition development
for low-resource languages. Moreover, traditional
ASR corpus (Ardila et al., 2020; Conneau et al.,
2023; Bu et al., 2017; Du et al., 2018) construction
relies heavily on human-labeled speech data, mak-
ing it time-consuming and a major bottleneck in
the fast-paced AI industry. Reducing dependence
on vast labeled data is crucial when expanding to
new languages and domains. YODAS (Li et al.,
2023) attempts to address this issue by building
multilingual datasets via scraping audio and tran-
scriptions from YouTube. However, neither manual
nor automatic subtitles accurately reflect the speech
content, resulting in unguaranteed quality.

With this perspective in mind, we propose a new
paradigm for constructing large-scale ASR datasets,
focusing solely on audio content irrespective of the
existence or quality of corresponding text pairs.
This approach leverages the gigantic amount of
unlabeled audio data, bypassing the constraints
of scarce paired data. We introduce GigaSpeech
2, an evolving1, large-scale, multi-domain, mul-
tilingual ASR corpus for low-resource Southeast
Asian languages. GigaSpeech 2 raw comprises

1The term “evolving” continues the naming convention
used by GigaSpeech.
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about 30,000 hours of automatically transcribed
speech, across Thai, Indonesian, and Vietnamese.
GigaSpeech 2 refined consists of 10,000 hours of
Thai, 6,000 hours each for Indonesian and Viet-
namese. To achieve this, an automated pipeline
is developed for data crawling, transcription, and
filtering. Furthermore, a modified Noisy Student
Training (NST) (Xie et al., 2020) method is pro-
posed to refine labels from flawed data iteratively.
Through comprehensive evaluations, ASR mod-
els trained on GigaSpeech 2 refined can reduce
the word error rate for Thai, Indonesian, and Viet-
namese on our YouTube test set by 25% to 40%
compared to the powerful Whisper large-v3 model,
with merely 10% model parameters.

Our contributions can be summarized as follows:

• We release GigaSpeech 2 with two versions: Gi-
gaSpeech 2 raw comprises about 30,000 hours of
automatically transcribed speech across Thai, In-
donesian, and Vietnamese. GigaSpeech 2 refined
consists of 10,000 hours of Thai, 6,000 hours
each for Indonesian and Vietnamese.

• We develop an automated pipeline for data crawl-
ing, transcription, and label refinement, enabling
the creation of large-scale speech datasets with-
out reliance on labeled data.

• We propose a modified NST method to iteratively
refine flawed pseudo labels. Our modified NST
performs scaling, relabeling, and filtering data
within each iteration, significantly improving fi-
nal data quality.

• We release a series of challenging and realistic
speech recognition test sets, including Thai, In-
donesian, and Vietnamese. Compared to previ-
ous public test sets, GigaSpeech 2 test sets more
realistically reflect speech recognition scenarios
and mirror the real performance of an ASR sys-
tem for low-resource languages.

• Experimental results on our challenging Gi-
gaSpeech 2 test sets, as well as other compet-
itive public test sets including Common Voice
and FLEURS, demonstrate the superiority of the
ASR models trained on GigaSpeech 2 over sev-
eral competitive baselines, including Whisper
large-v3 and commercial services.

2 Related Work

Multilingual Low-Resource Speech Datasets
Several publicly available multilingual speech
datasets have emerged for low-resource lan-
guages. BABEL (Gales et al., 2014), a pioneer-

ing dataset, includes conversational telephone data
in 17 African and Asian languages. Common
Voice (Ardila et al., 2020) offers 19,000 hours
of validated recordings in over 100 languages.
FLEURS (Conneau et al., 2023) covers 102 lan-
guages with 12 hours of supervised data per lan-
guage. CMU Wilderness (Black, 2019) provides
20 hours of New Testament data for over 700 lan-
guages. VoxLingua107 (Valk and Alumäe, 2021)
contains 6,628 hours of unlabeled YouTube data
across 107 languages. However, most public mul-
tilingual speech datasets focus on high-resource
languages, leaving low-resource languages with
limited annotated speech data. As detailed in Ta-
ble 1, the available open-source data for Thai,
Indonesian, and Vietnamese is scarce. In con-
trast, industry-utilized speech models like Whis-
per (Radford et al., 2023), MMS (Pratap et al.,
2024), Google USM (Zhang et al., 2023), and
Universal-1 (Ramirez et al., 2024) are trained on
massive industrial-grade datasets, the details of
which remain undisclosed. To resolve the problem,
YODAS (Li et al., 2023) attempts to crawl audio
from YouTube, but neither manual nor automatic
subtitles accurately reflect the speech content, re-
sulting in unguaranteed quality. Moreover, widely
used evaluation benchmarks for low-resource lan-
guages (Ardila et al., 2020; Conneau et al., 2023)
only consist of read speech, which is relatively
clean and mismatched with real-world speech data.
Multilingual Automatic Speech Recognition
As the demand for communication between peo-
ple worldwide grows, many works (Radford et al.,
2023; Zhang et al., 2023; Pratap et al., 2024; Li
et al., 2021; Lugosch et al., 2022; Toshniwal et al.,
2018; Cho et al., 2018; Pratap et al., 2020a; Tjandra
et al., 2023; Kannan et al., 2019; Conneau et al.,
2021) have shifted attention to multilingual speech
recognition. Whisper (Radford et al., 2023), built
on 680,000 hours of web data, supports 99 lan-
guages. Google USM (Zhang et al., 2023), trained
on YouTube audio, extends to 100+ languages.
Massively Multilingual Speech (MMS) (Pratap
et al., 2024), trained on religion data, further scales
to 1,107 languages.
Noisy Student Training (NST) NST (Xie et al.,
2020; Park et al., 2020; Xu et al., 2020; Zhang
et al., 2020; Likhomanenko et al., 2021; Mehmood
et al., 2022; Chen et al., 2023) is a self-training
technique that leverages unlabeled data to enhance
performance. Traditional NST methods start with
training a teacher model on high-quality labeled
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Table 1: Comparison of data size between GigaSpeech 2 and other common public multilingual speech datasets on
Thai (th), Indonesian (id), and Vietnamese (vi).

Dataset Language # Hours
(h) Domain Speech Type Labeled Label Type

Common Voice (Ardila et al., 2020)
th 172.0

Open domain Read Yes Manualid 28.0
vi 6.0

FLEURS (Conneau et al., 2023)
th 13.3

Wikipedia Read Yes Manualid 12.6
vi 13.3

VoxLingua107 (Valk and Alumäe, 2021)
th 61.0

YouTube Spontaneous No -id 40.0
vi 64.0

CMU Wilderness (Black, 2019)
th 15.6

Religion Read Yes Manualid 70.9
vi 9.2

BABEL (Gales et al., 2014) vi 87.1 Conversation Spontaneous Yes Manual
VietMed (Le-Duc, 2024) vi 16.0 Medical Spontaneous Yes Manual

Thai Dialect Corpus (Suwanbandit et al., 2023) th 840.0 Open domain Read Yes Manual
TITML-IDN (Shinoda and Furui, 2011) id 14.5 News Read Yes Manual
MEDISCO (Qorib and Adriani, 2018) id 10.0 Medical Read Yes Manual

YODAS manual (Li et al., 2023)
th 497.1

YouTube Spontaneous Yes Manualid 1420.1
vi 779.9

YODAS automatic (Li et al., 2023)
th 1.9

YouTube Spontaneous Yes Pseudoid 8463.6
vi 9203.1

GigaSpeech 2 raw
th 12901.8

YouTube Spontaneous Yes Pseudoid 8112.9
vi 7324.0

GigaSpeech 2 refined
th 10262.0

YouTube Spontaneous Yes Pseudoid 5714.0
vi 6039.0

data. Each student model then trains on both noisy-
augmented labeled data and pseudo-labeled data
generated by its teacher from the unlabeled data.
One study (Chen et al., 2023) has explored using
Character Error Rate (CER), calculated between
pseudo-labeled data generated with and without
language model, to perform data selection, sug-
gesting a positive correlation between the CERs of
different pseudo labels and their ground truth.

3 Dataset Construction

Our proposed automated construction pipeline is
illustrated in Fig. 1. Sec. 3.1 covers the stages
involved in building GigaSpeech 2 raw and Sec.
3.2 further construct GigaSpeech 2 refined.

3.1 GigaSpeech 2 raw: Automated Crawling
and Transcription

Audio Collection Due to the scarcity of human-
labeled data in low-resource languages, our dataset

is collected with a focus solely on the audio con-
tent, irrespective of the existence or quality of cor-
responding text pairs. This strategy allows for
leveraging a broader range of audio data. Given
the scarcity and uneven distribution of resources
for low-resource languages, we strategically crawl
videos from YouTube channels based on two key
considerations. First, prioritizing mainstream and
popular channels helps ensure consistent domain
characteristics and higher audio quality. Such con-
tent is widely viewed, and its creators are generally
more mindful of ethical and legal considerations
prior to publishing. Second, channels with huge
differences in topics and content formats are less
likely to have speaker overlap, which simplifies
subsequent data partitioning. The data collection
process starts by manually defining categories of in-
terest. The selected topics include Agriculture, Art,
Business, Climate, Culture, Economics, Education,
Entertainment, Health, History, Literature, Music,

2675



Category Defining

Channel Selection

Audio Pre-processing

Audio Crawling

Audio

Collection

TRAIN Splitting

DEV/TEST Splitting

Dataset 
Partitioning

Automated Transcription

Automated 
Transcription

Language Detection

Manual Transcription

Manual 
Transcription

Forced Alignment

Forced 
Alignment

Charset FilteringCharset Filtering

Balancing

Language Confidence

 Filtering

Audio Duration 
Filtering

Data Filtering

Train teacher model 
on pseudo-label set

Infer the teacher 
on large pseudo-

label set and filter

Assign the student 
as the new teacher

Train equal-or-larger 
student model on 

refined pseudo-label 
set with noise

Label Refinement

GigaSpeech 2

refined

GigaSpeech 2

raw

Figure 1: Automated construction pipeline of GigaSpeech 2, comprising (1) audio collection, (2) dataset partitioning,
(3) automated transcription with Whisper, (4) forced alignment with TorchAudio, (5) transcription normalization,
(6) data filtering, and (7) label refinement.

Politics, Relationships, Shopping, Society, Sport,
Technology, and Travel. Alongside multiple topics,
various content formats are also considered, includ-
ing Audiobook, Commentary, Lecture, Monologue,
Movie, News, Talk, and Vlog. This broad selec-
tion ensures the comprehensiveness of the dataset
across multiple domains for research and analysis.
Once the list of YouTube channels is prepared, we
use yt-dlp2 toolkit to download all audio files in
WebM format. These files are then converted to
WAV format with a single channel and resampled
at a 16 kHz sampling rate.
Creating TRAIN/DEV/TEST Splits To ensure
no speaker overlap between the splits, we manually
verify no speaker overlap between different chan-
nels and partition the data by allocating different
YouTube channels to each subset. The dataset is di-
vided into three distinct subsets: TRAIN, DEV, and
TEST. The DEV and TEST sets each contain 10
hours and are manually transcribed by profession-
als, while the remainder is allocated to the TRAIN
set. Table 1 shows the amount of data across these
three languages. Detailed analysis of GigaSpeech
2 is illustrated in Appendix A.
Transcription with Whisper Whisper large-v3
model3 from OpenAI is used to transcribe audio
files automatically. For each audio recording, a
30-second segment is selected from the middle to
perform language detection by Whisper. Only au-
dios that match the target languages are transcribed.
Forced Alignment with TorchAudio Although
Whisper can generate timestamps, inspection re-

2https://github.com/yt-dlp/yt-dlp
3https://huggingface.co/openai/

whisper-large-v3

veals they are not precise enough. We resort to
the model4 from TorchAudio (Hwang et al., 2023)
for forced alignment, which provides reliable align-
ment for noisy transcriptions, supports efficient
processing on GPUs, and handles longer sequences
more effectively (Pratap et al., 2024).
Text Normalization Text normalization on tran-
scripts involves applying Normalization Form
Compatibility Composition (NFKC), converting
all characters to uppercase, removing punctuation,
and mapping Arabic numerals to corresponding
words in the respective languages.
Multi-dimensional Filtering A series of heuris-
tic filtering rules across text and audio modalities
are implemented to exclude relatively poor-quality
samples. 1) Charset Filtering: Segments are re-
tained if they only contain characters permitted by
the charset of the respective language. 2) Language
Confidence Filtering: The language identification
(LID) model5 from fastText (Joulin et al., 2016)
is used to filter based on the estimated language
confidence score, retaining only segments with con-
fidence scores above a predetermined threshold.
This method effectively eliminates meaningless
and repetitive segments. Note that language identi-
fication based on audio has already been performed
before transcription. 3) Audio Duration Filtering:
Segments are filtered based on duration, with only
those retained within the predetermined minimum
and maximum duration thresholds. 4) Balancing:
We carefully control the duplication of transcripts

4https://dl.fbaipublicfiles.com/mms/
torchaudio/ctc_alignment_mling_uroman/model.pt

5https://dl.fbaipublicfiles.com/fasttext/
supervised-models/lid.176.bin
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caused by channel-specific content while preserv-
ing natural linguistic patterns.

3.2 GigaSpeech 2 refined: Iterative Label
Refinement

Some samples remain low quality due to inaccura-
cies in Whisper transcriptions and imprecise forced
alignment boundaries. To address this, we develop
a modified NST method. As illustrated in the bot-
tom right corner of Fig. 1, it begins by training
a teacher model on a subset of flawed pseudo la-
bels, iteratively expanding the training set, gen-
erating new pseudo labels, and filtering them. A
student model, equal to or larger than the teacher,
is trained on these refined pseudo labels and as-
signed as the new teacher. Unlike previous NST
approaches that heavily rely on unchanged super-
vised data combined with additional unsupervised
data, our method eliminates the need for any su-
pervised data. Instead, we treat the flawed pseudo
labels generated by Whisper as supervised data,
refining all labels iteratively based on the Character
Error Rate (CER) between those produced by Whis-
per and the teacher model. SpecAugment (Park
et al., 2019), Bypass (Yao et al., 2024), and fea-
ture mask (Yao et al., 2024) introduce noise during
each NST step. Bypass, a type of stochastic depth,
learns channel-wise scalar weights to combine the
module input and output. Feature mask performs
dropout in the hidden dimension of the feedforward
and convolution layer but shares across the time
dimension. This deliberate noising enables the stu-
dent model to learn consistency with the teacher
model, which remains unaffected by noise when
generating pseudo labels (Xie et al., 2020). This it-
erative process progressively enhances data quality.
Algo. 1 illustrates the workflow of our proposed
iterative label refinement.

4 Experiments

4.1 ASR Model Training on GigaSpeech 2

Our ASR systems are built on Zipformer Trans-
ducer (Graves et al., 2013). Two Zipformer (Yao
et al., 2024) variants, namely Zipformer-M and
Zipformer-L, are employed for each NST iter-
ation. Specific configurations are provided in
Appendix B.1. During Noisy Student Training,
SpecAugment (Park et al., 2019) is used as input
noise while Bypass (Yao et al., 2024) and feature
mask (Yao et al., 2024) are used as model noise.

Table 2 presents the ASR results across different

Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P , Number of

iterations n, Threshold τ
Output: Refined-label setR
Divide P into n splits P1,P2, . . . ,Pn;
R ← P1;
Train teacher modelM1 onR with noise;
for i← 1 to n do
R ← ∅;
if i == 1 then

// Filter Pi by teacher model
Mi with CER ≤ τ

R ← {(x, y) ∈ Pi |
CER(y,Mi(x)) ≤ τ};

else
for j ← 1 to i do

// Relabel Pj by teacher
model Mi and filter
with CER ≤ τ

Rtmp ← {(x,Mi(x)) |
(x, y) ∈
Pj ,CER(y,Mi(x)) ≤ τ};
R ← R∪Rtmp;

end
end
Train equal-or-larger student model
Mi+1 onR with noise and assign as
new teacher;

end
returnR;

NST iterations on three evaluation sets, including
the development and test sets from GigaSpeech
2 and the Common Voice 17.0 and FLEURS test
set. Each iteration involves distinct modifications
aimed at refining high-quality transcriptions. A sub-
set of automatic transcriptions generated by Whis-
per large-v3 is used to train the initial teacher model
(Iter. 1). The teacher model then filters the train-
ing utterances by applying a CER/WER threshold,
using the original labels as references and the new
labels generated by the teacher as the hypothesis.
The student model is trained on this filtered set
with noise injected (Iter. 2). The student model
is then used as the teacher to generate new labels
on a larger subset of raw automatic transcriptions,
applying the same filter to refine the training data.
This refined data is used to train the student model
with noise injected (Iter. 3). The process repeats in
subsequent iterations, and the model size is scaled
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Table 2: Comparison of ASR performance across different NST iterations on various evaluation sets, including
GigaSpeech 2 DEV and TEST, Common Voice 17.0 TEST, and FLEURS TEST. Reported details include training
set size (#Hours), BPE vocabulary size (#Vocab), model size (#Params), CER for Thai, and WER for Indonesian
and Vietnamese.

NST
Iter

#Hours
(h)

#Vocab #Params
(M)

CER / WER
GigaSpeech 2
DEV TEST

Common Voice
TEST

FLEURS
TEST

Thai
1 4378 500 65.5 12.14 15.10 8.88 14.33
2 3497 500 65.5 10.97−9.6% 13.15−12.9% 6.99−21.3% 11.93−16.7%

3 7219 2000 68.6 10.50−4.3% 12.46−5.2% 4.61−34.0% 10.94−8.3%

4 10262 2000 151.9 10.45−0.5% 12.46−0.0% 4.15−10.0% 10.54−3.7%

Indonesian
1 5765 2000 68.6 16.68 15.99 19.82 16.29
2 4534 2000 68.6 15.60−6.5% 15.23−4.8% 15.83−20.1% 14.30−12.2%

3 5714 2000 151.9 14.58−6.5% 14.92−2.0% 13.83−12.6% 13.77−3.7%

Vietnamese
1 2351 2000 68.6 16.08 16.95 24.63 17.86
2 1764 2000 68.6 15.08−6.2% 14.72−13.2% 18.81−23.6% 13.50−24.4%

3 6039 2000 151.9 14.09−6.6% 12.83−12.8% 14.43−23.3% 11.59−14.1%

up to a larger version in the final iteration (Iter. 3
of Indonesian & Vietnamese, Iter. 4 of Thai).

According to the results shown in Table 2, sev-
eral noTable trends can be observed:

1) Across all three languages, iteratively scaling
the training data size, adding noise, and filtering
labels lead to consistent improvements in the WER
performance on the evaluation sets until the final
iteration. This indicates that the iterative approach
of refining and scaling the training data is effective
in enhancing the accuracy of the raw transcriptions.

2) The system trained on Thai consistently
achieves the absolute lowest error rates consistently
across iterations from 1 to 4, indicating the effec-
tiveness of the NST approach for this particular
language. The best NST model outperforms the
standard transcription model data by WER reduc-
tions of 1.69%, 2.64%, 4.73%, and 3.79% absolute
(13.92%, 17.48%, 53.27%, and 26.45% relative)
respectively (Iter. 4 vs. 1).

Additional ablation studies on our modified NST
in Appendix C Table 8 demonstrate the effective-
ness of relabeling and discuss the detriment of en-
larging noise when scaling the training data.

4.2 Comparison to Existing ASR Systems

To demonstrate the efficacy of our ASR models
trained on GigaSpeech 2, several mainstream and
competitive ASR systems, including Whisper (Rad-
ford et al., 2023) from OpenAI, MMS (Pratap et al.,
2024) from Meta, and commercial services from
Azure and Google, are used as benchmarks.

Whisper: Our work builds upon Whisper (Radford
et al., 2023), a suite of large-scale, multitask, and
multilingual speech models developed by OpenAI.
It leverages the encoder-decoder Transformer ar-
chitecture (Vaswani et al., 2017), with model sizes
ranging from 39 million parameters (tiny) to 1.55
billion parameters (large). Additionally, Whisper
offers variants spanning from an English-only ver-
sion to a multilingual model capable of handling
99 languages. To conduct a comprehensive evalua-
tion, we test three variants: Whisper base, Whisper
large-v2, and Whisper large-v3 models.
MMS: The Massively Multilingual Speech
(MMS) (Pratap et al., 2024) project leverages self-
supervised learning (SSL) techniques and a novel
dataset to expand the language coverage of speech
technology significantly. The core components in-
clude pre-trained wav2vec 2.0 (Baevski et al., 2020)
models for 1,406 languages, a single multilingual
ASR model supporting 1,107 languages, speech
synthesis models for the same set of languages,
and a language identification model capable of rec-
ognizing 4,017 languages. In this study, we employ
the MMS L1107 configuration.
Azure AI Speech: Azure Speech CLI offers a con-
venient way to leverage Microsoft’s speech recog-
nition capabilities directly from the command line.
It not only supports a wide range of audio file for-
mats but also possesses the ability to handle vari-
ous streaming audio inputs. We utilize the Azure
Speech CLI version 1.37 in this paper, which is the
latest version available.
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Table 3: Comparison of ASR results for models trained on GigaSpeech 2 with open-source multilingual ASR
models and commercial ASR services, evaluated on three test sets from GigaSpeech 2, Common Voice 17.0, and
FLEURS. The evaluation metrics include CER for Thai and WER for both Indonesian and Vietnamese. “†" denotes
commercial services.

Model #Params
(M)

CER / WER
GigaSpeech 2 Common Voice FLEURS

Thai
Whisper large-v3 1542 20.44 6.02 11.55
Whisper large-v2 1541 22.47 8.79 15.50
Whisper base 72 46.47 32.59 42.28
MMS L1107 964 31.75 14.49 23.07
Azure Speech CLI 1.37.0† - 17.25 10.20 13.35
Google USM Chirp v2† - 49.70 14.75 63.35
GigaSpeech 2 (proposed) 151.9 12.46 4.15 10.54

Indonesian
Whisper large-v3 1542 20.03 7.43 7.85
Whisper large-v2 1541 21.44 8.93 8.95
Whisper base 72 39.37 34.70 33.76
MMS L1107 964 35.27 20.72 24.49
Azure Speech CLI 1.37.0† - 18.07 10.33 11.18
Google USM Chirp v2† - 19.63 9.70 7.23
GigaSpeech 2 (proposed) 151.9 14.92 13.83 13.77

+ Common Voice + FLEURS 151.9 14.95 7.33 12.74
Vietnamese

Whisper large-v3 1542 17.94 13.74 8.59
Whisper large-v2 1541 18.74 18.00 10.26
Whisper base 72 39.88 44.07 40.41
MMS L1107 964 46.62 43.88 55.35
Azure Speech CLI 1.37.0† - 11.86 10.21 11.88
Google USM Chirp v2† - 13.28 12.46 11.75
GigaSpeech 2 (proposed) 151.9 12.83 14.43 11.59

+ Common Voice + FLEURS 151.9 12.39 11.47 9.94

Google USM: The Universal Speech Model (USM)
(Zhang et al., 2023) is introduced as a single, large-
scale model that excels in ASR across over 100 lan-
guages. This achievement is made possible by pre-
training the model’s encoder on a vast, unlabeled
multilingual dataset of 12 million hours, covering
more than 300 languages, followed by fine-tuning
on a smaller labeled dataset. To conduct a thorough
comparison, we utilize their Chirp Speech-to-Text
v2 model for performance evaluation.

We compare the performance of our proposed
approach trained on GigaSpeech 2 against these
above-mentioned ASR models, including Whisper
(base, large-v2, and large-v3), MMS L1107, Azure
Speech CLI 1.37.0 and Google USM Chirp v26,
across three languages: Thai, Indonesian, and Viet-
namese. The ASR performance is evaluated regard-
ing character error rate (CER) or word error rate
(WER) on three distinct test sets from GigaSpeech

6Abnormal high deletion rates with Google USM in Thai
are observed in our repeated testing.

2, Common Voice 17.0, and FLEURS. According
to the results shown in Table 3, there are several
intriguing findings:
1) For the Thai language, our ASR model trained
on GigaSpeech 2 (Table 3, Thai, Row 7) outper-
forms all competitors, including commercial ser-
vices from Azure and Google, securing the top
rank across all three test sets among the seven mod-
els. It outperforms Whisper large-v3 by relative
WER reductions of 39.04%, 31.06%, and 8.74%
(Table 3, Thai, Row 7 vs. 1). Remarkably, our
model achieves such impressive performance with
nearly one-tenth of the parameters compared to
Whisper large-v3 (151.9 M vs. 1542 M).
2) For the Indonesian and Vietnamese languages,
our system demonstrates competitive performance
compared to existing baseline models. This high-
lights the efficacy of our pipeline in delivering high-
quality results with a lightweight model. Specifi-
cally, on the GigaSpeech 2 test set in the Indonesian
language, our system (Table 3, Indonesian, Row
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Table 4: Comparison of ASR results for models trained on YODAS and GigaSpeech 2, evaluated on test sets from
GigaSpeech 2, Common Voice 17.0, and FLEURS. The evaluation metrics include CER for Thai and WER for both
Indonesian and Vietnamese.

Training Set #Params
(M)

CER / WER
GigaSpeech 2 Common Voice FLEURS

Thai
YODAS manual 68.6 27.34 10.71 14.19
YODAS manual 151.9 28.76 10.96 16.11
GigaSpeech 2 refined 151.9 12.46 4.15 10.54

Indonesian
YODAS manual 68.6 25.77 10.82 14.63
YODAS manual + automatic 68.8 41.11 15.41 47.26
YODAS manual 151.9 25.11 11.05 12.67
GigaSpeech 2 refined 151.9 14.92 13.83 13.77

Vietnamese
YODAS manual 68.6 40.35 31.07 25.68
YODAS manual + automatic 68.6 71.91 25.73 61.38
YODAS manual 151.9 40.71 32.58 29.32
GigaSpeech 2 refined 151.9 12.83 14.43 11.59

Table 5: Comparison of ASR models trained on GigaSpeech 2 with Icefall and ESPnet toolkits, evaluated on
GigaSpeech 2 TEST set. The evaluation metrics include CER for Thai (th) and WER for both Indonesian (id) and
Vietnamese (vi).

Toolkit Model #Params
(M)

CER / WER
th id vi

Icefall Zipformer/Stateless Pruned RNN-T 151.9 12.46 14.92 12.83
ESPnet Conformer/Transformer CTC/AED 111.8 13.70 15.50 14.60

7) outperforms all baseline models, attaining the
best performance. Compared to Whisper large-v3,
the model trained on Indonesian achieves an abso-
lute WER reduction of 5.11%, corresponding to
a relative reduction of 25.51% (Table 3, Indone-
sian, Row 7 vs. 1). Similarly, the model trained on
Vietnamese achieves an absolute WER reduction
of 5.11%, corresponding to a relative reduction of
28.48% (Table 3, Vietnamese, Row 7 vs. 1).
3) Our model exhibits degraded performance com-
pared to commercial ASR systems on the Com-
mon Voice and FLEURS test sets in Indonesian
and Vietnamese, which can be attributed to the
domain mismatch7. Contrastively, we observe a
performance leap after adding Common Voice and
FLEURS training data into GigaSpeech 2 (Table 3,
Indonesian & Vietnamese, Row 7 vs. 8).

Although our training data size is smaller
than that of industrial-scale models, our method
achieves the best performance for the Thai lan-
guage domain and delivers comparable results to
commercial models for Indonesian and Vietnamese.

7Unlike GigaSpeech 2, which contains noisy, reverberant
spontaneous speech, Common Voice and FLEURS comprise
clean, read speech with text from written materials.

This remarkable accomplishment highlights the ef-
ficacy of our approach in leveraging limited, free,
open-source, unlabeled data to train highly com-
petitive speech recognition models. It showcases
a promising path towards developing high-quality
speech recognition systems without the need for ex-
tensive, proprietary datasets, thereby reducing the
barrier to entry and enabling wider accessibility.

4.3 Comparison to the YODAS Corpus

Table 4 compares ASR performance across differ-
ent models trained on YODAS (Li et al., 2023)
and GigaSpeech 2 datasets evaluated on multiple
test sets. Note that YODAS Thai automatic is not
included due to insufficient data (only 1 hour). De-
spite variations in overall data volume, several gen-
eral conclusions can be drawn from trend analysis:
1) The models trained on GigaSpeech 2 refined
yield generally superior results compared to those
trained on YODAS datasets for all three languages.
2) The YODAS manual may suffer from overfitting
or noisy data issues due to simplistic filtering rules,
leading to inconsistent performance in Indonesian
(Table 4, Indonesian, Row 1 & 3).
3) Purely automatic generation of YODAS tends to
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degrade performance, as observed for Vietnamese
(Table 4, Vietnamese, Row 1 vs. 2) and Indonesian
(Table 4, Indonesian, Row 1 vs. 2), likely due to
the inherent noise and errors in the automatically
generated subtitles.

4.4 Training ASR Models within ESPnet and
icefall on GigaSpeech 2

Icefall: We adopt the neural Transducer (Graves
et al., 2013) architecture, using Zipformer-L as
the encoder, the pruned RNN-T loss (Kuang et al.,
2022) as the object function, and 2000-class Byte
Pair Encoding (BPE) (Sennrich et al., 2016) word
pieces. More details are provided in Appendix B.1.
ESPnet: We employ Conformer (Gulati et al.,
2020) CTC/AED (Kim et al., 2017) system from
ESPnet (Watanabe et al., 2018), using Conformer-
L as the encoder and 2000-class BPE word pieces.
This model combines the localized sensitivity of
convolutional neural networks with the long-range
modeling capabilities of Transformers (Vaswani
et al., 2017). Details are available in Appendix B.2.

Table 5 shows the results of ASR models trained
with icefall and ESPnet. The models trained with
ESPnet are slightly worse than icefall in all three
languages, which is as expected and can be ex-
plained by the discrepancy in the number of model
parameters (112M vs. 152M). It is worth noting
that the results in Table 5 are intended to provide
baseline systems for these two popular toolkits to
demonstrate the universality of GigaSpeech 2 in-
stead of pursuing state-of-the-art performance.

5 Conclusion

This paper introduces a new multilingual speech
dataset, GigaSpeech 2, and a novel automated
pipeline to boost speech recognition performance
using in-the-wild audio-only data. GigaSpeech 2
aims to address the scarcity of labeled training data
on low-resource languages by developing this large-
scale, multi-domain, and multilingual corpus. Ex-
tensive experiments are conducted to validate the
efficacy of our newly introduced corpus. The ASR
models trained in three languages, which are Thai,
Indonesian, and Vietnamese within GigaSpeech 2,
demonstrate superior and impressive performance
compared to various powerful ASR models, includ-
ing Whisper large v2/v3 from OpenAI, MMS from
Meta, and even commercial services from Google
and Azure. The related resources, including the

corpus with curated test sets8, automated pipeline9,
and recipes1011, are released to facilitate research in
this direction. In the future, we are eager to extend
our paradigm to more low-resource languages and
are devoted to breaking down the language barrier.

Limitations

In this paper, we propose GigaSpeech 2, a large-
scale, multi-domain, multilingual speech recog-
nition corpus, and a novel automated pipeline to
boost speech recognition performance using in-the-
wild audio-only data. We only conducted 3-4 iter-
ations of the proposed NST method in our experi-
ments, and we are optimistic that more iterations on
large data will yield even better results. Moreover,
we are actively extending our language coverage
by incorporating additional languages, including
Malay, Korean, Minnan, and Arabic. We will also
expand our low-resource language family in our
future investigation.
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All collected audio is sourced from materials re-
leased under a Creative Commons license. Person-
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legal risks, restricting use to non-commercial re-
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address any potential risks in the future.
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A Detailed Analysis of GigaSpeech 2

A.1 Manual Transcription Quality Assurance
The manual transcription process, carried out by
a professional data annotation company, includes
rigorous manual quality checks and secondary in-
spections to ensure that timestamp accuracy and
transcription correctness exceed 97%. All man-
ually transcribed results undergo a 100% manual
quality inspection, where both timestamps and tran-
scription accuracy are thoroughly checked. Any
data that fails to meet the required standards is
sent back for correction. Subsequently, 30% of
each inspector’s reviewed data is re-evaluated. If
this recheck confirms over 97% accuracy, the data
passes; otherwise, the entire dataset inspected by
that quality inspector is returned for full correc-
tion. For timestamp accuracy, an audio snippet tool
is used to ensure that timestamps do not overlap
with the waveform. If any timestamp does fall on
the waveform, a manual inspection is conducted to
confirm whether it corresponds to speech.

A.2 Domain Distribution of Manual
Evaluation Sets

The domain distribution of the manual evaluation
sets is shown in Fig. 2. The domains are identified
based on a predefined set of categories. Each sam-
ple is manually annotated at the individual video
level, considering both the topic type and content
format.

(a) th (b) id (c) vi

Figure 2: Hours distribution of manual evaluation sets
for Thai (th), Indonesian (id), and Vietnamese (vi). The
inner circle represents the format, and the outer circle
represents the topic.

A.3 Duration Distribution of Training Sets
The utterance-level duration distribution of the
training sets is illustrated in Fig. 3.

A.4 Evaluation of Processing Time
The processing times for transcription, forced align-
ment, filtering, segmentation, and relabeling are
measured on an idle single V100 32G GPU ma-
chine using a 100-hour subset of Thai audio. The
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Figure 3: Utterance-level duration (second) distribution
of training sets for Thai (th), Indonesian (id), and Viet-
namese (vi).

processing time and the real-time factor (RTF) are
detailed in Table 6.

Table 6: Evaluation of overall processing time and real-
time factor (RTF) for each process in the construction of
GigaSpeech 2. The processing times for transcription,
forced alignment, filtering, segmentation, and relabeling
are measured on an idle single V100 32G GPU machine
using a 100-hour subset of Thai audio.

Process Time Consumption RTF
Transcription 19h 42min 13s 1.97× 10−1

Forced Alignment 3h 27min 29s 3.46× 10−2

Filter 3s 8.00× 10−6

Segmentation 6min 58s 1.16× 10−3

Relabel 40min 48s 6.80× 10−3

B Model Configurations

B.1 Configuration of Zipformer
Two Zipformer-based models are used, following
official configurations reported in icefall12. In each
Zipformer stack, the hidden dimensions of the first
and last feedforward modules are 3/4 and 5/4 of
the middle one, respectively. Ahead of the encoder,
a convolution subsampling module with a stride
of 2 reduces the frame rate to 50 Hz. The input
consists of 80-channel FBank features extracted
over windows of 25ms, strided by 10ms. The label
decoder utilizes a stateless decoder (Ghodsi et al.,
2020). 8 V100 32G GPUs are used for training.
Detailed configurations are provided in Table 7.

B.2 Configuration of Conformer
A Conformer-based model is developed adhering
to the official configurations outlined in ESPnet13.

12https://github.com/k2-fsa/icefall
13https://github.com/ESPnet/ESPnet

Table 7: Configuration of Zipformer at two different
scales

Zipformer-M Zipformer-L
Encoder

number of stacks 6
numbers of layers 2,2,3,4,3,2 2,2,4,5,4,2
downsampling factors 1,2,4,8,4,2
output downsampling factor 2
embedding dimensions 192,256,384,512,384,256 192,256,512,768,512,256
embedding unmasked dimensions 192,192,256,256,256,192 192,192,256,320,256,192
feedforward dimensions 512,768,1024,1536,1024,768512,768,1536,2048,1536,768
convolution kernel sizes 31,31,15,15,15,31
attention heads 4,4,4,8,4,4
attention query dimension 32
attention value dimension 12
positional encoding embedding dimension 48
projected positional encoding dimension per head 4

Decoder
embedding dimensions 512
context size 2

Joiner
embedding dimensions 512

Criterion
use ctc head false
use transducer head true
pruned range 5
loss smoothing lm scale 0.25
loss smoothing am scale 0.0
simple loss scale 0.5
simple loss scale warmup steps 2000

Frontend
n fft 512
hop length 256
feature dimension 80

Training
use amp true
max epochs 30
max duration per batch 1000
ref duration 600
seed 42

Optimization
optimizer scaledadam
base learning rate 0.045
seed 42

Scheduler
scheduler eden
lr batches 7500
lr epochs 10000 / training set hours
warmup batches 500
warmup starting lr 0.5

SpecAugment
time warping factor 80
number of time masks 10
time mask maximum width 100
number of frequency masks 2
frequency mask width range 0 - 27

The model comprises an encoder that employs the
Conformer architecture and a decoder that lever-
ages the Transformer architecture. Moreover, the
parameters for both the encoder and decoder com-
ponents, the optimization process, the scheduling
mechanism, and SpecAugment settings are care-
fully designed to ensure a comprehensive and effi-
cient model setup. 4 A100 80G GPUs are used for
training. The specifics of these configurations are
detailed in Table 9.

C Ablation Study on Noisy Student
Training

Based on the ablation study of our proposed NST
on the evaluation sets in Table 8, we can analyze
the effects of different iterations and their impact
on performance:
1) Relabeling the data during the transition from it-
eration 2 to 3 is crucial for improving performance
(Sys.1 vs. Sys.2).
2) Larger augmentation applied in our NST process
may hurt the performance (Sys.1 vs. Sys.3).

These findings suggest that careful consideration
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Table 8: Ablation study of NST on GigaSpeech 2 Thai, evaluated across various evaluation sets, including
GigaSpeech 2 DEV and TEST, Common Voice 17.0 TEST, and FLEURS TEST.

NST
method

CER
GigaSpeech 2
DEV TEST

Common Voice
TEST

FLEURS
TEST

Sys. 1 (Tab. 2, iter 2 → iter 3) 10.47 12.38 4.63 10.96
Sys. 2 (Tab. 2, iter 2 → iter 3, without relabeling) 10.77+2.9% 12.90+4.2% 5.23+13.0% 10.72−2.2%

Sys. 3 (Tab. 2, iter 2 → iter 3, larger augmentation) 10.65+1.7% 12.81+3.5% 5.36+15.8% 10.86−0.9%

Table 9: Configuration of Conformer at the large scale.

Conformer-L
Encoder Criterion

attention head 8 ctc weight 0.3
numbers of blocks 12 label smoothing 0.1
linear unit 2048 length normalized false
dropout rate 0.1 Frontend
positional dropout rate 0.1 n fft 512
attention dropout rate 0.1 hop length 256
input layer conv2d Training
normalize before true use amp true
macaron style true gradient accumulation 4
relative position type latest max epochs 20
position encoding layer rel_pos Optimization
self-attention layer rel_selfattn optimizer adam
activation type swish learning rate 0.0025
use cnn module true weight decay 0.000001
cnn module kernel 31 Scheduler

Decoder scheduler warmuplr
attention heads 8 warmup steps 40000
linear units 2048 SpecAugment
number of blocks 6 time warp window 5
dropout rate 0.1 frequency mask width range 0 - 27
positional dropout rate 0.1 number of frequency masks 2
self-attention dropout rate 0.1 time mask width ratio range 0.0 - 0.05
source attention dropout rate 0.1 number of time masks 10

of the relabeling and augmentation strategies is
crucial for optimizing the performance of the NST
model across different evaluation sets and domains.

Table 10: ASR performance of Whisper Medium
with/without fine-tuning on GigaSpeech 2 Thai, tested
on GigaSpeech 2 TEST and Common Voice 17.0 TEST

Model CER
GigaSpeech 2 Common Voice

Whisper medium 37.55 16.41
+ GigaSpeech 2 Thai fine-tuned 14.15−62.3% 6.92−57.8%

D Additional Results of Whisper Medium

We evaluated Whisper medium14 and its fine-tuned
version15 on GigaSpeech 2 Thai, using the test
sets from GigaSpeech 2 and Common Voice 17.0.
As shown in Table 10, fine-tuning resulted in an
approximate 60% relative CER reduction across
two test sets, indicating the high quality of the
GigaSpeech 2 Thai.

14https://huggingface.co/openai/whisper-medium
15https://huggingface.co/scb10x/

monsoon-whisper-medium-gigaspeech2
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