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Abstract

Rational speakers are supposed to know what
they know and what they do not know, and
to generate expressions matching the strength
of evidence. In contrast, it is still a challenge
for current large language models to generate
corresponding utterances based on the assess-
ment of facts and confidence in an uncertain
real-world environment. While it has recently
become popular to estimate and calibrate con-
fidence of LLMs with verbalized uncertainty,
what is lacking is a careful examination of the
linguistic knowledge of uncertainty encoded in
the latent space of LLMs. In this paper, we
draw on typological frameworks of epistemic
expressions to evaluate LLMs’ knowledge of
epistemic modality, using controlled stories.
Our experiments show that the performance
of LLMs in generating epistemic expressions
is limited and not robust, and hence the expres-
sions of uncertainty generated by LLMs are
not always reliable. To build uncertainty-aware
LLMs, it is necessary to enrich the semantic
knowledge of epistemic modality in LLMs.

1 Introduction

As LLMs are increasingly deployed in real-world
situations, it is important for LLMs to behave in a
rational way. They should be able to distinguish
fact and imagination, and generate responses based
on the credibility of the available evidence and the
degree of their confidence. For example, imagine
that Tom and Alice are looking for a missing book.
If Tom says, “The book may be under the sofa”,
he means that it is possible that the book is un-
der the sofa according to the available evidence.
Namely, the conclusion is compatible with existing
evidence. If Tom says, “The book has to be under
the sofa”, he is indicating that he believes to have
strong evidence for the conclusion that the book is
underneath the sofa, and he is ruling out all other
potential locations with Alice. Given the available
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Figure 1: Dimensions of epistemic meanings (above)
and the semantic map of epistemic modality (below)
(Boye, 2012). The colored dashed lines indicate the
mapping between concepts and our two experiments.

evidence, these epistemic modal expressions en-
code knowledge of necessity and possibility.

To build uncertainty-aware LLMs, many recent
works focus on confidence estimation and calibra-
tion of LLMs. One common approach is about
prompting language models to generate different
levels of uncertainty in verbalized words or expres-
sions (Mielke et al., 2022; Lin et al., 2022; Xiong
et al., 2024). Given that current LLMs can generate
very fluent responses, these papers assume, con-
sciously or unconsciously, that these LLMs already
master the linguistic knowledge of generating ex-
pressions of uncertainty, and the only problem left
is alignment, namely how to elicit LLMs to gen-
erate these expressions at the right time. This as-
sumption, however, was never carefully examined.
Therefore, in this paper, we will investigate the
form and meaning of epistemic expressions from
typological perspectives, and evaluate the linguis-
tic knowledge of epistemic modality present in an
exemplary set of LLMs.
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Let us first consider the meaning of epistemic
expressions. The expressions of uncertainty in
natural languages are semantically related to epis-
temic modality, because epistemic modality indi-
cates the degree of certainty that a speaker has
towards propositions (Portner, 2009; Szarvas et al.,
2012; Giannakidou and Mari, 2021). As shown in
Figure 1, epistemic meanings can be divided into
evidence and commitment (Boye, 2012). Evidence
is about the source of information or justification
(Bybee, 1985; Palmer, 1986; Aikhenvald, 2004)
and can be further divided into direct evidence and
indirect evidence. Commitment is an epistemic
modal meaning that expresses a speaker’s degree
of confidence or certainty (Coates, 1983; Bybee
et al., 1994; Van der Auwera and Plungian, 1998).
It is conceived as a continuous, quantitative scale,
which can be divided into three levels: full support,
partial support, and neutral support (see Appendix
A for details). 1

We now turn to the form of epistemic expres-
sions. Epistemic meanings are expressed by vari-
ous lexical, morphological, and syntactic structures
across languages. In English, there are three major
types of forms to express uncertainty: (1) modal ad-
jectives and adverbs; (2) attitude verbs (or mental
verbs); (3) modal auxiliaries and semi-auxiliaries.
Modal adjectives and adverbs express probability
through lexical meaning, such as certain/certainly
and probable/probably. Attitude verbs, such as
believe, know and doubt, describe internal mental
states towards propositions. Modal auxiliaries and
semi-auxiliaries, like must/may/have to, express
modal meanings of necessity and possibility.

In previous work on confidence estimation and
calibration, LLMs have been extensively evalu-
ated on knowledge-intensive datasets such as Trivi-
aQA (Joshi et al., 2017), StrategyQA (Geva et al.,
2021), and GSM8K (Cobbe et al., 2021). How-
ever, these datasets present several limitations when
it comes to evaluating LLMs’ knowledge of epis-
temic modality. (1) Although these datasets pro-
vide the reference of factual correctness, the con-
struct of knowledge-intensive tasks is to measure
external world knowledge, not linguistic knowl-
edge. They support the analysis of correspondence
between the models’ verbalized confidence and the
likelihood that the answer is correct, but overlook

1To improve readability, we adapt terms in Boye (2012)
to more standard expressions in current practice across theo-
ries and frameworks. We use evidence to replace epistemic
justification and use commitment instead of epistemic support.

the fact that human speakers also express their con-
fidence in possible worlds, such as crime novels.
(2) These datasets lack an agentic perspective, and
they are coarse-grained. In other words, there are
no controls on types of evidence and degrees of
commitment. In addition, linguistic targets are also
not structured systematically for comparison. (3)
For large-scale real-world datasets, there is a risk of
data contamination in the competitions for higher
rankings in leaderboards. To address such concerns,
we design controlled stories to test whether LLMs
can predict the correct epistemic modal expressions
(see Figure 2 and Figure 4). By simplifying the
complexity of reasoning and controlling different
factors, we can see how prompt formats and modal
semantics affect the generation of epistemic expres-
sions. 2

This paper offers the following key contributions:
(1) As far as we know, this is the first paper to eval-
uate the linguistic knowledge of epistemic modality
in LLMs, namely the underlying knowledge that
allows LLMs to understand and generate epistemic
expressions. We demonstrate the limited perfor-
mance of LLMs in selecting appropriate epistemic
expressions. (2) Through controlled experiments,
we show how the number of parameters, prompt
formats and modal semantics affect the accuracy
of LLMs. For modal auxiliaries, LLMs have bet-
ter performance for modal necessity than modal
possibility. For attitude verbs, LLMs are better at
reporting facts than beliefs under different degrees
of epistemic certainty. (3) By relating our ques-
tion to a typological framework which categorizes
epistemic expressions, we disentangle linguistic un-
certainty from aleatoric and epistemic uncertainty
(Kendall and Gal, 2017). We also offer insights
on how to improve LLMs in the light of children’s
semantic development.

2 Related Work

2.1 Teaching LLMs to Express Their
Uncertainty Truthfully

The problem of hallucinations and the need for
alignment motivate confidence estimation and cal-
ibration in LLMs. There are different approaches
for confidence estimation (Geng et al., 2024):
logit-based methods (Kuhn et al., 2023; Huang
et al., 2023; Vazhentsev et al., 2023; Duan et al.,
2024), internal state-based methods (Ren et al.,

2Accessible data and code: https://github.com/
limengnlp/llm-fff
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2022; Kadavath et al., 2022; Burns et al., 2023;
Azaria and Mitchell, 2023; Li et al., 2024), verbal-
ized methods (Mielke et al., 2022; Xiong et al.,
2024), consistency-based estimation (Manakul
et al., 2023; Lin et al., 2024), and surrogate meth-
ods (Shrivastava et al., 2023). Verbalized meth-
ods involve prompting language models to output
different levels of uncertainty in words or num-
bers, and prove an effective approach to calibrating
language models with verbalized metacognition.
Mielke et al. (2022) train an external calibrator to
guide language models to generate with appropri-
ate levels of uncertainty. Lin et al. (2022) fine-tune
language models with a human annotated dataset
to generate verbalized words and numbers at the
same time.

In addition, there is also research on the behavior
of LLMs on the expressions of uncertainty. It was
found empirically that LLMs are sensitive to the
expressions of uncertainty injected in prompts, and
these expressions can improve or impair their per-
formance (Zhou et al., 2023). Zhou et al. (2024) re-
port that LLMs are reluctant to express uncertainty
when they generate wrong answers. Yona et al.
(2024) define a formal metric on faithful response
uncertainty, and provide evidence that instruction-
tuned LLMs perform poorly at conveying their in-
trinsic uncertainty.

Of the several types of devices expressing uncer-
tainty, adjectives and adverbs expressing probabil-
ity received more attention, because it is easier to
build the mapping between uncertainty expressions
and explicit numerical responses from humans at
the population level (Wallsten et al., 1986; Willems
et al., 2019; Fagen-Ulmschneider, 2019). Sileo and
Moens (2023) show that neural language models
struggle to understand words expressing probabil-
ity, and fine-tuning with the supervision of human
perception can lead to improvements. Belém et al.
(2024) compare LLMs and humans in mapping
uncertainty expressions to self-reported numerical
probabilities.

2.2 Theory of Mind and Language Models
Theory of mind (ToM), the ability to infer other
people’s intents and beliefs, is assumed to play
a key role in how children learn the meaning of
words (Bloom, 2002) and resolve reference ambi-
guities in conversations (Clark and Marshall, 1981).
Thus, it is a crucial component of intelligent sys-
tems that interact with humans. Research shows
that the acquisition of epistemic modality is related

to the development of ToM abilities in children,
because understanding the meaning of epistemic
modality requires children’s ability to handle repre-
sentations of mental states (Gopnik and Astington,
1988; Papafragou, 2002).

Grant et al. (2017) and Nematzadeh et al. (2018)
adapt ToM tests in developmental psychology to
evaluate the ability of language models in ques-
tion answering (QA) tasks. Existing ToM tests
are usually generated with templated stories where
there is information asymmetry in a limited set:
ToM-bAbI (Nematzadeh et al., 2018), ToMi (Le
et al., 2019), Hi-ToM (Wu et al., 2023), OpenToM
(Xu et al., 2024). In recent years, there has been a
surge of research on ToM behavior in LLMs (Sap
et al., 2022; Sclar et al., 2023; Wilf et al., 2023;
Ullman, 2023; Shapira et al., 2024; Kosinski, 2024;
Strachan et al., 2024). Our work leverages the tem-
plates of ToM stories and shifts the focus from
inferring other agents’ mental states to articulating
one’s own thinking truthfully.

2.3 Modal Semantics and LLMs
The semantics of conditionals are closely linked
to modality. Holliday et al. (2024) test LLM rea-
soning in a set of inference patterns involving con-
ditionals and epistemic modals, and identify the
logical fallacies of LLMs. Our work aims to assess
the linguistic knowledge of LLMs through their
behavior in simple and controlled stories, without
assuming a specific theory of logical or probabilis-
tic reasoning. In other words, logical reasoning is
not the focus here and its complexity is intention-
ally limited.

3 Method

To understand what LLMs know, we assume that
their knowledge cannot be directly measured, but
can be inferred from observable behavior (Jiang
et al., 2020; Hu and Levy, 2023).

3.1 Grounding Epistemic Modality through
Targeted Stories

The knowledge of morphology and syntax encoded
in language models can be observed directly from
the generated text and their analysis is more ex-
plicit. However, meaning cannot be observed di-
rectly. To investigate the semantic knowledge of
language models, it needs to be inferred from the
behavior that such knowledge is assumed to un-
derlie, especially responses to specific stimuli in
experimentally controlled settings.
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Compared with concrete words like visible ob-
jects and actions, the meaning of modal words is
more abstract and highly context-dependent. To
trigger participants or language models to gener-
ate modal expressions in a coherent and plausi-
ble way, we need contextualized stories. In the
field of child language, the hidden object task is
designed to test children’s understanding of epis-
temic modality (Hirst and Weil, 1982; Noveck et al.,
1996; Ozturk and Papafragou, 2015). In Ozturk
and Papafragou (2015), children participants were
presented with brief animated stories, where an an-
imal would hide in a box. Given the information
and prompt, participants were asked to reply with
“Yes/No” to questions about the location of the ani-
mal. Prompt format, modal semantics, and types of
stories are controlled. In linguistic fieldwork, tar-
geted storyboards also prove effective in studying
modality (Burton and Matthewson, 2015). The key
point is that the story is designed to include at least
one targeted context, which can be utilized to test
hypotheses about specific linguistic forms within
that context. These practices provide transferrable
research paradigms to evaluate the knowledge of
epistemic modality in LLMs.

There are different ways to generate stimuli for
LLMs: (1) manually written datasets like GPQA
(Rein et al., 2023); (2) procedurally generated
datasets such as BLiMP (Warstadt et al., 2020);
(3) language model generated dataset like BigToM
(Gandhi et al., 2024). In the present study, we gen-
erate stimuli by combining manual writing with
template-based generation.

3.2 Models

Considering the reproducibility of behavioral exper-
iments, we evaluate eight open weight instruction-
tuned models: Llama3-8B/70B-Instruct,
Llama3.1-8B/70B-Instruct (AI@Meta, 2024),
Qwen2-7B/72B-Instruct (Yang et al., 2024),
Qwen2.5-7B/72B-Instruct (Team, 2024). They
are accessed through the Huggingface Transform-
ers library. We use greedy decoding for the result.
These experiments were implemented on servers
equipped with Nvidia A100 GPUs (80GB RAM).

4 Experiment 1: Modal Auxiliaries

The first experiment systematically investigated
LLMs’ semantic knowledge of epistemic modal
verbs, may/might vs must/have to, with a variety of
modal scenarios. Eight instruction-tuned models

were tested with simple stories that gave different
cues about a set of elements and the selection of
possibility/necessity. The number of parameters
for these models falls into two categories: small
(7-8B) and medium (70-72B).

4.1 Experimental Design
There are 150 stories generated by five templates
(see brief example in Figure 2 and more details in
Appendix E). In each story, there is a context to cre-
ate a set of elements (objects, persons, places, etc.).
In the condition with a necessity modal (N-modal
condition), there is clear and sufficient information
to rule out all other candidates and identify the only
one element left. In the condition with a possibility
modal (P-modal condition), the given information
is not sufficient to make a precise statement, and
there is uncertainty. For example, in a story gen-
erated with the hidden object template, a toy is
hidden in one of the three boxes: a red box, a green
box, and a blue box. In the N-modal condition, the
text provides enough information to rule out two
boxes. If it is not in the red and green box, then
it has to/must be in the blue box. In the P-modal
condition, if the toy is not in the red box, it is still
not certain that the toy is in the blue box or the
green box. The toy may/might be in the blue box,
which is more appropriate to describe this situation
(see Figure 2).

We design three question and answer formats:
direct slot, indirect slot, and indirect sentence, to
ensure that responses to the modal statements re-
flected the semantic intuitions of LLMs. The direct
slot format ask LLMs to select words that could be
filled in a slot and to respond with these words di-
rectly. The indirect slot format asks LLMs to select
words that could be filled in a slot, but to respond
with the associated number or index. The indirect
sentence format requires LLMs to select sentence-
level statements and to respond with the associated
number. The difference between slot and sentence
formats is that LLMs need to identify the position
of the slot, fill it with different words and compare.
However, the sentence statements are much more
natural to evaluate directly in the sentence format.
The difference between direct and indirect formats
is whether LLMs need metalinguistic indices (1/2)
to refer epistemic modals when they respond. The-
oretically, these indices increase the complexity of
processing. If the knowledge of epistemic modal
semantics in LLMs is robust, performance should
be similar across different prompt formats. Other-
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①

Small (7/8B)

Medium
(70/72B)

②

1shot
There are three bottles in a room: a 
yellow bottle, a purple bottle and a gray
bottle. A peanut is hidden in one of 
these bottles. If the peanut is not in the 
gray bottle, the peanut may be in the 
yellow bottle. If the peanut is not in the 
gray and the purple bottle, the peanut 
has to be in the yellow bottle. Now there 
is another case. + [Base story] …

Counterfactual
There are three boxes in a room: a red
box, a green box and a blue box. A toy is 
hiding in the red box, because yesterday 
Tom moved the toy from one of the 
other two boxes to the red box. If he 
hadn't moved the toy yesterday, imagine 
which box the toy would be in today. The 
toy _ be in the green box…

Base (= Context + Necessity/Possibility 

+ QA format, more details in the blocks 
on the right side)

There are three boxes in a room: a red box, a green box and a blue box. A toy is 
hidden in one of these boxes.

③

Necessity
It is known that the toy is not in 
the red box and not in the green
box.

Possibility
It is known that the toy is not in 
the red box.

④

Direct slot
The toy _ be in the blue box. Which word or 
expression is more adequate to describe the 
situation after filling in the slot:  may or has to? 
Please ONLY respond with may or has to as your 
answer.

Indirect slot
The toy _ be in the blue box. Which word or 
expression is more adequate to describe the 
situation after filling in the slot:  1 may or 2 has 
to? Please ONLY respond with 1 or 2 as your 
answer.

Indirect sentence
Which sentence is more adequate to describe the 
situation? 1 The toy may be in the blue box. 2 
The toy has to be in the blue box. Please ONLY 
respond with 1 or 2 as your answer. 

⑤

Correct/Wrong

Figure 2: Experimental design for assessing modal auxiliaries and semi-auxiliaries.

wise, performance might diverge across the three
different formats.

There are three different types of story: base,
1-shot and counterfactual stories. The base stories
have been explained above. In-context learning
(ICL) has proven to be an effective post-training
technique to enable LLMs to solve new tasks with
only a few demonstrations. One-shot stories in-
troduce additional similar narratives to the base
version, illustrating the selection of modal verbs
in both N-modal and P-modal conditions. To pre-
vent LLMs from simply copying the answer from
the 1-shot example, we use lexical variations, such
as differencing colors or person names. Modality
concerns possible worlds and alternative ways that
things could be. There are linguistic interactions
between counterfactual conditions and epistemic
modality. In English, counterfactual conditions
are expressed through past tense and subjunctive
mood. Therefore, we include counterfactual stories
to create parallel possible scenarios by changing
a verified true condition. These two variant types
are designed to test whether the knowledge of epis-
temic modality in LLMs is sensitive to other in-
formation structures. Intuitively, for humans, the
1-shot stories should be easier than the base sto-
ries since there are additional supervised examples,
while the counterfactual stories should be harder
than the base stories, because they require addi-

tional counterfactual reasoning. Fifty stories were
created for each type, resulting in a total of 150
stories.

We measure the performance with accuracy and
paired accuracy. For paired accuracy, we count the
answer as correct if the questions in a pair of N-
modal and P-modal conditions are both answered
correctly.

4.2 Statistical Analysis and Results
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Figure 3: Response accuracy in Experiment 1 by LLM,
number of parameters, and modal condition. Error bars
represent 95% confidence intervals.

Mean accuracies and paired accuracies for all
assessed LLMs are reported in Table 1. Judging

27738



LLM Acc Paired Acc

Qwen2-7B 51.2 2.4
Qwen2.5-7B 72.3 45.1
Llama3-8B 55.1 11.8
Llama3.1-8B 55.2 11.8

Qwen2-72B 82.3 64.7
Qwen2.5-72B 95.3 90.7
Llama3-70B 79.6 59.1
Llama3.1-70B 91.1 82.2

Table 1: Mean accuracy and mean paired accuracy in
percent, for different LLMs in Experiment 1.

from these descriptive statistics alone, it seems
that LLMs with a medium number of parameters
(70-72B), with accuracies ranging from 79.6% to
95.3%, clearly outperform their counterparts with
a smaller number of parameters (7-8B), whose ac-
curacies just range between 55.1% and 72.3%.

Using logistic regression, we assess how num-
ber of parameters, story type, modal condition,
and QA format possibly modulate response accu-
racy. To do so, we fit a separate logistic regres-
sion model to each of the four classes of LLMs
(Qwen2, Qwen2.5, Llama3, Llama3.1). Details on
how these statistical analyses were performed are
reported in Appendix C.1.

Across all assessed LLMs, the number of param-
eters has a significant impact on response accuracy
(Qwen2: b = 1.63, SE = 0.12, p < .001; Qwen2.5:
b = 3.15, SE = 0.36, p < .001; Llama3: b = 2.17,
SE = 0.20, p < .001; Llama3.1: b = 2.96, SE = 0.22,
p < .001), indicating that a large number of parame-
ters (70–72B) leads to increased accuracy. A con-
sistent effect of modal condition is also found
across LLMs (Qwen2: b = 0.87, SE = 0.12, p < .001;
Qwen2.5: b = 1.99, SE = 0.32, p < .001; Llama3:
b = 1.79, SE = 0.19, p < .001; Llama3.1: b = 1.14,
SE = 0.17, p < .001). The positive sign of the effect
indexes that accuracy was higher for Necessity tri-
als than it was for Possibility trials. The interaction
between number of parameters and modal condi-
tion is also significant across LLMs, yet the sign
and magnitude of the interaction differs consider-
ably between LLMs (Qwen2: b =−0.93, SE = 0.23,
p < .001; Qwen2.5: b = 1.54, SE = 0.63, p = .015;
Llama3: b = 3.66, SE = 0.38, p < .001; Llama3.1:
b = 1.16, SE = 0.33, p < .001). Figure 3 illustrates
the effects of number of parameters and modal con-
dition.

The factors story type and QA format do also
modulate response accuracy to some extent. How-
ever, the magnitudes of the effects of story type

and QA format (as well as their interactions with
number of parameters) are rather small, and none
of their effect signatures are consistent across the
assessed LLMs.

In sum, there is a salient improvement in accu-
racy when the expected correct response expresses
a necessity, rather than a possibility. Further, as
expected, performance is increased substantially
when LLMs have a medium (70–72B) as opposed
to just a small (7–8B) number of parameters. The
higher accuracy for necessity modals suggests that
models handle contexts with a unique, unambigu-
ous conclusion more reliably than those requiring
reasoning under uncertainty. For instance, when
two out of three locations are ruled out, models
correctly infer “The toy must be in the blue box.”
In contrast, when multiple outcomes remain plausi-
ble, models often fail to select “may”, indicating a
weaker grasp of possibility in uncertain contexts.

5 Experiment 2: Attitude Verbs

The second experiment focuses on the semantic
knowledge of attitude verbs in LLMs: know, be-
lieve, and doubt. Given Theory-of-Mind (ToM)
stories, LLMs were required to select different atti-
tude verbs to report facts or beliefs with different
degrees of certainty.

5.1 Experimental Design

Self-concept (awareness of one’s own mental states
and functions) and a theory of mind (awareness
of others’ mental states and functions) are compo-
nents of metacognition. The metacognitive system
involves a second-order form of knowing and can
be viewed as an interface between the mind and re-
ality (Demetriou et al., 2010). While ToM datasets
are typically used to evaluate LLMs’ ability to rea-
son about others’ beliefs in simple narratives, they
can also be repurposed to assess whether LLMs
can truthfully describe their own reasoning, given
a shift in the focus of the task.

In a typical ToM test, the test subject (a child or
a language model) observes a sequence of actions
of two agents: agent 0 moves an object into a con-
tainer, and agent 1 moves the object to another
container when agent 0 is not aware of this. The
test subject is then asked questions about the ac-
tual state of the world and the agents’ beliefs. In
previous ToM datasets, the task is designed as a
QA task, and questions were designed to ask for
the location of the object in different settings. Here
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1 Ella entered the patio. (enter_agent_1)
2 Hunter entered the patio. (enter_agent_0)
3 The pear is in the bottle. 
4 The bottle is in the patio. 
5 Ella exited the patio. (agent_1_exits)
6 Hunter moved the pear to the envelope. (agent_0_moves_obj → 
false belief of agent_1)
7 The envelope is in the patio. 
8 Isabella entered the patio. (agent_2_enters)

①

②

An example from the ToMi dataset.

Types States Well supported Not supported

Fact

Previous
The pear was in the 
bottle.

The pear was in the box.

Current
The pear is in the 
envelope.

The pear is in the box.

Belief 
(1-
order)

Agent_0
Hunter will look for the 
pear in the envelope.

Hunter will look for the 
pear in the bottle.

Agent_1
Ella will look for the 
pear in the bottle.

Ella will look for the 
pear in the envelope.

Direct slot
You use the first-person perspective to report the situation: I _ Ella will 
look for the pear in the envelope. Which word or expression is more 
adequate to describe the situation after filling in the slot: know, believe
or doubt? Please ONLY respond with know, believe or doubt as your 
answer.

Know
(high certainty)

＞ Believe
(medium certainty)

Doubt
(low certainty)

＞

③

Indirect slot
You use the first-person perspective to report the situation: I _ Ella will 
look for the pear in the envelope. Which word or expression is more 
adequate to describe the situation after filling in the slot: 1 know, 2 
believe or 3 doubt? Please ONLY respond with 1, 2 or 3 as your answer.

Indirect sentence
You use the first-person perspective to report the situation. Which 
sentence is more adequate? 1 I know Ella will look for the pear in the 
envelope. 2 I believe Ella will look for the pear in the envelope. 3 I doubt
Ella will look for the pear in the envelope. Please ONLY respond with 1, 2 
or 3 as your answer.

Figure 4: Stimuli in experiment 2 to assess attitude verbs.

we change the questions and test the knowledge
of LLMs in selecting attitude verbs (know, believe,
and doubt) to report facts or beliefs in different
statements. To answer the question correctly, the
model needs to choose the right verb based on the
type of statement (fact/belief) and the strength of
evidence. 3

Thirty stories were selected randomly from the
ToMi dataset (Le et al., 2019; Sclar et al., 2023).
For each story, we constructed eight statements:
two statements on previous facts; two statements
on current facts, two statements on 1-order beliefs
of agent 0, and two statements on 1-order beliefs
of agent 1. All paired statements in these four
subtypes are contrastive in low/not low certainty
(see examples in Figure 4). In addition, there are
also three question and answer formats: direct slot,
indirect slot, and indirect sentence, which is similar
to Experiment 1.

We measure the performance with accuracy,
paired accuracy, and joint accuracy. For paired ac-
curacy, we count the answer as correct if questions
in a pair of low and not low certainty conditions
are both answered correctly, since these prompts
are constructed in a controlled way. For joint accu-
racy, we count the answer as correct if questions

3Negation will change the values of an epistemic scale
(Horn, 1989) and introduce more complex inference. For
example, I am certain that not P vs. I am not certain that
P. To keep the setting simple and focus on attitude verbs, we
exclude negation here.

about eight statements of the same ToM story are
all answered correctly.

5.2 Statistical Analysis and Results
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Figure 5: Response accuracy in Experiment 2 by LLM,
number of parameters, and modal condition. Error bars
represent 95% confidence intervals.

Table 2 reports mean accuracies and paired ac-
curacies for the assessed LLMs in Experiment 2.
Again, LLMs with a medium number of parame-
ters (70–72B) perform noticeably better than their
counterparts with a small number of parameters
(7–8B), by about 20 percentage points in accuracy
(60.8–72.8% vs. 36.4–56.9%).

We use logistic regression to statistically model
the effects of different factors on response accuracy.
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LLM Acc Paired Acc Joint Acc

Qwen2-7B 56.9 38.6 0
Qwen2.5-7B 41.9 16.1 0
Llama3-8B 41.3 28.9 0
Llama3.1-8B 36.4 12.2 0

Qwen2-72B 62.5 42.2 4.4
Qwen2.5-72B 60.8 46.4 5.6
Llama3-70B 62.1 40.3 0
Llama3.1-70B 72.8 54.2 0

Table 2: Mean accuracy, paired accuracy, and joint ac-
curacy in percent, for different LLMs in Experiment 2.

Specifically, we are interested in whether an LLM’s
number of parameters, the epistemic certainty of
the attitude verb (low for doubt, not low for believe
and know), the type of statement (belief- or fact-
based), and finally the QA format (direct/indirect
slot, indirect sentence) each modulate the response
accuracies on the ToM task in some meaningful
way. Appendix C.2 provides more details on how
these statistical analyses were performed.

For Qwen2, the number of parameters does not
show an effect on response accuracy in the ToM
task (b = 0.08, SE = 0.15, p = .604). Yet, for each of
the remaining three LLM classes, an increase in the
number of parameters (from small to medium) does
in fact lead to a significant increase in response
accuracy (Qwen2.5: b = 1.65, SE = 0.18, p < .001;
Llama3: b = 1.88, SE = 0.19, p < .001; Llama3.1:
b = 2.70, SE = 0.19, p < .001).

Figure 5 shows that, for all LLMs with a small
number of parameters, target verbs with a rela-
tively high epistemic certainty (believe or know)
are associated with higher response accuracies,
compared to a target verb with low epistemic
certainty (doubt). This trend also holds for the
Qwen2/Qwen2.5 models with a medium number
of parameters, but is interestingly reversed for the
Llama3/Llama3.1 models with a medium number
of parameters. These effect patterns are also re-
flected in the regression estimates for the main
effect of epistemic certainty (Qwen2: b = 1.64,
SE = 0.16, p < .001; Qwen2.5: b = 3.08, SE = 0.22,
p < .001; Llama3: b = 1.36, SE = 0.32, p < .001;
Llama3.1: b =−0.55, SE = 0.17, p = .001) and the
interaction between number of parameters and
epistemic certainty (Qwen2: b =−1.61, SE = 0.33,
p < .001; Qwen2.5: b =−2.99, SE = 0.44, p < .001;
Llama3: b =−5.30, SE = 0.64, p < .001; Llama3.1:
b =−4.78, SE = 0.34, p < .001).

The main effect of statement type (belief- vs.
fact-based) is large and highly significant across

LLM classes (Qwen2: b = 3.02, SE = 0.17, p < .001;
Qwen2.5: b = 3.79, SE = 0.22, p < .001; Llama3:
b = 4.79, SE = 0.34, p < .001; Llama3.1: b = 2.74,
SE = 0.19, p < .001), indicating substantially higher
response accuracies for fact-based statements. Fig-
ure 8 in Appendix D.2 confirms this visually.

Other included predictors fail to show consistent
and salient effects across the assessed LLMs.

To summarize, the logistic regression analyses
allow for three key observations about the assessed
LLMs’ behavior on the ToM task: (1) LLMs with a
medium (rather than small) number of parameters
tend to respond more accurately. (2) Relatively
high epistemic certainty (believe or know) leads to
higher accuracy, but note that the Llama3/Llama3.1
models with a medium number of parameters dis-
play the opposite effect. (3) LLMs systematically
show higher accuracies on fact-based statements
than on belief-based statements.

6 Discussion

6.1 Comparing the Behavior of Epistemic
Modality in Human and Machines

Epistemic modal verbs Ozturk and Papafragou
(2015) tested children with the hidden object task
and evaluated their knowledge of modal expres-
sions with may and have to. It is reported that
children between the ages of 4 and 5 years have a
basic understanding of epistemic semantic modals,
but their knowledge of epistemic modals is sensi-
tive to the syntactic–semantic context (statement
vs. question prompts). Specifically, children were
better at evaluating statements than at answering
questions. Similarly, the performance of LLMs is
also affected by prompt formats (see Figure 7). As
a control group, adults achieve 97-100% accuracy
in different stories. By contrast, there is still a cer-
tain gap between the performance of LLMs and
adults.

Attitude verbs Different from words referring to
concrete objects or visible actions, attitude verbs
describe internal states of mind and leave few cues
in the physical world. These characteristics pose
challenges for native language learners. It is not un-
til well into preschool that children begin to show
adult-like performance on tasks involving attitude
verbs (Hacquard and Lidz, 2022). There are differ-
ent hypotheses and theories about the learning of
attitude verbs (Landau and Gleitman, 1985; Gleit-
man, 1990; Diessel and Tomasello, 2001; Mont-
gomery, 2002; Papafragou et al., 2007; Israel, 2008;
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Becker and Estigarribia, 2013; Hacquard and Lidz,
2019). Such accounts, in turn, can also raise im-
portant questions for scientists in different research
communities:

• For researchers of machine learning and com-
putational linguistics, who are more interested
in how LLMs learn and use attitude or men-
tal verbs, the potential questions include: (1)
Can a language model learn the meaning of
attitude verbs without consciousness? (2)
Are existing LLM training pipelines, such as
self-supervised pretraining + supervised fine-
tuning (SFT) + reinforcement learning from
human feedback (RLHF), sufficient to learn
the meaning of attitude verbs? (3) How do
LLMs benefit from theories of children’s se-
mantic development (e.g., learning from inter-
actions in pragmatically informative environ-
ments)?

• For cognitive scientists who specialize in de-
velopmental psycholinguistics and language
acquisition, LLM’s training mechanism may
also provide a computational modeling per-
spective to validate or challenge existing learn-
ing theories of attitude verbs. For exam-
ple, LLM pretraining employs self-supervised
learning and does not explicitly use a priori
syntactic categories. Does this imply that the
cues of statistical distribution contribute to
learning and that a priori syntactic categories
are not necessary?

6.2 Future Work
Forms of Modality in Low-Resource Languages
There are different means to express modal se-
mantics in non-English languages: modal affixes,
modal case, etc. (de Haan, 2006). These morpho-
logical variations in low-resource languages im-
pose challenges for building truthful multilingual
LLMs, and remain to be tested in the future.

Enriching Benchmarks with Multimodal Evi-
dence and Complex Reasoning (1) We used
text-based stories in both experiments, but future
work could test epistemic reasoning in multimodal
environments, especially as embodied intelligence
becomes increasingly prominent. (2) In order to
avoid interference from unnecessary world knowl-
edge, we controlled the complexity of reasoning.
However, LLMs still need to improve how they
handle conflicting evidence (Kazemi et al., 2023;
Wan et al., 2024).

7 Conclusion

In this paper, we evaluate the semantic knowl-
edge of epistemic modality in open-weights LLMs
through controlled stories, and show their limited
performance in generating appropriate epistemic
expressions. This implies that responses containing
epistemic uncertainty from LLMs may be unreli-
able. Insufficient semantic knowledge of epistemic
modality is a potential reason why LLMs are not
good at truthfully expressing uncertainty. There-
fore, to build rational LLMs, we should not only
improve the methods of uncertainty estimation and
calibration, but also enrich the semantic representa-
tion of epistemic modality.
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Limitations

We follow the behavioral approach to evaluate
the semantic knowledge of epistemic modality in
LLMs, and there are several limitations in this work.
(1) Children’s acquisition profiles and data from
adult groups in existing literature on semantic de-
velopment (Noveck et al., 1996; Ozturk and Pa-
pafragou, 2015; Hacquard and Lidz, 2022) provide
indirect evidence that adults can achieve high per-
formance on the tasks in this paper. However, we
did not test human participants directly. (2) We
did not leverage logit probabilities to design new
metrics of intrinsic uncertainty, nor did we build
mapping between model logits and self-reported
human responses. (3) Our work focuses on the
English language, and we did not study whether
subword tokenization in LLMs can handle the mor-
phological encoding of modality in low-resource
languages.
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A More Background on Epistemic
Meaning

Evidence is also often referred to by the terms
evidentiality (Aikhenvald, 2004) or evidentials
(Bybee et al., 1994). Direct evidence covers
“firsthand/visual/auditory/participatory evidence”.
Within indirect evidence, reportive and infer-
ential evidence can be distinguished from one
another: reportive evidence is about “second-
hand/hearsay/quotative evidence”; inferential evi-
dence covers “inferential/assumptive evidence”.

Full support has the strongest strength on the
epistemic modal scale, and is equivalent to “knowl-
edge/certainty (that not)/ epistemic impossibil-
ity”. Neutral support covers “epistemic possi-
bility/(complete) uncertainty”. Partial support
lies between full support and neutral support,
and covers “probability/(relative weak) uncer-
tainty/(un)likely/epistemic necessity”.

A semantic map is a visual representation of
cross-linguistic patterns or regularities in seman-
tic structures, which maps how various languages
categorize meaning in a specific domain. The cate-
gories of evidence and commitment constitutes a
continuous region in the semantic map of epistemic
expressions (see Figure 1). We use nodes in the
map to show the relation of two experiments in this
paper.

B Contrast Coding for Experiments

B.1 Experiment 1
B.2 Experiment 2

C Additional Information on Logistic
Regression Analyses

C.1 Experiment 1
We consider all main effects of the factors number
of parameters, story type, modal condition, and
QA format, in addition to each two-way interac-
tion between number of parameters and any of the
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Number of Parameters Medium

Small −0.5
Medium 0.5

Modal Condition Necessity

Possibility −0.5
Necessity 0.5

Story Type 1-Shot Counterfactual

Base −0.5 −0.5
1-Shot 0.5 0
Counterfactual 0 0.5

QA Format Ind. Slot Ind. Sent

Direct Slot −0.5 −0.5
Indirect Slot 0.5 0
Indirect Sentence 0 0.5

Table 3: Contrast coding for statistical analyses of Ex-
periment 1. The factors are number of parameters, story
type, modal condition, and QA format.

Number of Parameters Medium

Small −0.5
Medium 0.5

Epistemic Certainty Not Low

Low −0.5
Not Low 0.5

Statement Type Fact Agent 1 Current

Belief (Agent 0) −0.5 −0.5 0
Belief (Agent 1) −0.5 0.5 0
Fact (Previous) 0.5 0 −0.5
Fact (Current) 0.5 0 0.5

QA Format Ind. Slot Ind. Sent

Direct Slot −0.5 −0.5
Indirect Slot 0.5 0
Indirect Sentence 0 0.5

Table 4: Contrast coding for statistical analyses of Ex-
periment 2.

remaining factors. We focus specifically on the
interactions between number of parameters and
any other factor because it is plausible to assume
that at scale (i.e., with more parameters) LLMs dis-
play clear qualitative differences in their response
patterns. This, in turn, may modulate the effect pat-
terns associated with any of the remaining factors.

In order to probe the relevance of potential ran-
dom effects, we applied forward model selection
based on the Akaike Information Criterion (AIC;
Akaike, 1973), as implemented in the buildmer
package (Voeten, 2023) for the R programming
language (R Core Team, 2023). We assessed ran-
dom intercepts and random slopes for number of
parameters, varying by LLM, by template, and by

item nested within template. However, the model
selection indicated that none of the assessed ran-
dom effect terms substantially improved goodness
of model fit as measured by the AIC. That is why
eventually we fitted simple logistic regression mod-
els, without any random effects, whose results we
report below.

In some cases, AIC-based model selection led
to dropping certain fixed-effect interaction terms,
as their inclusion did not improve the overall good-
ness of fit enough to offset the AIC penalty for
additional parameters.

All factors in the logistic regression models were
contrast-coded using sum-to-zero effect coding.
The precise coding scheme applied for each fac-
tor is reported in Table 3, in B.1. The regression
results are summarized in Table 7 (Qwen2), Ta-
ble 8 (Qwen2.5), Table 9 (Llama3), and Table 10
(Llama3.1), respectively. Receiver operating char-
acteristic (ROC) curves for the optimally fitting
logistic regression models for each LLM class are
shown in Figure 10, Appendix G.2

C.2 Experiment 2
In the logistic regression analyses for Experiment 2,
the factors number of parameters, epistemic cer-
tainty, statement type, and QA format are treated
as main effects. They are coded using sum-to-zero
effect coding (see details on contrast coding in Ta-
ble 4, Appendix B.2). The two-way interactions
between number of parameters and any of the re-
maining factors are also assessed.

A separate logistic regression model is fitted for
each examined class of LLMs (Qwen2, Qwen2.5,
Llama3, Llama3.1). Using the buildmer package
(Voeten, 2023) for R, we conduct an AIC-based
model selection process. Its main purpose is to
check whether it is necessary to include any ran-
dom effects which would be theoretically justified
by the design. We consider by-item random in-
tercepts as well as by-item random slopes for the
factor number of parameters. As the model se-
lection analyses reveal, however, in all cases the
retained optimal model does not include any ran-
dom effects, i.e., is just a simple logistic regression
model.

In Appendix F.2, all results of the logistic regres-
sion analyses for Experiment 2 are reported; see Ta-
bles 11 (Qwen2), 12 (Qwen2.5), 13 (Llama3), and
14 (Llama3.1), respectively. ROC curves for the
optimally fitting logistic regression models for each
LLM class are shown in Figure 11, Appendix G.2.
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D Further Plots of Response Accuracy by
Condition

D.1 Experiment 1

0%

25%

50%

75%

100%

Qwen
2

Qwen
2.

5

Lla
m

a3

Lla
m

a3
.1

LLM

R
es

po
ns

e 
A

cc
ur

ac
y

Number of Parameters Small (7−8B) Medium (70−72B)

Story Type

Base

1−Shot

Counterfactual

Figure 6: Response accuracy in Experiment 1 by LLM,
number of parameters, and story type. Error bars repre-
sent 95% confidence intervals.
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Figure 7: Response accuracy in Experiment 1 by LLM,
number of parameters, and QA format. Error bars repre-
sent 95% confidence intervals.

D.2 Experiment 2
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Figure 8: Response accuracy in Experiment 2 by LLM,
number of parameters, and statement type. Error bars
represent 95% confidence intervals.

0%

25%

50%

75%

100%

Qwen
2

Qwen
2.

5

Lla
m

a3

Lla
m

a3
.1

LLM

R
es

po
ns

e 
A

cc
ur

ac
y

Number of Parameters Small (7−8B) Medium (70−72B)

QA Format (Exp. 2)

Direct Slot

Indirect Slot

Indirect Sentence

Figure 9: Response accuracy in Experiment 2 by LLM,
number of parameters, and modal condition. Error bars
represent 95% confidence intervals.
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E Story Templates and Examples

E.1 Experiment 1
There are five templates to generate stories in Experiment 1: the hidden object, Whodunnit, city travel, the
grocery store’s promotion, and fictional characters. The hidden object is a classic task from Hirst and
Weil (1982), Noveck et al. (1996), Ozturk and Papafragou (2015). The textual template of Whodunnit is
inspired by Wu et al. (2024) and Jin et al. (2024). The others are designed by ourselves.

Types N/P con-
dition

QA for-
mat

Prompt Answer

base N direct
slot

There are three boxes in a room: a black box, a purple box and a blue box.
A peanut is hidden in one of these boxes. It is known that the peanut is not
in the black box and not in the purple box. The peanut _ be in the blue box.
Which word or expression is more adequate to describe the situation after
filling in the slot: may or has to? Please ONLY respond with may or has to as
your answer.

has to

base P direct
slot

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hidden in one of these boxes. It is known that the peanut is not in
the black box. The peanut _ be in the blue box. Which word or expression is
more adequate to describe the situation after filling in the slot: may or has to?
Please ONLY respond with may or has to as your answer.

may

base N indirect
slot

There are three boxes in a room: a black box, a purple box and a blue box.
A peanut is hidden in one of these boxes. It is known that the peanut is not
in the black box and not in the purple box. The peanut _ be in the blue box.
Which word or expression is more adequate to describe the situation after
filling in the slot: 1 may or 2 has to? Please ONLY respond with 1 or 2 as
your answer.

2

base P indirect
slot

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hidden in one of these boxes. It is known that the peanut is not in
the black box. The peanut _ be in the blue box. Which word or expression is
more adequate to describe the situation after filling in the slot: 1 may or 2 has
to? Please ONLY respond with 1 or 2 as your answer.

1

base N indirect
sentence

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hidden in one of these boxes. It is known that the peanut is not in
the black box and not in the purple box. Which sentence is more adequate to
describe the situation? 1 The peanut may be in the blue box. 2 The peanut
has to be in the blue box. Please ONLY respond with 1 or 2 as your answer.

2

base P indirect
sentence

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hidden in one of these boxes. It is known that the peanut is not in
the black box. Which sentence is more adequate to describe the situation? 1
The peanut may be in the blue box. 2 The peanut has to be in the blue box.
Please ONLY respond with 1 or 2 as your answer.

1

1-shot N direct
slot

There are three boxes in a room: a yellow box, a red box and a gray box. A
peanut is hidden in one of these boxes. If the peanut is not in the gray box,
the peanut may be in the yellow box or red box. If the peanut is not in the
gray and the red box, the peanut has to be in the yellow box. Now there is
another case. There are three boxes in a room: a black box, a purple box and
a blue box. A peanut is hidden in one of these boxes. It is known that the
peanut is not in the black box and not in the purple box. The peanut _ be in
the blue box. Which word or expression is more adequate to describe the
situation after filling in the slot: may or has to? Please ONLY respond with
may or has to as your answer.

has to

1-shot P direct
slot

There are three boxes in a room: a yellow box, a red box and a gray box. A
peanut is hidden in one of these boxes. If the peanut is not in the gray box,
the peanut may be in the yellow box or red box. If the peanut is not in the
gray and the red box, the peanut has to be in the yellow box. Now there is
another case. There are three boxes in a room: a black box, a purple box and
a blue box. A peanut is hidden in one of these boxes. It is known that the
peanut is not in the black box. The peanut _ be in the blue box. Which word
or expression is more adequate to describe the situation after filling in the slot:
may or has to? Please ONLY respond with may or has to as your answer.

may
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1-shot N indirect
slot

There are three boxes in a room: a yellow box, a red box and a gray box. A
peanut is hidden in one of these boxes. If the peanut is not in the gray box,
the peanut may be in the yellow box or red box. If the peanut is not in the
gray and the red box, the peanut has to be in the yellow box. Now there is
another case. There are three boxes in a room: a black box, a purple box and
a blue box. A peanut is hidden in one of these boxes. It is known that the
peanut is not in the black box and not in the purple box. The peanut _ be in
the blue box. Which word or expression is more adequate to describe the
situation after filling in the slot: 1 may or 2 has to? Please ONLY respond
with 1 or 2 as your answer.

2

1-shot P indirect
slot

There are three boxes in a room: a yellow box, a red box and a gray box. A
peanut is hidden in one of these boxes. If the peanut is not in the gray box,
the peanut may be in the yellow box or red box. If the peanut is not in the
gray and the red box, the peanut has to be in the yellow box. Now there is
another case. There are three boxes in a room: a black box, a purple box and
a blue box. A peanut is hidden in one of these boxes. It is known that the
peanut is not in the black box. The peanut _ be in the blue box. Which word
or expression is more adequate to describe the situation after filling in the
slot: 1 may or 2 has to? Please ONLY respond with 1 or 2 as your answer.

1

1-shot N indirect
sentence

There are three boxes in a room: a yellow box, a red box and a gray box. A
peanut is hidden in one of these boxes. If the peanut is not in the gray box,
the peanut may be in the yellow box or red box. If the peanut is not in the
gray and the red box, the peanut has to be in the yellow box. Now there is
another case. There are three boxes in a room: a black box, a purple box and
a blue box. A peanut is hidden in one of these boxes. It is known that the
peanut is not in the black box and not in the purple box. Which sentence is
more adequate to describe the situation? 1 The peanut may be in the blue box.
2 The peanut has to be in the blue box. Please ONLY respond with 1 or 2 as
your answer.

2

1-shot P indirect
sentence

There are three boxes in a room: a yellow box, a red box and a gray box. A
peanut is hidden in one of these boxes. If the peanut is not in the gray box,
the peanut may be in the yellow box or red box. If the peanut is not in the
gray and the red box, the peanut has to be in the yellow box. Now there is
another case. There are three boxes in a room: a black box, a purple box and
a blue box. A peanut is hidden in one of these boxes. It is known that the
peanut is not in the black box. Which sentence is more adequate to describe
the situation? 1 The peanut may be in the blue box. 2 The peanut has to be in
the blue box. Please ONLY respond with 1 or 2 as your answer.

1

counter-
factual

N direct
slot

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hiding in the black box, because yesterday Tom moved the peanut
from the purple box to the black box. If he hadn’t moved the peanut yesterday,
imagine which box the peanut would be in today. The peanut _ be in the
purple box. Which word or expression is more adequate to describe the
situation after filling in the slot: may or has to? Please ONLY respond with
may or has to as your answer.

has to

counter-
factual

P direct
slot

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hiding in the black box, because yesterday Tom moved the peanut
from one of the other two boxes to the black box. If he hadn’t moved the
peanut yesterday, imagine which box the peanut would be in today. The
peanut _ be in the purple box. Which word or expression is more adequate to
describe the situation after filling in the slot: may or has to? Please ONLY
respond with may or has to as your answer.

may

counter-
factual

N indirect
slot

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hiding in the black box, because yesterday Tom moved the peanut
from the purple box to the black box. If he hadn’t moved the peanut yesterday,
imagine which box the peanut would be in today. The peanut _ be in the
purple box. Which word or expression is more adequate to describe the
situation after filling in the slot: 1 may or 2 has to? Please ONLY respond
with 1 or 2 as your answer.

2

counter-
factual

P indirect
slot

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hiding in the black box, because yesterday Tom moved the peanut
from one of the other two boxes to the black box. If he hadn’t moved the
peanut yesterday, imagine which box the peanut would be in today. The
peanut _ be in the purple box. Which word or expression is more adequate to
describe the situation after filling in the slot: 1 may or 2 has to? Please ONLY
respond with 1 or 2 as your answer.

1
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counter-
factual

N indirect
sentence

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hiding in the black box, because yesterday Tom moved the peanut
from the purple box to the black box. If he hadn’t moved the peanut yesterday,
imagine which box the peanut would be in today. Which sentence is more
adequate to describe the imagined situation? 1 The peanut may be in the
purple box. 2 The peanut has to be in the purple box. Please ONLY respond
with 1 or 2 as your answer.

2

counter-
factual

P indirect
sentence

There are three boxes in a room: a black box, a purple box and a blue box. A
peanut is hiding in the black box, because yesterday Tom moved the peanut
from one of the other two boxes to the black box. If he hadn’t moved the
peanut yesterday, imagine which box the peanut would be in today. Which
sentence is more adequate to describe the imagined situation? 1 The peanut
may be in the blue box. 2 The peanut has to be in the blue box. Please ONLY
respond with 1 or 2 as your answer.

1

E.2 Experiment 2
A ToM story with eight statements in direct slot format is demonstrated below.

Statements Certainty Prompt Answer

Fact (previous) Not low You witness a sequence of events: 1 Hannah entered the hall. 2
Amelia entered the hall. 3 The corn is in the drawer. 4 The drawer
is in the hall. 5 Amelia hates the grapes. 6 Amelia hates the
stockings. 7 Hannah exited the hall. 8 Amelia moved the corn to
the bathtub. 9 The bathtub is in the hall. 10 Hannah entered the hall.
11 Charlotte entered the hall. You use the first-person perspective to
report the situation: I _ the corn was in the drawer . Which word
or expression is more adequate to describe the situation after filling
in the slot: know, believe or doubt? Please ONLY respond with
know, believe or doubt as your answer.

know

Fact (previous) Low You witness a sequence of events: 1 Hannah entered the hall. 2
Amelia entered the hall. 3 The corn is in the drawer. 4 The drawer is
in the hall. 5 Amelia hates the grapes. 6 Amelia hates the stockings.
7 Hannah exited the hall. 8 Amelia moved the corn to the bathtub. 9
The bathtub is in the hall. 10 Hannah entered the hall. 11 Charlotte
entered the hall. You use the first-person perspective to report the
situation: I _ the corn was in the box . Which word or expression
is more adequate to describe the situation after filling in the slot:
know, believe or doubt? Please ONLY respond with know, believe
or doubt as your answer.

doubt

Fact (current) Not low You witness a sequence of events: 1 Hannah entered the hall. 2
Amelia entered the hall. 3 The corn is in the drawer. 4 The drawer
is in the hall. 5 Amelia hates the grapes. 6 Amelia hates the
stockings. 7 Hannah exited the hall. 8 Amelia moved the corn to
the bathtub. 9 The bathtub is in the hall. 10 Hannah entered the hall.
11 Charlotte entered the hall. You use the first-person perspective
to report the situation: I _ the corn is in the bathtub . Which word
or expression is more adequate to describe the situation after filling
in the slot: know, believe or doubt? Please ONLY respond with
know, believe or doubt as your answer.

know

Fact (current) Low You witness a sequence of events: 1 Hannah entered the hall. 2
Amelia entered the hall. 3 The corn is in the drawer. 4 The drawer is
in the hall. 5 Amelia hates the grapes. 6 Amelia hates the stockings.
7 Hannah exited the hall. 8 Amelia moved the corn to the bathtub. 9
The bathtub is in the hall. 10 Hannah entered the hall. 11 Charlotte
entered the hall. You use the first-person perspective to report the
situation: I _ the corn is in the box . Which word or expression
is more adequate to describe the situation after filling in the slot:
know, believe or doubt? Please ONLY respond with know, believe
or doubt as your answer.

doubt
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Belief (agent 0) Not low You witness a sequence of events: 1 Hannah entered the hall.
2 Amelia entered the hall. 3 The corn is in the drawer. 4
The drawer is in the hall. 5 Amelia hates the grapes. 6
Amelia hates the stockings. 7 Hannah exited the hall. 8
Amelia moved the corn to the bathtub. 9 The bathtub is in
the hall. 10 Hannah entered the hall. 11 Charlotte entered the
hall. You use the first-person perspective to report the situation:
I _ Amelia will look for the corn in the bathtub . Which word or

expression is more adequate to describe the situation after filling in
the slot: know, believe or doubt? Please ONLY respond with know,
believe or doubt as your answer.

believe

Belief (agent 0) Low You witness a sequence of events: 1 Hannah entered the hall. 2
Amelia entered the hall. 3 The corn is in the drawer. 4 The drawer is
in the hall. 5 Amelia hates the grapes. 6 Amelia hates the stockings.
7 Hannah exited the hall. 8 Amelia moved the corn to the bathtub. 9
The bathtub is in the hall. 10 Hannah entered the hall. 11 Charlotte
entered the hall. You use the first-person perspective to report the
situation: I _ Amelia will look for the corn in the drawer . Which
word or expression is more adequate to describe the situation after
filling in the slot: know, believe or doubt? Please ONLY respond
with know, believe or doubt as your answer.

doubt

Belief (agent 1) Not low You witness a sequence of events: 1 Hannah entered the hall.
2 Amelia entered the hall. 3 The corn is in the drawer. 4
The drawer is in the hall. 5 Amelia hates the grapes. 6
Amelia hates the stockings. 7 Hannah exited the hall. 8
Amelia moved the corn to the bathtub. 9 The bathtub is in
the hall. 10 Hannah entered the hall. 11 Charlotte entered the
hall. You use the first-person perspective to report the situation:
I _ Hannah will look for the corn in the drawer . Which word or

expression is more adequate to describe the situation after filling in
the slot: know, believe or doubt? Please ONLY respond with know,
believe or doubt as your answer.

believe

Belief (agent 1) Low You witness a sequence of events: 1 Hannah entered the hall.
2 Amelia entered the hall. 3 The corn is in the drawer. 4
The drawer is in the hall. 5 Amelia hates the grapes. 6
Amelia hates the stockings. 7 Hannah exited the hall. 8
Amelia moved the corn to the bathtub. 9 The bathtub is in
the hall. 10 Hannah entered the hall. 11 Charlotte entered the
hall. You use the first-person perspective to report the situation:
I _ Hannah will look for the corn in the bathtub . Which word or

expression is more adequate to describe the situation after filling in
the slot: know, believe or doubt? Please ONLY respond with know,
believe or doubt as your answer.

doubt
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F Statistical Coefficients From Logistic Regression Analyses

F.1 Experiment 1

Correct Response
Predictor b SE z p

(Intercept) 0.87 0.06 14.37 < .001
Number of Parameters [Medium > Small] 1.63 0.12 13.46 < .001
Modal Condition [Necessity > Possibility] 0.87 0.12 7.59 < .001
Story Type 1-Shot [> Base] −0.21 0.16 −1.31 < .001
Story Type Counterfactual [> Base] −0.50 0.16 −3.15 .002
QA Format Indirect Slot [> Direct Slot] −0.66 0.16 −4.23 < .001
QA Format Indirect Sentence [> Direct Slot] 0.55 0.17 3.18 .002
Number of Parameters × Modal Condition −0.93 0.23 −4.05 < .001
Number of Parameters × Story Type Counterfactual −1.03 0.29 −3.52 < .001
Number of Parameters × QA Format Indirect Slot −1.11 0.31 −3.53 < .001
Number of Parameters × QA Format Indirect Sentence 0.78 0.35 2.26 .024

Observations 1800
R2

Tjur .186
AIC 1956.6

Table 7: Logistic regression results on Qwen2-7B/72B data from Experiment 1, derived from the optimal regression
model selected by AIC.

Correct Response
Predictor b SE z p

(Intercept) 2.67 0.18 14.86 < .001
Number of Parameters [Medium > Small] 3.15 0.36 8.84 < .001
Modal Condition [Necessity > Possibility] 1.99 0.32 6.31 < .001
Story Type 1-Shot [> Base] −1.41 0.28 −5.05 < .001
Story Type Counterfactual [> Base] 0.81 0.39 2.09 .036
QA Format Indirect Slot [> Direct Slot] −0.31 0.20 −1.52 .128
QA Format Indirect Sentence [> Direct Slot] 1.30 0.23 5.78 < .001
Number of Parameters × Modal Condition 1.54 0.63 2.44 .015
Number of Parameters × Story Type 1-Shot −2.74 0.56 −4.90 < .001
Number of Parameters × Story Type Counterfactual 1.99 0.78 2.57 .010

Observations 1800
R2

Tjur .206
AIC 1246.0

Table 8: Logistic regression results on Qwen2.5-7B/72B data from Experiment 1, derived from the optimal
regression model selected by AIC.

F.2 Experiment 2
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Correct Response
Predictor b SE z p

(Intercept) 1.30 0.10 13.20 < .001
Number of Parameters [Medium > Small] 2.17 0.20 11.08 < .001
Modal Condition [Necessity > Possibility] 1.79 0.19 9.44 < .001
Story Type 1-Shot [> Base] 0.04 0.17 0.23 .822
Story Type Counterfactual [> Base] −0.01 0.16 −0.04 .971
QA Format Indirect Slot [> Direct Slot] −0.79 0.17 −4.69 < .001
QA Format Indirect Sentence [> Direct Slot] 1.34 0.20 6.86 < .001
Number of Parameters × Modal Condition 3.66 0.38 9.63 < .001
Number of Parameters × Story Type 1-Shot −1.02 0.30 −3.44 < .001
Number of Parameters × QA Format Indirect Slot −1.19 0.34 −3.51 < .001
Number of Parameters × QA Format Indirect Sentence 2.27 0.39 5.79 < .001

Observations 1800
R2

Tjur .189
AIC 1866.7

Table 9: Logistic regression results on Llama3-8B/70B data from Experiment 1, derived from the optimal regression
model selected by AIC.

Correct Response
Predictor b SE z p

(Intercept) 1.70 0.11 15.40 < .001
Number of Parameters [Medium > Small] 2.96 0.22 13.45 < .001
Modal Condition [Necessity > Possibility] 1.14 0.17 6.82 < .001
Story Type 1-Shot [> Base] −0.02 0.17 −0.14 .887
Story Type Counterfactual [> Base] −0.52 0.19 −2.67 .008
QA Format Indirect Slot [> Direct Slot] −0.41 0.18 −2.33 .020
QA Format Indirect Sentence [> Direct Slot] 1.54 0.28 5.61 < .001
Number of Parameters × Modal Condition 1.16 0.33 3.48 < .001
Number of Parameters × Story Type Counterfactual −0.98 0.36 −2.70 .007
Number of Parameters × QA Format Indirect Sentence 3.43 0.48 7.19 < .001

Observations 1800
R2

Tjur .210
AIC 1659.4

Table 10: Logistic regression results on Llama3.1-8B/70B data from Experiment 1, derived from the optimal
regression model selected by AIC.

Correct Response
Predictor b SE z p

(Intercept) 0.62 0.07 8.56 < .001
Number of Parameters [Medium > Small] 0.08 0.15 0.52 .604
Epistemic Certainty [Not Low > Low] 1.64 0.16 9.98 < .001
Statement Type Fact [> Belief] 3.02 0.17 17.34 < .001
Statement Type Agent 1 [> Agent 0] −0.05 0.18 −0.31 .757
Statement Type Current [> Previous] 0.49 0.23 2.16 .031
QA Format Indirect Slot [> Direct Slot] 0.99 0.21 4.82 < .001
QA Format Indirect Sentence [> Direct Slot] −0.14 0.20 −0.70 .481
Number of Parameters × Epistemic Certainty −1.61 0.33 −4.89 < .001
Number of Parameters × Statement Type Fact −2.06 0.35 −5.92 < .001
Number of Parameters × Statement Type Agent 1 0.88 0.35 2.49 .013
Number of Parameters × Statement Type Current −0.33 0.45 −0.73 .466
Number of Parameters × QA Format Indirect Slot −1.72 0.41 −4.19 < .001
Number of Parameters × QA Format Indirect Sentence 1.37 0.39 3.47 < .001

Observations 1440
R2

Tjur .384
AIC 1354.3

Table 11: Logistic regression results on Qwen2-7B/72B data from Experiment 2, derived from the optimal regression
model selected by AIC.
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Correct Response
Predictor b SE z p

(Intercept) −0.01 0.09 −0.10 .921
Number of Parameters [Medium > Small] 1.65 0.18 9.15 < .001
Epistemic Certainty [Not Low > Low] 3.08 0.22 14.08 < .001
Statement Type Fact [> Belief] 3.79 0.22 17.28 < .001
Statement Type Agent 1 [> Agent 0] −0.38 0.22 −1.75 .081
Statement Type Current [> Previous] 0.39 0.25 1.59 .113
QA Format Indirect Slot [> Direct Slot] −2.65 0.27 −9.73 < .001
QA Format Indirect Sentence [> Direct Slot] 3.99 0.27 14.58 < .001
Number of Parameters × Epistemic Certainty −2.99 0.44 −6.85 < .001
Number of Parameters × Statement Type Fact −1.01 0.44 −2.31 .021
Number of Parameters × Statement Type Current −1.22 0.49 −2.48 .013
Number of Parameters × QA Format Indirect Slot 2.01 0.54 3.70 < .001
Number of Parameters × QA Format Indirect Sentence −1.53 0.55 −2.81 .005

Observations 1440
R2

Tjur .597
AIC 1009.2

Table 12: Logistic regression results on Qwen2.5-7B/72B data from Experiment 2, derived from the optimal
regression model selected by AIC.

Correct Response
Predictor b SE z p

(Intercept) −0.20 0.09 −2.11 .035
Number of Parameters [Medium > Small] 1.88 0.19 9.87 < .001
Epistemic Certainty [Not Low > Low] 1.36 0.32 4.31 < .001
Statement Type Fact [> Belief] 4.79 0.34 14.07 < .001
Statement Type Agent 1 [> Agent 0] 0.21 0.22 0.97 .331
Statement Type Current [> Previous] −0.22 0.22 −0.99 .325
QA Format Indirect Slot [> Direct Slot] −1.76 0.23 −7.81 < .001
QA Format Indirect Sentence [> Direct Slot] 1.26 0.22 5.60 < .001
Number of Parameters × Statement Type Fact −4.50 0.67 −6.73 < .001
Number of Parameters × Epistemic Certainty −5.30 0.64 −8.34 < .001

Observations 1440
R2

Tjur .546
AIC 1064.9

Table 13: Logistic regression results on Llama3-8B/70B data from Experiment 2, derived from the optimal
regression model selected by AIC.

Correct Response
Predictor b SE z p

(Intercept) 0.59 0.09 6.32 < .001
Number of Parameters [Medium > Small] 2.70 0.19 14.57 < .001
Epistemic Certainty [Not Low > Low] −0.55 0.17 −3.26 .001
Statement Type Fact [> Belief] 2.74 0.19 14.73 < .001
Statement Type Agent 1 [> Agent 0] 0.43 0.20 2.18 .029
Statement Type Current [> Previous] 0.19 0.22 0.87 .386
QA Format Indirect Slot [> Direct Slot] −0.46 0.20 −2.23 .026
QA Format Indirect Sentence [> Direct Slot] 1.06 0.21 5.00 < .001
Number of Parameters × Epistemic Certainty −4.78 0.34 −14.24 < .001
Number of Parameters × Statement Type Fact 2.28 0.37 6.14 < .001
Number of Parameters × Statement Type Agent 1 1.17 0.40 2.97 .003
Number of Parameters × QA Format Indirect Sentence −1.22 0.37 −3.27 .001

Observations 1440
R2

Tjur .465
AIC 1217.9

Table 14: Logistic regression results on Llama3.1-8B/70B data from Experiment 2, derived from the optimal
regression model selected by AIC.
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G ROC Curves for Logistic Regression Models

G.1 Experiment 1
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ROC Curves for Logistic Regressions Predicting LLM Responses (Exp. 1)

Figure 10: Receiver operating characteristic (ROC) curves for logistic regression models predicting LLM response
data from Experiment 1.

G.2 Experiment 2
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Figure 11: Receiver operating characteristic (ROC) curves for logistic regression models predicting LLM response
data from Experiment 2.
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