
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 27664–27678
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

LLM×MapReduce: Simplified Long-Sequence Processing
using Large Language Models

Zihan Zhou1,3*, Chong Li4*, Xinyi Chen5*, Shuo Wang2†, Yu Chao2,
Zhili Li6, Haoyu Wang6, Qi Shi2, Zhixing Tan7,

Xu Han2, Xiaodong Shi1,3†, Zhiyuan Liu2, Maosong Sun2

1School of Informatics, Xiamen University 2Tsinghua University
3Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural
Heritage of Fujian and Taiwan (Xiamen University), Ministry of Culture and Tourism

4Peking University 5Nankai University 6BUPT 7Zhongguancun Laboratory

Abstract

We propose a training-free framework that
enables large language models (LLMs) to
effectively process long texts, using a
divide-and-conquer strategy for comprehen-
sive document understanding. The proposed
LLM×MapReduce framework splits the entire
document into several chunks for LLMs to read
and then aggregates the intermediate outputs
to produce the final response. The main chal-
lenge for divide-and-conquer long text process-
ing frameworks lies in the risk of losing essen-
tial long-range information due to document
splitting, which can lead the model to produce
incomplete or incorrect answers based on the
segmented texts. Disrupted long-range infor-
mation can be classified into two categories:
inter-chunk dependency and inter-chunk con-
flict. We design a structured information proto-
col to better cope with inter-chunk dependency
and an in-context confidence calibration mech-
anism to resolve inter-chunk conflicts. Experi-
ments demonstrate that LLM×MapReduce out-
performs representative open-source and com-
mercial long-context LLMs and is compatible
with several models. Our framework can also
function as a data synthesis engine, capable
of generating high-quality long-alignment data
using only short-context LLMs. 1

1 Introduction

Large language models (LLMs) exhibit impres-
sive performance across a wide range of complex
tasks (OpenAI, 2023), including question answer-
ing (Anthropic, 2023), code generation (Luo et al.,
2024), and solving mathematical problems (Luo
et al., 2023). However, due to their quadratic com-
putational complexity and a lack of high-quality
long training examples, most LLMs are trained
with a limited window size (Touvron et al., 2023a,b;

*Equal Contribution.
†Correspondence to Shuo Wang and Xiaodong Shi.
1The code is publicly available at https://github.com/

thunlp/LLMxMapReduce.

Jiang et al., 2023). This context limit restricts the
application of modern LLMs to long-sequence pro-
cessing tasks. In response to this issue, several
researchers have focused on extending the context
length of LLMs. Existing studies can be broadly
categorized into two types: training-based and
training-free methods.

For training-based extension methods, it is nec-
essary to prepare long training data and allocate
substantial computational resources to support the
additional training (Xiong et al., 2023; Chen et al.,
2024). Although these training-based methods
can effectively extend the context length of LLMs,
they may be inapplicable in scenarios where suf-
ficient computational resources and high-quality
long texts are unavailable.

In contrast, training-free context extension ap-
proaches aim to overcome the length limitations of
LLMs without modifying their parameters (Xiao
et al., 2024b,a). A prominent approach within
this field is the divide-and-conquer strategy, which
processes long sequences by breaking them into
shorter, more manageable chunks (Wang et al.,
2024; Zhao et al., 2024; Zhang et al., 2024b; Qian
et al., 2024). LangChain (Chase, 2022) initially
introduces the MapReduce method, where text seg-
ments are processed in parallel during the map
stage, followed by the aggregation of intermediate
results across all segments to predict the final out-
put. The major challenge for this kind of method
is that different segments are processed indepen-
dently, which may break some essential long-range
information. Disrupted long-range information can
be divided into two categories: (1) inter-chunk de-
pendency, where evidence is spread across differ-
ent chunks and relies on each other; and (2) inter-
chunk conflict, where evidence across chunks is
contradictory, requiring the model to resolve these
conflicts in order to predict the final answer.

In this paper, we introduce LLM×MapReduce,
a training-free framework for processing long texts

27664

https://github.com/thunlp/LLMxMapReduce
https://github.com/thunlp/LLMxMapReduce

that employs a divide-and-conquer approach, en-
abling models with short context windows to effec-
tively handle long contexts. To address the chal-
lenges of inter-chunk dependency and conflict, we
introduce a structured information protocol and
an in-context confidence calibration mechanism.
The structured information protocol defines the in-
formation passed from the map stage to the reduce
stage, ensuring the model has the critical inputs
needed to infer the correct answer when aggregat-
ing different chunks. In-context confidence cali-
bration allows the model to assign a reliable con-
fidence score to the output of each chunk, aiding
in effectively resolving inter-chunk conflicts. We
evaluate the proposed method on various long-text
benchmarks, and the experimental results show that
our approach outperforms both closed- and open-
source LLMs in terms of both performance and
efficiency. Through ablation experiments, we fur-
ther validate the effectiveness of each component
in LLM×MapReduce, reaffirming the importance
of explicitly addressing cross-chunk dependencies
and conflicts.

Moreover, the proposed framework can also
serve as a data generation engine, leveraging short-
context LLMs to synthesize long-form alignment
data, thereby achieving the goal of “letting short
teach long.” Annotating long-range texts is time-
consuming and labor-intensive, making data syn-
thesis an essential avenue for constructing long-
form alignment datasets. By applying a divide-
and-conquer approach, we aggregate information
from a long document layer by layer, construct-
ing pyramid-shaped textual representations. This
pyramid structure enables explicit control over the
amount of information when generating QA pairs
for the corresponding document. As a result, com-
pared to directly using the entire document (Bai
et al., 2024) or focusing on a specific local sec-
tion (An et al., 2024), our method generates QA
pairs that cover varying amounts of information,
offering a range of difficulty levels. Experimen-
tal results demonstrate that the resulting dataset,
Pyramid-Align, enables better model performance
than LongAlign, a representative long-range align-
ment dataset. Finally, we fine-tune an 8B model
using Pyramid-Align and conduct inference with
LLM×MapReduce, achieving performance better
than GPT-4, thus demonstrating the effectiveness
of our framework.

Our main contributions include:

• We propose a divide-and-conquer framework
for long-sequence processing that explicitly
tackles cross-chunk dependencies and con-
flicts through a structured information pro-
tocol and in-context confidence calibration.

• We evaluate the performance and efficiency
of the proposed framework against several
representative baselines. The results highlight
the superiority of our approach, which is also
compatible with various LLMs.

• We extend the framework into a data synthesis
engine that uses short-context LLMs to gener-
ate long-range alignment data. The resulting
Pyramid-Align dataset enables an 8B model
to outperform GPT-4 on long-sequence tasks.

2 Related Works

Divide-and-Conquer Long-Sequence Process-
ing Thanks to the flexibility and scalability of
divide-and-conquer methods for processing long
sequences, many researchers have explored using
this approach to extend the effective context length
of existing LLMs. LangChain (Chase, 2022) is a
pioneering framework that breaks long documents
into smaller chunks for LLMs to process. Similarly,
in XL3M (Wang et al., 2024), long texts are divided
into multiple short sub-contexts, each paired with
a question. Relevant segments are then selected
using LLMs and combined chronologically to gen-
erate the final answer. Segment+ (Shi et al., 2024)
also splits long texts using structured notes and a
filtering module to manage information flow. Re-
cently, LongAgent (Zhao et al., 2024) introduces a
multi-agent framework consisting of a leader agent
and several member agents, each responsible for
processing a chunk. The leader agent organizes the
member agents into groups and then randomly se-
lects one member from each group to aggregate the
final answer. Our experiments show that LongA-
gent’s aggregation mechanism does not effectively
address inter-chunk dependencies and conflicts, as
the random selection of members can lead to the
loss of important evidence. Unlike LongAgent,
which processes multiple chunks in parallel, Chain-
of-Agents (CoA) (Zhang et al., 2024b) processes
split chunks sequentially using an accumulated
summary. However, since CoA’s workflow does
not explicitly address inter-chunk conflicts, key
clues in the memory may be overwritten when pro-
cessing subsequent chunks. LC-Boost (Qian et al.,

27665

2024) defines an action space and selects appro-
priate actions for sequentially processing chunks.
To address inter-chunk conflicts, LC-Boost adap-
tively either appends new evidence or updates the
summary. However, in complex cases where his-
torical and current information conflict, LC-Boost
may struggle to fully resolve the issue when relying
solely on the accumulated summary and the current
text. Augmented with the structured information
protocol and in-context confidence calibration, our
proposed LLM×MapReduce framework can better
cope with the inter-chunk dependencies and con-
flicts.

Long-Range Alignment Datasets Alignment is
a crucial step in training effective LLMs. Due to
the prohibitively high cost of having human experts
create QA pairs for long document understand-
ing, several studies have proposed automatic data
synthesis methods for constructing long-alignment
datasets (Chen et al., 2024; Bai et al., 2024; An
et al., 2024). LongAlign (Bai et al., 2024) leverages
an existing long-context LLM (i.e., Claude-2.1)
to generate QA pairs from entire long documents.
In contrast, An et al. (2024) propose using local
chunks to generate QA pairs, which are then con-
catenated into long documents. Rather than relying
solely on global or local information, we propose
structuring the document as a pyramid, with differ-
ent levels of nodes used to generate QA pairs. The
resulting Pyramid-Align dataset contains questions
that cover varying amounts of information, offering
more diverse supervision.

3 Approach

3.1 Problem Description
In real-world scenarios, users may require the LLM
to comprehend one or more lengthy documents that
far exceed the model’s effective context window.
Formally, let X represent the user-provided long
text and L denote the model’s effective context
length. In this work, we focus on cases where
|X| ≫ L, where |X| represents the length of X .
we partition the input text X into a series of chunks
{x1, x2, · · · , xn}. The chunking process considers
both token length and natural semantic boundaries,
such as paragraphs. Our primary aim is to fit en-
tire paragraphs within a chunk while maximizing
the chunk size, ensuring each chunk xi is within
the model’s context length L. If a paragraph itself
exceeds L, it is further subdivided based on punc-
tuation to maintain sentence integrity as much as

possible. For a given user query Q, the LLM, pa-
rameterized by θ, processes each chunk to generate
intermediate outputs, which are then aggregated to
predict the final answer.

3.2 Workflow of Our Framework
Figure 1 depicts the overall framework of the
proposed LLM×MapReduce framework. Like
LangChain (Chase, 2022), the LLM×MapReduce
workflow consists of three stages: map, collapse,
and reduce. During the map stage, we utilize an
LLM as the map model to extract the necessary
information for each chunk xi:

si = fmap (xi, Q;θ) , (1)

where Q is the user query and fmap represents the
map function powered by the LLM, parameterized
by θ. Our experiments show that the design of
the mapped results, {s1, · · · , sN}, is crucial for en-
abling the divide-and-conquer framework to effec-
tively comprehend long documents. In this work,
we propose a structured information protocol aimed
at improving communication efficiency between
the different stages.

In some cases, the input text is extremely long,
resulting in mapped results that still exceed the con-
text window of the LLM being used. To mitigate
this issue, we introduce a collapse stage that com-
presses the structured outputs generated during the
map stage in a manner similar to the MapReduce
approach employed in LangChain (Chase, 2022).
We divide the N mapped results into K groups,
forming each group gj by sequentially concatenat-
ing results until the next addition would exceed
the context limit L. For the j-th group of mapped
results gj , the collapsed result can be given by

cj = fcollapse (gj , Q;θ) . (2)

It is important to note that the structure of each
collapsed result cj remains the same as that of
each mapped result si. If the total length of the
mapped results {s1, · · · , sN} is less than L, we
use the mapped results directly as the collapsed
results for the reduce stage. If the collapsed results
{c1, · · · , cK} still exceed L, we iteratively apply
the collapse function fcollapse until their length is re-
duced to less than L. Briefly, we use {c1, · · · , cK}
to denote the final output of the collapse stage.

Finally, in the reduce stage, the final response is
generated based on the collapsed results:

a = freduce ({c1, · · · , cK} , Q;θ) . (3)

27666

Long Text

Chunks

Map Stage Collapse Stage

Mapped
Results

Collapsed
Results

…

Extracted Information

Rationale

Mapped
Result 1

Answer

Confidence Score

LLM

Chunk 1

OR

NO INFORMATION
DROP

Split

Reduce Stage

Extracted Information

Rationale

Mapped
Result 2

Answer

Confidence Score

LLM

Chunk 2

OR

NO INFORMATION
DROP

Extracted Information

Rationale

Mapped
Result N

Answer

Confidence Score

LLM

Chunk N

OR

NO INFORMATION
DROP

Extracted Information

Rationale

Collapsed
Result 1

Answer

Confidence Score

LLM

Mapped Result
Group1

OR

NO INFORMATION
DROP

Extracted Information

Rationale

Collapsed
Result K

Answer

Confidence Score

LLM

Mapped Result
Group K

OR

NO INFORMATION
DROP

…

Rationale

Final
Answer

Answer

LLM

Figure 1: Overview of the proposed LLM×MapReduce framework. After dividing the provided long text into a
series of chunks, the model processes each chunk to extract an information structure containing the essential content
needed to address the query. This is referred to as the map stage in our framework. The mapped results are then
compressed during the collapse stage, preparing them for the reduce stage. The collapse stage ensures that the input
to the reducing model remains within its effective length (i.e., L). Based on the structured outputs from the first
two stages (i.e., the map and collapse stages), the reduce model aggregates information from all chunks, resolves
inter-chunk conflicts using calibrated confidence scores, and predicts the final answer.

In LLM×MapReduce, we do not need to tune the
model parameters θ. Instead, the three functions
(i.e., fmap, fcollapse, and freduce) are implemented
using prompts with existing LLMs.

The aforementioned divide-and-conquer frame-
work is straightforward for long text processing,
and has been explored in previous studies (Chase,
2022; Zhao et al., 2024; Zhang et al., 2024b). How-
ever, in our experiments, we find that simply com-
bining an LLM and the divide-and-conquer strategy
can not achieve satisfying performance on modern
long-text benchmarks (Zhang et al., 2024a).

The major challenge is that segmenting the en-
tire document may disrupt crucial long-range clues.
The disrupted long-range information can be di-
vided into two categories: inter-chunk dependen-
cies and inter-chunk conflicts. We therefore fo-
cus on enhancing the capabilities of divide-and-
conquer frameworks to process cross-chunk infor-
mation. Specifically, we propose a structured in-

formation protocol to address inter-chunk depen-
dencies and in-context confidence calibration to
resolve inter-chunk conflicts.

3.3 Structured Information Protocol
An important research question for divide-and-
conquer long-text processing frameworks is to de-
termine what information the map stage should
convey to the reduce stage. If the mapped results
are overly simplified, as seen in LongAgent (Zhao
et al., 2024), crucial details needed for subsequent
stages may be lost. On the other hand, if the
mapped results are too complex, they introduce
significant computational overhead, increasing the
overall latency of the framework.

To this end, we introduce a specialized informa-
tion structure consisting of four components:

• Extracted Information: key facts or data
relevant to the query Q that are extracted from
the current chunk, providing the necessary

27667

background for subsequent stages to address
inter-chunk dependencies.

• Rationale: the analysis or inference process
that explains how the model derives the inter-
mediate answer from the extracted informa-
tion, helping to mitigate the risk of hallucina-
tions in subsequent stages.

• Answer: the intermediate answer to the
query, derived from the extracted informa-
tion and rationale. If, after providing the ra-
tionale, the model determines that the pas-
sage does not contain relevant information
to address the question, it will output “NO
INFORMATION”, which will be disregarded in
subsequent stages.

• Confidence Score: a score (out of 5) reflect-
ing the model’s confidence in the answer, indi-
cating the completeness and reliability of the
information. The confidence score is impor-
tant for resolving inter-chunk conflicts.

To maintain a consistent input format for the
reduce stage, both the map and collapse stages pro-
duce data in the structured format described above.
A remaining issue with the structured information
protocol is the potential inconsistency in confi-
dence scores estimated across different chunks
when resolving inter-chunk conflicts. Without a
general criterion for confidence estimation, the
model may assign varying confidence levels to dif-
ferent chunks, even when the content is equally reli-
able. We thus propose an in-context confidence cal-
ibration mechanism to align the confidence scores
of different chunks to a consistent standard.

3.4 In-Context Confidence Calibration

To make confidence scores comparable across
chunks, we propose calibrating them through in-
context learning without adjusting the model pa-
rameters. Specifically, we provide confidence esti-
mation principles alongside a typical example for
different levels of confidence score. By referencing
these principles and examples, the model learns to
apply consistent criteria when processing chunks.
We can customize different calibration principles
and instances for various tasks. Claims fully sup-
ported by the provided text are assigned high con-
fidence, while those inferred by the model receive
medium confidence. Claims not related to the pro-
vided text are assigned low confidence. Figure 2

in provides an example of the calibration prompt.
We also provide a prompt example for the map,
collapse, and reduce stages in Appendix E. Fur-
thermore, to clearly demonstrate how confidence
scores address inter-chunk conflicts, we provide an
illustrative example in Appendix F.

Assign a confidence score (out of 5) to
your answer based on the completeness and
reliability of the extracted information
and your rationale. The following is some
assigning scoring cases:
<Text: [Jerry is 18 years old this year. He can
swim and wants to be an athlete.].
Examples of confidence estimation: [
Jerry can swim, 5 points;
Jerry will become an athlete in the future, 3.5
points;
Jerry will become a swimming athlete in the fu-
ture, 3 points;
Jerry is strong, 3 points;
Jerry can play chess, 0 points;
Jerry likes talking, 0 points] >.

Figure 2: Prompt for in-context confidence calibration.

4 Experiments

4.1 Setup
Models We use two well-known open-source
models to validate the effectiveness of the pro-
posed LLM×MapReduce framework, which are
Llama3-70B-Instruct (Grattafiori et al., 2024) and
Qwen2-72B-Instruct (Yang et al., 2024). We em-
ploy vLLM (Kwon et al., 2023) for model infer-
ence, and the decoding temperature is set to 0.7.

Evaluation We evaluate the performance of
the involved models and methods on In-
finiteBench (Zhang et al., 2024a), where the av-
erage input length exceeds 100K tokens. This
benchmark assesses the long-text capabilities of
LLMs across several dimensions, including long-
range retrieval, language comprehension, code un-
derstanding, and mathematical problem-solving.
We exclude the subsets Code.Run and Math.Calc,
as nearly all models achieve less than 5% accuracy
on these tasks, making it difficult to differentiate
performance among the models. We utilize the
evaluation code open-sourced from Zhang et al.
(2024a) by default. We find that the recall score
for this task tends to increase with longer model
outputs. Therefore, we directly engage two hu-
man experts with experience in natural language
processing to manually assess the accuracy.

27668

Methods Re.Pa Re.Nu Re.KV En.Sum En.QA En.MC En.Dia Co.De Ma.Fi Avg.

Closed-Source Models

GPT-4⋆ 100.00 100.00 89.00 14.73 22.44 68.12 7.50 54.31 60.00 57.34
Claude 2⋆ 97.80 99.15 65.40 14.50 11.97 67.25 43.00 33.24 32.29 51.62
Kimi-Chat 99.32 97.45 69.20 29.94 18.81 79.91 15.50 38.32 18.57 51.89

Open-Source Models

YaRN-Mistral⋆ 92.71 58.31 0.00 9.09 9.55 29.26 4.50 23.60 17.14 27.13
Yi-6B-200K⋆ 100.00 94.92 0.00 0.92 9.20 36.68 1.50 18.78 4.29 29.59
Yi-34B-200K⋆ 100.00 100.00 0.00 1.33 12.17 46.29 3.50 21.32 25.71 34.48
Q2-72B-I 100.00 100.00 29.00 31.85 21.97 81.66 23.00 45.43 59.71 54.74

Divide-and-Conquer Frameworks

L3-70B-I+LA 99.32 93.05 74.60 2.19 35.41 69.00 7.50 24.11 79.14 53.81
L3-70B-I+CoA 9.32 15.59 1.80 10.10 7.03 27.51 9.50 18.27 44.57 15.97

L3-70B-I×MR 100.00 99.79 98.89 30.63 34.70 82.10 17.50 62.94 91.43 68.66
Q2-72B-I×MR 100.00 100.00 98.80 32.39 23.13 83.84 46.50 54.82 54.29 65.97

Table 1: Results on InfiniteBench. “⋆” indicates that we directly use the model outputs released by Zhang et al.
(2024a) and re-calculate the score. “Q2-72B-I” and “L3-70B-I” refer to Qwen2-72B-Instruct and Llama3-70B-
Instruct, respectively. “LA” and “CoA” denote LongAgent (Zhao et al., 2024) and Chain-of-Agents (Zhang et al.,
2024b), which are two recent representative frameworks for divide-and-conquer long-sequence processing .

Baselines We select several representative mod-
els and methods as our baselines. For closed-source
models, we compare against GPT-4, Claude 2 (An-
thropic, 2023), and Kimi-Chat. For open-source
models, we include YaRN-Mistral (Peng et al.,
2024), Yi-6B-200K, Yi-34B-200K (Young et al.,
2025), and Qwen2-72B-Instruct. Additionally,
we compare LLM×MapReduce with two recent
representative frameworks for divide-and-conquer
long-sequence processing: LongAgent (Zhao et al.,
2024) and Chain-of-Agents (Zhang et al., 2024b).

4.2 Main Results
Table 1 presents the performance of the methods
involved on InfiniteBench. For divide-and-conquer
methods, the backbone model used is Llama3-70B-
Instruct, which has an effective context length of
8K, significantly shorter than the test examples
in InfiniteBench. The results indicate that LongA-
gent (Zhao et al., 2024) outperforms CoA on nearly
all subtasks. The proposed LLM×MapReduce
method achieves the highest average score, out-
performing both the closed-source models and the
divide-and-conquer baselines. Augmented by our
method, Llama3-70B-Instruct performs well on all
the subtasks. Our method is also compatible with
Qwen2-72B-Instruct, demonstrating its generaliza-
tion capability.

4.3 Ablation Study
In LLM×MapReduce, we introduce a structured
information protocol and an in-context confidence

Method Re.Avg En.Avg Co.De Ma.Fi

L3-70B-I×MR 99.56 41.23 62.94 91.43

-Conf. 96.00 39.18 58.12 90.00
-Struc. 97.14 25.93 46.45 56.00

Table 2: Effect of structured information protocol and in-
context confidence calibration. “Re.Avg” and “En.Avg”
denote the average performance on retrieval tasks and
English language understanding tasks, respectively.

calibration mechanism, setting our method apart
from existing divide-and-conquer baselines. We
conduct ablation experiments to investigate the
effect of the two components. As shown in Ta-
ble 2, removing the in-context confidence calibra-
tion mechanism leads to a performance decline
across all tasks, particularly in English language
understanding tasks (i.e., En.Avg). When both con-
fidence calibration and the structured information
protocol are disabled, the performance drops even
more significantly compared to the full framework.
These results underscore the importance of both
mechanisms in maintaining strong performance for
long-sequence processing.

4.4 Extremely Long Evaluation

Needle-in-a-haystack (NIAH) (Kamradt, 2023) is
a widely-used method for evaluating the ability of
LLMs to handle long texts by identifying specific
facts within long documents. To assess the per-
formance of our framework in handling extremely

27669

64
K

12
8K

19
2K

25
6K

32
0K

38
4K

44
8K

51
2K

57
6K

64
0K

70
4K

76
8K

83
2K

89
6K

96
0K

10
24

K
10

88
K

11
52

K
12

16
K

12
80

K

Length

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Performance of Llama3-70B-Instruct×MapReduce on the 1280K NIAH test.

long texts, we extend the NIAH test to a length
of 1280K tokens. Figure 3 presents the results,
demonstrating that our proposed method enables
Llama3-70B-Instruct, with a trained context length
of 8K tokens, to effectively handle sequences of up
to 1280K tokens. This demonstrates the potential
of our framework for processing extremely long
sequences.

4.5 Inference Latency

2 4 6 8
Number of GPUs

0

50

100

150

200

250

300

350

400

La
te

nc
y

(s
)

L3-70B-I+LA (3)
L3-70B-I+CoA
L3-70B-I+LA (1)
Q2-72B-I
L3-70B-G
L3-70B-I×MR

Figure 4: Comparison of inference latency. “L3-70B-G”
represents Llama3-70B-Instruct-Gradient-1048K.

Since divide-and-conquer long-sequence pro-
cessing frameworks introduce multiple intermedi-
ate steps, they may be slower than standard de-
coding. We thus measure the inference latency of
the different approaches using 20 test examples,
each with 128K tokens. Since the original Llama3-
70B-Instruct does not support 128K tokens, we
use Llama3-70B-Instruct-Gradient-1048K (Pekelis
et al., 2024), an extended version of Llama3-70B-
Instruct, to evaluate the inference speed. We report
the latency for LongAgent with the maximum num-
ber of turns set to 1 and 3. The experiments are
conducted using NVIDIA A100 GPUs (80 GB). As

shown in Figure 4, both CoA and LongAgent are
slower than standard decoding across different set-
tings. However, a notable advantage of divide-and-
conquer methods is their lower GPU requirements
for handling long sequences. For standard decod-
ing, at least 4 GPUs are needed to process 128K
tokens, whereas divide-and-conquer methods can
support 128K tokens using just 2 GPUs. Surpris-
ingly, the proposed LLM×MapReduce framework
outperforms not only other divide-and-conquer
baselines in speed but also standard decoding. The
efficiency of our method is achieved by avoiding
the need to repeatedly process text chunks to re-
solve conflicts, as required in LongAgent. Instead,
we employ a structured information protocol and
an in-context confidence calibration mechanism to
effectively integrate information across chunks.

5 Pyramid-Align: Let Short Teach Long

An additional advantage of divide-and-conquer
methods is that they allow short-context LLMs to
generate long-context supervised fine-tuning (SFT)
data. In other words, we can distill the capabilities
of short-context LLMs into long-context LLMs,
achieving the goal of “letting short teach long”.
In this work, we adopt this idea to create a long
SFT dataset called Pyramid-Align. Several existing
studies utilize LLMs to generate questions based
on long documents. LongAlign (Bai et al., 2024)
proposes using Claude 2.1 to ask questions con-
ditioned on the entire text. In contrast, IN2 (An
et al., 2024) provides a local chunk to the LLM for
question generation before reintegrating that chunk
back into the long document. Instead of relying
solely on the entire document or a specific chunk,
we propose generating questions based on varying
amounts of information. Intuitively, a high-quality
long SFT dataset should train the model to thor-
oughly comprehend any span within the document.

27670

Chunk1 Chunk2 Chunkn-1 Chunkn...

Q1

Q2

Q3

Figure 5: Illustration of Pyramid-Align.

8

7

Score

4

5

6

[4]: ------------

[5]: ------------

[6]: ------------

Chunk 2Score

1

2

3

[1]: ------------

[2]: ------------

[3]: ------------

Chunk 1

SumLLM

New Node

[2]: -----------
Ref. ：[1, 3, 4]

[1]: ------------

= +1 43+

Score

Figure 6: Propagation of the sentence-level importance
score from leaf nodes to upper nodes.

Constructing the Pyramid As illustrated in Fig-
ure 5, we utilize LLMs to abstract chunks into
hierarchical nodes, where nodes at different lev-
els encompass varying amounts of information.
Specifically, each leaf node represents an individual
chunk, while higher-level nodes contain progres-
sively more information spanning multiple chunks.
To form these higher-level nodes, we typically com-
bine three lower-level nodes (adjusting downwards
if necessary to fit in the context window L) and
prompt the LLM to synthesize their content. The
number of levels is dynamically determined by doc-
ument length. Longer documents result in deeper
hierarchies. In our dataset, the height ranges from
1 to 3, with an average of 1.99.

Improving Information Coverage The primary
challenge in constructing the pyramid is that nodes
at higher levels may lose essential content, result-
ing in reduced informativeness as the hierarchy as-
cends. Improving the information coverage while
summarizing effectively at each level is crucial to
ensure that upper-level nodes retain sufficient con-
text and details to support accurate understanding

across the entire document. To this end, we design
a bottom-up importance propagation mechanism,
where the sentence-level importance scores help the
LLM identify key content. Figure 6 illustrates the
propagating procedure. When constructing upper
nodes, we prompt the LLM to pay more attention
to sentences with higher importance scores. Please
refer to Section B in Appendix for more details.

Generating Questions After constructing the
pyramid, we randomly select nodes to generate
questions. Selecting leaf nodes mimics IN2 (An
et al., 2024) while selecting the root node aligns
with LongAlign (Bai et al., 2024). Additionally,
the LLM is guided to prioritize important sentences
when formulating questions, ensuring that key in-
formation is considered.

Generating Answers Given a long docu-
ment X and a question Q, we employ the
LLM×MapReduce framework to generate the an-
swer A. Each example in the Pyramid-Align
dataset is represented as (X,Q,M,A), where M
denotes the intermediate outputs (e.g., the mapped
and collapsed results) from the LLM×MapReduce
process. This format allows us to not only use
(X,Q,A) to learn a standard long-context LLM,
but also leverage the intermediate outputs, namely
(X,Q,M,A), to train a model that aligns more
closely with the LLM×MapReduce framework.

Dataset Construction To ensure a fair compari-
son between different data construction methods,
we use the same documents used in previous works.
Specifically, we extract all the 5,299 English doc-
uments from the LongAlign dataset. The average
document length is approximately 17K tokens, with
a maximum length of 74K tokens. For each docu-
ment, we generate question-answer pairs using the
method described above. This process resulted in a
final dataset of 4,927 entries.

Standard Long-Context Training To validate
the effectiveness of our data synthesis approach,
we use the same backbone model, Llama3.1-8B, to
train long-context models on both LongAlign and
Pyramid-Align. Note that both long SFT datasets
are derived from the same set of long documents,
and the trained models perform standard decoding
without LLM×MapReduce. Since we only use
English documents, we evaluate the trained mod-
els on four English tasks from InfiniteBench. As
shown in Table 3, the model trained with Pyramid-

27671

Model Sum QA MC Dia Avg.

Baseline

GPT-4 14.73 22.44 68.12 7.50 28.20

Standard Decoding

L (LA) 16.46 6.17 44.54 10.50 19.42
L (PA) 25.22 19.91 43.67 11.00 24.95

LLM×MapReduce

L (PA) 28.55 21.22 67.69 10.00 31.86

Table 3: Comparison between LongAlign and Pyramid-
Align on the English tasks of InfiniteBench. “L (LA)”
denotes the model trained from Llama3.1-8B using Lon-
gAlign, while “L (PA)” denotes the model trained from
the same backbone on Pyramid-Align.

Align outperforms the one trained with LongAlign,
demonstrating the effectiveness of Pyramid-Align.

Training with LLM×MapReduce As afore-
mentioned, we can also leverage (X,Q,M,A) to
enhance the ability of LLMs to operate effectively
in the MapReduce framework. We train the model
from the same backbone (i.e., Llama3.1-8B) using
the data in the (X,Q,M,A) format. As shown
in Table 3, the trained 8B model can outperform
the strong baseline, GPT-4, with the help of our
proposed LLM×MapReduce framework.

6 Conclusion

We introduce LLM×MapReduce, an effective
divide-and-conquer framework for long-sequence
processing, which can also serve as a powerful
data synthesis engine for long-alignment resources.
The experimental results validate the effectiveness
of our approach, surpassing standard long-context
LLMs and other divide-and-conquer baselines.

Limitations

In this paper, we present the LLM×MapReduce
framework, offering a general solution for process-
ing long texts, particularly for standard document
types. However, the current implementation may
not fully accommodate the unique requirements of
specialized formats, such as visually rich academic
papers containing diagrams or other multi-modal
elements. Furthermore, the document chunking
mechanism may face challenges when processing
unstructured texts that lack clear paragraph bound-
aries. Future work could focus on developing adap-
tive chunking algorithms and expanding the frame-
work to better support domain-specific tasks.

Acknowledgments

We thank all anonymous reviewers for their valu-
able comments and suggestions on this work. This
work is supported by National Science and Technol-
ogy Major Project (Grant No. 2022ZD0116101),
the Major Scientific Research Project of the State
Language Commission in the 13th Five-Year Plan
(Grant No. WT135-38), and the public technol-
ogy service platform project of Xiamen City (No.
3502Z20231043). This work is also supported by
the AI9Stars community.

References
Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,

and Jian-Guang Lou. 2024. Make your llm fully
utilize the context. Preprint, arXiv:2404.16811.

Anthropic. 2023. Model card and evaluations for claude
models.

Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei
Hou, Jie Tang, Yuxiao Dong, and Juanzi Li. 2024.
Longalign: A recipe for long context alignment of
large language models. Preprint, arXiv:2401.18058.

Harrison Chase. 2022. Langchain. https://github.
com/langchain-ai/langchain.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2024. Longlora:
Efficient fine-tuning of long-context large language
models. Preprint, arXiv:2309.12307.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, et al. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

27672

https://arxiv.org/abs/2404.16811
https://arxiv.org/abs/2404.16811
https://www-files.anthropic.com/production/images/Model-Card-Claude-2.pdf
https://www-files.anthropic.com/production/images/Model-Card-Claude-2.pdf
https://arxiv.org/abs/2401.18058
https://arxiv.org/abs/2401.18058
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2309.12307
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Greg Kamradt. 2023. Llms need needle in a haystack
test-pressure testing llms.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
Preprint, arXiv:2308.09583.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Leonid Pekelis, Michael Feil, Forrest Moret, Mark
Huang, and Tiffany Peng. 2024. Llama 3 gradient: A
series of long context models.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico
Shippole. 2024. YaRN: Efficient context window ex-
tension of large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Hongjin Qian, Zheng Liu, Peitian Zhang, Kelong Mao,
Yujia Zhou, Xu Chen, and Zhicheng Dou. 2024.
Are long-llms a necessity for long-context tasks?
Preprint, arXiv:2405.15318.

Wei Shi, Shuang Li, Kerun Yu, Jinglei Chen, Zujie
Liang, Xinhui Wu, Yuxi Qian, Feng Wei, Bo Zheng,
Jiaqing Liang, Jiangjie Chen, and Yanghua Xiao.
2024. SEGMENT+: Long text processing with short-
context language models. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 16605–16617, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard

Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, et al. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Shengnan Wang, Youhui Bai, Lin Zhang, Pingyi Zhou,
Shixiong Zhao, Gong Zhang, Sen Wang, Renhai
Chen, Hua Xu, and Hongwei Sun. 2024. Xl3m:
A training-free framework for llm length exten-
sion based on segment-wise inference. Preprint,
arXiv:2405.17755.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan
Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,
and Maosong Sun. 2024a. Infllm: Training-free long-
context extrapolation for llms with an efficient con-
text memory. Preprint, arXiv:2402.04617.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024b. Efficient stream-
ing language models with attention sinks. Preprint,
arXiv:2309.17453.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale,
Sergey Edunov, Mike Lewis, Sinong Wang, and Hao
Ma. 2023. Effective long-context scaling of founda-
tion models. Preprint, arXiv:2309.16039.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, et al. 2024. Qwen2 technical
report.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng Li,

27673

https://arxiv.org/abs/2310.06825
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://api.semanticscholar.org/CorpusID:257532815
https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models
https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://arxiv.org/abs/2405.15318
https://doi.org/10.18653/v1/2024.emnlp-main.926
https://doi.org/10.18653/v1/2024.emnlp-main.926
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2405.17755
https://arxiv.org/abs/2405.17755
https://arxiv.org/abs/2405.17755
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671

Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong
Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang,
Shiming Yang, Wen Xie, Wenhao Huang, Xiaohui
Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng Nie, Yan-
peng Li, Yuchi Xu, Yudong Liu, Yue Wang, Yux-
uan Cai, Zhenyu Gu, Zhiyuan Liu, and Zonghong
Dai. 2025. Yi: Open foundation models by 01.ai.
Preprint, arXiv:2403.04652.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024a.
∞Bench: Extending long context evaluation beyond
100K tokens. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15262–
15277, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister,
Rui Zhang, and Sercan Ö. Arik. 2024b. Chain of
agents: Large language models collaborating on long-
context tasks. Preprint, arXiv:2406.02818.

Jun Zhao, Can Zu, Hao Xu, Yi Lu, Wei He, Yiwen
Ding, Tao Gui, Qi Zhang, and Xuanjing Huang.
2024. Longagent: Scaling language models to 128k
context through multi-agent collaboration. Preprint,
arXiv:2402.11550.

27674

https://arxiv.org/abs/2403.04652
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://arxiv.org/abs/2406.02818
https://arxiv.org/abs/2406.02818
https://arxiv.org/abs/2406.02818
https://arxiv.org/abs/2402.11550
https://arxiv.org/abs/2402.11550

A Effect of Chunk Size

To examine the impact of chunk size, we assess our
framework on the En.QA task from InfiniteBench
using chunk sizes ranging from 0.5k to 6k tokens.
The model used in this evaluation is Llama3-70B-
Instruct, with all other experimental settings con-
sistent with those described in Section 4. As shown
in Figure 7, increasing the chunk size generally
leads to improved performance, suggesting that
larger chunks provide more comprehensive con-
textual information, which benefits the model’s
ability to comprehend and answer questions accu-
rately. However, the performance gain diminishes
as chunk sizes increase, suggesting a trade-off be-
tween contextual completeness and the increased
difficulty of processing intensive information.

0.5k 1k 2k 4k 6k
Chunk Size (tokens)

24

26

28

30

32

34

Pe
rfo

rm
an

ce

Figure 7: Effect of the chunk size. Results are reported
on the En.QA task from InfiniteBench.

B Details of Importance Propagation

During the construction of Pyramid-Align, we as-
sign an importance score and an index for each sen-
tence within the pyramid. The importance scores
help the LLM identify key content, while the in-
dices are used to propagate the scores in a bottom-
up manner. For the leaf nodes, the sentence-level
importance score is calculated as the sum of the
TF-IDF scores of the words in the sentence. For
higher-level nodes, we require the LLM to record
the sentences from the lower-level nodes using the
sentence indices. The score of each sentence at
a higher level is then the sum of the importance
scores of the corresponding lower-level sentences.
Figure 6 shows an example.

C Details of the Construction of
Pyramid-Align

We construct the Pyramid-Align dataset using
Qwen2-72B-Instruct-AWQ (Yang et al., 2024),
leveraging vLLM with a decoding temperature of
0.7. The dataset is built from all the 5,299 English
documents in the LongAlign dataset, which are
structured into a pyramid format. After construct-
ing the pyramid for each document, a single node is
randomly selected as the context, and one question
is generated from it, chosen from three categories:
causal reasoning, information extraction, or sum-
marization. Figure 8 illustrates the prompt used for
generating causal reasoning questions.

We then generate answers using the pro-
posed LLM×MapReduce framework, powered by
Llama3-70B-Instruct, resulting in 5,299 question-
answer pairs. After filtering out pairs with ille-
gal characters, the final dataset contains 4,927 in-
stances. On average, the dataset has a document
length of 17K tokens, a question length of 23 to-
kens, and a response length of 151 tokens, as mea-
sured with the LLaMA 3 tokenizer.

Propose a question based on the given
text. Bold words require extra attention
when asking questions. This question
must be about reasoning, such as sort,
timeline arrangement, and cause-effect
relationship identification. Sorting
involves organizing data in a specific
order, timeline arrangement refers to
placing events in chronological order, and
cause-effect relationship identification
is the process of determining how one event
or action can directly lead to another.

Text:

{context}

Question:

Figure 8: Prompt for generating causal reasoning ques-
tions during the construction of Pyramid-Align.

D Details of Model Training

Following LongAlign, we mix our dataset with
ShareGPT (Chiang et al., 2023) data for train-
ing. Specifically, for standard training, we com-
bine the 4,927 generated Pyramid-Align instances
with the ShareGPT data. Similarly, we extract the
corresponding 4,927 instances from LongAlign

27675

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/tree/main/HTML_cleaned_raw_dataset

and mix them with ShareGPT to create a com-
parable dataset. Both datasets are used to train
long-context models on the same backbone model,
Llama3.1-8B, for 1,500 steps (approximately 2
epochs), with a learning rate of 2e-5. For train-
ing with LLM×MapReduce, we leverage data in
the (X,Q,M,A) format to enhance the ability of
LLMs to perform effectively within the proposed
framework. We combine this data with ShareGPT
to create a mixed dataset and train the same model
(i.e., Llama3.1-8B) for 2 epochs with a learning
rate of 2e-5. All experiments are conducted on 32
NVIDIA A100 80G GPUs.

E Prompt Example

To better understand the LLM×MapReduce frame-
work, we provide the prompts for general question
answering as an example. Specifically, Figure 9
shows the prompt for the map stage, Figure 10
presents the prompt for the collapse stage, and Fig-
ure 11 displays the prompt for the reduce stage.
Note that “{map result}” refers to the concatenated
structured information generated during the map
stage within each group.

F Inter-Chunk Conflict and Dependency
Resolution Example

To better illustrate how our method resolves inter-
chunk conflicts, we provide the following expla-
nation and example. Figure 12 shows an exam-
ple question for the LLM to answer. Table 4 lists
the key information extracted from each relevant
chunk, the potential answer derived solely from
that chunk, and its associated confidence score.
Both Chunk 0 and Chunk 1 strongly indicate that
Cartwright was searching through the garbage (B),
with confidence scores of 3.5 and 4, respectively. In
contrast, Chunk 2 only mentions newspaper stands
without confirming that Cartwright searched them,
leading to a lower confidence of 1.5. Given this,
the model correctly resolves the conflict and se-
lects B. The garbage as the final answer. This
example demonstrates how our approach integrates
structured information, assesses inter-chunk depen-
dencies, and resolves conflicting inferences using
confidence scores, ensuring a more reliable final
decision.

Chunk Extracted Info. Ans. & Conf.

Chunk 0 Cartwright visits 23
hotels, and Giorgio
suspects the cut-up
newspaper might be
in their waste-paper
baskets.

Garbage (B)
Confidence: 3.5

Chunk 1 Giorgio instructs
Cartwright to check
"yesterday’s waste-
paper," reinforcing
the search in trash.

Garbage (B)
Confidence: 4

Chunk 2 Cartwright visits 23
hotels but does not
find the newspaper.
Some hotels have
small newspaper
stands outside.

Newspaper stand (A)
Confidence: 1.5
(weak inference)

Table 4: Example data showing chunk information and
confidence scores used for conflict resolution. “Ex-
tracted Info.” and “Ans. & Conf.” denote Extracted In-
formation and Answer & Confidence, respectively. The
example shown here has been condensed for brevity due
to space constraints.

27676

You are provided with a portion of an
article and a question. Read the article
portion and follow my instructions to
process it.
Article:
The article begins as follows:
{context}
The article concludes here.
Question:
{question}
Instructions:
Please extract information from the
provided passage to try and answer the given
question. Note that you only have a part
of the entire text, so the information you
obtain might not fully answer the question.
Therefore, provide your rationale for using
the extracted information to answer the
question and include a confidence score.
The following is some assigning scoring
cases: <Text: [Jerry is 18 years old
this year. He can swim and wants to be
an athlete.]. assigning scoring: [Jerry
can swim, 5 points; Jerry will become an
athlete in the future, 3.5 points; Jerry
will become a swimming athlete in the
future, 3 points;Jerry is strong,3 points;
Jerry can play chess, 0 points;Jerry likes
talking,0 points]>. Follow these steps:
1. Extract Relevant Information: Identify
and highlight the key pieces of information
from the passage that are relevant to the
given question.
2. Provide a Rationale: Analyze the
extracted information and explain how it
can be used to address the question. If
the information is incomplete, discuss any
assumptions or inferences you need to make.
3. Answer the Question: Based on your
rationale, provide the best possible answer
to the question. If, after providing your
rationale, you believe the passage does
not contain any information to solve the
question, output “[NO INFORMATION]” as the
answer.
4. Assign a Confidence Score: Assign a
confidence score (out of 5) to your answer
based on the completeness and reliability
of the extracted information and your
rationale process.
Please follow this format:
Extracted Information:
Rationale:
Answer:
Confidence Score:

Figure 9: Example for the prompt of the map stage

You need to process a task with a long
context that greatly exceeds your context
limit. The only feasible way to handle this
is by processing the long context chunk by
chunk. You are provided with a question
and some information extracted from each
chunk. Each piece of information contains
Extracted Information, Rationale, Answer,
and a Confidence Score. The following is
some assigning scoring cases: <Text: [Jerry
is 18 years old this year. He can swim and
wants to be an athlete.]. assigning scoring:
[Jerry can swim, 5 points; Jerry will
become an athlete in the future, 3.5 points;
Jerry will become a swimming athlete in the
future, 3 points;Jerry is strong,3 points;
Jerry can play chess, 0 points;Jerry likes
talking,0 points]>. Read the information
and follow my instructions to process it.
Extracted Information:
The extracted information begins as
follows:
{map result}
The extracted information concludes here.
Question:
{question}
Instructions:
Integrate the extracted information and
then reason through the following steps:
1. Integrate Extracted Information:
Collect and summarize all the evidence
relevant to solving the question. Consider
the confidence scores of each piece
of extracted information to weigh their
reliability. Higher confidence scores
should be given more importance in your
summary.
2. Analyze: Re-analyze the question
based on the summarized information.
Use the confidence scores to determine
the reliability of different pieces
of information, giving more weight to
information with higher confidence scores.
3. Answer the Question: Provide the
best possible answer based on the updated
information. If, after providing your
rationale, you believe the passage does
not contain any information to solve the
question, output “[NO INFORMATION]” as
the answer. Use the confidence scores
to support the reliability of your final
answer, prioritizing higher confidence
information.
4. Assign Confidence Score: Give a
confidence score (out of 5) for your
final answer based on the completeness and
reliability of the updated information and
your rationale process.
Consider the initial confidence scores of
the integrated information to determine
your final confidence score.
Please follow this format:
Extracted Information:
Rationale:
Answer:
Confidence Score:

Figure 10: Example for the prompt of the collapse stage.

27677

You need to process a task with a long
context that greatly exceeds your context
limit. The only feasible way to handle this
is by processing the long context chunk by
chunk. You are provided with a question
and some information extracted from each
chunk. Each piece of information contains
Extracted Information, Rationale, Answer,
and a Confidence Score. The following is
some assigning scoring cases: <Text: [Jerry
is 18 years old this year. He can swim and
wants to be an athlete.]. assigning scoring:
[Jerry can swim, 5 points; Jerry will
become an athlete in the future, 3.5 points;
Jerry will become a swimming athlete in the
future, 3 points;Jerry is strong,3 points;
Jerry can play chess, 0 points;Jerry likes
talking,0 points]>. Read the information
and follow my instructions to process it.
Question:
{question}
Information from chunks:
{collapse result}
Each chunk provides extracted information
related to the same question, but due to
partial data, conclusions from each chunk
might vary. Your role is to integrate
and reason through this information,
weighing confidence scores to resolve any
inconsistencies. Then provide the final
answer.
Please follow this format:
Rationale:
Answer:

Figure 11: Example for the prompt of the reduce stage

Question: Where does Giorgio send Cartwright in
search of the cut-up newspaper?

Options:
A. A newspaper stand
B. The garbage
C. The printer’s
D. Devonshire

Figure 12: The question and options for our example
illustrating inter-chunk dependency and conflict resolu-
tion. Refer to Table 4 for the associated chunk informa-
tion and confidence scores.

27678

