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Abstract

Keyboard-based interaction may not accom-
modate various needs, especially for individ-
uals with disabilities. While inertial sensor-
based writing recognition is promising due to
the sensors’ small size, wearability, and low
cost, accurate recognition in the Chinese con-
text is hampered by the difficulty of collecting
extensive inertial signal samples for the vast
number of characters. Therefore, we design
a Chinese Inertial GAN (CI-GAN) containing
Chinese glyph encoding (CGE), forced opti-
mal transport (FOT), and semantic relevance
alignment (SRA) to acquire unlimited high-
quality training samples. Unlike existing vec-
torization methods focusing on the meaning of
Chinese characters, CGE represents shape and
stroke features, providing glyph guidance for
writing signal generation. FOT establishes a
triple-consistency constraint between the input
prompt, output signal features, and real signal
features, ensuring the authenticity and seman-
tic accuracy of the generated signals. SRA
aligns semantic relationships between multi-
ple outputs and their input prompts, ensuring
that similar inputs correspond to similar out-
puts (and vice versa), alleviating model hallu-
cination. The three modules guide the genera-
tor while also interacting with each other, form-
ing a coupled system. By utilizing the massive
training samples provided by CI-GAN, the per-
formance of six widely used classifiers is im-
proved from 6.7% to 98.4%, indicating that CI-
GAN constructs a flexible and efficient data
platform for Chinese inertial writing recogni-
tion. Furthermore, we release the first Chinese
inertial writing dataset on GitHub.

1 Introduction

As efficient motion-sensing components, inertial
sensors can measure the acceleration and angu-
lar velocity of moving objects (Wang and Zhao,
2025a,b; Saha et al., 2022; Esfahani et al., 2019a;
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Zhang et al., 2020; Liu et al., 2020). Due to
their small size, ease of integration, low power
consumption, and low cost, inertial measurement
units (IMU) are widely used in electronic de-
vices such as smartphones, smartwatches, and fit-
ness bands (Wang and Zhao, 2024a; Wang et al.,
2024; Weber et al., 2021; Gromov et al., 2019;
Li et al., 2023; Herath et al., 2020), making them
particularly suitable for human-computer interac-
tion (HCI) systems. Unlike vision-based HCI sys-
tems, IMU-based HCI systems are robust to vari-
ations in lighting, environmental conditions, and
occlusions, making them an ideal choice for a
wide range of applications, such as virtual and aug-
mented reality, healthcare and rehabilitation, edu-
cation and training, and smart device control (Li
et al., 2025a). A notable application of IMU-based
HCI systems is in assisting disabled individuals.
By capturing the subtle movements of a user’s
hand or other body parts, inertial sensors can trans-
late these motions into written text, enabling ef-
fective communication and interaction without the
need for a traditional keyboard, even for users with
visual impairments or in complete darkness. Pro-
viding tailored HCI solutions not only enhances
their quality of life but also facilitates their inte-
gration into society, enabling greater participation
in education, employment, and social activities.
Such technological advancements hold profound
significance, creating a more inclusive and equi-
table society.
However, implementing human-computer inter-

action in the context of Chinese language presents
significant challenges due to the complexity and
vast number of Chinese characters. For any recog-
nition model aimed at accurately analyzing the
complex strokes and structures of Chinese char-
acters, it is crucial to train the model with exten-
sive, diverse writing samples (Wang et al., 2025;
Li et al., 2025b). Considering that the collection
and processing of Chinese writing samples are la-
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borious and require high data quality and diversity,
this task becomes exceedingly challenging and in-
creasingly difficult as the number of characters in-
creases. Therefore, generating realistic Chinese
writing signals based on inertial sensors has be-
come a central technological challenge in recogniz-
ing Chinese writing.
To acquire high-quality, diverse samples of in-

ertial Chinese writing, we applied GAN for IMU
writing signal generation for the first time and pro-
posed CI-GAN, which can generate unlimited iner-
tial writing signals for an input Chinese character,
thereby providing rich training samples for Chi-
nese writing recognition classifiers. CI-GAN pro-
vides amore intuitive and natural human-computer
interaction method for the Chinese context and ad-
vances the application of smart devices with Chi-
nese input. The main contributions of this paper
are summarized as follows.

• Considering traditional Chinese character em-
bedding methods that only focus on the mean-
ing of characters, we propose a Chinese glyph
encoding (CGE), which represents the shape
and structure of Chinese characters. CGE not
only injects glyph and writing semantics into
the generation of inertial signals but also pro-
vides new tools for studying the relationships
between character structures.

• We propose a forced optimal transport
(FOT) loss for GAN, which not only avoids
mode collapse and mode mixing dur-
ing signal generation but also ensures
feature consistency between the gener-
ated and real signals through a designed
forced feature matching mechanism,
thereby enhancing the authenticity of
the generated signals.

• To inject batch-level character semantic cor-
relations into GAN and establish macro con-
straints, we propose a semantic relevance
alignment (SRA), which aligns the relevance
between generated signals and corresponding
Chinese glyphs, thereby ensuring that the mo-
tion characteristics of the generated signal
conform to the Chinese character structure.

• Utilizing the training samples provided by CI-
GAN, we increase the Chinese writing recog-
nition performance of six widely used classi-
fiers from 6.7% to 98.4%. Furthermore, we

provide the application scenarios and strate-
gies of 6 classifiers in writing recognition ac-
cording to their performance metrics. For the
sake of sharing, we release the first Chinese
writing recognition dataset based on inertial
sensors on GitHub.

2 Related Work

The technology for recognizing Chinese handwrit-
ing movements has the potential to bridge the gap
between traditional writing and digital input, pro-
viding disabled individuals with a natural way of
writing and greatly enhancing their ability to par-
ticipate in digital communication, education, and
employment. It also offers a new human-computer
interaction avenue for normal people. Hence, Chi-
nese handwriting movement recognition has gar-
nered significant attention in recent years, leading
to numerous related research achievements. (Ren
et al., 2019) utilized the LeapMotion device to pro-
pose an RNN-based method for recognizing Chi-
nese characters written in the air. The Leap Mo-
tion sensor, consisting of two infrared emitters and
two cameras, can accurately capture the motion
of hands in three-dimensional (3D) space (Guerra-
Segura et al., 2021). However, the Leap Motion
device is sensitive to lighting conditions, and either
too strong or too weak light can interfere with the
transmission and reception of infrared rays, affect-
ing the recognition accuracy (Cortes-Perez et al.,
2021). Additionally, the detection space of the
Leap Motion device is an inverted quadrangular
pyramid, limiting its field of view. Movements
outside this range cannot be captured. Most impor-
tantly, the Leap Motion device is expensive and
requires a connection to a computer or VR head-
set to function, severely limiting its application
prospects (Ovur et al., 2021).
As wireless networks become more prevalent,

Wi-Fi signals are gradually being applied to mo-
tion capture (Xiao et al., 2021; Wang et al., 2022).
Since Wi-Fi signals can penetrate objects and are
unaffected by lighting conditions, they have a
broader application scope than optical motion cap-
ture systems (Gao et al., 2023; Regani et al., 2021).
(Guo et al., 2020) used the channel state informa-
tion (CSI), extracted from Wi-Fi signals reflected
by hand movements, to recognize 26 air-written
English letters. However, while Wi-Fi signals do
not have visual range limitations and can pene-
trate obstacles, they are easily disturbed by other
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signals on the same unlicensed band, severely af-
fecting system performance. Moreover, the sam-
pling frequency and resolution ofWi-Fi signals are
very limited, making it difficult to capture detailed
information during the writing process and, thus,
hard to recognize air-written Chinese characters ac-
curately (Gao et al., 2022; Gu et al., 2017).
Despite the advantages of low cost, wearability,

and low power consumption offered by inertial sen-
sors, there is currently a lack of large-scale, high-
quality public datasets, causing few studies to use
inertial sensors for 3D Chinese handwriting recog-
nition (Xu et al., 2025; Chen et al., 2020; Saha
et al., 2023; Esfahani et al., 2019b). Considering
the vast number of Chinese characters, providing
large-scale, high-quality writing signal samples for
each character is nearly impossible, which has be-
come the most significant bottleneck limiting the
development of Chinese handwriting recognition
technology based on inertial sensors. Therefore,
designing a model for generating Chinese hand-
writing signals provides researchers with an end-
less supply of signal samples and a flexible, con-
venient experimental data platform, accelerating
the development and testing of new algorithms and
supporting the research and application of Chinese
handwriting recognition.

3 Method

To generate inertial writing signals for Chinese
characters, we propose the Chinese inertial gener-
ative adversarial network (CI-GAN), as shown in
Fig. 1. For an input Chinese character, its one-hot
encoding is transformed into glyph encoding us-
ing our designed glyph encoding dictionary, which
stores the glyph shapes and stroke features of dif-
ferent Chinese characters. Thus, the obtained Chi-
nese glyph encoding contains rich writing features
of the input character. This glyph encoding, along
with a random noise vector, is fed into a GAN,
generating the synthetic IMU signal for the char-
acter, where glyph encoding provides glyph and
stroke features of the input character, while the
random noise introduces randomness to the virtual
signal generation, ensuring the diversity and vari-
ability of the generated signals. To ensure that
the GAN learns the IMU signal patterns for each
character, we designed a forced optimal transport
(FOT) loss, which not only mitigates the issues
of mode collapse and mode mixing typically ob-
served in GAN frameworks but also forces the gen-

erated IMU signals to closely resemble the real
handwriting signals in terms of semantic features,
fluctuation trends, and kinematic properties. More-
over, a semantic relevance alignment (SRA) is
proposed to provide batch-level macro constraints
for GAN, thereby keeping the correlation between
generated signals consistent with the correlation
between Chinese character glyphs. Equipped with
CGE, FOT and SRA, CI-GAN can provide unlim-
ited high-quality training samples for Chinese char-
acter writing recognition, thereby enhancing the
accuracy and robustness of various classifiers.

3.1 Chinese Glyph Encoding
In one-hot encoding, each Chinese character is
represented by a high-dimensional sparse vector
where all characters are equidistant in the vector
space, causing the loss of the rich semantic and
glyph information inherent in the characters. Com-
monly used Chinese character embeddings, while
capturing semantic meanings, fail to encode glyph-
specific features such as shape, structure, and writ-
ing strokes. For example, the characters ”天” (sky)
and ”夫” (husband) exhibit similar writingmotions
but have vastly different meanings. To address
this, we propose a Chinese Glyph Encoding (CGE)
method that encodes Chinese characters based on
their glyph shapes and writing actions.
Since the glyph shapes of Chinese characters

are inherently embedded in the writing motions
recorded by inertial sensor signals, we design a
learnable weight matrix W applied after the one-
hot input layer to capture glyph information. When
a Chinese character is input, its one-hot encoding
is multiplied by W , effectively retrieving the cor-
responding row of W as the character’s glyph en-
coding. This weight matrix functions as a glyph
encoding dictionary for all characters. However,
without proper guidance, the dictionarymay assign
similar glyph encodings to characters with distinct
glyphs. To prevent this, we introduce Glyph En-
coding Regularization (GER), which enforces or-
thogonality among encoding vectors and increases
their information entropy. This ensures that the en-
coding preserves as much glyph-specific informa-
tion as possible, avoiding the triviality of one-hot
encoding. Specifically, we use the α-order Rényi
entropy to measure the information content of the
glyph encoding dictionary W , calculated as fol-
lows:

Sα(W ) =
1

1− α
log2(tr(G̃

α)), (1)
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Figure 1: Flowchart of Chinese inertial generative adversarial network. The Chinese character ”数” is input into
the model, and its one-hot encoding is converted into glyph encoding (green cubes), which is then input into GAN
together with random noise (blue cubes of different colors).

G̃ij =
1

N

Gij√
Gii ·Gjj

, (2)

Gij =
⟨
W (i),W (j)

⟩
, (3)

whereN represents the number of Chinese charac-
ters, which corresponds to the number of rows in
the weight (encoding) matrix W . G is the Gram
matrix of W , where Gij equal to the inner prod-
uct of the i-th and j-th rows of W , and G̃ is the
trace-normalized G, i.e., tr(G̃) = 1. In similar
problems, α is generally set to 2 for optimal re-
sults. Sα(W )measures the information content of
the glyph encoding matrixW . A larger Sα(W ) in-
dicates more information encoded in W , meaning
the glyph encodings are more informative. Mean-
while, as Sα(W ) increases, all elements in the
Gram matrix G are forced to decrease, indicating
that different encoding vectors have stronger or-
thogonality. It is evident that the improvement
of Sα(W ) simultaneously enhances the informa-
tion content and the orthogonality among the en-
codings. Therefore, the glyph encoding regular-
ization Rencode is constructed as Rencode =

1
Sα(W ) .

AsRencode decreases during training, Sα(W ) grad-
ually increases, meaning the glyph encoding dic-
tionary stores more information while enhancing
the orthogonality among all Chinese glyph encod-
ings, representing the differences in glyph shapes
among all characters. Thus, this glyph encod-
ing can inject glyph information into GAN, en-

suring that the generated signals maintain consis-
tency with the target character glyph. We provide a
Chinese glyph encoding visualization in Appendix
A.3, which proves that CGE is crucial for guiding
GANs in generating writing signals and provides
potential tools or perspectives for studying the evo-
lution of Chinese hieroglyphs.

3.2 Forced Optimal Transport

Unlike images, the quality of signals cannot be
readily assessed through visual inspection. Thus,
stringent constraints are essential to ensure the re-
liability and authenticity of the generated signals,
especially in following physical laws and simulat-
ing the potential dynamic characteristics of actual
motions. To this end, we propose the forced fea-
ture matching (FFM), which ensures that the gen-
erated signal feature closely matches the real sig-
nal feature and the corresponding glyph encoding.
Specifically, we use a pre-trained variational au-
toencoder to extract the real signal feature hT and
generated signal feature hG. Then, the consistency
of hT , hG, and the corresponding glyph encoding
e is constrained by LFFM :

LFFM = 1− ⟨hG, hT ⟩+ ⟨hG, e⟩+ ⟨e, hT ⟩
∥hG∥∥hT ∥+ ∥hG∥∥e∥+ ∥e∥∥hT ∥

.

(4)
LFFM establishes a triple-consistency constraint
for generative models: input prompt, generated
signal features, and truth signal features, which not
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only improves the realism of the generated signals
but also ensures their semantic accuracy.
Another challenge lies in the mode collapse and

mode mixing issue inherent to GAN architectures.
Mode collapse limits the diversity of generated sig-
nal samples, causing GAN to generate signals only
for a few Chinese characters, regardless of the di-
versity of input. On the other hand, mode mix-
ing problems cause the generated signal to contain
blend characteristics of multiple modes. There-
fore, we introduce the loss function of OT-GAN
(Salimans et al., 2018), which utilizes Wasserstein
distance as a constraint to ensure stable gradi-
ents, thereby preventing mode collapse and mix-
ing. Combining FFM and OT constraints, we can
obtain the forced optimal transport loss LFOT =
W (PT ,PG) + λ · LFFM , where W (PT ,PG) is
the optimal transport loss, representing theWasser-
stein distance between the distributions of real and
generated signals, enhancing the stability and di-
versity of the samples.

3.3 Semantic Relevance Alignment

As motion records of Chinese writing, the seman-
tic relationships between generated signals should
align with the relationships between Chinese char-
acter glyphs. To ensure the generated inertial sig-
nals accurately reflect the character relationships
between Chinese character glyphs, we propose se-
mantic relevance alignment (SRA), as shown in
Fig. 2, which ensures consistency between the
glyph encoding relationships and the signal feature
relationships, thereby providing batch-level macro
guidance for GANs and enhancing the quality of
the generated signals. For each batch of input Chi-
nese characters, we compute the pairwise cosine
similarities of their Chinese glyph encodings to
form an encoding similarity matrix Me . Simulta-
neously, the pairwise cosine similarities of gener-
ated signal features (extracted by the pre-trained
VAE) are computed to form a feature similarity
matrix Mh. Then, the loss of semantic relevance
alignment LSRA = ∥Mh −Me∥22 is established to
minimize the difference between the two matrices,
thereby ensuring that the semantic relationships in
the input character glyphs are accurately contained
in the generated signals. The proposed SRA aligns
the relationships between outputs and their corre-
sponding prompts, significantly reducing halluci-
nations in generative models and enhancing the
model’s overall practicality and stability.

Figure 2: Diagram of Semantic Relevance Alignment.

3.4 Module Interaction
CGE, FOT, and SRA not only guide and constrain
the generator but also interact with each other, as
shown in Fig. 3. The Chinese glyph encoding not
only provides semantic guidance to the generator
but also supplies the necessary encoding for FOT
and SRA, and it is also supervised in the process.
FOT and SRA share the VAE and generated sig-
nal features, providing different constraints for the
generator, with FOT focusing on improving signal
authenticity and enhancing the model’s cognition
of different categories through the semantic infor-
mation injected by CGE, thereby mitigating mode
collapse and mode mixing. SRA ensures consis-
tency between the relationships of multiple out-
puts and prompts through group-level supervision,
which helps alleviate the hallucination problem of
generative models.

CGE
Provide Encodings

FOT SRA

Sharing VAE and generated signal features

Provide Encodings

Provide Supervision Provide Supervision

Constrain Constrain
Guide

Generator

Figure 3: Interaction of three modules and generator in
CI-GAN.

In summary, the three modules proposed in CI-
GAN, CGE, FOT, and SRA are innovative and in-
terlinked, significantly enhancing the performance
of GANs in generating inertial sensor signals, as
evidenced by numerous comparative and ablation
experiments. This method is a typical example of
deep learning empowering the sensor domain and
has been recognized by the industry and adopted
by a medical wearable device manufacturer. It has
the potential to become a benchmark for data aug-
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mentation in the sensor signal processing field.

4 Experiments and Results

4.1 Data Collection and Experimental Setup
We invited nine volunteers, each using their smart-
phone’s built-in inertial sensors to record handwrit-
ing movements. The nine smartphones and their
corresponding sensor models are listed in Table 1.
Each volunteer held their phone according to their
personal habit and wrote 500 Chinese characters
in the air (sourced from the ”Commonly Used Chi-
nese Characters List” published by the National
LanguageWorking Committee and the Ministry of
Education), writing each character only once. In
total, we obtained 4500 samples of Chinese hand-
writing signals. We randomly selected 1500 sam-
ples from three volunteers as the training set, while
the remaining 3000 samples from six volunteers
were used as the test set without participating in
any training.

Table 1: The built-in IMU specifications of some smart-
phones. Note that since the IMUs in some types of
iPhones are customized by the manufacturer, the model
and price are not disclosed.

Dataset Smartphone Release Time IMU Unit price

Training
iPhone 13 pro Sep. 2021 Undisclosed /
HUAWEI P40 Mar. 2020 LSM6DSM $0.30

HUAWEI P40 Pro Apr. 2020 LSM6DSO $0.33

Testing

iPhone 14 Sep. 2022 Undisclosed /
iPhone 15 Sep. 2023 Undisclosed /
VIVO T2x May. 2022 LSM6DSO $0.33

OPPO Reno 6 May. 2021 ICM-40607 $0.28
Realme GT Mar. 2021 BMI160 $0.21
Redmi K40 Mar. 2021 ICM-40607 $0.28

Signal collection and segmentation in Chinese
handwriting recognition are exceptionally chal-
lenging. Volunteers continuously wrote different
Chinese characters, and accurately locating the cor-
responding signal segments from long streams re-
quired substantial effort, please refer to the Ap-
pendix B for details. Synchronizing optical mo-
tion capture equipment and manually aligning in-
ertial signals frame by frame to extract the start
and end points of each character demanded pre-
cise and time-consuming work. This meticulous
process highlights the difficulty and complexity of
data collection, making our achievement of 4,500
signal samples a significant milestone. By con-
trast, CI-GAN streamlines this process, generating
handwriting signals directly from input characters,
eliminating the need for laborious segmentation,
and offering a far more efficient data collection

platform. Signal generation visualization is pro-
vided in the Appendix A.1.

4.2 Comparative Experiments

4.2.1 Classifier Comparison on CI-GAN

Using the CI-GAN, we generated 30 virtual IMU
handwriting signals for each character, resulting
in a total of 16500 training samples. To evalu-
ate the impact of the generated signals on hand-
writing recognition tasks, we trained six represen-
tative time-series classification models with these
training samples: 1DCNN, LSTM, Transformer,
SVM, XGBoost, and Random Forest (RF). We
then tested the performance of these classifiers on
the test set, as shown in Fig. 4. When the number
of training samples is small (1500 real samples),
the recognition accuracy of all classifiers is poor,
with the highest accuracy being only 6.7%. As
the generated training samples are introduced,
all classifiers’ recognition accuracy improves sig-
nificantly, whereas deep learning ones such as
1DCNN, LSTM, and Transformer show the most
notable improvement. When the number of train-
ing samples reaches 15000, the recognition accu-
racy of 1DCNN can reach 95.7%, improving from
0.87% (without data augmentation). The Trans-
former captures long-range dependencies in time-
series data through its self-attention mechanism,
enabling it to understand complex movement pat-
terns. However, its excellent recognition abil-
ity relies on large amounts of data, making its
performance improvement the most significant as
CI-GAN continuously generates training data, im-
proving from 1.7% to 98.4%. Compared to deep
learning models, machine learning models also ex-
hibit significant dependence on the amount of train-
ing data, highlighting the critical role of sufficient
generated signals in handwriting recognition tasks.
With the abundant training samples generated by
CI-GAN, six classifiers achieve accurate recogni-
tion even for similar characters as shown in Ap-
pendix A.2.
In summary, CI-GAN provides an experimental

data platform for Chinese writing recognition, en-
abling various classifiers to utilize the generated
samples for training and improving their recog-
nition accuracy. To help researchers select suit-
able classifiers for different application scenarios,
we further tested the recognition speed and mem-
ory usage of different classifiers for a single input
sample and summarized their recognition accuracy
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Figure 4: The recognition accuracy of 6 classifiers with
varied training samples provided by CI-GAN.

in Table 2. Among the three deep learning mod-
els, 1DCNN exhibits the fastest runtime and small-
est memory footprint. Its recognition accuracy
of 95.7% is slightly lower than the Transformer’s
but is sufficient for most practical applications. It
is more suitable for integration into memory and
computation resource-limited smart wearable de-
vices such as phones, watches, and wristbands.
In contrast, Transformer has the highest accuracy
among the six classifiers and the highest memory
usage, making it more suitable for PC-based ap-
plications. Compared to deep learning classifiers,
traditional machine learning classifiers generally
have lower accuracy, but with the support of abun-
dant training samples generated by CI-GAN, the
XGBoost model still achieves a recognition accu-
racy of 93.1%, very close to deep learning classi-
fiers. More importantly, XGBoost, as a tree model,
has strong interpretability, allowing users to intu-
itively observe which features significantly impact
the model’s decision-making process, which is a
strength that deep learning models lack. Addition-
ally, XGBoost’s runtime and memory usage are
better than the three deep learning classifiers, mak-
ing it outstanding in scenarios requiring a balance
between model performance, interpretability, and
resource efficiency. For example, XGBoost can be
integrated into stationery and educational tools to
analyze students’ handwriting habits and provide
personalized feedback suggestions. Similarly, in
the healthcare field, XGBoost can be used to ana-
lyze patients’ writing characteristics, assisting doc-
tors in evaluating treatment effects or predicting
disease risks. Its high interpretability can pro-
vide an auxiliary reference for medical decisions
and treatment plans, increasing patients’ trust in
the treatment.
4.2.2 Data Augmentation Comparison
We employed five major categories of data aug-
mentation (DA)—Time Domain, Frequency Do-
main, Decomposition, Mixup, and Learning-based

strategies—encompassing 12 methods for compar-
ison (Wen et al., 2020; Gao et al., 2024). All
methods generated the same amount of samples
(15,000) for training six classifiers, as shown in
Table 3. Due to the lack of deep learning-based
augmentation methods in the sensor field, we intro-
duced the diffusion model-based approach for gen-
erating handwriting trajectory, named Diff-Writer
(Ren et al., 2023). Although this approach gen-
erates trajectory point sequences rather than the
sensor signals required in our study, its ability to
produce high-quality and diverse handwriting data
makes it highly valuable (Ren et al., 2024). We
adapted this method through modifications and re-
training, enabling its application to our inertial sig-
nal generation task for a meaningful comparison.
As shown in Table 3, Diff-Writer significantly out-
performs all baseline methods except for our CI-
GAN, showcasing its strength as a learning-based
approach for generating handwriting data. How-
ever, as Diff-Writer was not designed for generat-
ing inertial sensor signals, it struggles to fully cap-
ture the motion dynamics and semantic fidelity re-
quired for this task. Consequently, there remains a
considerable gap between its performance and that
of our CI-GAN, which achieves superior accuracy
across all classifiers by addressing the unique chal-
lenges of inertial signal generation.

4.3 Ablation Study
Systematic ablation experiments are conducted to
evaluate the contributions of the CGE, FOT, and
SRA modules in CI-GAN. We generated writing
samples using the ablated models and trained the
six classifiers on these samples. The results are
summarized in Table 4. When no generated data is
used (No augmentation), the recognition accuracy
of all classifiers is very poor. Employing the Base
GAN to generate training samples brings slight im-
provement but still underperforms, underscoring
the critical importance and necessity of data aug-
mentation for accurate recognition. This also indi-
cates that utilizing GAN to improve classifier per-
formance is a challenging task. Introducing CGE,
FOT, and SRA individually into the GAN signif-
icantly improves its performance, with the intro-
duction of CGE bringing the most noticeable im-
provement. This demonstrates that incorporating
Chinese glyph encoding into the generative model
is crucial for accurately generating writing signals.
When CGE, FOT, and SRA are simultaneously in-
tegrated into the GAN (i.e., CI-GAN), the perfor-
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Table 2: Performance comparison of 6 classfiers.
Classifier 1DCNN LSTM Transformer RF XGBoost SVM

Runtime (s) 0.00743 0.13009 0.03439 0.01269 0.00154 0.00173
Memory (MB) 22.153 29.897 52.336 35.418 19.472 3.881
Accuracy 95.7% 93.9% 98.4% 83.5% 93.1% 74.6%

Table 3: Comparison with competitive data augmentation baselines.
Data Augmentation Methods 1DCNN LSTM Transformer RF XGBoost SVM

Time
Domain

Cropping (Yue et al., 2022) 15.7% 9.1% 7.7% 12.8% 16.3% 9.6%

Noise Injection (Audibert et al., 2020) 17.3% 11.9% 12.2% 8.5% 13.8% 10.1%

Jittering (Flores et al., 2021) 20.1% 13.0% 14.4% 9.7% 17.4% 7.5%

Frequency
Domain

APP (Chen et al., 2021) 22.3% 13.6% 19.7% 19.0% 25.1% 16.3%

AAFT (Lee et al., 2022) 32.1% 20.7% 25.4% 27.5% 35.9% 19.2%

Decomposition
Wavelet (Wang and Zhao, 2024b) 19.9% 12.1% 10.6% 13.8% 22.6% 9.5%

EMD (Otero et al., 2022) 24.4% 17.1% 20.9% 17.9% 23.4% 12.2%

Mixup

CutMix (Yun et al., 2019) 21.9% 14.8% 15.5% 14.7% 18.9% 13.1%

Cutout (DeVries, 2017) 25.6% 16.4% 16.9% 18.5% 27.1% 16.6%

RegMixup (Pinto et al., 2022) 41.5% 27.8% 36.8% 38.4% 45.9% 30.3%

Learning
based

cGAN (Douzas and Bacao, 2018) 18.5% 14.8% 15.7% 12.4% 20.5% 8.4%

Diff-Writer (Ren et al., 2023) 71.3% 65.9% 78.7% 58.9% 62.5% 53.3%

CI-GAN (ours) 95.7% 93.9% 98.4% 83.5% 93.1% 74.6%

mance of all six classifiers is improved to above
70%, with four classifiers achieving recognition
accuracies exceeding 90%. Notably, the Trans-
former classifier achieves an impressive accuracy
of 98.4%. Statistical significance analysis is per-
formed to validate the reliability of these results,
as shown in Appendix A.4.

5 Discussion

Chinese characters, as a logographic writing sys-
tem with a long history, are not random concate-
nations of symbols but rather embody rich struc-
tural information and semantic cues. Unlike pho-
netic scripts, Chinese characters often exhibit in-
tuitive morphological links between their glyphs
and meanings (e.g.,日 depicts the sun,山 mimics
the silhouette of mountains, 火 resembles flames,
and 网 represents an intertwined network). This
ideographic nature can provide AI with denser in-
formation, enabling models to directly decode par-
tial semantics from the glyphs themselves. Stud-
ies have shown that the average information en-
tropy of Chinese reaches 9.65 bits, significantly
higher than the 4.03 bits for English. This im-
plies that to convey the same semantic meaning,
Chinese requires only about 41.7% of the charac-
ters needed in English. However, current Chinese
vectorization methods essentially treat characters
as arbitrary symbols, with learning primarily rely-
ing on statistical co-occurrences within character

sequences, thereby neglecting the internal struc-
tural information and rich prior knowledge inher-
ent in the glyphs themselves. This paper captures
Chinese handwriting using sensors, viewing this
process as a record of the dynamic formation of
glyphs, and consequently designs Chinese Glyph
Encoding (CGE) to represent the morphological
and structural information of characters from this
process. CGE can introduce the structural and
stroke features of Chinese characters into deep
learning architectures, allowing AI to evolve from
merely ”recognizing characters” to ”understanding
character structures.” When AI can comprehend
that radicals like氵 are often related to water, 亻
to people,讠 to speech,钅 to metal, and火 to fire,
its utilization of Chinese corpora becomes more ef-
ficient, and its understanding of the entire Chinese
knowledge system deepens. This motion-capture-
based representation of Chinese character glyph
structure can capture subtle structural differences
(e.g., 千 and 干, 天 and 夭, 田 and 甲), enabling
AI’s language understanding to transcend knowl-
edge representation based solely on statistical reg-
ularities from contextual prediction. To some ex-
tent, CGE provides AI with a powerful informa-
tion source for understanding human knowledge,
independent of purely text-based statistics, thereby
revealing the immense potential for AI in compre-
hending and utilizing the ancient and sophisticated
system of Chinese characters.
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Table 4: Performance comparison of six classifiers trained on samples generated by different ablation models.
Ablation model 1DCNN LSTM Transformer RF XGBoost SVM

No augmentation 0.87% 2.6% 1.7% 4.9% 1.2% 6.7%
w/o all (Base GAN) 18.5% 14.8% 15.7% 12.4% 20.5% 8.4%

w/ OT 26.4% 28.6% 27.3% 21.0% 30.9% 20.9%
w/ FOT 39.9% 38.0% 35.3% 31.9% 46.8% 27.3%
w/ CGE 54.6% 51.2% 47.9% 38.6% 57.5% 34.1%

w/ CGE (w/o GER) 35.7% 32.1% 30.9% 33.8% 41.1% 29.0%
w/ CGE (w/o GER)+SRA 61.4% 58.1% 60.2% 51.0% 59.9% 45.2%
w/ CGE (w/o GER)+FOT 59.6% 55.2% 54.0% 53.4% 58.3% 47.5%

w/ CGE+SRA 84.9% 77.4% 86.8% 61.4% 68.9% 56.1%
w/ FOT+CGE 80.7% 80.5% 80.9% 57.2% 70.4% 59.5%

w/ FOT+CGE+SRA (CI-GAN) 95.7% 93.9% 98.4% 83.5% 93.1% 74.6%

The profound implication of this research is
that for symbolic systems possessing internal struc-
ture and non-arbitrary morphology (especially lo-
gographic systems like Chinese characters), explic-
itly modeling their ”morphological logic” could
be an effective pathway to enhancing AI’s cogni-
tive capabilities. CGE, as an initial attempt, vali-
dates the feasibility of this approach and may have
far-reaching impacts on AI’s symbol learning and
representation learning. Furthermore, the shape
of Chinese characters, as a crucial carrier of their
meaning, deserves a more central position in fu-
ture AI research. This focus could be a key path
to propelling AI towards higher levels of cognitive
intelligence and a more profound understanding of
language.

6 Conclusion

This paper introduces GAN to generate inertial
sensor signals and proposes CI-GAN for Chinese
writing data augmentation, which consists of CGE,
FOT, and SRA. The CGE module constructs an
encoding of the stroke and structure for Chinese
characters, providing glyph information for GAN
to generate writing signals. FOT overcomes the
mode collapse and mode mixing problems of tra-
ditional GANs and ensures the authenticity of
the generated samples through the forced feature
matching mechanism and OT constraint. The SRA
module aligns the semantic relationships between
the generated signals and the corresponding Chi-
nese characters, thereby imposing a batch-level
constraint on GAN. Utilizing the large-scale, high-
quality synthetic IMU writing signals provided by
CI-GAN, the recognition accuracy of six widely
used classifiers for Chinese writing recognition
was improved from 6.7% to 98.4%, which demon-
strates that CI-GAN has the potential to become a

flexible and efficient data generation platform in
the field of Chinese writing recognition.

At present, the Chinese Glyph Encoding (CGE)
can only represent character categories available
in the training data, restricting the model’s holistic
understanding of the complete Chinese character
system. In the future, we plan to extend CI-GAN’s
comprehension to encompass all Chinese charac-
ters by representing fundamental radicals and com-
ponents. Most Chinese characters are composed
of simpler constituent elements. We will repre-
sent these basic components and train the model
to learn their correct sequential combination ac-
cording to established writing order, thereby form-
ing entirely new characters, even those not encoun-
tered during initial training. Since handwriting is
inherently a continuous, temporally ordered action,
the model only needs to learn the sequential assem-
bly of components rather than master their com-
plex two-dimensional spatial arrangements. This
simplifies the learning objective, making the gen-
eration of a vast and diverse range of Chinese char-
acters a more practical and achievable goal.

Moreover, we plan to extend CI-GAN to gen-
erate signals from other modalities of sensors,
constructing a multimodal human-computer inter-
action system tailored for disabled individuals,
which can adapt to the diverse needs of users with
different disabilities. Through continuous collab-
oration with healthcare professionals and the dis-
abled community, we will refine and optimize
these multimodal systems to ensure they deliver
the highest functionality and user satisfaction. Ulti-
mately, this research aims to foster a society where
digital accessibility is a fundamental right, ensur-
ing that all individuals, regardless of physical abil-
ities, can engage fully and independently with the
digital world.
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Limitation

Currently, CI-GAN can only generate inertial
handwriting signals for Chinese characters that are
present in its training data. This limits the model’s
comprehensive perception of the entire Chinese
character system, necessitating the development
of a new scheme for understanding Chinese glyph
structures.
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Appendix / Supplemental Material

A Additional Experimental Results

A.1 Signal Generation Visualization

To visually demonstrate the signal generation ef-
fect of CI-GAN, we visualized the real and gen-
erated inertial sensor signals of the handwriting
movements for the Chinese characters ”科” and
”学”, respectively. In these figures, the blue curves
represent the three-axis acceleration signals, and

the yellow curves represent the three-axis gyro-
scope signals. It can be observed that the gen-
erated signals closely follow the overall fluctua-
tion trends of the real signals, indicating that CI-
GAN effectively preserves the handwriting move-
ment information of the real signals. To further ver-
ify the consistency of the movement characteris-
tics between the generated and real signals, we em-
ployed a classical inertial navigation method (Gre-
wal et al., 2007) to convert both the real and gen-
erated signals into corresponding motion trajecto-
ries, as shown in the third column of Fig. 5. It is
important to note that the purpose of reconstruct-
ing the motion trajectories is not to precisely re-
produce every detail of the writing process but to
compare the overall shape similarity between the
trajectories derived from real and generated sig-
nals. The highly similar shapes between the tra-
jectories indicate that the generated signals accu-
rately capture the structural information of differ-
ent Chinese characters and can effectively simulate
the key movement features of the handwriting pro-
cess, including stroke order, movement direction
changes, and velocity variations. Additionally, the
obvious differences in details between the real and
generated signals demonstrate CI-GAN’s capabil-
ity to generate diverse signals. Since the generated
signals maintain the core movement and semantic
features of the handwriting process, these differ-
ences do not impair the overall recognition of the
characters but rather enhance the diversity of the
training data.

To demonstrate CI-GAN’s ability to generate
unlimited high-quality signals, we generated five
IMU handwriting signals for the same character
”王” and compared them with a real handwriting
signal, as shown in Fig. 6. We chose this character
because its strokes are distinctly separated, mak-
ing it easier to compare the consistency of stroke
features between the generated and real signals. It
can be observed that the generated signals exhibit
similar fluctuation patterns to the real signal in
all three axes of acceleration and gyroscope mea-
surements, verifying CI-GAN’s precision in cap-
turing dynamic handwriting characteristics. Al-
though the overall trends of the generated signals
align with the real signal, the individual features
show variations, demonstrating CI-GAN’s poten-
tial to produce large-scale, high-quality, and di-
verse IMU handwriting signal samples.
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“科”

“学”

Figure 5: The visualization results of the 6-axis signals recorded by the inertial sensor for different Chinese character
writing movements and the corresponding generated signals. The left side is the real signal, the middle is the
generated signal, and the right side is the reconstructed writing trajectory.

Real Signal Generated Signal Generated Signal

Generated Signal Generated Signal Generated Signal

Figure 6: Visualization of the real IMU signal for writing ”王” and the virtual signals generated by CI-GAN. The
upper left corner is the real signal, and the remaining signals are virtual signals.
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A.2 Performance of Classifiers on Similar
Characters

With the abundant training samples generated
by CI-GAN, the handwriting recognition perfor-
mance of all six classifiers significantly improved.
To further verify the recognition performance of
different classifiers on characters with similar
strokes and glyphs, we selected four groups
of characters with similar handwriting move-
ments from the test set (”八人入大天太”,
”办为方力万历”, ”过达这边近还”, and
”认议计许话识”) and presented the recognition
results of the six classifiers in confusion matrices,
as shown in Fig. 7. It can be observed that the
values on the diagonal of all confusion matrices
are significantly higher than the non-diagonal
values, indicating high recognition accuracy for
these similar handwriting characters with the help
of samples generated by CI-GAN. However, some
characters are still misrecognized. For instance,
the characters ”八”, ”人”, and ”入” have ex-
tremely similar structures and writing movements,
posing challenges even when massive training
samples are provided. Moreover, continuous and
non-standard writing can also cause recognition
obstacles. For instance, although the characters
”过” and ”达” have different strokes in static form,
they are very similar in dynamic handwriting.
Despite these challenges, the synthetic IMU
handwriting samples generated by CI-GAN
significantly enhance the classifiers’ ability to
recognize characters with similar glyph structures
and handwriting movements, highlighting the
value and significance of the proposed CI-GAN
method. By providing diverse and high-quality
training samples, CI-GAN improves handwrit-
ing recognition classifiers’ performance and
generalization ability, making it a valuable tool
for advancing Chinese handwriting recognition
technology.

A.3 Visualization Analysis of Chinese Glyph
Encoding

To demonstrate the effectiveness of the Chinese
glyph encoding in capturing the glyph features of
Chinese characters, we conducted a visualization
analysis using t-SNE, which reduced the dimen-
sionality of the glyph encodings of 500 Chinese
characters and visualized the results in a 2D space,
as shown in Fig. 8, where each point represents
a Chinese character. For the convenience of ob-

servation, we selected 6 local visualization regions
from left to right and zoomed in on them at the
bottom. It can be observed that characters with
similar strokes and structure (e.g., ”办-为”, ”目-
且”, ”人-入-八”) are close to each other. Addition-
ally, the figure shows several clusters where char-
acters within the same cluster share similar radi-
cals, structures, or strokes, indicating that CGE ef-
fectively captures the similarities and differences
in the glyph features of Chinese characters. By
incorporating CGE into the generative model, CI-
GAN can produce writing signals that accurately
reflect the structure and stroke features of Chinese
characters, ensuring the generated signals closely
align with real writing movements. This encoding
is not only crucial for guiding GANs in generating
writing signals but also potentially provides new
tools and perspectives for studying the evolution
of Chinese hieroglyphs.

A.4 Statistical Significance Analysis

Table 5: Performance of different classifiers with CI-
GAN generated data

Ablation Classifier Mean Accuracy Standard Deviation 95% Confidence Interval

No data
augmentation

1DCNN 0.87% 0.11% [0.8018%, 0.9382%]
LSTM 2.61% 0.20% [2.4761%, 2.7239%]

Transformer 1.70% 0.13% [1.6194%, 1.7806%]
RandomForest 4.89% 0.09% [4.8439%, 4.9556%]

XGBoost 1.20% 0.15% [1.1071%, 1.2929%]
SVM 6.65% 0.10% [6.5881%, 6.7119%]

Traditional
GAN

1DCNN 18.5% 0.16% [18.4008%, 18.5992%]
LSTM 14.8% 0.37% [14.5707%, 15.0293%]

Transformer 15.7% 0.15% [15.6071%, 15.7929%]
RandomForest 12.4% 0.17% [12.2948%, 12.5052%]

XGBoost 20.5% 0.23% [20.3573%, 20.6427%]
SVM 8.40% 0.34% [8.1893%, 8.6107%]

CI-GAN

1DCNN 95.7% 0.24% [95.5513%, 95.8487%]
LSTM 93.9% 0.53% [93.5713%, 94.2287%]

Transformer 98.4% 0.19% [98.2822%, 98.5178%]
RandomForest 83.5% 0.35% [83.2831%, 83.7169%]

XGBoost 93.1% 0.46% [92.8148%, 93.3852%]
SVM 74.6% 0.38% [74.3644%, 74.8356%]

The CI-GAN model demonstrates significant
performance improvements across multiple clas-
sifiers, as shown in Table 5. The Transformer
classifier, for instance, achieves a mean accu-
racy of 98.4%, compared to 15.7% with the tra-
ditional GAN and 1.7% without data augmenta-
tion. This highlights CI-GAN’s ability to gen-
erate realistic and diverse training samples that
enhance handwriting recognition. Moreover, CI-
GAN consistently improves accuracy and stabil-
ity for all classifiers tested. The 1DCNN’s accu-
racy increases to 95.7% from 18.5% with the tra-
ditional GAN and 0.87% without augmentation.
Similarly, other models, including LSTM, Ran-
domForest, XGBoost, and SVM, show substan-
tial gains, underscoring CI-GAN’s effectiveness
across diverse machine-learning contexts. In ad-
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Figure 7: Confusion matrices of different classifiers for recognition results of Chinese characters with similar
glyphs.

dition, the narrow 95% confidence intervals, such as [98.2822%, 98.5178%] for the Transformer, val-
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Figure 8: The t-SNE visualization of Chinese glyph encodings.
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idate the statistical significance and reliability of
these results. This confirms CI-GAN’s potential
to consistently enhance classifier performance. In
conclusion, CI-GAN represents a major advance-
ment in Chinese handwriting recognition by gen-
erating high-quality, diverse inertial signals. This
significantly boosts the accuracy and reliability of
various classifiers, demonstrating CI-GAN’s trans-
formative potential in the field.

B Challenge in Handwriting Sample
Collection

Collecting handwriting samples of Chinese char-
acters is not easy. During data collection, volun-
teers wrote different Chinese characters continu-
ously. We had to accurately locate the signal seg-
ments corresponding to each character from long
signal streams, as shown in Fig. 9. However,
accurately segmenting and extracting signal seg-
ments requires synchronizing optical motion cap-
ture equipment and then comparing the inertial sig-
nals frame by frame with the optical capture re-
sults to find all character signal segments’ starting
and ending frames. Consequently, we expended
significant time and effort to obtain 4,500 signal
samples in this paper, establishing the first Chi-
nese handwriting recognition dataset based on iner-
tial sensors, which we have made open-source par-
tially. By contrast, our CI-GAN can directly gen-
erate handwriting motion signals according to the
input Chinese character, eliminating the complex
processes of signal segmentation, extraction, and
cleaning, as well as the reliance on optical equip-
ment. We believe it provides an efficient experi-
mental data platform for the field.
Unlike the fields of CV and NLP, many deep

learning methods have not yet been applied to the
sensor domain. More importantly, unlike image
generation, where the performance can be visually
judged, it is challenging to identify semantics in
waveforms by observation and determine whether
the generated signal fluctuations are reasonable,
which imposes high requirements on generative
model design. Therefore, we had to design mul-
tiple guidance and constraints for the generator, re-
sulting in the design of Chinese Glyph Encoding
(CGE), Forced Optimal Transport (FOT), and Se-
mantic Relevance Alignment (SRA).

• CGE introduces a regularization term based
on Rényi entropy, which increases the infor-
mation content of the encoding matrix and

the distinctiveness of class encodings, provid-
ing a new category representationmethod that
can also be applied to other tasks. As far as
we know, this is the first embedding targeted
at the shape of Chinese characters rather than
their meanings, providing rich semantic guid-
ance for generating handwriting signals.

• FOT establishes a triple-consistency con-
straint between the input prompt, output sig-
nal features, and real signal features, ensuring
the authenticity and semantic accuracy of the
generated signals and preventing mode col-
lapse and mixing.

• SRA constrains the consistency between the
semantic relationships among multiple out-
puts and the corresponding input prompts, en-
suring that similar inputs correspond to sim-
ilar outputs (and vice versa), significantly al-
leviating the hallucination problem of gener-
ative models. Notably, the June 2024 Na-
ture paper ”Detecting Hallucination in Large
Language Models Using Semantic Entropy,”
shares a similar idea with our proposed SRA.
They assess model hallucination by repeat-
edly inputting the same prompts into genera-
tive models and evaluating the consistency of
the outputs. Their approach essentially forces
the model to produce similar outputs for sim-
ilar prompts. Our SRA not only achieves
this but also ensures that the relationships
between prompts are mirrored in the rela-
tionships between the outputs. This signif-
icantly reduces hallucinations and enhances
the model’s practicality and stability.
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Figure 9: Signal segmentation diagram. Since the raw data contains both meaningful handwriting and extrane-
ous movements, segmenting and extracting the relevant segments corresponding to individual characters from the
continuous signal stream is crucial. Reliance on human observation alone is insufficient and prone to errors, thus
making optical devices indispensable for accurately segmenting and extracting the signal segment.
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