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Abstract

Counterspeech has proven to be a powerful tool
to combat hate speech online. Previous stud-
ies have focused on generating counterspeech
conditioned only on specific strategies (single
attributed). However, a holistic approach con-
sidering multiple attributes simultaneously can
yield more nuanced and effective responses.
Here, we introduce HiPPrO, Hierarchical
Prefix learning with Preference Optimization,
a novel two-stage framework that utilizes the
effectiveness of attribute-specific prefix embed-
ding spaces hierarchically optimized during the
counterspeech generation process in the first
phase. Thereafter, we incorporate both refer-
ence and reward-free preference optimization
to generate more constructive counterspeech.
Furthermore, we extend IntentCONANv2
by annotating all 13, 973 counterspeech in-
stances with emotion labels by five annota-
tors. HiPPrO leverages hierarchical prefix op-
timization to integrate these dual attributes ef-
fectively. An extensive evaluation demonstrates
that HiPPrO achieves a ∼ 38% improvement
in strategy conformity and a ∼ 3%, ∼ 2%,
∼ 3% improvement in Rouge-1, Rouge-2, and
Rouge-L, respectively, compared to several
baseline models. Human evaluations further
substantiate the superiority of our approach,
highlighting the enhanced relevance and ap-
propriateness of the generated counterspeech.
This work underscores the potential of multi-
attribute conditioning in advancing the efficacy
of counterspeech generation systems.1 Our
code is available on Github and dataset is open-
sourced on Hugging-face.

1 Introduction

The rise of the Internet has transformed social me-
dia platforms into hostile grounds for hateful com-
ments targeting specific communities. Hate speech
(HS) (Awal et al., 2021; Chakraborty and Masud,

1Warning: The materials presented in this paper might be
disturbing or offensive.

HS: Jews control Hollywood.

Informative and Joy 

Denounce and Disgust 

Generate-Prune-Select

CoARL

HiPPrO

CS: Is it reasonable to generalize that all jewish individuals 
have complete control over the entire hollywood industry?

CS: I think that the Jews control Hollywood because they 
are the ones who have the money and the power.

CS: This is an unjust and unfair claim. it is important to 
note that the claim was made based on stereotypes and 

unfounded fears. hollywood is a diverse industry with 
countless talented individuals, irrespective of their religious 
affiliations. it would be unfair to generalize and blame one 

community for the actions of others. let's promote 
inclusivity and understanding, rather than using harmful 

stereotypes.

CS: It is important to recognize that every individual, 
regardless of their cultural background, deserves respect and 

dignity. hollywood has been inspired by and belongs to all 
communities, including individuals from various faiths and 

backgrounds. promoting diversity and inclusivity is essential 
for a harmonious arts scene. in fact, numerous prominent 
filmmakers, directors, actors and writers are members of 

various religious communities, fostering diversity and 
fostering excellence in creative processes. blaming or 

attacking a specific religious affiliation or group undermines 
understanding and hinders progress. promoting respect and 

understanding among diverse communities benefits 
everyone.

CS: Jews are not controlling hollywood. the majority of the 
people in hollywood are not jewish.

DialoGPT

Figure 1: An illustration of the output of existing meth-
ods in generating effective counterspeech, HiPPrO
(ours) demonstrates superior performance in producing
high-quality, effective, multi-attributed counterspeech
for a given hate speech without relying on instructional
prompts.

2022; Masud et al., 2021a, 2023) carries offensive
statements that leverage stereotypes to spread harm-
ful content. In contrast, counterspeech (CS) (Be-
nesch et al., 2016a; Wright et al., 2017; Singh et al.,
2024) involves constructive responses to counter-
act hate speech by promoting positive dialogue,
thus mitigating online hostility while preserving di-
verse perspectives (Schieb and Preuss, 2016; Chan-
drasekharan et al., 2017). As hateful comments
surge (Leetaru, 2019; Masud et al., 2021b, 2022;
Yadav et al., 2024), depending only on human-
generated counterspeech becomes impractical. In
this context, machine learning models appear es-
sential for analyzing and generating counterspeech,
offering a promising solution for automating the
process. By leveraging this, content moderators can
efficiently counter online hate (Parker and Ruths,
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2023; Garg et al., 2023; Chung et al., 2023). Con-
sequently, several interests (Mathew et al., 2019;
Qian et al., 2019; Fanton et al., 2021a; Bonaldi
et al., 2022; Hengle et al., 2024) have intensified
in the development of counterspeech generation
methods.

The conceptualization of CS generation has
evolved from a simple sequence-to-sequence prob-
lem to a more nuanced approach, acknowledging
the diverse and context-dependent nature of hate
speech (Chung et al., 2019; Mathew et al., 2019;
Sheng et al., 2020; Parker and Ruths, 2023; Chung
et al., 2023). This paradigm shift has fostered
the development of advanced generative models
incorporating stylistic and condition-guided ele-
ments, such as politeness, joyfulness, and detoxifi-
cation, to create more effective counter-narratives
(Saha et al., 2022; Sheng et al., 2020). Recent
research has introduced strategy-specific CS gener-
ation, where established strategies guide the gener-
ation process to combat hate speech (Gupta et al.,
2023; Hengle et al., 2024; Benesch et al., 2016b).

Motivation: A significant portion of online hate
speech consists of short, abusive statements (Be-
nesch et al., 2016a), and CS has shown potential in
effectively countering such harmful content. While
conventional approaches generate a single response
per hate speech instance (Zhu and Bhat, 2021; Qian
et al., 2019), recent studies highlight the benefits
of tailoring CS to specific attributes for generating
more diverse responses (Gupta et al., 2023; Hengle
et al., 2024). In practical scenarios, hateful com-
ments often include multiple user intentions, ne-
cessitating the development of counterspeech that
effectively addresses diverse attributes, resulting in
more comprehensive and effective responses. For
instance, single-attribute approaches typically pro-
duce one-dimensional responses by focusing solely
on strategy (e.g., being informative) while neglect-
ing the emotional harmony required for persuasive
communication. Real-world hate speech frequently
needs a range of emotional responses, making it
imperative to generate counterspeech that balances
factual accuracy with emotional engagement.

The integration of Large Language Models
(LLMs) for various text generation tasks has be-
come increasingly popular (Yang et al., 2024), but
training these models is resource intensive. To ad-
dress this, parameter-efficient fine-tuning (PEFT)
techniques, such as tunable prefixes (Li and Liang,
2021), have gained popularity. These techniques in-

volve adding task-specific continuous vectors (key-
value pairs) to transformer layers while keeping
the rest of the model unchanged. Recent stud-
ies (Liu et al., 2023a) showed that these vectors
excel in generating conditional text by capturing
hidden implied relationships during training. In
this work, we propose generating multi-attribute
guided counterspeech generation through a hierar-
chical approach to learning continuous prefix vec-
tors, enabling more varied and contextually rele-
vant responses. We provide an example in Figure
1, where our method, HiPPrO, is compared to
leading models like Generate-Prune-Select (GPS)
(Zhu and Bhat, 2021), DialoGPT (Zhang et al.,
2020b), and COARL (Hengle et al., 2024). While
traditional models produce semantically sound re-
sponses, they often lack nuance and struggle with
complex contextual relationships, as mentioned
in (Benesch et al., 2016a). Inspired by Liu et al.
(2023b), HiPPrO enables to generate more effec-
tive and contextually relevant counterspeech by an-
alyzing hate speech and multiple user intentions, re-
sulting in more impactful and persuasive responses.

Our Contribution: This study introduces an
advanced pipeline for counterspeech generation,
addressing the implicit nature of hate speech
with responses aligned to multiple attributes.
We focus on four primary strategies– ‘positive’,
‘informative’, ‘questioning’, and ‘denouncing.’
and five emotion categories –‘anger’, ‘disgust’,
‘joy’, ‘sadness’, and ‘surprise’. Furthermore, we
curate MultiCONAN, the largest collection of
strategy-emo-specific counterspeech, with 13, 952
responses countering 3, 487 instances of hate
speech. We propose HiPPrO, a novel two-phase
framework that first learns attribute-specific pre-
fix embeddings (key-value pairs) and then applies
preference tuning to generate constructive, non-
toxic responses. Comprehensive evaluations using
automated metrics and human evaluations demon-
strate that HiPPrO consistently outperforms exist-
ing methods in CS generation across various cri-
teria and achieves comparable performance with
state-of-the-art LLMs like GPT-3.5 and GPT-4.

2 Related Work

The evolution of CS datasets has progressed
from crowdsourced collections to expert-curated,
strategy-specific compilations (Qian et al., 2019;
Chung et al., 2019; Fanton et al., 2021a; Gupta
et al., 2023; Hengle et al., 2024), while CS
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generation techniques have advanced from ba-
sic sequence-to-sequence models to sophisticated
multi-phase pipelines with attribute control (Zhu
and Bhat, 2021; Saha et al., 2019). These advance-
ments have significantly improved the nuance and
effectiveness of automated CS in promoting con-
structive dialogue (Benesch et al., 2016c). Concur-
rently, parameter-efficient fine-tuning methods like
Prefix Tuning (Li and Liang, 2021) and prompt tun-
ing (Lester et al., 2021) have emerged, modifying
inputs while preserving language model parame-
ters. Recent developments in preference tuning in-
clude RLHF’s application to instruction-following
tasks (Ouyang et al., 2022a), Direct Preference Op-
timization (DPO) (Rafailov et al., 2023), and a uni-
fied approach omitting both reward and reference
models (Hong et al., 2024), addressing challenges
in scalability and model sensitivity.

3 The MultiCONAN Dataset

Due to the superior quality of counterspeech (see
Appendix 9.3), we selected IntentCONANv2
(Hengle et al., 2024) as the foundation for our
work. IntentCONANv2, while valuable, has lim-
itations that restrict its ability to fully capture the
diversity and complexity of counterspeech. Its de-
pendence on a single attribute, ‘strategy,’ oversim-
plifies responses and fails to account for the emo-
tional tone, which plays a critical role in shaping
effective counterspeech. For instance, an informa-
tive counterspeech can convey vastly different emo-
tional tones, such as joy or sadness, which are not
captured in the original dataset. Building upon this,
we introduce MultiCONAN, an enhanced version
featuring additional emotion class labels for each
counterspeech instance. MultiCONAN includes
13, 973 CS instances of IntentCONANv2, each
tagged with one of five emotion classes: Anger
(AN), Joy (JO), Disgust (DI), Sad (SA), and Sur-
prise (SU) (See Table 1). The added emotion anno-
tations enhance analysis granularity and facilitate
the development of models that integrate both strat-
egy and emotional context. This annotation frame-
work enables exploration of how emotional tone
interacts with strategic strategy and supports the
creation of nuanced CS generation models (Gupta
et al., 2023; Hengle et al., 2024). MultiCONAN
thus serves as a valuable resource for advancing
research in CS generation, aiming to produce con-
textually appropriate and emotionally resonant re-
sponses. For detailed information on the annotation

process and the statistics of the data set, refer to
Appendices 9.1,9.2, and 9.4, respectively.

4 Proposed Methodology

In this section, we elaborate on the inner work-
ings and structural components of HiPPrO, a
novel automated counterspeech generation frame-
work. Here, we explain how our designed model
can address the previous challenges by (i) gen-
erating multi-attribute conditioned counterspeech
that can address hateful comments through seman-
tic relevancy, and (ii) aligning it with qualitative
human-generated responses through a reward and
reference-model-free approach to ensure that the
generation is contrastive (Figure 2).

Task Formulation

We use our curated MultiCONAN dataset for
generating multi-attribute counterspeech gener-
ation. Considering our dataset as D =
{(h1, i1, e1, c1), . . . , (hn, in, en, cn)}, where hi ∈
H is the i-th hate speech statement, ci ∈ C is the
counterspeech corresponding to hi, and ii ∈ I
and ei ∈ E are the strategy and emotion cate-
gories of ci, respectively. Our objective is to learn
a stochastic counterspeech generation function
ψ : H× I × E → C, such that ci ∼ ψ(·|hi, ii, ei).

We address this problem by decomposing the
counterspeech generation task into two phases. In
the first phase, we focus on learning the prefix vec-
tors for individual attributes and capturing their
conditional dependencies using a two-step method.
Initially, we learn the prefix vector for the strat-
egy category and collect the optimal prefix vec-
tors. Subsequently, we add another prefix vector
initialized with the previously learned values and
optimized it for both the strategy and emotion cat-
egories while keeping the model parameters from
step one fixed. In the second phase, we employ a
reward and reference model-free alignment method
called the odds ratio preference optimization algo-
rithm (Hong et al., 2024). During this, we treat
the counterspeech generated in phase one as the
rejected data column and the actual ground truth
counterspeech as the selected data column. For
all our experiments, we utilize FLAN-T5 (Chung
et al., 2022) as the base model due to its robust
reasoning and multi-task learning capabilities.
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Counterspeech strategy and Emotion

Target
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Total

Muslim 236 269 248 149 19 221 420 232 33 9 187 55 622 54 1 397 147 24 9 337 3669

Women 108 159 161 71 10 151 181 152 14 10 59 44 378 26 1 258 91 15 11 134 2034

LGBT+ 93 171 129 48 8 140 208 85 12 4 45 36 335 31 2 190 96 11 15 137 1796

Jews 123 113 94 53 10 109 206 54 14 9 73 32 251 36 1 151 67 5 5 164 1570

Refugee 10 8 37 12 3 10 22 33 5 0 5 4 55 6 0 27 11 3 1 28 280

AP 7 10 6 5 1 9 16 4 0 0 4 1 22 2 0 11 4 1 2 11 116

IMGT 99 101 260 87 15 147 137 244 29 5 64 22 441 32 3 242 76 30 14 200 2248

Disable 30 51 65 28 1 33 75 59 7 1 12 17 125 18 1 100 18 6 7 42 696

PoC 62 122 68 47 3 80 148 54 13 7 45 13 223 20 1 122 67 8 5 100 1208

Others 25 23 28 11 2 28 37 16 6 2 19 7 57 5 1 38 19 3 1 28 356

Total 793 1027 1096 511 72 928 1450 933 133 47 513 231 2509 230 11 1536 596 106 70 1181 13973

Train 505 656 686 325 39 605 912 544 84 30 294 142 1594 132 7 978 381 68 47 772 8801

Dev 122 158 161 90 10 152 247 140 29 6 75 32 425 49 3 235 87 11 10 159 2201

Test 166 213 249 96 23 171 291 249 20 11 144 57 490 49 1 323 128 27 13 250 2971

Table 1: Counterspeech distribution in MultiCONAN across various multi-attribute combinations, categorized by
target groups (see abbreviations in Section 3).

Phase 1: Hierarchical Prefix Optimization
(HIPO)
In this section, we mathematically formalize the
concept of hierarchical prefix learning. The pre-
fix vectors, represented by tunable key-value pairs
(Vaswani et al., 2017), are introduced in two sub-
phases. In the first sub-phase, we add |VI | virtual
prefixes with dimension d across l layers. The
prefix adapters, Fα and Fβ , introduce task-specific
continuous vectors, α, β ∈ R|VI |×l×2d to the en-
coder and decoder, respectively, guiding counter-
speech generation according to user strategy.

We maximize the expected log-likelihood and
collect the optimal prefix adapters Fα∗ ,Fβ∗ for the
strategy-guided counterspeech generation, where
the hate speech and strategy are sampled from D,
as denoted by,

Fα∗ ,Fβ∗ = argmax
α,β

E(h,i∼D) log(Fα[π
ENC
θ (X(h, i);

θ, α)],Fβ [π
DEC
θ (X(c); θ, β)])

(1)

where πENC
θ and πDEC

θ are the encoder and de-
coder part of the model, respectively. The input
X = [h; i; c], where (h, i, c) ∈ D. We further
add another set of adapters, Fγ , and Fδ, on the
encoder and decoder side, which add trainable pre-
fix vectors γ, δ ∈ R|VE |×l×2d on top of the previ-
ously trained Fα∗ ,Fβ∗ , where |VE | is the number
of virtual tokens for second sub-phase. These pre-
fix vectors are responsible for guiding the coun-
terspeech generation with strategy and emotion-
specific attributes. Here, the reformulated input is
X

′
= [h; i; e; c], where (h, i, e, c) ∈ D. During

training, we freeze the model parameters θ and the
strategy-specific prefix parameters α, β and max-
imize the expected log-likelihood to get optimal
prefix adapters Fγ∗ ,Fδ∗ for optimal γ∗, δ∗ given
by,

Fγ∗ ,Fδ∗ = argmax
γ,δ

E(h,i,e∼D) log(Fγ [Fα∗ [πENC
θ (

X
′
(h, i, e); θ, α∗, γ)]],Fδ[Fβ∗ [πDEC

θ (X
′
(c);

θ, β∗, δ)]])

(2)

Here, all α∗, β∗, γ∗ and δ∗ are responsible
for the strategy and emotion-conditioned counter-
speech generation. Now, our model is ready to
advance to Phase 2, where we apply a preference-
tuning approach to all pre-trained prefix vectors.
This step further optimizes the model to align
counterspeech responses more closely with human-
generated outputs.

Phase 2: Preference Optimization
In this phase, we focus on optimizing our model
to produce counterspeech instances that are both
effective and non-toxic by employing a reward
and reference-free preference tuning approach. In-
spired by Hong et al. (2024), we use the odd ratio
method to align the output with the ground truth
preferences. This method self-penalizes the model
output probabilities using its corresponding odds,
denoted as,

Oddsα,β,γ,δ(y|x) =
πθ,α,β,γ,δ(y|x)

1− πθ,α,β,γ,δ(y|x)
(3)

Now this ratio has an interesting characteristic –
it boils down to less than one when the desired
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Encoder

Ground CS:

HS:

Generated CS:

Decoder

FLAN T5

If a woman wants an abortion we will kill them. </s> Positive </s> Joy

Abortion is a legal procedure that has been in 
place for decades. it is important to remember 
that women have the right to make decisions 

about their own bodies, including their 
reproductive choices. it is crucial to promote 
respect for women's autonomy and not resort 

to violence or killing.

Women have the right to choose, 
no one should be forced to have 

an abortion or not to have it.

Prefix finetuning

Preference 
tuning

Figure 2: Our proposed model, HiPPrO, follows a two-phase pipeline. In Phase 1, we train the prefix parameters
(α, β, γ, δ) associated with prefix adapters (Fα,Fβ) on encoder side and (Fγ ,Fδ) on the decoder side. For α and β,
the model is trained with hate speech and strategy, separated by </s> as input. While training γ and δ, the optimal
parameters, α∗ and β∗, are kept fixed, and it includes hate speech, strategy, and emotion, separated by </s> as input
x, this is also used as a prompt input during the second phase. In Phase 2, we apply preference tuning using an
odd ratio loss, where the ground-truth counterspeech serves as the chosen candidate ys, and the model-generated
counterspeech is treated as the rejected candidate yr.

probability is less than its odds, which eventually
penalizes the model output and gives a smaller
number. The odd ratio is the ratio between two
odds of two independent events. The odd ration
OR is given by,

ORα,β,γ,δ(ys, yr) =
Oddsα,β,γ,δ(ys|x)
Oddsα,β,γ,δ(yr|x)

(4)

Here, ys denotes the ground-truth counterspeech,
which is human-generated, and yr denotes the
model-generated counterspeech, which is trained
during the first stage. ORα,β,γ,δ(ys, yr) becomes
high when the numerator is higher than the denom-
inator, and hence πθ,α,β,γ,δ(ys|x).

Let us consider the preference tuning dataset
D′

= {(h1, ys1, yr1), . . . , (hn, ysn, yrn)}, where
ysi and yri are the ith ground-truth response and
model-generated response for a hate speech hi. The
final loss is the expectation of prefix-tuned loss
and odds ratio loss over the data samples sampled
from D′

. As shown in Equation 5, the final loss
for preference optimization Jfinal is the combined
loss for finetuned loss (Jfinetuned) and odds ratio
loss JOR weighted by a factor ϵ.

Jfinal = E(x,ys,yr∼D′ )[Jfinetuned + ϵJOR] (5)

The Jfinetuned is simply the negative log-
likelihood loss obtained in the prefix-tuning step,

and JOR is given by,

JOR = − log(σ(log(
Oddsα,β,γ,δ(ys|x)
Oddsα,β,γ,δ(yr|x)

))) (6)

where σ denotes the sigmoid function. The final
objective is to minimize Jfinal by updating the con-
tinuous prefix vectors so that the model outputs can
align more with the ground-truth counterspeech.
For detailed information regarding computational
resources and hyperparameter settings, please refer
to Appendix 9.9 and Appendix 9.10, respectively.
2

5 Experimental Setup

5.1 Baselines
To evaluate the efficacy of various models, we
investigate Generate Prune Select (GPS) (Zhu
and Bhat, 2021), a three-stage pipeline encompass-
ing autoencoding, grammatical filtering, and re-
sponse selection. Furthermore, we optimize Di-
aloGPT (Zhang et al., 2020b) to produce contextu-
ally coherent responses. Additionally, we incor-
porate CoARL (Hengle et al., 2024), the state-
of-the-art strategy-conditioned CS generation ap-
proach. Furthermore, we explore prefix tuning

2The model was trained for up to 50 epochs using a call-
back, with a fixed training batch size and a learning rate of 4
and 1× e−4, respectively.
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Method Prompt/Adapter ROUGE (↑) M (↑) BS (↑) CoSim (↑) SC (↑) EC (↑) TC (↑) T (↓)

R1 R2 RL

GPS − 0.089 0.011 0.075 0.055 0.840 0.287 0.247 0.292 0.394 0.146

DialoGPT − 0.164 0.050 0.108 0.198 0.749 0.536 0.714 0.571 0.969 0.309

CoARL − 0.156 0.035 0.126 0.110 0.860 0.440 0.380 0.468 0.938 0.258

Vanilla FLAN-T5XXL ZS 0.176 0.045 0.145 0.118 0.866 0.479 0.391 0.586 0.989 0.341

Vanilla FLAN-T5XXL FS 0.174 0.042 0.142 0.116 0.864 0.456 0.352 0.478 0.976 0.301

GPT-3.5-Turbo ZS 0.239 0.052 0.160 0.249 0.868 0.585 0.533 0.783 0.978 0.0007

GPT-3.5-Turbo FS 0.242 0.059 0.161 0.249 0.868 0.564 0.309 0.527 0.888 0.012

GPT-4 ZS 0.221 0.037 0.145 0.229 0.864 0.583 0.545 0.790 0.976 0.030

GPT-4 FS 0.226 0.039 0.149 0.213 0.868 0.554 0.454 0.515 0.932 0.014

FLAN-T5XXL Retrieval-based 0.188 0.031 0.132 0.160 0.862 0.494 0.379 0.549 0.907 0.097

GPT2XL Retrieval-based 0.113 0.011 0.074 0.154 0.821 0.366 0.309 0.441 0.754 0.103

Llama-3.1-8B-Instruct Retrieval-based 0.128 0.026 0.086 0.197 0.828 0.462 0.347 0.678 0.891 0.096

Mistral-7B-Instruct-v0.2 Retrieval-based 0.166 0.033 0.107 0.224 0.847 0.530 0.356 0.782 0.932 0.068

DeepSeek-R1-Distill-Llama-8B Retrieval-based 0.132 0.027 0.086 0.210 0.830 0.471 0.373 0.751 0.890 0.059

Vanilla FLAN-T5 XXL PrefixTuning 0.229 0.052 0.158 0.222 0.870 0.539 0.470 0.666 0.901 0.024

Vanilla BART Large PrefixTuning 0.207 0.042 0.131 0.226 0.861 0.226 0.249 0.453 0.915 0.030

Vanilla GPT2 XL PrefixTuning 0.155 0.029 0.122 0.084 0.820 0.487 0.453 0.455 0.937 0.837

Vanilla Llama 3.1 Instruct 8B PrefixTuning 0.168 0.043 0.135 0.093 0.854 0.515 0.552 0.592 0.903 0.605

Vanilla Mistral Instruct 7B PrefixTuning 0.170 0.046 0.140 0.117 0.858 0.510 0.516 0.597 0.920 0.645

DeepSeek-R1-Distill-Llama-8B PrefixTuning 0.035 0.0002 0.034 0.010 0.808 0.181 0.261 0.289 0.582 0.023

DeepSeek-llm-7b-chat PrefixTuning 0.040 0.001 0.035 0.027 0.805 0.144 0.261 0.311 0.484 0.019

HiPPrO VT=3 (Ours) PrefixTuning 0.273∗ 0.082∗ 0.199∗ 0.242 0.879∗ 0.567 0.929∗ 0.706 0.897 0.087

- With out ORPO PrifixTuning 0.272 0.081 0.198 0.241 0.879 0.567 0.928 0.705 0.896 0.111

- With DPO PrefixTuning 0.272 0.081 0.198 0.240 0.879 0.566 0.928 0.685 0.895 0.089

- HIPO VT=5 PrifixTuning 0.275 0.081 0.200 0.241 0.880 0.578 0.921 0.656 0.916 0.096

- HIPO VT=7 PrefixTuning 0.273 0.084 0.199 0.24 0.879 0.573 0.937 0.643 0.888 0.084

- HIPO VT=10 PrefixTuning 0.271 0.081 0.197 0.244 0.878 0.564 0.905 0.630 0.858 0.077

∆HiPPrO(Ours)−BestBaselineMethod ↑ 0.034 ↑ 0.023 ↑ 0.038 ↓ 0.007 ↑ 0.009 ↓ 0.018 ↑ 0.384 ↓ 0.084 ↓ 0.092 ↓ 0.086

Table 2: Comparing HiPPrO with baselines across various evaluation metrics. Here, ↑ (resp. ↓) denotes that higher
(resp. lower) is better. Bold (resp. underline) indicates the best (resp. second-ranked) performance. ∗ shows our
model significantly outperforms (p < 0.05) the best baselines – GPT-3.5-Turbo ZS and FS (see Appendix 9.5).

on Vanilla FLAN-T5XXL, and BARTLarge (ex-
cluding HiPPrO) and conduct experiments with
HIPO (without preference optimization) using dif-
ferent virtual token (VT) sizes (VT = 3, 5, 7, 10),
VT = 3 emerging as the optimal configuration in
terms of both parameter efficiency (589, 824 train-
able parameters, 0.0052% of total model parame-
ters) and performance metrics. We consider VT =
3 for preference tuning. With same setup, we ex-
periment with decoder-only models like GPT2XL,
Llama 3.1 Instruct8B (Grattafiori et al., 2024),
Mixtral Instruct7B (Jiang et al., 2024), DeepSeek-
R1-Distill-Llama-8B and DeepSeek-llm-7b-chat
(DeepSeek-AI et al., 2025). We also utilize DPO
to enhance our evaluation further. Our comprehen-
sive assessment encompasses zero-shot and few-
shot performances on three LLMs: Vanilla FLAN-
T5XXL (Chung et al., 2022), GPT-3.5-Turbo
(ChatGPT), and GPT-4 (Ouyang et al., 2022b)
(see Appendix 9.6 and 9.7) and simple retrieval-
based methods using state-of-the-art open-source

LLMs, employing ‘faiss’(Douze et al., 2025) as
the retrieval method to retrieve the top five training
counterspeech examples (see Appendix 9.8).

5.2 Evaluation Metrics

Evaluating CS generation presents challenges due
to its dynamic nature, diverse response possibili-
ties, and absence of standardized metrics (Chung
et al., 2023), prompting our framework to utilize
comprehensive, multi-dimensional evaluation met-
rics. These evaluation metrics include lexical sim-
ilarity, semantic similarity or relevance, strategy
conformity, emotion conformity, target conformity,
and toxicity score. Lexical similarity is evaluated
using Rouge (Lin, 2004) and Meteor (M) (Baner-
jee and Lavie, 2005), which quantify the linguistic
alignment between generated and reference texts.
Semantic relevance is assessed with cosine sim-
ilarity (CoSim) (Reimers and Gurevych, 2019)
and BERTScore (BS) (Zhang et al., 2020a), en-
suring that generated CS engages meaningfully
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with the primary topic of hate speech. A low rel-
evance score implies a lack of topical coherence,
where the CS fails to adequately address the pri-
mary subject of hate speech. We also evaluate the
effectiveness of incorporating strategic, emotional
resonance, and target alignment through Strategy
Conformity (SC) (Gupta et al., 2023), Emotion
Conformity (EC), and Target Conformity (TC),
respectively. These metrics are particularly valu-
able in scenarios where ground-truth counterspeech
is unavailable for unseen hate speech instances. We
first train three distinct RoBERTa-large models on
our dataset to measure the SC, EC, and TC scores.
The models achieve testing accuracy of 0.86, 0.75,
and 0.88, respectively, before being considered as
evaluation metrics. Toxicity (T)3 levels of gener-
ated CS using the (Hanu and Unitary team, 2020)
library, ensure that our approach promotes respect-
ful and safe communication.

6 Experimental Results

This section presents a comprehensive empirical
analysis that systematically evaluates the efficacy
of HiPPrO in comparison to existing state-of-the-
art techniques.

6.1 Quantitative Results

Table 2 demonstrates the quantitative evaluation
across various metrics. HiPPrO shows a notable
improvement over baselines across several evalua-
tion metrics. HiPPrO achieves 0.273 ROUGE-1,
0.082 ROUGE-2, 0.199 ROUGE-L, substantially
higher than GPS, DialoGPT, and CoARL, with an
average improvement of 0.117 in ROUGE-1, 0.05
in ROUGE-2 and 0.096 in ROUGE-L. This indi-
cates that
HiPPrO’s counterspeech better aligns with ref-

erence content in terms of coverage and detail.
In BERTScore, HiPPrO scores 0.879, surpass-
ing GPS (0.840), DialoGPT (0.749), and CoARL
(0.860), GPT-4 Few-Shot (FS) (0.868) and GPT-
3.5 Few-Shot (0.868), which indicates HiPPrO’s
proficiency in preserving the underlying meaning
of the original CS. HiPPrO exhibits a slight de-
crease in CoSim compared to models like GPT-
3.5-Turbo Zero-Shot (ZS) with a score of 0.585,
indicating a potential trade-off between contextual
relevance and semantic alignment with reference
responses.

3https://www.perspectiveapi.com/

The generated CS should ideally be a balanced
generation of both strategy and emotional attributes,
ensuring that responses not only address the harm-
ful content effectively but also align with strat-
egy and emotional tone along with the target au-
dience. However, the evaluation results indicate
that it is a challenge for many models to achieve
this balance. For instance, while GPT-3.5-Turbo
ZS demonstrates a low SC score of 0.533, its EC
score is significantly high at 0.783, highlighting
the difficulty in generating CS that is both strategy-
aligned and emotionally resonant. Similarly, GPT-
4 ZS shows a high EC score of 0.790, yet its SC
score of 0.545 suggests that even more advanced
LLMs struggle to maintain emotional alignment in
the zero-shot and few-shot scenarios. In contrast,
HiPPrO demonstrates a better balance, achieving
an SC score of 0.929 and an EC score of 0.706.
HiPPrO’s SC score is substantially higher, indicat-
ing its superior ability to generate strategy-aligned
CS while still maintaining a better level of emo-
tional resonance. This suggests that HiPPrO is
more adept at maintaining the stability between
these two critical attributes during the generation
process.

The relationship between TC and BS provides
insights into how models generate counterspeech;
a high TC score with a relatively low BS indicates
that the CS is target-specific but may lack deeper
semantic alignment with the original CS. For in-
stance, GPT-3.5-Turbo in the ZS setting achieves
a TC score of 0.978 and a BS score of 0.868, sug-
gesting that while it effectively mentions the target
group, it may produce overly generic responses
that fail to address nuanced aspects of hate speech.
In contrast, HiPPrO manages to strike a better
balance by achieving a TC score of 0.897, which,
while slightly lower than GPT-4 few-shot, is com-
plemented by a BS of 0.879, the highest among all
models. This indicates that HiPPrO is not only
attentive to the target group but also maintains a
strong semantic connection to the original content,
making its CS both specific and contextually rel-
evant. Furthermore, when examining the toxicity
scores, HiPPrO achieves a respectable score of
0.087, which, although slightly higher than GPT-
3.5-Turbo Zero-Shot, still indicates a significantly
low presence of harmful language comparable to
all other baselines. This suggests that HiPPrO
effectively balances generating contextually rich
CS while keeping the content non-toxic and con-
structive. Statistical analyses reveal that our model
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significantly outperforms both GPT-3.5 ZS and FS
across most metrics, with exceptions in meteor,
CoSim, and TC scores. Please refer to Appendix
(Section 9.5) for additional information about sta-
tistical significance tests.

6.2 Ablation Study

Our ablation study assesses the effects of several
components of HiPPrO (Table 2). One such study
involves fine-tuning HiPPrO without the ORPO
component. The results show that the omission of
ORPO leads to a decrease in performance in almost
all evaluation metrics, with a notable reduction in
the toxicity score by 0.024. This suggests that
ORPO contributes significantly to enhancing both
the overall performance and the generation of less
toxic counterspeech. Additionally, we fine-tune
HiPPrO with DPO instead of ORPO and observe
a slight degradation in performance. Although the
difference is marginal, the key advantage of ORPO
over DPO lies in ORPO’s ability to operate without
a reference model, which DPO requires. Addition-
ally, we investigate how different numbers of VT
in HiPPrO impact its performance, testing config-
urations with VT= 5, 7, and 10. The results indi-
cate that there is no notable performance gain after
VT=5. While higher virtual tokens lead to a slight
reduction in the toxicity score, the improvements
are insufficient across other metrics, suggesting no
significant returns with increased token counts.

Our ablation studies also include evaluations
of Vanilla FLAN-T5XXL and Vanilla BARTLarge,
both with prefix tuning, without hierarchical learn-
ing, providing further insights into HiPPrO’s ef-
fectiveness. We observe that while these models
offer competitive performance, they do not surpass
HiPPrO in several key metrics. For Vanilla FLAN-
T5XXL, prefix tuning yields ROUGE-1, ROUGE-2,
and ROUGE-L scores of 0.229, 0.052, and 0.158,
respectively. These scores are slightly lower than
those of HiPPrO, indicating that while the prefix-
tuned FLAN-T5XXL performs well, HiPPrO’s out-
put is more detailed and comprehensive. How-
ever, the SC scores for Vanilla FLAN-T5XXL

and BARTLarge are 0.470 and 0.249, respectively,
while their EC scores are 0.666 and 0.453, respec-
tively. HiPPrO achieves higher SC and EC scores
(0.929 and 0.706 respectively), highlighting the
limitations of simple prefix-tuning methods in ef-
fectively aligning CS with multiple attributes.

Models on comparison Metrics

ICS ↑ Ad ↑ CoRl ↑ ArgE ↑
HiPPrO vs CoARL 0.96 0.98 0.93 0.97
HiPPrO vs GPT-4 (FS) 0.91 0.85 0.89 0.89
HiPPrO vs GPT-3.5 (FS) 0.89 0.87 0.87 0.90

Table 3: Results of the human evaluation study, where
responses generated by HiPPrO are shown against
those produced by (a) CoARL, (b) GPT-4 (FS), and
(c) GPT-3.5 (FS). The results are reported in terms
of Win Rate %, indicating the % of instances where
HiPPrO outperforms the respective baselines.

6.3 Human Evaluation

Previous studies (Jones et al., 2024; Wang et al.,
2023; Hengle et al., 2025) emphasize the need for
a dual evaluation framework, as automatic metrics
show weak correlation with human judgments of
counterspeech effectiveness. A comprehensive hu-
man evaluation was conducted on a random subset
of 30 responses from the top-performing CS gener-
ation methods (HiPPrO, CoARL, Few-Shot GPT-
4, and GPT-3.5 Turbo) with a random seed value of
1, ensuring uniform distribution across strategies
and emotions. A diverse panel of 35 experts in NLP
and social sciences (aged 20-35, 45% male, 55% fe-
male) evaluated and ranked these responses based
on several key metrics. We followed Hengle et al.
(2024) for our human evaluation. The evaluation
framework consists of five key metrics: Indepen-
dent Counterspeech (ICS) to gauge the response’s
self-sufficiency; Adequacy (Ad) to assess its lin-
guistic quality; Contextual Relevance (CoRl) to
measure its responsiveness to hate speech compo-
nents; and Argumentative Effectiveness (ArgE) to
evaluate its carefulness and convincing. We present
the comparative performance of HiPPrO against
leading methods through Win Rate scores (see Ta-
ble 3). For ICS, HiPPrO outperforms the baselines
with win rates of 0.91 and 0.89 over GPT-4 and
GPT-3.5, showing its ability to generate CS that
operates effectively without needing extra context.
Regarding Ad, HiPPrO achieves higher scores of
0.85 and 0.87, reflecting the superior grammati-
cal accuracy and fluency of CS. In terms of CoRl,
HiPPrO’s win rates of 0.89 and 0.87 highlight
its strength in addressing crucial aspects of hate
speech, such as targeted biases. Finally, for ArgE,
HiPPrO leads with scores of 0.89 and 0.90, in-
dicating its effectiveness in delivering compelling
and well-structured CS. These results collectively
show HiPPrO’s robust performance across all met-
rics compared to the baseline models.
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7 Conclusion

This study presented HiPPrO, a novel two-stage
framework for generating controllable, multi-
attributed counterspeech. The initial stage com-
prised a hierarchical learning process, where the
model acquired attribute-specific prefixes, thereby
guiding the LLM towards targeted counterspeech
generation. The subsequent stage involved refining
the outputs to enhance their human-like quality and
non-toxicity, employing a reward- and reference-
free alignment approach. Additionally, we intro-
duced the multiCONAN dataset with strategy- and
emotion-specific counterspeech. An extensive eval-
uation, incorporating a range of quantitative and
qualitative measures, demonstrated HiPPrO’s su-
periority over multiple baselines.

Limitation

Our research presents several limitations that war-
rant consideration. Firstly, the dataset utilized for
hate speech and counterspeech is not comprehen-
sive, potentially omitting various forms and targets
of online hate. Secondly, the framework’s reliance
on pre-trained models may introduce inherent bi-
ases or inaccuracies stemming from these source
models. Additionally, the evaluation metrics em-
ployed do not fully align with human perceptions of
counterspeech quality, thereby failing to capture the
intricate nuances of natural language interactions.
Moreover, our framework does not address the pos-
sibility of feedback loops or escalation that could
arise following the generation of counterspeech,
which may influence the long-term effectiveness
and impact of our approach. Lastly, while efforts
were made to maintain high-quality annotations for
counterspeech, it is conceivable that our dataset
may not match the caliber of those annotated by
more experienced operators from NGOs, such as
those found in the Multi-Target CONAN (Fanton
et al., 2021b) dataset. Future research could mit-
igate these limitations by expanding and diversi-
fying the dataset, enhancing the evaluation crite-
ria, and incorporating dialogue modeling into the
framework. Our primary focus was on generating
effective and non-toxic counterspeech, following
prior work (Hengle et al., 2024). While we did not
explicitly analyze potential biases in this study, we
acknowledge that large language models trained on
social media data can amplify biases. Addressing
and mitigating such biases is indeed a critical area
of research.

Ethics Statement

We recognize the sensitivity required in address-
ing online hate speech and acknowledge the ethical
and moral complexities inherent in conducting re-
search in this area. This initiative serves as an ini-
tial attempt to compile a comprehensive and varied
collection of counterspeech responses for each in-
stance of hate speech encountered. We understand
that algorithms developed for automated counter-
speech may generate responses that fail to accu-
rately convey the intended meanings, highlighting
the urgent need to better integrate real-world knowl-
edge into these systems. Despite the potential of
generative algorithms, there remains a critical ne-
cessity for a robust and diverse database of counter-
speech to ensure consistently favorable outcomes.
Furthermore, while fully operational counterspeech
algorithms have yet to be realized, organizations
such as United Against Hate play a crucial role in
mitigating the prevalence of hate speech in online
environments.
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9 Appendix

9.1 Annotation Process
Our annotation process was conducted by a team of
five expert annotators with backgrounds in social

science and computational linguistics, specializing
in online hate speech and counter-narrative gener-
ation. Each annotator had a strong foundation in
hate speech analysis, having published research pa-
pers or completed advanced studies in the field. To
ensure consistency and high-quality annotations,
we implemented an extensive training program.
This included reviewing existing counter-narrative
frameworks, discussing annotation guidelines, and
participating in exercises to align understanding of
emotion categories. This preparatory phase was
crucial for achieving reliable inter-annotator agree-
ment and maintaining the integrity of the annota-
tions.

The annotation process itself followed a rigor-
ous three-phase protocol. Initially, all five anno-
tators independently labeled a common set of 250
instances to establish a baseline agreement. For
evaluating inter-annotator agreement, we utilized
both Cohen’s Kappa (Cohen, 1960) and Fleiss’
Kappa (Fleiss, 1971). Cohen’s Kappa measures
pairwise agreement among annotators, finding
most values exceeded 0.70, with several above
0.80, indicating high consistency (See Table 6).
Instances with significant disagreement were ad-
dressed through group discussions to align under-
standing and resolve discrepancies. In the sec-
ond phase, larger batches were annotated with pe-
riodic cross-validation, where 20% of instances
were randomly assigned to multiple annotators
to ensure consistency. This phase involved an-
notating batches of 2, 500, 2, 800, and 3, 000 in-
stances, respectively. Table 4 shows the batch-
wise intra-annotation agreement results. The final
phase allowed independent annotation after achiev-
ing strong agreement, as measured by Cohen’s
Kappa exceeding 0.8. Throughout the process, an-
notators utilized a custom interface that systemat-
ically displayed the existing counterspeech from
IntentCONANv2, and emotion category options.
To further check the annotation quality, we con-
ducted a post-analysis on the intra-annotator agree-
ment for a randomly selected subset of 5, 000 coun-
terspeech instances (see Table 5). This analysis
was in response to suggestions for additional qual-
ity checks. Our study utilized high-quality coun-
terspeech instances from IntentCONANv2, with
annotators independently assigning emotion labels
based on established guidelines without access to
the strategy categories. The resulting uniform dis-
tribution of strategy-emotion pairs across target
groups was a posterior outcome of this independent
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process, uninfluenced by pre-existing constraints or
biases. These metrics collectively show the robust-
ness and reliability of the MultiCONAN dataset.

9.2 Procedure and Annotation Criteria

Before beginning the annotation process, all an-
notators thoroughly reviewed the field guide on
“addressing online harassment” 4. This prepara-
tory phase involved extensive discussions with the
annotators to deepen their understanding of coun-
terspeech. These dialogues ensured that the an-
notators were well-equipped with the necessary
knowledge and context, enabling them to effec-
tively contribute to the project.

Anger: Anger is characterized by intense feel-
ings of displeasure, hostility, or antagonism toward
someone or something perceived as a source of
harm or wrongdoing5. It often manifests in ex-
pressions of frustration, outrage, and resentment.
Annotators should look for language that conveys
aggression, threats, or overt negativity. Examples
might include harsh criticism, shouting, or aggres-
sive demands. This emotion is frequently triggered
by situations of perceived injustice, insult, or be-
trayal, and it is crucial for annotators to distinguish
it from other negative emotions like disgust or sad-
ness6.

Disgust: Disgust is an emotion that arises from a
strong sense of aversion or repulsion toward some-
thing offensive, distasteful, or morally objection-
able. This feeling can be directed toward people,
behaviors, or ideas that violate social norms or
personal values. Annotators should identify lan-
guage that reflects contempt, disdain, or severe dis-
approval7. Common indicators include expressions
of revulsion, condemnation, or derogatory remarks.
Disgust often accompanies discussions of taboo
subjects or unethical actions, requiring careful at-
tention to the context in which these sentiments are
expressed.

Surprise: Surprise is an emotional response to
unexpected events or information that deviates
from what is anticipated. It can be positive, neg-
ative, or neutral, depending on the nature of the

4https://onlineharassmentfieldmanual.
pen.org/

5https://www.paulekman.com/
universal-emotions/what-is-anger/

6https://www.apa.org/topics/anger
7https://www.paulekman.com/

universal-emotions/what-is-disgust/

unexpected occurrence. Annotators should recog-
nize cues such as exclamations, sudden changes in
tone, or language indicating shock or astonishment.
This emotion often appears in contexts where new,
unforeseen developments are revealed. The inten-
sity of surprise can vary, but key indicators include
words and phrases that express sudden realization
or discovery8. The following annotation guidelines
were adhered to consistently throughout the anno-
tation process by our annotators.

Joy: Joy is a positive emotional state character-
ized by feelings of happiness, pleasure, and content-
ment. It often results from fulfilling experiences,
successful outcomes, or pleasant interactions. An-
notators should identify expressions of delight, grat-
itude, and satisfaction9. Language reflecting enthu-
siasm, laughter, or praise is commonly associated
with this emotion. Joy can be expressed in both
overt and subtle ways, and it is essential to consider
the broader context to accurately capture this emo-
tion in annotations. Annotators should be attentive
to both explicit declarations of happiness and more
nuanced indications of joy.

Sadness: Sadness is an emotional response to
loss, disappointment, or other unfavorable circum-
stances. It is characterized by feelings of sorrow,
melancholy, and despondency. Annotators should
look for language that conveys grief, regret, or a
sense of hopelessness10. Indicators of sadness in-
clude expressions of mourning, lamentation, and
heartache. This emotion can be associated with
personal experiences, broader societal issues, or
empathetic responses to others’ suffering. Accu-
rate annotation requires sensitivity to the depth and
context of the expressed sadness, ensuring that sub-
tle expressions of this emotion are also captured.

Let us consider some hate speech (HS) and
counterspeech (CS) instances to illustrate our
annotation process,

(HS): The West is heading in the direc-
tion of Fascism because Jews are planning to
install a world dictator.

(CS): Blaming an entire group for political

8https://www.paulekman.com/
universal-emotions/what-is-surprise/

9https://www.paulekman.com/
universal-emotions/what-is-enjoyment/

10https://www.paulekman.com/
universal-emotions/what-is-sadness/
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Batch Inter-annotator Agreement

Annotator 1 Annotator 2 Annotator 3 Annotator 4 Annotator 5

Batch 1 (2500)

Annotator 1 1.0 0.808783 0.811652 0.782824 0.762829
Annotator 2 0.808783 1.0 0.661458 0.63632 0.612693
Annotator 3 0.811652 0.661458 1.0 0.640035 0.619542
Annotator 4 0.782824 0.63632 0.640035 1.0 0.605464
Annotator 5 0.762829 0.612693 0.619542 0.605464 1.0

Batch 2 (2800)

Annotator 1 1.0 0.852106 0.813067 0.817208 0.800127
Annotator 2 0.852106 1.0 0.693793 0.693689 0.687102
Annotator 3 0.813067 0.693793 1.0 0.665585 0.654362
Annotator 4 0.817208 0.693689 0.665585 1.0 0.659997
Annotator 5 0.800127 0.687102 0.654362 0.659997 1.0

Batch 3 (3000)

Annotator 1 1.0 0.942593 0.894511 0.888579 0.85598
Annotator 2 0.942593 1.0 0.840615 0.836788 0.80862
Annotator 3 0.894511 0.840615 1.0 0.796064 0.765929
Annotator 4 0.888579 0.836788 0.796064 1.0 0.758911
Annotator 5 0.85598 0.80862 0.765929 0.758911 1.0

Table 4: Inter-annotator Agreement Coefficients for Each Batch

Annotator Annotator 1 Annotator 2 Annotator 3 Annotator 4 Annotator 5

Annotator 1 1.0 0.930857 0.889566 0.855752 0.883054
Annotator 2 0.930857 1.0 0.828692 0.798059 0.823054
Annotator 3 0.889566 0.828692 1.0 0.763612 0.786144
Annotator 4 0.855752 0.798059 0.763612 1.0 0.755936
Annotator 5 0.883054 0.823054 0.786144 0.755936 1.0

Table 5: Inter-annotator Agreement of 5000 Counterspeech Instances for Post Quality Assessment

A1 A2 A3 A4 A5
A1 0.000 0.875 0.883 0.863 0.850

A2 0.875 0.000 0.788 0.734 0.748

A3 0.883 0.788 0.000 0.737 0.785

A4 0.808 0.734 0.737 0.000 0.691

A5 0.844 0.748 0.785 0.691 0.000

Table 6: Cohen’s Kappa Matrix for Inter-Annotator
Agreement among five annotators: A1, A2, A3, A4, and
A5.

movements is baseless and harmful. (Disgust)

In the above HS and CS example, the counter-
speech, it is evident that the response expresses
disgust through its explicit rejection of the notion
that an entire group can be held responsible for

political movements. Phrases such as ‘baseless’
and ‘harmful‘ convey strong moral disapproval,
which are critical indicators of disgust. The
language reflects a profound aversion to the
offensive nature of the hate speech, especially in
its attempt to generalize blame. By emphasizing
the unethical and unfounded nature of these
accusations, the counterspeech communicates a
sense of repulsion, which supports its classification
under the emotion of disgust. Similarly let us
consider the following,

(HS): Muslims are a problem for all other
religions.

(CS): I understand that you may have con-
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cerns about different religions, but it’s important
to remember that diversity is what makes our
world so beautiful. instead of seeing Muslims as a
problem, let’s try to celebrate our differences and
find common ground. we all share the same desire
for love, peace, and understanding. By embracing
empathy and affiliation, we can build bridges of
dialogue that promote respect and unity among
different faiths. let’s work together to create a
world where everyone feels valued and accepted.
(Joy)

In the analysis of the counterspeech, the response
clearly conveys joy by emphasizing the beauty of
diversity and the positive potential for unity among
different faiths. Language such as “diversity is
what makes our world so beautiful” and “we all
share the same desire for love, peace, and under-
standing” reflect a sense of happiness and appreci-
ation for shared human values. The counterspeech
fosters a joyful perspective by encouraging the cel-
ebration of differences and the building of con-
nections through empathy. This focus on mutual
respect and the vision of a harmonious, inclusive
world aligns the response with the emotion of joy.

Following these criteria, annotators meticulously
annotated a total of 13, 973 unique counterspeech
instances.

9.3 Advantage of IntentCONANv2
IntentCONANv2 represents a significant ad-
vancement over its predecessors, including
IntentCONAN, by enhancing the quality and
structure of counterspeech instances. This dataset
builds upon the annotation guidelines established
by Gupta et al. (2023) but focuses on improving
content quality by increasing token lengths and
ensuring a uniform distribution across four strate-
gies: positive, informative, questioning, and de-
nouncing Hengle et al. (2024). The effectiveness
of counterspeech is often linked to its level of
detail and comprehensiveness, which can be re-
flected in its length; a higher token count typi-
cally indicates a more thorough and nuanced re-
sponse, better equipped to address and counter-
act hate speech. We selected IntentCONANv2
for our annotation purposes due to several key ad-
vantages. Firstly, it is a large-scale dataset com-
prising 13, 952 counterspeech instances, offering
a substantial foundation for analysis. Secondly,
it addresses limitations of earlier datasets, such
as CONAN and MultiTargetCONAN, by provid-

ing more detailed and informative counterspeech
that effectively counters the central aspects of hate
speech Hengle et al. (2024). The removal of the hu-
morous strategy is also noteworthy, as it mitigates
the risk of subjective or offensive content. Fur-
thermore, IntentCONANv2 ensures a consistent
representation of counterspeech, with an average of
four instances per hate speech example, compared
to the two instances in IntentCONAN. Addition-
ally, the dataset emphasizes substantial content,
with an average token length of 40.61, reflecting
a focus on creating comprehensive responses that
are more effective in countering hate speech.

9.4 Statistical Analysis on Dataset
In the multiCONAN dataset, the distribution of
strategy categories across counterspeech is uniform
(see Figure 3a), with a particular focus on the Emo-
tion category. As illustrated in Figure 3b, the distri-
bution of emotion categories within counterspeech
instances reveals that the majority fall under the
‘Joy’ category. This predominance signifies the
quality and positivity of counterspeech. Joy-based
counterspeech typically involves presenting con-
structive examples and success stories, which ne-
cessitate more elaborate responses to effectively
build emotional connections through positive nar-
ratives. Constructive arguments, in turn, require
detailed explanations of alternative viewpoints, fur-
ther contributing to the need for comprehensive
and nuanced responses. Following ‘Joy,’ the cat-
egories of ‘Anger’ and ‘Disgust’ are also notable,
though to a lesser extent. The ‘Sad’ emotion cate-
gory has a significantly lower count, indicating its
rare occurrence in counterspeech. Figure 3c further
demonstrates the distribution of both strategy and
emotion categories across the training, validation,
and testing sets. It is evident that the data splitting
is uniform among all categories, ensuring balanced
representation and reliable performance assessment
across different dataset partitions.

Figure 3d presents the mean token length of
counterspeech across various emotion categories.
The data shows that the ‘Joy’ category has a mean
token length of approximately 60, indicating that
counterspeech with joyful emotions tends to be
more elaborate. In contrast, other emotion cate-
gories, such as ‘Anger,’ ‘Disgust,’ and ‘Sad,’ have
a more uniform distribution of mean token lengths,
ranging from 25 to 35. This variation suggests that
counterspeech with more tokens is potentially more
effective in targeting and neutralizing hateful com-
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Metric T-statistic p-value Significant Outperform
Comparison with GPT-3.5 FS

SC 63.34 0.0 Yes Yes
EC 9.31 1.71E − 20 Yes Yes
TC 0.96 0.33 No Yes
BERT Score 17.20 9.97E − 65 Yes Yes
METEOR -2.37 0.018 Yes No
ROUGE-1 8.56 1.47E − 17 Yes Yes
ROUGE-2 9.97 3.23E − 23 Yes Yes
ROUGE-L 14.21 4.57E − 45 Yes Yes
CoSim 0.66 0.51 No Yes
Toxicity 21.30 4.85E − 97 Yes Yes

Comparison with GPT-3.5 ZS
SC 38.09 2.92E − 284 Yes Yes
EC -22.54 4.86E − 108 Yes No
TC -13.22 2.50E − 39 Yes No
BERT Score 19.46 7.40E − 82 Yes Yes
METEOR -2.43 0.015 Yes No
ROUGE-1 10.38 4.95E − 25 Yes Yes
ROUGE-2 13.77 1.64E − 42 Yes Yes
ROUGE-L 15.91 7.66E − 56 Yes Yes
CoSim -3.72 0.0002 Yes No
Toxicity -8.31 1.18E − 16 Yes No

Table 7: Statistical comparison of our model with GPT-
3.5 FS and GPT-3.5 ZS across various metrics using
T-test and p-values. Positive T-statistic value indicates
that our model performs and p < 0.05 shows the signif-
icance.

ments. Additionally, Figure 3e illustrates the mean
token length across different target groups, show-
ing a consistent and uniform distribution. This con-
sistency ensures that counterspeech instances are
equally detailed and explanatory across all target
groups, contributing to the robustness and reliabil-
ity of the multiCONAN dataset.

9.5 Statistical Significance Testing
The statistical evaluation of our model against GPT-
3.5 Few-Shot (FS) across various metrics high-
lights significant differences in performance (see
Table 7). For the strategy Conformity (SC) score,
our model demonstrates a substantial advantage,
with a T-statistic of 63.34 and a p-value of 0.0, in-
dicating highly significant results. Similarly, for
Emotion Conformity (EC), the T-statistic of 9.31
and a p-value of 1.71E − 20 confirm that our
model significantly outperforms GPT-3.5 FS. Met-
rics such as BERT Score, ROUGE-1, ROUGE-2,
and ROUGE-L also showcase strong performance
by our model, with all p-values far below the sig-
nificance threshold (p < 0.05). However, for ME-
TEOR, the negative T-statistic (−2.37) and a p-
value of 0.018 suggest that GPT-3.5 FS slightly
outperforms our model in this metric. Interestingly,
for Target Conformity (TC) and CoSim, no statis-
tically significant was observed with p-values of

0.33 and 0.51, respectively. Despite these excep-
tions, the overall results indicate that our model
achieves superior performance across most metrics
compared to GPT-3.5 FS.

When compared to GPT-3.5 Zero-Shot (ZS),
our model exhibits significant improvements in
most metrics, as evidenced by the extremely low
p-values across strategy Classification (SC), BERT
Score, ROUGE metrics (ROUGE-1, ROUGE-2,
ROUGE-L), and Toxicity reduction. For instance,
SC achieves a T-statistic of 38.09 with a p-value of
2.92E − 284, underscoring the robustness of our
model in this task. However, for EC and TC scores,
the negative T-statistics (−22.54 and −13.22) in-
dicate that GPT-3.5 ZS performs better in these
areas despite their statistical significance. Addition-
ally, METEOR and CoSim also show slight advan-
tages for GPT-3.5 ZS, with respective T-statistics of
−2.43 and −3.72. Overall, while there are isolated
cases where GPT-3.5 ZS performs better or compa-
rably, our model consistently outperforms it across
critical metrics such as BERT Score, ROUGE met-
rics, SC, and Toxicity reduction, demonstrating its
effectiveness in counterspeech generation tasks.

Furthermore, we conduct significance testing
to compare our model with various ablation con-
figurations (see Table 8). The results indicate
no statistical significance in performance, which
suggests that our model exhibits robustness to ar-
chitectural variations and maintains stable perfor-
mance across diverse configurations (Di Leo and
Sardanelli, 2020; Andrade, 2019; Bhojraj et al.,
2024).

9.6 ZeroShot Prompt
We used the following prompt for GPT ZeroShot:

Generate a counterspeech response to
combat hate speech with the following
specifications:

• Intent: [INTENT]
• Emotion: [EMOTION]

Guidelines:

• Address the hate speech respect-
fully but firmly

• Maintain the specified emotional
tone throughout

• Focus on constructive dialogue
• Avoid toxic or inflammatory lan-

guage
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Metric HIPO_VT_3 HIPO_VT_5 HIPO_VT_7 HIPO_VT_10 HIPO_VT_3_DPO
SC 0.726 0.463 0.099 0.080 1.000
EC 0.716 0.078 0.062 0.094 0.775
TC 1.000 0.009 0.315 0.000 0.966
BERT_score 0.878 0.358 0.806 0.158 0.923
METEOR 0.937 0.885 0.257 0.416 0.873
ROUGE-1 0.816 0.647 0.933 0.535 0.941
ROUGE-2 0.772 0.865 0.435 0.842 0.819
ROUGE-L 0.777 0.643 0.877 0.595 0.868
CoSim 1.000 0.330 0.285 0.565 0.951
Toxicity 0.929 0.137 0.418 0.098 0.995

Table 8: Statistical significance across different ablations

• Align with the specified intent

Hate Speech: “[HATE_SPEECH]"

Counterspeech:

9.7 FewShot Prompt

The prompt we used for GPT FewShot is as fol-
lows:

Task: Generate counterspeech responses
to hate speech with specific intent and
emotion.

Examples:

1. Hate Speech: “Muslims are terror-
ists who destroy peace."
Intent: Informative
Emotion: Joy
Counterspeech: “I’m excited to
share that Muslim doctors, teachers,
and community leaders contribute
positively to our society every day!
It’s wonderful to see how diverse
faiths enrich our communities and
promote peace through understand-
ing."

2. Hate Speech: “Women don’t be-
long in tech."
Intent: Questioning
Emotion: Surprise
Counterspeech: “Isn’t it fascinat-
ing how Ada Lovelace, a woman,
wrote the first computer program?
And have you seen how mixed-
gender tech teams consistently out-
perform others? These surprising
facts challenge our assumptions!"

3. Hate Speech: “Immigrants are
stealing our jobs."
Intent: Positive
Emotion: Sad
Counterspeech: “It saddens me
to see how economic anxieties can
create divisions in our community.
The reality is that immigrants ac-
tually create millions of new jobs
through their entrepreneurship and
hard work. Studies show that
immigrant-founded businesses em-
ploy over 3.7 million Americans.
While I understand the fear of job
security, I believe we can work to-
gether to build an economy that
provides opportunities for every-
one. Let’s focus on supporting each
other and creating more opportuni-
ties rather than letting fear divide
us."

Now generate a counterspeech for:

Hate Speech: “[HATE_SPEECH]"

Intent: [INTENT]

Emotion: [EMOTION]

Counterspeech:

9.8 Retrival-Based Prompt
Generate [INTENT] and [EMOTION] aligned
counterspeech addressing these aspects from the
hate speech: Hate speech: [HATESPEECH] Rele-
vant examples: [Examples]

9.9 Computing Information
Our research is conducted on the NVIDIA RTX
A100 with 80GB RAM GPU.
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9.10 Hyper-parameter Information
Here we have mentioned the hyper-parameters we
used for all our experiments,

• Batch size: 4

• Learning rate: 1e-4

• Maximum input token: 512

• Maximum output token: 512

• Temperature sampling: Not used

• Max Epoch: 50

• Early stopping used: Yes
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Figure 3: Visual exploration of various attribute distribution present in the MultiCONAN dataset.
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