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Abstract

Radiology Report Generation (RRG) is an im-
portant research topic for relieving radiolo-
gists” heavy workload. Existing RRG models
mainly rely on supervised fine-tuning (SFT)
based on different model architectures using
data pairs of radiological images and corre-
sponding radiologist-annotated reports. Recent
research has shifted focus to post-training im-
provements, aligning RRG model outputs with
human preferences using reinforcement learn-
ing (RL). However, the limited data coverage
of high-quality annotated data poses risks of
overfitting and generalization. This paper pro-
poses a novel Online Iterative Self-Alignment
(OISA) method for RRG that consists of four
stages: self-generation of diverse data, self-
evaluation for multi-objective preference data,
self-alignment for multi-objective optimization
and self-iteration for further improvement. Our
approach allows for generating varied reports
tailored to specific clinical objectives, enhanc-
ing the overall performance of the RRG model
iteratively. Unlike existing methods, our frame-
work significantly increases data quality and
optimizes performance through iterative multi-
objective optimization. Experimental results
demonstrate that our method surpasses previ-
ous approaches, achieving state-of-the-art per-
formance across multiple evaluation metrics.

1 Introduction

Radiology Report Generation (RRG) aims to au-
tomatically generate free-text descriptions of radi-
ology images by summarizing visual content and
clinical insights. Due to its great potential for alle-
viating radiologists’ workload, many works have
been proposed to perform supervised fine-tuning
(SFT) for RRG on data pairs (z,y) (where x de-
notes the radiological image and y represents the
corresponding report annotated by radiologists) by
refining different network architectures (Chen et al.,
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2020, 2021; Shen et al., 2024) or incorporating ex-
ternal knowledge from knowledge graphs (Huang
et al., 2023; Jin et al., 2024), or fine-tuning from
large vision/language models (Zhou et al., 2024a;
Chen et al., 2024). However, due to the limited
scale of the high-quality annotated data, such ap-
proaches raise concerns about overfitting and gen-
eralization beyond the dataset.

Recent research has shifted its focus to the post-
training stage, improving the capabilities of exist-
ing RRG models by aligning their outputs with
human preferences. For instance, CMN+RL (Qin
and Song, 2022), Delbrouck et al. (2022) and MPO
(Xiao et al., 2025) utilize signals from natural lan-
guage generation (NLG) metrics, entities and re-
lationships, or clinical efficacy (CE) metrics as
reward functions, applying reinforcement learn-
ing (RL) to align the RRG model. However, this
RL alignment process may still be constrained by
the data coverage of the training set (Xiong et al.,
2024). Alternatively, Hein et al. (2024) construct
a preference dataset using a strong 8B foundation
model (i.e., CheXagent (Chen et al., 2024)) and ob-
tains preference labels via an LLM-based scoring
model, GREEN (Ostmeier et al., 2024). Although
such a method performs well, it requires a large
foundation model and is limited to offline align-
ment on a fixed preference dataset.

Driven by this, we raise a question: “Is it pos-
sible for a lightweight RRG model to obtain a
strong performance with the data generated by it-
self, breaking free from the limitation of the fixed
dataset? ” To achieve this, we propose an Online
Iterative Self-Alignment (OISA) method for RRG.
OISA contains four steps: self-generation to get di-
verse and unlimited data, self-evaluation to obtain
multi-objective preferences data, self-alignment for
multi-objective optimization, and self-iteration of
the above three steps to improve the performance
of the RRG model further. Specifically, 1) Self-
generation adopts a one-hot weight vector as a con-
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dition for the RRG model to represent radiologists’
inherently heterogeneous and multi-objective in-
clination (e.g., report fluency, clinical accuracy).
By changing the weight condition, the RRG model
can generate diverse reports dedicated to specific
objectives. 2) Self-evaluation proposes a new pref-
erence data construction process, which includes
data deduplication, evaluation, and stratified sam-
pling to automatically construct a multi-objective
preference dataset. 3) Self-alignment applies the
Multi-Objective Direct Preference Optimization
(MODPO) (Zhou et al., 2024b) algorithm based on
the collected multi-objective preference datasets to
optimize the initial RRG model, thereby improving
the performance for multiple alignment objectives.
4) Self-iteration uses the updated RRG model to
generate preference data with higher quality and di-
versity. The three processes continuously improve
the multi-objective alignment performance for the
RRG model through iterations.

Unlike previous post-training methods (Hein
et al., 2024; Xiao et al., 2025) in RRG, our method
greatly extends the data coverage of the offline
dataset via an iterative process and improves the
performance of the RRG model via multi-objective
preference optimization. Our main contributions
are summarized as follows: (i) We propose a multi-
objective RRG policy to generate multi-objective
preference datasets in multiple rounds, which ad-
dresses the data limitation problem in previous
methods. (ii) We propose a self-improving process
with the automatically constructed multi-objective
preference data to improve the policy iteratively.
The quality of the RRG reports can be continuously
improved with the updated preference data and the
theoretically grounded policy. (iii1) Extensive exper-
iments demonstrate that our method outperforms
previous methods learned with fixed data or a sin-
gle objective, and achieves state-of-the-art perfor-
mance in multiple mainstream evaluation metrics.

2 Preliminary

Given an SFT RRG model 755, when prompted
with a radiological image z, the RRG model 7y
generates a response y (i.e., report) via msg(y|x).
Based on mgy, it is essential to align the model
with human/radiologist preference via an RL from
human feedback (RLHF) (Christiano et al., 2017)
process. In RLHF, Direct Preference Optimization
(DPO) is an effective preference learning method.
Typically, given an prompt x and an output text

response y, a language model policy my produces
a conditional distribution 7y (y|x). An ordinary
RLHF method fits a reward model 7(z, y) to a hu-
man preference dataset D and then uses RL to op-
timize the model policy my to generate responses
that assign high rewards without deviating too far
from the original reference model policy mer. The
overall objective can be formulated as:

™o (y|z)

B,y y) = Bl ’
mﬂ%x z~p,y~mo (y|z) r(z,y) — flog Wref(y‘w)(l

where p is the distribution prompt x sampled from.
B is a coefficient that controls the deviation from
the reference policy 7ef, 1.€., the initial SFT model
Tsfe. In practice, my is also initialized to myg.

DPO simplifies the above objective by collecting
the human preference data D and deriving an im-
plicit reward function that fits the preference data.
Here, D = {(:nl, v, yf)}fil consists of K prefer-
ence pairs 3" and 7, which denote the chosen and
rejected responses to the same prompt z. Following
the Bradley-Terry model (Bradley and Terry, 1952),
the probability of obtaining each preference pair
is given by: p(y* = y') = o (r(z,y*) — r(z,y")),
where the subscript ¢ is omitted for simplicity, and
o is the sigmoid function. In DPO, the objective
described in Eqn. (1) can be learned by applying
the following loss over the preference data D as,

Lopo(79; Tret) = =By yu iy
w l
[log(f <510g7re<ylx> - ﬁlogm)(yl\x))] ,
71'ref(yw’x) mef(y ’Q?) 2

In this paper, compared with the traditional SFT
model 7gg, we introduce an additional weight vec-
tor w that represents radiologists’ inherently het-
erogeneous and multi-objective inclination and use
w as the conditional input for multi-objective align-
ment, where w = [wy, ..., wy], s.t. S0 wy, =
1, wy, is the weight of the k-th objective, N is the
number of objectives. Initially, we set the refer-
ence policy of the multi-objective RRG model as
Tref(y| 2, W) = Tgg, which can generate a report y
condition on prompt and weight vector. Then we
denote the learned model policy as g, (y|z, w).
For each objective k, we use My, € [My, ..., My]
as the evaluation function to determine the corre-
sponding preference label by comparing the gener-
ated report with the ground truth report.
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Figure 1: The illustration of the proposed OISA pipeline, comprising the Preference Dataset Construction (PDC)
module and the Multi-Objective Alignment (MOA) module. The pipeline involves four steps: self-generation to
obtain diverse data, self-evaluation to obtain a multi-objective preference dataset, self-alignment for multi-objective
optimization, and self-iteration to further improve the performance of the RRG model.

3 Methods

Figure 1 illustrates the proposed OISA framework,
comprising two modules and iterating through four
steps to learn an RRG model policy g, . The first
module is the Preference Data Construction (PDC),
encompassing self-generation and self-evaluation
processes. In self-generation, for an image prompt
x, a one-hot weight vector W is used as a con-
dition for the initial RRG model s to generate
reports tailored to a certain objective and dedupli-
cate the generated reports to ensure data diversity.
By adjusting the value of W, the RRG model can
generate diverse reports tailored to different objec-
tives. In self-evaluation, a single evaluation metric
My, € [M;, ..., My] serves as the scoring func-
tion for the k-th objective to construct its preference
dataset Dy, by stratified sampling. Then, perform-
ing a similar process for each objective can au-
tomatically construct a multi-objective preference
dataset D = [Dy,...,Dn].

The second module is the Multi-Objective Align-
ment (MOA), i.e., a self-alignment process that
aligns with multi-objective preferences. With the
preference vector w and the preference data D,
a parametrized RRG model g, is optimized via
MODPO. Subsequently, the self-iteration process
starts the next round of iteration by setting myef <—
mg,, to generate higher-quality preference data and
conduct a new round of multi-objective alignment

to further improve the performance of the model.

3.1 Preference Datasets Construction

High-quality preference data is crucial for effective
preference learning. However, obtaining rankings
of reports across multiple dimensions from radiol-
ogists can be prohibitively expensive. Fortunately,
the field of RRG offers various evaluation metrics,
such as RadCliQ (Yu et al., 2023) and GREEN (Ost-
meier et al., 2024), which show a strong correlation
with radiologists’ evaluations. This enables us to
use radiology-related metrics to represent radiolo-
gists’ varying preferences and calculate evaluation
scores relative to reference reports for ranking.

In principle, a preference dataset Dy, specific to
evaluation metric M}, should be constructed as fol-
lows: 1) Generate multiple responses for a prompt
x and rank the responses using the scoring metric
M. 2) Select the highest-scoring response as y*
and randomly select a response from the remaining
ones as y'. For a given promt set, a preference
dataset Dy, = {(j,y7, yé)}fil is obtained via
above steps. However, since our lightweight SFT
model cannot generate diverse responses for the
same prompt, this paper proposes to construct a
high-quality multi-dimensional preference dataset
through self-generation and self-evaluation.

Self-Generation. For each preference dimen-
sion k, we prompted 7 With a prompt set X =
{z;}7L,, and a one-hot weight vector Wwj =
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[wy, ..., wn]| (where wy, = 1) that fully prefer the
radiologist’s inclinations for the k-th dimension,
Tref Will generate a report set Y = {(z;, Yi) it
via ﬂref(Y\X, Wy ). To ensure data diversity, we
deduplicate the report set Y at the patient and dis-
ease levels. For reports from the same patient but
different views, only the report with the highest
BERTSscore (Zhang et al., 2020) is retained. Sub-
sequently, we group the remaining reports by dis-
ease label, as identified by CheXbert (Smit et al.,
2020), and deduplicate reports within each group
(more details about the deduplication are in Ap-
pendix A.), resulting in the candidate report set
Y = {Y°}Y,, where C is the total number of
groups, Y¢ = {(z;, yj)}j-vzcl, and N, is the total
number of samples in c-th group.

Self-Evaluation. For the k-th preference di-
mension, we apply evaluation metric M, as its
scoring function, and the corresponding prefer-
ence dataset Dy, is constructed as follows: (i) For
each grouped report set Y¢ € Y, we evaluate it
with evaluation metric Mj; (i1) Calculate the num-
ber of samples that should be selected from Y¢,
denoted as K; (iii) Select K. reports from Y*°
with the highest M}, scores as the chosen response
set YV = {(J:J,y;”)}JK:‘l whose corresponding
prompt set is X¢ = {z; }]K:Cl; (iv) For each x € X¢,
randomly select one report from the remaining re-
port set Y°_vyw as its reject response, resulting
in the rejection response set Y! = {(z;, yé)}f;l
(v) Union Y" and Y! by X, and add the re-
sults into Dy; (vi) Perform the above (i-v) steps
to all groups will obtain the preference dataset
Dy = {(xj,y¥,y5)}<,. The whole process is
summarized in Figure 1, and the details of how to
calculate K, are in Appendix B.

Performing the above self-generation and self-
evaluation processes for all preference dimensions
can automatically construct multi-objective prefer-
ence dataset D = [Dy, ..., Dy].

3.2 Multi-Objective Alignment

To address the diversity of human preferences, we
adopt MODPO (Zhou et al., 2024b), which extends
DPO at minimal cost to achieve multi-objective
alignment. MODPO integrates a weighted combi-
nation of objectives and the training of RRG mod-
els into preference learning, consisting of two steps:
marginal reward modeling and policy learning.
Marginal reward modeling. For each prefer-
ence dataset Dy, we parametrize the margin reward

model Ry, with 7y, and train it through the Lppo
loss in Eqn. (2). Thus, the marginal reward can be
calculated as:

Tow (Y|, W)

Ri(z,y) = Blo =
k( y) B g Wref(y|x,Wk)

3)

RRG policy learning. To align multi-objective
preferences, we train the model on preference
datasets sequentially. For each preference dimen-
sion k, we optimize the target policy my,, over the
preference dataset Dy, using the weight w with the
Lwmoppo loss as follows:

LMopPO(Toy; R—k, st Di) =

Tow (U2, W)

mn(yt |z, w)

mow (¥VT, W) B
T (yvle, W) wg

_ iwjk (R_k(z,y™) — R_i(z,y")) )} ,

marginm g, (2,4 y1)
“
where wy, represents the k-th element of the pref-
erence vector w, and w_y, represents all elements
of w except for wy; R_j, denotes the marginal re-
ward model excluding R. Then, policy model 7g,,
continues to be trained on the preference dataset
Dy.+1 until all preference datasets are traversed.
The loss function Lyioppo aligns the model with
multi-objective preferences by incorporating pref-
erence vectors w as prompts during training, where
each preference dataset Dy, is associated with dif-
ferent weight w sampled from the weight space.
Iterating over the whole weight space and optimize
Lwmoppo for each w to produce an empirical front
mg,, that aligned with the multi-objective prefer-
ences encoded in the datasets.

3.3 Self-Iteration

After the above three steps, we get the updated
model 7y, and start the self-iteration process by
Tref < Tg,,. 1he whole process is continuously
iterated, which can greatly expand the data cov-
erage of the offline dataset and improve model
performance through multi-objective preference
optimization. The whole pipeline is as follows:

Training

i C i r Eq(2) i)V N Eq(4), i
s {2 DO B RO, B a0y o (5)

iteration i

4 Theoretical Analysis

We provide a brief theoretical analysis of our pro-
posed method to demonstrate the effectiveness of
online iterative self-alignment. Formally, we make
the following assumption on the parameterization
of the reward on each preference dimension k.
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Assumption 1 (Linear Reward). The reward lies
in the family of linear functions re(z,y)=(0,6(z,y))=
07 (z,y) for some known and fixed ¢(x,y):X xY—R?
With max, , ||¢(z,y)||2<1. Let 0* be the true parame-
ter for the ground-truth reward function. To ensure

the identifiability of 0%, we let 6* € O p, where
Op ={0 e RY(1,0) =0,[0l < B}. (6

In our method, we obtain an estimated reward
model R, reparameterized with Eqn. (3) via max-
imum likelihood estimation in Eqn. (2). Ac-
cording to Zhu et al. (2023), we can bound the
estimation error of R; conditioned on the data
Dy, = {(zj, 45, 45) Y
Lemma 1. (Zhu et al., 2023) For any X > 0, letting
v = 1/(2 + e~ B + €B), with probability at least
1 — 9, we have

j * d +log(3)
”0MLE —0 HE’Dk+)\I <p:=C- \/72[((5 + \B2,
@
1 K 1
where Sp, = L _Zl(¢($j7y}’])—¢(3?j7yj))((ﬁ(%,y}”)—
J=
¢(wj7y§))-r-

Given a preference weight vector w € RY and
a set of reward models over each preference dimen-
sionr = [Ry,..., RN]T, the objective during RL
tuning phase in multi-objective RLHF is,

Tw(y|z
J (Mg, 1) = Ee y WTI’(% y) — Blog 7Tf((z|\l’))
Ie

(8)
where x ~ p and y ~ mw(y|z). For clar-
ity, we define RL tuning objective J (7w, OmLE)

with MLE estimated reward Oy g = 01,...,0N]
and J(mw, @) with ground-truth reward 6* =

67, . .., 0%] respectively, as
J (7w, Oie) = Eq y [wTé;LEQs(x, y) — Blog wagllg} 7
(T, 07) = By [WTO*T¢($,?J) — Blog %} :

Now we are ready to analyze the sub-optimality
gap of the optimal policy 7y, derived from opti-
mizing J (7w, 9MLE). For the output policy 7ty =
arg max,. J (T, @MLE), we have the following the-
oretical guarantee.

Theorem 1. For any A > 0, 5 > 0, with probabil-
ity at least 1 — ¢, the optimal policy 7w W.r.t. the

objective J (v, OmrE) satisfies,

N

SubOpt(ftw) < 20+ Y wi|[Eonp[d(, " (@)l mp, 42115

k=1

)

where ™ = arg max, J(mw, 0%) is the optimal
policy w.r.t. the ground-truth reward model 0*.

The proof is deferred to Appendix C. Here the
term || Eg~p[o(2, 77*(37))]||(2Dk+)\1)—1 can be inter-
preted as a measure of how well the current dataset
Dy, covers the distribution of responses generated
by the target policy 7*. Theorem 1 implies that
when MODPO in each iteration guides the output
policy 7y towards the optimal policy 7*, adopting
an online iterative MODPO paradigm can tighten
the bound by collecting a new preference dataset
with higher quality generated by the new policy,
thereby enjoying a theoretically grounded improve-
ment. Besides, we emphasize that although we
start by introducing a relatively simple linear re-
ward assumption, the theoretical results are also
ready to be extended to general function approxi-
mation (Chen et al., 2022; Wang et al., 2023).

S5 Experiments

5.1 Datasets and Experiment Setting

Datasets. We evaluate our method on two public
datasets, MIMIC-CXR (Johnson et al., 2019) and
[U-Xray (Demner-Fushman et al., 2016). MIMIC-
CXR is the largest public dataset for RRG, con-
taining 337,110 chest X-ray images and 227,835
corresponding reports. Following the official split,
MIMIC-CXR is randomly split into 7:1:2 for train,
val, and test. We use the training set of MIMIC-
CXR to construct preference datasets and test our
model on its test set. IU-Xray consists of 7,470
chest X-ray images, accompanied by 3,955 reports.
For IU-Xray, we follow PromptMRG (Jin et al.,
2024) to test our model on the entire [U-XRay set.

Evaluation Metrics. We evaluate our model
by comparing the generated report with the cor-
responding ground truth report using seven met-
rics from two domains: NLG and radiology. For
NLG metrics, we include BLEU1, BLEU4 (Pap-
ineni et al., 2002) and BERTScore (Zhang et al.,
2020). For radiology metrics, we consider GREEN
(Ostmeier et al., 2024), RadGraphF1 (Jain et al.,
2021), CheXbertF1 (Smit et al., 2020) and Rad-
CliQ (Yu et al., 2023). For all metrics, except Rad-
CliQ, a higher value signifies better performance.
A detailed explanation of each metric is in Ap-
pendix D.1.

Implementation details. We set PromptMRG
(Jin et al., 2024) as our baseline model and conduct
three rounds of iterations, each consisting of 60
epochs. In each round, the preference dataset is
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constructed based on the model trained in the pre-
vious round, conditioned on a one-hot weight vec-
tor. We use three radiology metrics, RadCliQ, Rad-
GraphF1, and GREEN to represent different objec-
tives, resulting in a preference dataset with N = 3
objectives, D = [DRradciiQ, PRadGraphF1, PGREEN]
with K = 10,000 pair of data in each dataset.
During training, we apply different w values to
produce well-distributed fronts that interpolate var-
ious objectives, with the sampling space for w in
each dimension set to {0.2,0.4,0.6,0.8,1.0}. For
B, we conduct a hyperparameter analysis in Ap-
pendix D.2 and set 8 = 0.5. More implementation
details are in Appendix D.3. Computing cost anal-
ysis is provided in Appendix D.4.

iterationl  iteration2 _ iteration3 iterationl  iteration2 _ iteration3 iterationl iteration2 _ iteration3

Figure 2: The distribution of preference dataset on dif-
ferent evaluation metrics in three iterations.

5.2 Results and Analysis

Preference data. To verify our pipeline can im-
prove the quality of preference data with each itera-
tion, we provide the violin plots to compare the dis-
tribution of the preference data generated in three
iterations across three evaluation metrics, Rad-
GraphF1 (1), GREEN(?), and RadCliQ(]). Since
y! is randomly selected in the PDC module, Figure
2 only shows the results of the chosen responses y*.
Figure 2 shows that with each round of iteration, all
quantiles of RadGraphF1 and GREEN gradually
increase, while the quantiles of RadCliQ gradually
decrease. This demonstrates that as the number of
iterations increases, the quality of the preference
data improves across all evaluation metrics.

Alignment with different preferences. To ver-
ify the effectiveness of our proposed method, we
test the models obtained at each iteration under four
specific preference weight configurations, where
w1, we, and ws representing the weights of objec-
tive represented by RadCliQ({), RadGraphF1, and
GREEN, respectively. In each iteration, the first
three rows represent the results of fully preferring
one of the objectives, while the last row assigns
equal weights to all objectives.

Table 1 and Table 2 show the results on the

MIMIC-CXR and Iu-Xray dataset. For MIMIC-
CXR dataset, we have the following observations:
1) The model outperforms the baseline model
across all weight configurations in each iteration.
2) In each iteration, when an objective is fully
preferred, the corresponding metric achieves the
best performance. When the weights are equally
distributed among objectives, the model attains
the second-best results across all metrics, indicat-
ing that our method can align multiple objectives
through weight conditions. 3) The performance
trends of BLUE and BERTScore align with those
of RadCliQ, as RadCliQ is a linear combination of
these metrics. Similarly, the trend of ChexbertF1
correlates with RadGraphF1 due to their similar
calculation methods. 4) For the same weight con-
figuration, all metrics show a gradual increase with
each iteration. For instance, from iteration 1 to iter-
ation 3, the best results for RadGraphF1, GREEN,
and RadCliQ improved from 0.247, 0.326, and 2.62
to 0.273, 0.341, and 2.54, respectively on MIMIC-
CXR dataset and from 0.285, 0.482, and 2.57 to
0.308, 0.527, and 2.51, respectively on IU-Xray
dataset with the best performance achieved in the
third iteration. This demonstrates that our method
can continuously enhance the overall performance
through multiple iterations. 5) Similar observations
can be drawn on the IU-Xray dataset.

Multi-objective alignment fronts. To verify the
performance of multi-objective alignment among
iterations, we evaluated the model with a set of
sampled weights to show the Pareto fronts of
the learned multi-objective policy, the results are
shown in Figure 3, and the three paired objectives
are shown in the subfigures, i.e., (a) RadGraphF1
vs. GREEN, (b) RadGraphF1 vs. RadCliQ (re-
verse), and (¢) GREEN vs. RadCliQ (reverse). In
each figure, the distribution of each front reveals
how the model behaves under varying weight pri-
orities, where each point’s weight on the front cor-
responds to the weight assigned to the horizontal
axis metric, ranging from 0-1.

According to the visualization, we find that start-
ing from the initial SFT model, the Pareto fronts of
all objective pairs notably towards the upper-right
quadrant in iterations. This indicates the proposed
iterative data generation and alignment process en-
sures continuous policy improvement overall ob-
jectives, which has also been verified in our the-
oretical analysis. Meanwhile, in each front, the
performance of both axes changes smoothly as we
move along the front. Importantly, when the hor-
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Figure 3: The multi-objective alignment fronts across three iterations.

Model wp Wy w3 B1 B4 BERTScore RadCliQ | RadGraphF1 ChexbertF1 | GREEN

SFT - - - 0.398 0.112 0.857 2.77 0.227 0.476 0.289

1 0 0 0.418 0.119 0.869 2.62 0.238 0.481 0.319

Iteration 1 0 1 0 0.414 0.115 0.860 2.68 0.247 0.499 0.320

0 0 1 0.412 0.115 0.861 2.69 0.241 0.484 0.326

/3 1/3 1/3| 0415 0.117 0.865 2.65 0.244 0.491 0.323

1 0 0 0.426 0.125 0.879 2.56 0.242 0.483 0.320

lteration 2 0 1 0 0.417 0.116 0.864 2.67 0.266 0.505 0.322

0 0 1 0.415 0.115 0.866 2.68 0.245 0.486 0.337

/3 1/3 1/3| 0419 0.119 0.874 2.63 0.251 0.494 0.325

1 0 0 | 0.428* 0.129* 0.885%* 2.54* 0.244 0.486 0.322

. 0 1 0 0418 0.117 0.872 2.65 0.273* 0.516* 0.324
Iteration 3

0 0 0417 0.116 0.873 2.66 0.249 0.484 0.341*

173 1/3 1/3 | 0421 0.121 0.879 2.61 0.254 0.504 0.327

Table 1: Results on MIMIC-CXR dataset under four preference weights across three iterations, where wy, ws, and
ws correspond to the weights of the objective of RadCliQ, RadGraphF1, and GREEN, respectively. SFT represents
the results produced by the baseline model. Bold blue denote the best results in each iteration, while underlined

indicates the second-best results. An asterisk (*) signifies the best result among all iterations.

Model wyp  wo W B1 B4 BERTScore RadCliQ | RadGraphF1 ChexbertF1 ‘ GREEN
SET - - - 0401 0098 0.871 2.64 0274 0211 0457
1 0 0 | 0411 0.107 0.879 2.57 0.277 0211 0.461
. 0 1 0| 0402 0.101 0.871 261 0.285 0.218 0.459
Iteration 1
0 0 1| 0404 0.102 0.872 2.64 0.275 0212 0.482
13 13 13| 0407 0.102 0.874 2.60 0.281 0215 0.467
1 0 0| 0426 0.124 0.885 2.55 0.279 0.217 0.465
feration2 | © 10| 0405 0.103 0.874 2.60 0.299 0.227 0.468
eratio 0 0 1| 0404 0.102 0.875 2.61 0.276 0.214 0.513
13 13 13| 0415 0.114 0.879 2.58 0.291 0.222 0.484
1 0 0 |0431* 0.131*  0.889% 2.51% 0.282 0.219 0.481
. 0 1 0| 0411 0105 0.877 2.59 0.308* 0.232* 0.479
Iteration 3
0 0 1| 0409 0.107 0.880 261 0.280 0.216 0.527*
13 13 13| 0421 0.122 0.882 2.56 0.305 0.225 0.512

Table 2: Results on IU-Xray dataset under four preference weights across three iterations, where wy, ws, and ws
correspond to the weights of the objective of RadCliQ, RadGraphF1, and GREEN, respectively. SFT represents
the results produced by the baseline model. Bold blue denote the best results in each iteration, while underlined
indicates the second-best results. An asterisk (*) signifies the best result among all iterations.

izontal metric generally improves with its weight,
the vertical metric maintains the best possible value
according to the Pareto principle: there are no so-

lutions that simultaneously improve both metrics.
In the last iterations, our method exhibits extensive
and continuous Pareto fronts, which demonstrate
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the model’s enhanced ability with improved data
quality after self-iterations. The final results give
well-balanced Pareto-efficient solutions that cater
to a wide range of objectives, representing the opti-
mal trade-off frontier for each metric pair.

Comparison with other RRG works. The
comparison methods include traditional approaches
such as R2Gen (Chen et al., 2020), CMN (Chen
et al.,, 2021), CMN+RL (Qin and Song, 2022),
PromptMRG (Jin et al., 2024), and MPO (Xiao
et al., 2025), as well as VLM-based methods like
CheXagent (Chen et al., 2024), MedVersa (Zhou
et al., 2024a), and MiniGPT-Med (Alkhaldi et al.,
2024). The results on the MIMIC-CXR dataset
are presented in Table 3. Compared to radiology
metrics, all VLM-based models perform signifi-
cantly worse than traditional RRG models on NLG
metrics, likely due to specialist foundation models
prioritizing clinical efficiency in report generation.
Our method outperforms all traditional methods in
the second iteration and achieves the best perfor-
mance in the third iteration. When compared to
VLM-based models, our method shows significant
superiority over CheXagent and MiniGPT-Med,
and its performance is comparable to that of Med-
Versa. This indicates that our proposed method can
generate reports aligned with multi-objective pref-
erences while also improving overall performance
with a lightweight model.

We also compared our methods with existing
RRG models on the IU-Xray dataset. Following
the experimental setup outlined in PromptMRG,
all the data in the IU-Xray dataset are used to test.
Table 4 shows the results compared with traditional
approaches such as PromptMRG (Jin et al., 2024)
, as well as VLM-based models like CheXagent
(Chen et al., 2024) and MedVersa (Zhou et al.,
2024a). Our method achieves the best performance
on all metrics. Like MIMIC-CXR, all VLM-based
models significantly underperform traditional RRG
models in NLG metrics.

6 Related Work

Existing RRG methods can be divided into super-
vised fine-tuning (SFT)-based and post-training-
based methods from the view of model learning.
SFT-based methods. These methods typically
improve the quality of RRG by refining different
network architectures or injecting external knowl-
edge. The former usually adopts CNN-Transformer
as the basic architecture and introduces new mod-

ules, such as cross-modal memory network (Chen
et al., 2021; Shen et al., 2024) and memory en-
hancement module (Cao et al., 2023) to enhance
cross-modal pattern learning. Another line of re-
search focuses on incorporating external knowl-
edge, such as knowledge graphs (Kale et al., 2023;
Huang et al., 2023), disease tags (Jin et al., 2024),
and retrieved reports (Liu et al., 2024), into the
RRG pipeline to enhance the quality of generated
reports. Recently, several medical visual language
models (VLMs) derived from large language mod-
els and tailored for medical applications have been
proposed, such as MiniGPT-Med(Alkhaldi et al.,
2024), MedVersa (Zhou et al., 2024a), and CheXa-
gent (Chen et al., 2024), which can perform multi-
ple medical tasks.

The aforementioned SFT-based RRG methods
have made significant progress. However, due to
the limited scale of high-quality annotated data,
these methods have the potential risk of overfitting
and cannot be generalized outside of the dataset.

Post-training-based methods. Post-training
techniques have been applied to further improve
the generation capabilities of existing RRG models
through RL with reward models (Wang et al., 2021,
2022; Qin and Song, 2022; Xiao et al., 2025) or
direct preference alignment without reward mod-
els (Hein et al., 2024). For example, (Wang et al.,
2021; Qin and Song, 2022) use off-the-shelf nat-
ural language generation (NLG) metrics such as
BLEU as the reward function and maximize the av-
erage reward expectation of over the training data
to improve the quality of report generation. Del-
brouck et al. (2022) apply RL to enhance report
generation’s factual completeness and correctness
by designing semantic relevance metrics based on
entity coverage and relations. MPO (Xiao et al.,
2025) uses a multi-dimensional preference vector
as a condition for the RRG model, and optimizes
the weighted multi-dimensional reward through RL
to align with human preferences. However, such
an RL alignment process can still be limited to
the data coverage of (Xiong et al., 2024). Further,
Hein et al. (2024) construct a preference dataset
with wide coverage using the 8B foundation model
CheXagent (Chen et al., 2024) and investigates
five offline direct preference alignment algorithms
based on this preference dataset. Although such a
method achieves strong performance, it requires a
large foundation and score models, which are much
more costly than other methods.

Unlike previous post-training methods (Hein
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Model Size B1 B4  BERTScore RadCliQ RadGraphFl1 ChexbertF1 GREEN
R2Gen 78.5M | 0.353 0.103 0.866 2.89 0.195 0.276 0.306
CMN 59.1M | 0.353 0.108 0.867 2.87 0.199 0.278 0.308
CMN+RL 60.8M | 0.381 0.109 0.871 2.83 0.214 0.292 0.315
PromptMRG 2199M | 0.398 0.112 0.857 2.77 0.227 0.476 0.289
MPO 63.3M | 0416 0.139 0.878 2.63 0.257 0.353 0.324
Ours (iteration 1) 0418 0.119 0.869 2.62 0.247 0.499 0.326
Ours (iteration 2) | 230.1M | 0.426 0.125 0.879 2.56 0.266 0.505 0.337
Ours (iteration 3) 0.428 0.129 0.885 2.54 0.273 0.516 0.341
MedVersa B 028  0.09 0.711 245 0.289 0.471 0.381
MiniGPT-Med 7B 0.191 0.012 0.636 2.95 0.164 0.172 0.211
CheXagent 8B 0.172  0.021 0.669 2.88 0.19 0.265 0.268

Table 3: Comparison with existing RRG methods on MIMIC-CXR dataset. The best results are highlighted in bold

and underlined indicates the second-best results.

Model Size B1 B4  BERTScore RadCliQ RadGraphFl1 ChexbertF1 GREEN
R2Gen 78.5M | 0.363 0.073 0.861 2.79 0.187 0.154 0.482
CMN 59.IM | 0.39 0.085 0.862 2.75 0.186 0.155 0.516
PromptMRG 2199M | 0.401 0.098 0.871 2.60 0.274 0.211 0.457
Ours (iteration 1) 0411 0.107 0.879 2.57 0.285 0.218 0.482
Ours (iteration 2) | 230.1M | 0.426 0.124 0.885 2.55 0.299 0.227 0.513
Ours (iteration 3) 0.431 0.131 0.889 2.51 0.308 0.232 0.527
MedVersa 7B 0.247 0.047 0.884 2.71 0.209 0.217 0.516
CheXagent 8B 0.191 0.036 0.876 2.81 0.184 0.097 0.407

Table 4: Comparison with existing RRG methods on IU-Xray dataset. The best results are highlighted in bold and

underlined indicates the second-best results.

et al., 2024; Xiao et al., 2025) in RRG, our method
greatly extends the data coverage of the offline
dataset via an iterative process and improves the
performance via multi-objective optimization.

7 Conclusion

This paper proposes an OISA method for RRG, ad-
dressing the limitations of existing models that rely
on fixed datasets. By employing self-generation,
self-evaluation, self-alignment, and self-iteration,
we have established a post-training framework that
expands data quality and performs alignment gradu-
ally with multi-objectives. Theoretical results show
our method leads to tight regret bound under linear
reward assumptions. The experimental results high-
light the potential of lightweight RRG models to
deliver high-quality reports for multiple objectives
and achieve Pareto-optimal alignment performance
among iterations, which underscore the value of
self-generated data and iterative improvements in
adapting to diverse clinical needs.

8 Limitations

Due to computing constraints, we only focus on a
single traditional RRG model, other models with

different sizes and architectures would be promis-
ing to explore in the future. Further, we adopt the
existing evaluation metrics of RRG model to repre-
sent user preferences, which may not be consistent
with the actual needs of clinicians. It would be
important to define fine-grained and informative
metrics to construct the preference dataset and per-
form multi-objective alignment in future works.
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A Deduplication Rules in Self-Generation

The deduplication rules are as follows:

(i) Patient level. For reports from the same patient but different views, we calculate the NLG metric
(BERTScore (Zhang et al., 2020)) and only retain the report with the higher BERTScore value. From the
original training set of 227,835 reports, we retain 130,534 reports.

(ii) Disease label level. We then group the reports obtained in (i) according to the 14 disease labels
extracted by CheXbert (Smit et al., 2020), resulting in 579 groups, with the largest group containing
16,549 reports and the smallest group containing 1 report. Within each group, where groups with more
than 2 reports are further deduplicated as follows:

1) Discard reports with a BERTScore value below 0.5.

2) Compute the BERTScore for every pair of reports in the group. If the BERTScore value exceeds the
threshold of 0.8, indicating that the two reports are very similar, we only keep the report with a higher
BERTScore value compared to the ground truth report. The choice of the threshold is empirical. A lower
threshold may result in removing too many dissimilar reports, while a higher threshold may result in
discarding more relatively similar reports, leading to a decrease in diversity.

After this second deduplication, the total number of reports is reduced to 98,753, with the largest group
containing 11,324 reports, while the smallest group remains 1 report.

B How to calculate K. in Self-Evaluation

For each preference dimension k, we obtain a candidate report set Y = {Y¢}<_, via the Self-Generation
process, where C' is the total number of groups, Y¢ = {(z;, yj)}j.v:cl, and N, is the total number of
samples in c-th group. Within each group, we rank the reports based on the metric Mj,. The total number
of pairs in each preference dataset is K. We denote the number of reports to be sampled as K, and the
number of groups with more than one report as (); We then perform sampling within each group according
to the following rules.

* Calculate the average number of samples to be sampled for each group as y = {%—‘ .

* For groups with fewer than p reports, we sample all reports within those groups, i.e., K. = N,
resulting in a total of K reports.

* For groups with more than p reports, we first sample K. = p from each group, resulting in a total of
K5 reports.

* Update the number of reports that remain to be selected as: K, + (K, — K1 — K3), the number of
groups with more than one report (). Repeat the above process until K. = 0.

C Proof of Theorem 1

To bound the sub-optimality gap of the policy derived from multi-objective direct preference optimization,
we first introduce an important lemma on the sub-optimality gap bound of the policy derived from
single-objective direct preference optimization.

Lemma 2. Given a dataset Dy, for a specific preference dimension k, the MLE estimated reward model is
denoted as 0. Denote the optimal policy w.r.t. RL tuning objective J (r; ék) with the estimated reward
model ék as 7 = argmax_ J(m; ék), and the optimal policy w.r.t. RL tuning objective with the ground-
truth reward model 0}, as 7 = arg max, J(m; 05). For any X > 0, 8 > 0, with probability at least 1 — 0,
7 satisfies

SubOpt(7) < 20 - [[Eanp[d (2, 7 (@)l (55, 4211+ (10)
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Proof of Lemma 2. We first decompose the sub-optimality gap defined in Eqn. (10).

SubOpt(#) = J(*, 6%) — J(#,65)

™ (y|x)
= wavmyww*(ylw) [7”2(1‘» y) — Blog m]
7 (ylx)
- Eacwp,war(yh:) [7"2(537 y) - B log m}
= Ex~p,y~7r* (y|z) [Tl: ($7 y) — T (J:) y)]
Term (i)
+ E:swp,war(ykc) [f/i‘ (l‘, y) - TI: (l‘, y)]
Term (ii)
+ J(7*,03,) — J(#, 01 (11)
Term (iii)

Term (i). Under Assumption 1, we can rewrite Term (i) in Eqn. (11) as

Term () = Eyvp yore i) [(0F — O1) "0, 9)]
< ng - QkHZDk AT HEIN/),yNW*(y\x) [¢($, y)} H(Erpk-‘r)\])*l
<o ”E:L‘Np,yNﬂ‘*(wx) [¢(‘T7 y)] H(Zpk +AI)~1s (12)
where the first inequality results from Cauchy-Schwarz inequality, and the last inequality is obtained by

using Lemma 1.
Term (ii). Akin to the derivation of Eqn. (12), we also have

Term (ii) = Exwp,war(y\x) [(ék - 92)T¢(1‘, y)}
<o- HE:JCNp,war(y|:Jc) [¢($, y)]H(EDk—i-)\I)—l' (13)

Term (iii). Since 7 satisfies 7 = arg max, J(m, 0)), we have
J(7*,01) < J(7,0). (14)
Combining three terms together. Substituting Egs. (12—-14) into Eqn. (11), we get

SubOpt(#) < ¢+ ([ Eawpld(@, 7 (@) (5p, +a1)-1 + [Eanpld(@, 7@ (p, +20-1)- (15

Here the term [|E,,[¢(z, 7(x))]|| (Sp, +A1)-1 for any 7 is equivalent to a measurement of how well the

current dataset Dy, covers the distribution of responses generated by the given policy 7. Recalling that

the preference dataset D,(:) in every iteration ¢ > 1 is collected by the initial reference policy 7t (i.e.,

the resulted policy #(=1) in the last iteration ¢ — 1) in the iterative RLHF paradigm, the target vector
Eynp[d(z, 70 (2)] induced by the optimized policy #(*) in this iteration i would overlaps more with the
dataset D,(;) than that of the optimal policy 7*. Therefore, the following inequality generally holds

[Eanpl¢(@, 7 ()]l (5p, +20)-1 2 [Banpld(@, 7(2))]l(p, +20)-1 (16)
By combining Eqn. (16) and Eqn. (15), we can conclude the proof of Eqn. (10). 0

Now we are ready to prove our main theorem.
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Proof of Theorem 1. Given any reward r = [r1,...,7n]" = [01,...,0n]"¢(z,y), denoting 8 =
[01,...,0n] € RN the objective during RL tuning phase in multi-objective RLHF can be rewrit-
ten as

(7w, 0) = Eay [wTr(% y) — Blog %]

=By [WTI‘(JU, y)—B-w'l log %]

T T
=w E,, |0 ¢(z,y) —1-Flo
Y |: ¢( y) B g Wref(y|$)

The term B, ;[0 ¢(,y) — 1 - B - KL(7w||Ter)] is a vector of which every element is equal to RL tuning
objective w.r.t. the reward model from the corresponding preference dimension. Further, we can rewrite
the sub-optimality gap of Ty, = arg max_ J (7w, OMLE),

SubOpt(7ty) = J(7*,0%) — J (7, 0%)

—w! (Ex7yN7r* [O*Tgb(x, y) —1-Blog M]

7Tref(y|x)
B E:c,yNﬁ—w [Q*qu(xa y) —1-pFlog M])

71'ref(y‘x)
N
=Y wi - (J(7*,65) — T (7w, 0})), (17)
k=1
where w = [w1, ..., wy]". From Lemma 2, we get the bound of sub-optimality gap on every single
preference dimension. Altogether we have with probability 1 —
N
SubOpt(tw) < 20> wi|[Eamp[d(@, 7 ()l (2, +71)-1- (18)
k=1

0

D Experiments

D.1 Evaluation metrics

BERTScore (Zhang et al., 2020) is a similarity score derived from contextualized embeddings. Rad-
GraphF1 (Jain et al., 2021) and CheXbertF1 (Smit et al., 2020) are clinical scores that incorporate
clinically relevant dimensions by focusing on predefined pathological entities. RadCliQ (Yu et al., 2023)
is a composite metric that linearly combines four existing metrics (i.e., BLEU, BERTScore, CheXbert
embedding similarities, and RadGraph (Jain et al., 2021)) while learning the combination weights from
human-annotated error scores to better align with human evaluations. GREEN (Ostmeier et al., 2024) is
specifically designed to assess model errors by prioritizing significant errors that could impact clinical
decision-making.

D.2 Hyperparameter analysis of

To test hyperparameter 3, we limit our hyperparameter search to the candidate set [0.1,0.5,0.8, 1.0] and
conduct experiments in the first iteration on the MIMIC-CXR dataset. The experimental results in Table 5
show that the value of 3 within a reasonable range does not significantly affect the results. Since we are
primarily focused on radiology metrics, we set 5 = 0.5 for all our experiments.

D.3 Implementation details and hyperparameter list

We set PromptMRG (Jin et al., 2024) as our baseline model and conduct three rounds of iterations, each
consisting of 60 epochs, each epoch takes about 15 minutes. Our method is implemented in PyTorch and
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Jé] Bl B4  BERTScore ChexBertF1 GREEN RadGraphF1 RadCliQ
0.1 | 0416 0.118 0.865 0.478 0.312 0.235 2.68
0.5 ] 0418 0.119 0.869 0.481 0.319 0.238 2.62
0.8 0419 0.119 0.868 0.477 0.311 0.235 2.70
1.0 | 0415 0.117 0.859 0.469 0.311 0.237 2.68

Table 5: Hyperparameter analysis of 3.

trained on an NVIDIA 4090 GPU with 24GB of memory, using a batch size of 16 and an initial learning
rate of le-5. We employ the Adam optimizer during training and apply beam search with a width of 3
for inference. The maximum report lengths for MIMIC-CXR and IU-Xray are 150 and 110, respectively.
In our approach, the weight vector w is fused with the image features through a multi-head attention
mechanism, where w is the query and the image features are both the key and the value. The experimental
results for the other methods are obtained by running the official code with the parameters they specified
in the original paper, the split and preprocess of the test dataset aligns with ours. All hyperparameters are
listed in Table 6.

Hyperparameters Value
SFT model PromptMRG (Jin et al., 2024)
Max-Report-Length  150/110 vs. MIMIC-CXR/IU-Xray

Sampling space of weight w; {0.2,0.4,0.6,0.8, 1.0}
m 227,835
Preference pair K 10,000
Optimizer Adam
Learning rate le-5
Group number C' 579
Epochs number 60
Iterations number 3
preference dimension N 3
Batch size 16
Num Beams 3
I3 0.5

Table 6: Hyperparameters list

D.4 Computing cost analysis

Table 7 shows the computing cost of our baseline model (PromptMRG) in the SFT stage and iterative
preference learning stage. The SFT is performed on the training set of MIMIC-CXR with 227K training
samples, while preference data is constructed by ourselves with 10K samples. OISA iterates 3 rounds in
total. Preference learning has the same model scale as SFT, while it has much less data (10K vs 227K),
which makes it more efficient.

Models Dataset & size Batch size  Training time (h/epoch) GPU(GB) #Para (M) FLOPS(G)
SFT MIMIC-CXR(227K) 6 2.39 8.85 219.9 181.58
OISA (per iteration)  Preference data 10K 6 0.14 10.24 230.1 188.67

Table 7: Comparative analysis of training time and resource utilization in SFT and our iterative stage.

Inference time is mainly determined by model size. As shown in Table 8, OISA shows comparable
inference speeds against the SFT model PromptMRG, 0.905s vs. 0.874s, and is significantly faster than
MedVersa (5.11s) and CheXagent (2.3s).
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Model Model Size Inference Time (s/report)

CMN 59.1IM 0.38
CMN+RL 60.8M 0.38
PromptMRG 219.9M 0.874
OISA (Ours) 230.1M 0.905
MedVersa 7B 5.11
CheXagent 8B 2.3

Table 8: Comparison of model size and inference time on MIMIC-CXR dataset.
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