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Abstract

Clinical abstractive summarization struggles to
balance faithfulness and informativeness, sacri-
ficing key information or introducing confabu-
lations. Techniques like in-context learning and
fine-tuning have improved overall summary
quality orthogonally, without considering the
above issue. Conversely, methods aimed at im-
proving faithfulness and informativeness, such
as model reasoning and self-improvement, have
not been systematically evaluated in the clinical
domain. We address this gap by first perform-
ing a comprehensive benchmark and study of
six advanced abstractive summarization meth-
ods across three datasets using five reference-
based and reference-free metrics, with the latter
specifically assessing faithfulness and informa-
tiveness. Based on its findings we then develop
uMedSum, a modular hybrid framework intro-
ducing novel approaches for sequential confab-
ulation removal and key information addition.
Our work outperforms previous GPT-4-based
state-of-the-art (SOTA) methods in both quanti-
tative metrics and expert evaluations, achieving
an 11.8% average improvement in dedicated
faithfulness metrics over the previous SOTA.
Doctors prefer uMedSum’s summaries 6 times
more than previous SOTA in difficult cases con-
taining confabulations or missing information.
These results highlight uMedSum’s effectiveness
and generalizability across various datasets and
metrics, marking a significant advancement
in clinical summarization. uMedSum toolkit is
made available on GitHub.

1 Introduction

Large Language Models (LLMs) have shown ex-
ceptional performance in generative tasks, includ-
ing zero-shot and out-of-the-box applications in
specialized areas like summarization (Lei et al.,
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2023; Van Veen et al., 2024). In the clinical field,
document summarization holds promise for greatly
improving the efficiency of clinical staff in review-
ing lengthy documents, such as clinical exam re-
ports or patient histories. However, the stochastic
nature of LLMs and their lack of formal guaran-
tees (Li et al., 2023; Schlegel et al., 2023) often lead
to summaries that deviate from input documents,
limiting their practical usability.

This is particularly problematic in the clinical do-
main, where accurate and complete information is
crucial for effective decision-making. Doctors rely
on summaries that capture all relevant details with-
out introducing erroneous information, emphasiz-
ing two critical aspects of clinical summarization:
faithfulness and informativeness. Lack of faithful-
ness can cause ‘confabulations’, where parts of a
summary include information that wasn’t in the
original document (Maynez et al., 2020). On the
other hand, ‘insufficient informativeness’ happens
when relevant details from the input document are
left out (Mao et al., 2020). Such summaries can
provide doctors with incomplete evidence or in-
accurate information, potentially leading to misdi-
agnoses or inappropriate treatment decisions, ulti-
mately impacting patient outcomes.

In recent benchmarks (Van Veen et al.,
2024), task and domain adaptation approaches
such as in-context learning (ICL) (Brown,
2020) and parameter-efficient fine-tuning like
QLoRA (Dettmers et al., 2024) show promising re-
sults for advancing medical summarization. These
benchmarks, however, focus their evaluation on
reference-based metrics such as ROUGE (Lin,
2004). While helpful in comparing outputs to
ground truth references, these metrics do not ex-
plicitly capture the quality dimensions of faithful-
ness and informativeness of summaries (Maynez
et al., 2020). Additionally, these benchmarks also
neglect recent methods which leverage model rea-
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The patient has an elongated left atrium, mild
symmetric left ventricular hypertrophy, mildly dilated
aortic root, mildly thickened aortic and mitral valve
leaflets, and moderate pulmonary artery systolic

hypertension. No symptoms were reported.

Estimated cardiac index is normal (>=2.5l/min/m2). The patient has an elongated left
atrium, mild symmetric left ventricular hypertrophy, mildly dilated aortic root, mildly thickened

aortic and mitral valve leaflets, and moderate pulmonary artery systolic hypertension.

Input
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The patient has an elongated left atrium, mild symmetric left
ventricular hypertrophy, mildly dilated aortic root, mildly thickened

aortic and mitral valve leaflets, and moderate pulmonary artery
systolic hypertension. No symptoms were reported.

Figure 1: Overview of the proposed three-stage framework - uMedSum. The process is illustrated with example
outputs at each stage when using uMedSum with Element Aware Summarization and GPT-4. Blue text indicates
confabulated information (information not grounded in the input document), while red text highlights added key
information previously missing from the summary.

soning(Chang et al., 2024) to overall improve sum-
mary quality. As such, it is unclear whether the
best-performing approaches found in such bench-
marks improve summaries along the dimensions of
faithfulness and informativeness or take full advan-
tage of the model’s reasoning abilities.

Existing efforts in enhancing faithfulness and in-
formativeness for summarization face several limi-
tations: While techniques exist to address confab-
ulations and missing information, they do so in
isolation and often rely on either abstractive or ex-
tractive techniques. Thus, they impede achieving a
balance of informativeness and faithfulness, as re-
moving purported confabulations may lead to omis-
sions of otherwise important information. Existing
hybrid approaches inherit the limitations from their
parts like Constrained Abstractive Summarization
(CAS) (Mao et al., 2020), where confabulations in
the initial abstractive summary persist in the final
summary. Furthermore, to the best of our knowl-
edge, these efforts have not been systematically
evaluated in the clinical domain, which limits the
understanding of their efficacy therein.

In light of these considerations, we present a
comprehensive clinical summarization benchmark
and a large-scale study of previous SOTA sum-
marization methods with a focus on methods that
improve the faithfulness and informativeness of
summaries, which have received little attention in
the medical domain thus far. We introduce a unified
summarization framework, uMedSum, which im-
proves summaries along these dimensions through
a hybrid abstractive and extractive approach, in-
cluding novel techniques for jointly removing con-
fabulated information and adding missing informa-
tion to balance faithfulness and informativeness,
thus effectively addressing the shortcomings of ex-
isting methods. By sequentially removing confabu-
lated information followed by adding missing infor-
mation, uMedSum avoids the issue of overzealous

removal of information during faithfulness checks,
while ensuring that no confabulated information
is added during informativeness improvements by
relying on a purely extractive approach.

Specifically, our contributions are: (1) A com-
prehensive benchmark to investigate advanced
techniques leveraging model reasoning for sum-
marization by comparing six recent methods
across three diverse datasets using five standard-
ized metrics, including both reference-based and
reference-free metrics, and human evaluation
by clinicians (Figure 2). Our findings complement
those of (Van Veen et al., 2024) to obtain a new
SOTA on our benchmark. (2) A novel three-stage
framework, uMedSum (Figure 1), that improves cur-
rent summarization methods and models, consist-
ing of (a) initial summary generation using the best-
performing method-LLM combination from our
benchmark, (b) NLI-based confabulation detection
and removal, and (c) a hybrid abstractive-extractive
approach for incorporating missing key informa-
tion. (3) Significant improvements in faithful-
ness and informativeness of clinical summari-
sation compared to previous GPT-4-based SOTA
methods (Van Veen et al., 2024), while maintain-
ing competitive performance on reference-based
metrics. (4) Human evaluation which show that
domain experts prefer our framework’s sum-
mary six times more than previous SOTA in
difficult cases, with equal preference in straightfor-
ward cases. (5) A complete benchmarking toolkit
to facilitate further research in clinical summariza-
tion.

2 Related Work

Summarization is usually approached by extractive
and abstractive approaches (Nenkova et al., 2011;
Luo et al., 2024). Extractive summarization se-
lects key sentences or phrases directly from the
input document, with recent works increasingly re-
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lying on embedding similarity with pretrained mod-
els (Zhong et al., 2020; Sammet and Krestel, 2023;
Song et al., 2023). Abstractive summarization,
conversely, aims to rephrase content for more con-
cise and readable summaries. More recent advance-
ments over traditional sequence-to-sequence ap-
proaches (Lewis et al., 2020; Zhang et al., 2020) in-
clude reasoning-based approaches such as element-
aware steering of summary content (Wang et al.,
2023). The effectiveness of such advanced meth-
ods in the clinical domain has not been extensively
evaluated, with Van Veen et al. (2024) merely evalu-
ating the adoption of with standard ICL techniques,
which we address with our proposed clinical sum-
marization benchmark. Notably, most existing
work applies either extractive or abstractive tech-
niques in isolation. With uMedSum we aim to lever-
age both techniques to address challenges pertain-
ing to confabulations (Maynez et al., 2020) (by
filtering abstractive summaries) and incomplete-
ness (Mao et al., 2020) (by adding content using
extractive approaches).

Confabulated Information Detection. Confab-
ulation detection, or identifying information not
grounded in the input document, is a major chal-
lenge in clinical summarization. While existing
methods typically provide a general factuality score
for generated summaries (Maynez et al., 2020; Liu
et al., 2024; Ji et al., 2023), they often fail to system-
atically remove confabulated information. Some
techniques attempt to address epistemic uncertainty
by leveraging internal logit-level data (Yadkori
et al., 2024; Manakul et al., 2023; Chen et al.,
2024; Farquhar et al., 2024), but these are generally
limited to question-answering scenarios with clear
ground truths and require access to internal model
states, making them less scalable and compatible
with proprietary models. Inspired by Maynez et al.
(2020) and Lei et al. (2023), our framework uses
entailment-based metrics for removing confabu-
lated spans in summaries, employing sentences and
atomic facts for more accurate removal (Thiruko-
valluru et al., 2024). We also address the common
issue of overzealous removal by detecting and rein-
tegrating key missing information afterward.

Missing Information Addition. Missing infor-
mation in summaries is addressed by extractive
or hybrid techniques which rely on extractions to
identify key missing details. Despite improving key
phrase identification, extractive summaries often
struggle with verbosity and low fluency (Nathan

et al., 2023). Hybrid approaches like Constrained
Abstractive Summarization (CAS) (Mao et al.,
2020) address missing information but do not con-
sider confabulations in the generated summary.
In contrast, our work proposes a novel approach
that effectively combines extractive and abstrac-
tive methods to address both confabulations and
key missing information. We show both quan-
titatively and qualitatively, that this integration
achieves a delicate balance, leveraging both ap-
proaches’ strengths while mitigating their weak-
nesses.

3 uMedSum: Faithful and Informative
Clinical Summarization

Summarization Benchmark. To address the
lack of a systematic benchmark for summarization
methods in clinical summarization, we first evalu-
ate four recent methods: Standard Prompting (base-
line), Element-Aware Summarization with Large
Language Models (Wang et al., 2023), Chain of
Density (Addams et al., 2023), and Hierarchical
Summarization (Chang et al., 2024). Each tech-
nique offers distinct benefits and drawbacks, as
discussed in the appendix section A.1. We then
combine the top-performing methods with task
adaptation strategies, particularly In-Context Learn-
ing, which outperforms QLoRA for similar tasks
(Van Veen et al., 2024). This benchmark serves
as a means to understand the capabilities of ad-
vanced reasoning methods for clinical summarisa-
tion. This step ensures the highest possible quality
for the initial summary, laying a strong foundation
for uMedSum. The complete details are provided in
figure 2 in the appendix.

  Methods   Models

LLaMA 3
8B

Gemma
7B

GPT-4
1.76T

Hierarchical

Element Aware + ICL

Chain of Density

Standard Prompt

Standard Prompt + ICL

Element Aware

  Datasets

MIMIC-III
(Radiology Report)

MeQSum
(Patient Question)

ACI Bench
(doctor-patient dialogue)

  Metrics

ROUGE-Lsum

BERTScore

SummaC (w/o ref)

QuestEval (w/o ref)

Entailment (w/o ref)Human Evaluation

Meditron
7B

Figure 2: Overview of the proposed clinical summariza-
tion benchmark for fair comparison.

uMedSum. The uMedSum pipeline is designed to
produce high-quality, faithful, and comprehensive
clinical summaries through a three-stage process,
visualized in Figure 1: Initial Summary Generation,
Confabulation Removal, and Missing Information
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Addition. Each stage of uMedSum is a modular, self-
contained component that can be independently
updated and tuned, providing flexibility and effi-
ciency with minimal computational overhead.

3.1 Stage 1: Initial Summary Generation

The combination of best-performing methods and
models from the benchmark is selected for further
evaluation and enhancement using the stages of
uMedSum. In the first stage, we generate an initial
abstractive summary given the input document.

3.2 Stage 2: Confabulation Removal
(Faithfulness)

The uMedSum pipeline takes a novel approach by
repurposing Natural Language Inference (NLI)
models to not just evaluate the factuality of gen-
erated summaries but to directly detect and re-
move discrete confabulated information from gen-
erated summaries. This approach differs from ex-
isting methods, which typically focus on sentence-
level entailment or entity-based splitting (Lei et al.,
2023), by introducing a more granular decom-
position based on atomic facts (Thirukovalluru
et al., 2024; Nawrath et al., 2024; Stacey et al.,
2023). Specifically, we propose a two-step process:
(1) summary decomposition into smaller, manage-
able units, and (2) pairwise NLI-based confabula-
tion detection and removal.

Summary Decomposition. We begin by de-
composing the summary generated in Stage 1
into smaller units called Summary Content Units
(SCUs) (Nawrath et al., 2024) or Decomposed
Summary Units (DSUs). We propose Recursive
Threshold-based Text Segmentation to further split
sentences into clause-level atomic facts. Unlike
previous works that stop at sentence-level decom-
position or rely on entity-based splitting for fur-
ther decomposition (Lei et al., 2023), our approach
aims to create self-contained units that encapsulate
atomic facts. Atomic facts encapsulate the smallest
meaningful statements that can stand alone as true
or false propositions. This aligns well with the NLI
task, where the goal is to determine the logical re-
lationship (entailment, contradiction, or neutrality)
between two statements. This atomic view of facts
allows us to detect confabulations precisely.

Formally, let Dk represent a decomposed sum-
mary unit (DSU) from summary Si, where k in-
dexes the specific unit. The NLI model computes
the entailment score E(Dk) for each DSU, where

the score E(Dk) represents the probability distri-
bution over entailment labels (entailment, neutral,
contradiction).

Recursive Threshold-Based Text Segmentation
(RTB-TS). Initial Segmentation: We begin by
decomposing the summary Si into DSUs Dk us-
ing a sentence boundary disambiguation technique:
Si → {D1, D2, . . . , Dk}. This initial step pro-
vides a coarse segmentation based on sentence
boundaries.

Pairwise NLI Scoring: For each DSU Dk, we
compute the entailment score E(Dk) using a fine-
tuned NLI model: E(Dk) = P (entailment |
I,Dk), N(Dk) = P (neutral | I,Dk), and
C(Dk) = P (contradiction | I,Dk).

Thresholding and Segmentation: We apply a
threshold to the entailment score to find the initial
classification: ClassEntailed(Dk) : E(Dk) > Te,
ClassConfab(Dk) : N(Dk) + C(Dk) > Tc, and
ClassUncertain(Dk) : otherwise, where Te is the
entailment threshold and Tc is the confabulation
threshold. If Dk is classified as "uncertain," further
segmentation is necessary.

Recursive Decomposition: For DSUs in the "un-
certain" category, we recursively apply segmen-
tation based on the identification of atomic facts
within the DSU. This involves breaking down Dk

into finer sub-units Dk,a where a indexes each
atomic fact: Dk → {Dk,1, Dk,2, . . . , Dk,a}. We
recompute the entailment score for each atomic
fact sub-unit Dk,a as E(Dk,a) = P (entailment |
I,Dk,a). and retain only those atomic facts where
the value of E(Dk,a) is greater than a chosen
threshold.

Aggregation of Faithful DSUs: After recursive
segmentation and filtering, we concatenate (⊕) the
remaining faithful DSUs to form the refined sum-
mary: Srefined

i =
⊕

k D
faithful
k . The final refined

summary Srefined
i has suppressed the confabulated

atomic facts according to the NLI model.

3.3 Stage 3: Missing Information Addition
(Informativeness)

Hybrid methods like (Mao et al., 2020) risk confab-
ulated initial summaries. Our approach separates
confabulation removal (Stage 2) before adding
missing key information (Stage 3), reducing the
chance of new confabulations in the final summary.
To capture key information from the input docu-
ment, we identify key sentences in the document
and key phrases in the Stage 2 summary. We in-
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troduce a novel approach to measure coverage of
key information in the summary and integrate miss-
ing information into the appropriate sections of the
summary to maintain consistency and readability.

Key Information Extraction. Our extracted key
information from either the input document or the
summary is described as follows. Let Kdoc =
{kidoc | i ≤ topM} for the source document, and
Ksumm = {kisumm | i ≤ topN} for the generated
summary. Where Kdoc are key sentences from
the input document; Ksumm are key phrases from
our summary; topM and topN are the thresholds
for the number of key sentences and key phrases,
respectively.

For the input document, we use sentences as the
minimum unit of granularity for extraction. For
the summary generated in Stage 2, we apply a key
phrase extraction method, such as the one used
by Grootendorst (2020), which extracts n-grams
as key phrases. We then iteratively rank the sen-
tences or phrases using MMR (Bennani-Smires
et al., 2018) and select the top-K as key sentences
or key phrases. The complete algorithm for this
process is described in the Appendix.

Missing Key Information Detection. Given
Kdoc and Ksumm extracted from the input docu-
ment and generated summary respectively, we cal-
culate coverage scores coviscore for each kidoc based
on Ksumm. Specifically, we compute the embed-
ding matrices for key sentences and key phrases
(Reimers and Gurevych, 2019). Let Embeddoc rep-
resent the matrix formed by stacking the embed-
dings of the key sentences from the input document,
and Embedsumm represent the matrix formed by
stacking the embeddings of the key phrases from
the Stage 2 summary. Here, Embeddoc is of size
m × d, where m is the number of key sentences
in the input document, and d is the embedding di-
mension. Similarly, Embedsumm is of size n × d,
where n is the number of key phrases in the Stage
2 summary.

The similarities between Kdoc and Ksumm are
computed as the dot product of the document and
summary embedding matrices, yielding a similar-
ity matrix [simi,j ]m×n. Coverage scores for key
sentences in the document are then determined by
taking the maximum similarity for each sentence
across the key phrases from summary, resulting in
a vector Covscore of size m× 1.

We define the coverage score of the i-th sentence
as coviscore = maxj≤n{simi,j} and introduce a

threshold parameter covmin. Any kidoc with a cov-
erage score below covmin is considered missing
information. The set of potential missing informa-
tion is represented as:

Kmissing = {kidoc | i ≤ m, coviscore ≤ covmin}.

Merging Missing Information to Summary.
We use perplexity (PPL) to select the best loca-
tion to insert a missing key sentence kimissing ∈
Kmissing into our summary (Sharma et al., 2024):

l∗ = argmin
l∈locs

PPLLM(kimissing, summary, l), (1)

where summary is the summary obtained from
Stage 2. We employ a greedy algorithm to dynami-
cally insert the missing information. The complete
algorithm is provided in Appendix A.3.

4 Evaluation

We compare state-of-the-art approaches to clinical
summarization and improve the best-performing
ones using uMedSum. We demonstrate the improve-
ments both through quantitative measurements and
qualitative insights from a study conducted by do-
main experts.

Dataset and Tasks Figure 2 describes the
datasets, models and techniques chosen for our
experimental setup. We make use of three clinical
datasets for summarization tasks: MIMIC III for
Radiology Report Summarization (Johnson et al.,
2016), MeQSum for Patient Question Summariza-
tion (Abacha and Demner-Fushman, 2019), and
ACI-Bench for doctor-patient dialogue summariza-
tion (Yim et al., 2023). These provide a diverse
range of clinical summarization task settings, with
varying document lengths, requirement for back-
ground knowledge as well as the need for domain-
specific vocabulary and understanding.

Evaluation Metrics Maynez et al. (2020) found
that reference-based metrics by themselves do not
align with human perception of faithfulness and
factuality in abstractive summarization tasks and
should be combined with reference-free metrics.
We thus make use of two reference-based met-
rics, ROUGE-LSum (Lin, 2004) and BERTScore
(Zhang et al., 2019) which assess content overlap
and semantic similarity with the reference sum-
mary, in combination with three reference-free
metrics, SummaC (Laban et al., 2022), QuestE-
val (Scialom et al., 2021), and Entailment Scores
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Figure 3: Benchmark of different Summarization Techniques across datasets on selected metrics. ROUGE-LSum
and BertScore are reference-based metrics, while SummaC, QuestEval, and Entailment are used as reference-free
metrics.

(Liu et al., 2024) which evaluate factual consis-
tency, informativeness, and entailment relative to
the source document for purposes of our evaluation.
We also report an aggregate evaluation score: For
a summary Si generated by a specific method it
is determined by aggregating its rank across all
metrics: Ranki =

∑n
j=1 Rank(Mj(Si)), where

Rank(Mj(Si)) is the rank of the method based
on metric Mj , and n is the total number of met-
rics used. The method with the lowest Ranki is
considered the most effective.

Experiment Setup We benchmark the perfor-
mance of four models: LLaMA3 (8B) (Meta,
2024), Gemma (7B) (Team et al., 2024), Meditron
(7B) (Chen et al., 2023a,b), and GPT-4 (Achiam
et al., 2023), combined with the state-of-the-art
summarization methods as described in section A.1.
We select the best-performing models and investi-
gate the impact of uMedSum on their performance.
The modular setup of uMedSum also allows us to
conduct comprehensive ablations for comparing
the impact of each stage’s impact and also com-
pare NLI with LLM-based techniques such as Self-
Reflection (Ji et al., 2023). For complete imple-
mentation details, consult Appendix A.6.

5 Results and Discussion

5.1 Summarization Techniques Benchmark

Figure 3 presents the benchmark results of differ-
ent summarization techniques. Table 1 presents

the full set of results for the benchmark, as well as
results of uMedSum based experiments. The bench-
mark results are structured into three key areas: the
performance of methods, the influence of datasets,
and the comparative evaluation of models.

Methods. The Standard Prompting method was
selected as the baseline. We first compare the differ-
ent summarization techniques in zero-shot settings
without task adaptation. Chain of Density partic-
ularly improves the performance of the QuestE-
val metric, which aims to measure the factual in-
formation retention between input documents and
summaries. This can be attributed to its nature of
creating the most information-dense summaries,
albeit at the cost of readability and conciseness.
The Hierarchical method demonstrates noticeable
performance in summarizing longer documents,
effectively mitigating the “lost-in-the-middle” ef-
fect (Ravaut et al., 2023). This is evidenced by
consistent improvements across all models when
employing hierarchical summarization, particularly
for lengthy inputs like those in ACI Bench. The
approach enhances faithfulness to the input doc-
ument of summaries by decomposing documents
into manageable blocks. While these methods ex-
cel in specific areas, Element Aware Summariza-
tion outperforms them by leveraging model rea-
soning to extract the most relevant information,
summarize it effectively, and achieve the best rank
across all models.
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Dataset: MIMIC-III ACI Bench MeQSum Ranking

Method + Model Metric: R-Ls B.S. S-C Q.E. Ent. R-Ls B.S. S-C Q.E. Ent. R-Ls B.S. S-C Q.E. Ent. w/ Ent. w/o Ent.

Standard Prompting
(Baseline)

Meditron 7B 0.09 0.81 0.47 0.33 0.61 0.10 0.65 0.51 0.25 0.30 0.04 0.80 0.27 0.26 0.60 24 22
Gemma 7B 0.16 0.86 0.29 0.28 0.78 0.13 0.74 0.32 0.31 0.25 0.34 0.92 0.27 0.38 0.94 23 23
Llama 3 8B 0.20 0.86 0.25 0.34 0.83 0.23 0.83 0.32 0.38 0.27 0.33 0.92 0.28 0.38 0.90 16 15
GPT-4 0.19 0.83 0.49 0.36 0.88 0.28 0.84 0.33 0.45 0.63 0.34 0.92 0.27 0.40 0.96 8 10

Chain of Density
Gemma 7B 0.18 0.86 0.38 0.33 0.75 0.17 0.83 0.39 0.37 0.32 0.14 0.87 0.24 0.40 0.65 21 20
Llama 3 8B 0.17 0.85 0.29 0.40 0.80 0.28 0.84 0.38 0.43 0.71 0.13 0.87 0.22 0.44 0.69 15 16
GPT-4 0.17 0.85 0.32 0.37 0.90 0.12 0.82 0.34 0.36 0.38 0.18 0.88 0.26 0.42 0.98 19 21

Hierarchical

Gemma 7B 0.15 0.85 0.23 0.27 0.51 0.19 0.83 0.33 0.35 0.45 0.19 0.87 0.22 0.34 0.67 25 25
Llama 3 8B 0.17 0.85 0.25 0.33 0.80 0.29 0.83 0.32 0.38 0.90 0.17 0.86 0.21 0.30 0.79 21 24
GPT-4 0.19 0.86 0.30 0.36 0.80 0.37 0.84 0.33 0.40 0.58 0.29 0.91 0.23 0.40 0.85 13 13

Element Aware

Gemma 7B 0.17 0.86 0.29 0.29 0.74 0.17 0.82 0.35 0.34 0.20 0.31 0.91 0.27 0.38 0.94 20 19
Llama 3 8B 0.19 0.86 0.24 0.36 0.84 0.23 0.83 0.32 0.38 0.27 0.33 0.92 0.28 0.39 0.93 16 16
GPT-4 0.18 0.84 0.40 0.35 0.78 0.29 0.84 0.32 0.42 0.41 0.34 0.90 0.27 0.39 0.95 14 14

Element Aware +
uMedSum (Ours)

Llama 3 8B 0.19 0.86 0.44 0.39 0.86 0.15 0.81 0.53 0.44 0.67 0.31 0.91 0.35 0.41 0.93 10 11
GPT-4 0.19 0.86 0.53 0.39 0.89 0.15 0.82 0.51 0.47 0.86 0.33 0.91 0.33 0.41 0.97 6 7

Standard Prompting
(Baseline) + ICL

Gemma 7B 0.28 0.88 0.47 0.30 0.79 0.17 0.72 0.33 0.30 0.40 0.41 0.93 0.26 0.37 0.87 18 18
Llama 3 8B 0.31 0.88 0.42 0.31 0.67 0.30 0.84 0.34 0.40 0.82 0.41 0.93 0.26 0.37 0.87 9 9
GPT-4 0.30 0.88 0.52 0.34 0.86 0.56 0.89 0.40 0.42 0.77 0.42 0.93 0.27 0.39 0.91 4 4

Element Aware + ICL

Gemma 7B 0.25 0.87 0.41 0.31 0.73 0.26 0.83 0.37 0.35 0.56 0.40 0.93 0.25 0.37 0.86 12 12
Llama 3 8B 0.30 0.88 0.41 0.31 0.62 0.31 0.82 0.51 0.37 0.44 0.43 0.93 0.25 0.35 0.83 11 8
GPT-4 0.32 0.88 0.55 0.35 0.83 0.56 0.89 0.41 0.43 0.78 0.46 0.93 0.27 0.38 0.91 3 3

Standard Prompting + ICL +
uMedSum (Ours)

Llama 3 8B 0.25 0.87 0.56 0.37 0.74 0.16 0.82 0.57 0.45 0.96 0.42 0.92 0.36 0.38 0.84 5 5
GPT-4 0.25 0.87 0.61 0.39 0.89 0.44 0.86 0.48 0.45 0.91 0.38 0.92 0.35 0.41 0.89 2 2

Element Aware + ICL +
uMedSum (Ours)

Llama 3 8B 0.25 0.87 0.58 0.37 0.71 0.17 0.81 0.63 0.42 0.77 0.39 0.92 0.35 0.37 0.81 7 6
GPT-4 0.25 0.87 0.64 0.39 0.88 0.42 0.86 0.49 0.45 0.92 0.41 0.92 0.34 0.40 0.89 1 1

Table 1: Quantitative experiments showing the full performance and aggregated ranking of the evaluated methods
and uMedSum pipeline on the three datasets. The ranking column represents two ranking aggregating all metrics—
with and without entailment consideration, for an objective comparison, as our framework optimises for entailment
in Stage 2. Red and underlined red indicates best and second-best column-wise scores, and blue and underlined blue
highlights the worst and second-worst column-wise scores, respectively. uMedSum and ICL methods perform well
across most metrics, models, and datasets, with most of the relatively worse performances coming from existing
summarization methods without the use of ICL.

Task adaptation using ICL consistently im-
proves both reference-based and reference-free
metrics across all datasets. Our findings align
with Van Veen et al. (2024), confirming GPT-
4 Standard Prompting with ICL as the previous
SOTA for medical summarization. However, our
benchmark reveals that Element Aware Summariza-
tion with ICL-based task adaptation surpasses this
previously established SOTA. This demonstrates
that task adaptation complements model reasoning
techniques in enhancing summary quality.

Datasets. Figure 3 suggests that for MIMIC-III,
models perform worse on phrase overlap metrics
such as ROUGE-LSum while maintaining rela-
tively high scores in reference-free and reference-
based semantic metrics such as BERTScore and
SummaC, indicating that the models tend to para-
phrase or compress the information in the input
document while staying consistent and faithful to
the inputs for MIMIC-III.

MeQSum contains the shortest input documents
and involves summarizing patient questions, which
requires less background knowledge but a clear un-
derstanding of the query. The models perform the
best on MeQSum across most metrics, particularly

in reference-free metrics like QuestEval and En-
tailment, reflecting the models’ ability to handle
content low on domain-specific jargon. Notably,
the shorter and less technical nature of MeQSum
allows smaller models like Gemma 7B and Llama
3 8B to perform competitively with GPT-4, as the
task requires a clear understanding of short queries
rather than extensive domain knowledge or infor-
mation extraction capabilities.

Due to its conversational nature and length, ACI
Bench requires the summarization of long context
documents that might include more redundant or
less structured information. Task adaptation using
ICL particularly helps in this dataset, where giving
the models examples of the kind of information to
focus on in the input significantly improves per-
formance. The models suffer in all reference-free
metrics, indicating that the ACI bench is particu-
larly difficult for the models in extracting and relay-
ing key information in the summary while staying
faithful to the source document.

Models. As shown in Table 1, Meditron 7B ex-
hibits the lowest performance across most met-
rics and datasets when using Standard Prompt-
ing. Due to its limited instruction-following ca-
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pabilities, we only consider Meditron for Standard
Prompting. Gemma 7B shows weak performance
in metrics like RougeLSum and SummaC. It partic-
ularly struggles with Entailment across all datasets,
showing poor ability to maintain logical consis-
tency and faithfulness in summaries. Llama 3 8B
performs the best among the open-source models,
often showing competitive performance to GPT-
4 for the given tasks. Llama 3 8B also benefits
more from ICL than Gemma, which highlights its
strong ability to adapt to tasks. Consistent with
the findings of Van Veen et al. (2024), we find
that unsurprisingly, GPT-4 performs best across all
summarization tasks. Overall, we find that GPT-
4 performs best, with Llama3 8B being the best-
performing open-source model. Based on these
findings, we select the two models: Llama 3 8B
and GPT-4, and two methods: the previously es-
tablished SOTA of Standard Prompting as well as
the best-performing technique based on our experi-
ments, Element Aware Summarization, for the next
stage of experiments using uMedSum.

5.2 Analysis of uMedSum Results
Table 1 demonstrates that uMedSum consistently
outperforms the above-mentioned benchmark
results, with seven out of the top ten ranked meth-
ods utilizing uMedSum. We especially see signif-
icant improvement in reference-free metrics that
assess the factual consistency and completeness of
the summaries, such as SummaC, QuestEval, and
Entailment, while being competitive or improv-
ing performance in reference-based metrics. This
indicates that uMedSum improves faithfulness and
informativeness of the summaries, while staying
grounded to the input document. uMedSum’s impact
is most pronounced when combined with Element
Aware Summarization and ICL, suggesting that it
can be used in combination with methods lever-
aging model reasoning as well as task adaptation
techniques to produce summaries that utilize the
key benefits of all the methods.

For all datasets, uMedSum helps improve
ROUGE-LSum, particularly with Llama 3 8B.
uMedSum also maintains a high BertScore across
datasets, particularly with GPT-4. This suggests
that the additional stages of confabulated infor-
mation removal and missing information addition
preserve and even enhance semantic similarity be-
tween generated and reference summaries by fo-
cusing on error correction and gap-filling. Notably,
SummaC and Entailment scores significantly im-

prove for all models when using uMedSum. These
metrics directly benefit from the confabulation de-
tection and removal stage, as they ensure that the
final summary is factually consistent and faithful
to the source information. QuestEval scores show
marked improvements as well. The missing infor-
mation addition stage (Stage 3) proves particularly
beneficial, ensuring comprehensive coverage of key
aspects of the input document. Lastly, we point
out that uMedSum significantly improves summa-
rization quality for smaller models. For instance,
Llama3 8B with uMedSum and ICL outperforms
GPT-4’s Standard Prompting baseline and remains
competitive with GPT-4 across all metrics, despite
starting from a lower baseline performance.

Ablation Studies. We conducted ablation stud-
ies by removing individual stages and comparing
performance against the complete framework. Re-
sults show that Stages 2 and 3 complement each
other, with net gains across both reference-based
and reference-free metrics, leading to more com-
prehensive and faithful summaries. Additional ab-
lations explored different NLI models (Gu et al.,
2021; Laurer, 2023) and LLM-based hallucina-
tion removal methods like self-reflection (Ji et al.,
2023). Stage 2, using a DeBERTa-based finetuned
NLI model (Laurer, 2023) performed best across
datasets and models. Full ablation results are pro-
vided in Appendix A.2.

5.3 Clinician Evaluation

We perform a human evaluation by two orthopaedic
surgeons for the radiology report summarization
task, who are provided with related summaries gen-
erated using the previous SOTA (Standard Prompt-
ing ICL + GPT-4), and our best performing method
(Element Aware + ICL uMedSum + GPT-4). Doc-
tors performed pairwise selections based on overall
summary quality and annotated difficult cases with
confabulations or missing key information, without
knowing the methods which generated the sum-
maries. Our results show that when there were
no confabulations or missing information, doc-
tors showed equal preference between the previous
SOTA and uMedSum. However, in difficult cases in-
volving confabulations or missing key information,
doctors preferred uMedSum 46% of the time, citing
its effectiveness in resolving issues, compared to
only 8% for the previous SOTA. Both summaries
were considered inadequate 23% of the time, ac-
ceptable 15%, and undecidable in 8% of cases.
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Example 1 (Low QuestEval Score = 0.22)
Input Text S: Right internal jugular Swan-Ganz catheter, endotracheal tube, nasogastric tube, mediastinal and pleural

drains are visualized, overall minimally changed. However, the nasogastric tube has been retracted and
the sideport now lies within the esophagus, this tube should be advanced. Lung volumes are low and left
basilar retrocardiac opacity is increased from the study taken approximately eight hours earlier suggestive
of atelectasis. Fibronodular density at the right lung apex is unchanged. Small right apical pneumothorax
is also unchanged. Blunting of the right costophrenic angle is new. The cardiomediastinal and hilar
contours are unchanged. Note is made of epicardial pacing wires as well as of a mitral valve prosthesis.

STAGE 1: Initial Summary Generation
Generated
Summary

Interval advancement of right Swan-Ganz catheter, now with tip presumably coiled in the right ventricle.
The house staff caring for the patient was advised at the time of interpretation to repeat the study with
better penetration to confirm this suspicion. No pneumothorax. Left basilar atelectasis.

STAGE 2: Confabulation Detection
Entailment
Scores (cor-
responding
extracted
atomic fact in
bold)

• Interval advancement of right Swan-Ganz catheter, now with tip presumably coiled in the right
ventricle. → CONFABULATED (5.2% entailed, 88.3% neutral)

• The house staff caring for the patient was advised at the time of interpretation to repeat the study with
better penetration to confirm this suspicion. → CONFABULATED (0% entailed, 100% neutral)

• No pneumothorax. → CONFABULATED (0% entailed, 99.9% contradicted)
• Left basilar atelectasis. → FAITHFUL (91.3% entailed)

STAGE 3: Missing Information Addition
Source Doc-
ument Key
Sentences

• Right internal jugular swan-ganz catheter, endotracheal tube, nasogastric tube, mediastinal and pleural
drains are visualized, overall minimally changed.

• However, the nasogastric tube has been retracted and the sideport now lies within the esophagus, this
tube should be advanced.

Generated
Summary
Keyphrases

No key phrases found

Missing Infor-
mation No missing information found

Final Output
Summary Left basilar atelectasis.

Figure 4: End-to-end example of uMedSum processing pipeline showing low QuestEval performance case. The table
illustrates the three-stage process: initial summary generation using Element Aware summarization, confabulation
detection with entailment scoring, and missing information addition through key phrase comparison.

This preference underscores the critical importance
of uMedSum in minimizing errors in clinical sum-
maries, as the impact of resolving confabulations
or missing information far outweighs the benefit
of matching previous methods in straightforward
cases when considering patient care. Full clinical
study details are provided in Appendix A.4.

6 End-To-End Examples and Qualitative
Analysis

We provide three end-to-end examples for uMed-
Sum, one each for low, medium and high scores on
the QuestEval Metric. Figure 4 presents a case
of a sample with low quest eval, with success
cases and further analysis in Appendix B. The
low questeval score (0.22) in this case can be at-
tributed to the high rate of confabulation removal
leading to overly concise output after removal of
confabulated DSU’s. Additionally, the threshold
based missing information computation results in
no missing information being added into the overly
concise summary. This can potentially be over-
come by adaptive addition of missing informa-

tion which can use the confabulated-to-faithful
DSU ratio or summary length as a signal to de-
termine the number of missing information to be
added, rather than using a threshold. Appendix
B provides examples of recursive decomposition
during the confabulation removal step as well as
analysis of success cases with high questeval score.

7 Conclusion

We introduce uMedSum, a novel framework for faith-
ful and informative clinical summarization. We
conduct a comprehensive benchmark on model rea-
soning based summarisation using both reference-
based and reference-free metrics and integrate the
findings with uMedSum to surpass recent SOTA on
clinical summarization. We achieved an 11.8% im-
provement in reference-free metrics, which focus
on faithfulness and informativeness. Clinicians pre-
ferred uMedSum six times more than the previous
SOTA in the presence of confabulations or the ab-
sence of key information, setting a new standard
for faithful and informative clinical summarization.
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8 Limitations

While our proposed framework, uMedSum, demon-
strates significant improvements in clinical summa-
rization, several limitations warrant discussion.

Scope of Models and Domain-Specific Vari-
ants. The study focuses on the majorly adopted
set of models, predominantly large-scale, general-
purpose LLMs. While we included the major open-
source models, the inclusion of more diverse and
domain-specific models, such as Med-PaLM (Sing-
hal et al., 2023) or BioGPT (Luo et al., 2022), could
provide deeper insights into the effectiveness of
specialized architectures for medical summariza-
tion.

Evaluation Metrics. Our evaluation employs es-
tablished reference-based metrics like ROUGE-
LSum and BERTScore, as well as reference-free
metrics such as SummaC, QuestEval, and Entail-
ment scores. However, recent advancements in
evaluation metrics, such as GPTScore (Fu et al.,
2023), which allows for more nuanced assessments
of generated text quality, were not utilized. Incor-
porating these metrics in future evaluations could
provide a more comprehensive understanding of
model performance, even though they are unlikely
to change the trends observed in our evaluations.

Dataset Limitations. The datasets
used—MIMIC-III (Johnson et al., 2016),
MeQSum (Abacha and Demner-Fushman, 2019),
and ACI-Bench (Yim et al., 2023)—while diverse,
may not cover the full spectrum of clinical
subdomains or account for all variability in clinical
narratives. Expanding the dataset variety and
size could help assess the robustness of uMedSum
across different clinical contexts, albeit difficult to
achieve due to the inaccessibility of textual clinical
datasets.

Human Evaluation Constraints. The human
evaluation involved two orthopaedic surgeons as-
sessing summaries related to radiology reports.
This limited pool may introduce bias and affect
the reliability of the evaluation (Belz et al., 2020).
Furthermore, the evaluation focused on a specific
clinical speciality, which may not reflect the frame-
work’s effectiveness across other medical fields.
Future studies will include a larger and more di-
verse group of medical professionals to enhance
evaluation robustness.

Potential Risks. While uMedSum offers signifi-
cant advancements in clinical summarization, it
also introduces potential risks that warrant careful
consideration. Despite the suppression of confab-
ulations and adding in key missing information, it
is not guaranteed that the generated summary will
be completely free of confabulations or contain
all key information required for clinical diagno-
sis. A primary concern is the possibility of health-
care professionals’ overreliance on automated sum-
maries, which could lead to the oversight of nu-
anced patient information not captured by the sys-
tem. To mitigate these risks, it is essential to main-
tain human-in-the-loop frameworks where clinical
professionals critically evaluate and validate all au-
tomated summaries.
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A Appendix

A.1 Benchmark Details

The goal of the benchmark was to extend the work
by (Van Veen et al., 2024) to investigate the impact
of techniques which leverage model reasoning in
generating the summary, and can be used along
with task adaptation strategies investigated in their
work.

Each technique used offers distinct benefits and
drawbacks. For instance, Element-Aware Summa-
rization improves content relevance by targeting
domain-specific elements, while Chain of Density
produces information-dense but less readable sum-
maries. Hierarchical Summarization effectively
addresses the “lost-in-the-middle” issue in long
contexts (Ravaut et al., 2023).

A.2 Algorithms

A.2.1 Algorithm 1
In Algorithm 1, topK represents the threshold for
the number of key sentences or key phrases to ex-
tract. K is a list of key sentences extracted from in-
put document or key phrases extracted from Stage
2 summary, and len(K) represents the number of
extracted key sentences or key phrases in the K.

Algorithm 1 Key Information Extraction
1: input← document or Stage 2 summary
2: K ← {}
3: if input = document then
4: candidates← each sentence in document
5: else
6: candidates← each phrase in summary
7: end if
8: while len(K) ≤ topK do
9: candidate∗ :=

argmaxx∈candidatesMMR(input,K, x)

10: K ← K + candidate∗

11: end while
12: return K

A.3 Algorithm 2

In Algorithm 2, topK represents the thresh-
olds for the number of missing information to
merge, PPLLM(kimissing, summout, l) represents
the perplexity of the text formed by inserting
i-th missing information kimissing after l-th sen-
tence of (updated) Stage 2 summary summout, and
insert(kimissing, summout, l

∗) represents inserting

i-th missing information kimissing after l-th sentence
of (updated) Stage 2 summary summout.

Algorithm 2 Merge Missing Information to Sum-
mary

1: summout ← Stage 2 summary
2: i← 0
3: while i < topK do
4: s← number of sentences in summout

5: locs := {l | 0 ≤ l ≤ s}
6: l∗ := argminl∈locs PPLLM(kimissing,

summout, l)
7: summout ← insert(kimissing, summout, l

∗)
8: i← i+ 1
9: end while

10: return summout

A.4 Clinical Evaluation

Our evaluators include two orthopaedic surgeons,
who are provided with related summaries generated
using 2 methods:

1. Standard Prompting ICL + GPT-4 (Previous
SOTA)

2. Element Aware + ICL uMedSum + GPT-4
(overall best performing method)

We specifically selected summaries relevant to
the clinicians in order to fully utilize their ex-
pertise during evaluation. Thus, from the subset
of MIMIC-III (Johnson et al., 2016) which was
used for the experiments, we selected a subset of
60 samples filtered using the following keywords:
Arthritis, Bone, Clavicle, Deformity, Dislocation,
Femur, Fibula, Fracture, Humerus, Intervertebral
Disc, Joint, Ligament, Malunion, Non-union, Os-
teophyte, Patella, Radius, Sacrum, Scapula, Scol-
iosis, Sondylolisthesis, Spondylosis, Spine, Spur,
Tibia, Ulna, Union.

The clinicians were asked to select the preferred
summary in a pairwise fashion. This meant that
for each input document, they would be provided 2
summaries: A summary generated by method 1 and
another by method 2. The clinicians would not be
aware of the model or technique which generated
the summaries, in order to avoid any bias. The clin-
icians were asked to evaluate both the summaries
according to the following criteria:

1. Which summary do they prefer between the
two summaries?
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Dataset MIMIC-III ACI Bench MeQSum
Method Metric R-Ls B.S. S-C Q.E. Ent. R-Ls B.S. S-C Q.E. Ent. R-Ls B.S. S-C Q.E. Ent. Rank 1 Rank 2

Model

Standard Prompting + ICL + Stage 2 (Deberta) + Stage 3 Llama 3 8B 0.25 0.87 0.56 0.37 0.74 0.16 0.82 0.57 0.45 0.96 0.42 0.92 0.36 0.38 0.84 8.00 7.00
GPT-4 0.25 0.87 0.61 0.39 0.89 0.44 0.86 0.48 0.45 0.91 0.38 0.92 0.35 0.41 0.89 3.00 5.00

Standard Prompting + ICL + Stage 2 (Reflection) + Stage 3 Llama 3 8B 0.25 0.87 0.59 0.38 0.70 0.27 0.83 0.44 0.42 0.75 0.33 0.90 0.38 0.38 0.68 13.00 11.00
GPT-4 0.26 0.87 0.62 0.38 0.88 0.91 0.93 0.40 0.41 0.81 0.38 0.92 0.35 0.40 0.89 6.00 6.00

Element Aware Llama 3 8B 0.19 0.86 0.24 0.36 0.84 0.23 0.83 0.32 0.38 0.27 0.33 0.92 0.28 0.39 0.93 22.00 21.00
GPT-4 0.18 0.84 0.40 0.35 0.78 0.29 0.84 0.32 0.42 0.41 0.34 0.90 0.27 0.39 0.95 22.00 22.00
Gemma 7B 0.17 0.86 0.29 0.29 0.74 0.17 0.82 0.35 0.34 0.20 0.31 0.91 0.27 0.38 0.94 24.00 24.00

Element Aware + Stage 2 (Deberta) + Stage 3 Llama 3 8B 0.19 0.86 0.44 0.39 0.86 0.15 0.81 0.53 0.44 0.67 0.31 0.91 0.35 0.41 0.93 16.00 17.00
GPT-4 0.19 0.86 0.53 0.39 0.89 0.15 0.82 0.51 0.47 0.86 0.33 0.91 0.33 0.41 0.97 10.00 14.00

Element Aware + Stage 2 (Reflection) + Stage 3 Llama 3 8B 0.19 0.86 0.48 0.40 0.86 0.21 0.82 0.47 0.43 0.38 0.28 0.90 0.40 0.40 0.76 20.00 18.00
GPT-4 0.19 0.86 0.52 0.39 0.83 0.30 0.83 0.37 0.45 0.65 0.32 0.91 0.32 0.41 0.96 11.00 13.00

Element Aware + ICL Llama 3 8B 0.30 0.88 0.41 0.31 0.62 0.31 0.82 0.51 0.37 0.44 0.43 0.93 0.25 0.35 0.83 18.00 16.00
GPT-4 0.32 0.88 0.55 0.35 0.83 0.56 0.89 0.41 0.43 0.78 0.46 0.93 0.27 0.38 0.91 9.00 9.00
Gemma 7B 0.25 0.87 0.41 0.31 0.73 0.26 0.83 0.37 0.35 0.56 0.40 0.93 0.25 0.37 0.86 17.00 19.00

Element Aware + ICL + Stage 2 (Deberta) Llama 3 8B 0.19 0.86 0.24 0.36 0.87 0.12 0.82 0.39 0.38 0.67 0.33 0.92 0.28 0.39 0.94 21.00 23.00
GPT-4 0.30 0.88 0.57 0.35 0.88 0.42 0.87 0.46 0.42 0.93 0.44 0.93 0.27 0.38 0.92 7.00 10.00

Element Aware + ICL + Stage 3 Llama 3 8B 0.19 0.86 0.44 0.39 0.85 0.25 0.82 0.42 0.42 0.35 0.31 0.91 0.35 0.40 0.92 19.00 19.00
GPT-4 0.27 0.87 0.64 0.39 0.84 0.88 0.92 0.42 0.41 0.83 0.41 0.92 0.34 0.40 0.90 2.00 4.00

Element Aware + ICL + Stage 2 (Deberta) + Stage 3 Llama 3 8B 0.25 0.87 0.58 0.37 0.71 0.17 0.81 0.63 0.42 0.77 0.39 0.92 0.35 0.37 0.81 13.00 14.00
GPT-4 0.25 0.87 0.64 0.39 0.88 0.42 0.86 0.49 0.45 0.92 0.41 0.92 0.34 0.40 0.89 1.00 1.00

Element Aware + ICL + Stage 2 (PubMedBERT) + Stage 3 Llama 3 8B 0.27 0.87 0.56 0.37 0.62 0.29 0.81 0.54 0.42 0.59 0.39 0.92 0.36 0.37 0.81 11.00 8.00
GPT-4 0.27 0.87 0.64 0.39 0.83 0.90 0.92 0.41 0.42 0.80 0.41 0.92 0.34 0.39 0.90 3.00 2.00

Element Aware + ICL + Stage 2 (Reflection) + Stage 3 Llama 3 8B 0.24 0.87 0.60 0.39 0.64 0.27 0.81 0.58 0.42 0.49 0.32 0.90 0.39 0.37 0.65 15.00 11.00
GPT-4 0.27 0.87 0.65 0.39 0.84 0.88 0.92 0.42 0.42 0.80 0.40 0.92 0.34 0.39 0.88 5.00 2.00

Table A.2: Quantitative experiments showing the full performance and aggregated ranking of ablation studies on
the uMedSum pipeline on the three datasets. The base LLM and the method used are also included. The ranking
column represents the aggregated ranks for all the metrics. The table contains two rankings—with and without
entailment consideration—for an objective comparison, as our framework directly optimizes entailment metrics
in stage 2. Numbers in red + underlined represent the best performance for the column, and those in red indicate
the second-best performance. Numbers in blue + underlined represent the worst performance for the column, and
those in blue represent the second worst performance. The best-performing combination of all the datasets was used
for the main set of experiments provided in the paper. We see here that Element Aware + ICL + Stage 3 using the
DeBERTA NLI Model + Stage 3 is the best-performing model based on the ablation studies.

2. Is there any information that should be re-
moved from either of the summaries?

3. Is there any key information missing from
either of the summaries?

This allowed us to measure the general quality
of the summary, confabulations in generated sum-
maries, and missing key information in the gener-
ated summaries. We only selected cases where the
clinicians had a consensus on the preference be-
tween both summaries. We classify difficult cases
as cases where either of the summaries contains
confabulations or missing information according to
any of the clinicians based on their annotations. If
not, the summaries are considered straightforward.

The clinician evaluation methodology can be
summarised as follows:

• We provided the same set of pairwise compar-
ison samples to both clinicians.

• The clinicians:

– Compared two summaries of the same
input document from different methods
and provided their preference (quantita-
tive measure).

– Optionally provided subjective com-
ments if they perceived the sample as
difficult, along with their reasoning (qual-
itative measure).

• The clinicians initially gave their own prefer-
ence ratings independently and annotated the
difficulty of samples where necessary.

• In cases of disagreement in the quantitative
preference rating, they discussed to reach a
consensus for that specific sample.

• There is no agreement required on the diffi-
culty label (hard vs. easy), as it is subjective.
Any sample marked as difficult by either clin-
ician was considered a hard case; all others
were considered easy.

A.5 Correlation of Human Judgement vs
Automated Metrics

In order to gauge the alignment of automated met-
rics with clinician judgement, we conduct correla-
tion analysis of each metric with both the reference
free and the reference based metrics. We provide
the correlation statistics for all the evaluation cases,
and also consider the "Hard" cases as described in
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section A.4 The spearman correlation of all cases
and each metric with clinician preference is given
in table A.3.

Metric Correlation
Human and Entailment -0.1685
Human and BERTScore -0.1512
Human and QuestEval 0.3906
Human and ROUGE-Lsum 0.0690
Human and SummaC 0.1495

Table A.3: Spearman correlation of Human Judgement
vs Automated Metrics (All Cases)

QuestEval shows the strongest alignment with
human judgments, suggesting it is a relatively reli-
able metric in this context. RougeLsum and Sum-
maC shows some alignment but is not strongly in-
dicative of human preferences. Both these metrics
measure the amount of consistency of the generated
summary with the text in the input document/ ref-
erence summary. This might be indicative of a hu-
man bias towards finding similar words or phrases
from the input document in the generated summary,
which would lead to a generally lower preference
for summaries containing paraphrases of key in-
formation in the original document. It is also im-
portant to note that for entailment and BERTScore,
the correlation values are negative but might not be
totally indicative of the alignment since the values
for these two metrics do not show much variance
and are extremely close for generated summaries.
The table for correlations of human ratings with
automated metrics on "Hard" cases is given in table
A.4.

Metric Correlation
Human and Entailment -0.1581
Human and BERTScore -0.0598
Human and QuestEval 0.0598
Human and ROUGE-Lsum 0.1581
Human and SummaC 0.0598

Table A.4: Spearman correlation of Human Judgement
vs Automated Metrics (Hard Cases)

Hard Cases are particularly challenging for all
metrics, highlighting the need for advanced or spe-
cialized metrics tailored to clinical summarization.
None of the metrics perform well in hard cases,
with correlations close to zero or negative. QuestE-
val, which was the most reliable in "All Cases,"
drops significantly in alignment, suggesting that

harder cases require deeper understanding or dif-
ferent metrics. In challenging scenarios, evaluators
might rely more on personal judgment or expe-
rience, introducing subjectivity. This subjectiv-
ity can result in less consistent evaluations across
different individuals, thereby reducing the overall
correlation with objective metrics like QuestEval.
Additionally, Complex cases likely present com-
plex or ambiguous information which may exacer-
bate cognitive demands and inherent biases, such
as confirmation bias or anchoring, where evalua-
tors might favor information that aligns with their
expectations or be unduly influenced by initial im-
pressions ("Cognitive bias in clinical medicine”,
O’Sullivan et al.). These biases can further dimin-
ish the alignment between human judgments and
automated metrics. On the flip side, QuestEval’s
reduced alignment with human evaluations in chal-
lenging scenarios may also indicate that the metric
may struggle to capture the nuanced information
present in complex clinical texts. This suggests
that QuestEval might not fully account for the intri-
cacies inherent in more difficult cases. RougeLsum
shows a slight improvement but still does not cor-
relate strongly with human judgment. This also
validates the reference summaries in the datasets as
being reliable even for hard cases. It is important to
note here that for the hard cases the sample size is
small and less statistically significant as compared
to all the cases.

A.6 Implementation Details
In Stage 2, we use two NLI models for our exper-
iments, DeBERTa v3 finetuned on NLI datasets
(He et al., 2021; Laurer, 2023), as well as biomedi-
cal finetuned PubMedBERT NLI model (Gu et al.,
2021; lighteternal, 2023). To obtain the DSU’s,
sentence level decomposition is performed using
PySBD (Sadvilkar and Neumann, 2020) and atomic
fact decomposition is obtained from the model
used in Stage 1. Additionally, the modular setup
of uMedSum allows us to compare the confabula-
tion detection of dedicated NLI models with LLM-
based techniques such as Self-Reflection (Ji et al.,
2023) as an ablation study.

For Stage 3, we use all-MiniLM-L6-v2 (Wang
et al., 2020) as the encoder for key information ex-
traction and missing information detection, follow-
ing the Sentence-BERT (Reimers and Gurevych,
2019) framework. Additionally, we set covmin to
0.4; this parameter can be tuned based on the spe-
cific coverage metrics or models employed. When
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merging missing information, we use GPT-2 (Rad-
ford et al., 2019) to calculate the perplexity and
rearrange the added sentences to improve fluency
and coherence (Sharma et al., 2024).

Formally, let Si represent the summary gener-
ated by the i-th summarization technique. The
quality of this summary is evaluated using a set
of metrics Mj , where j denotes the specific metric
used (e.g., ROUGE-L, BERTScore, SummaC). The
score for a given metric Mj applied to a summary
Si is denoted as Mj(Si). The final evaluation score
for a summary Si generated by a specific method
is determined by aggregating its rank across all
metrics:

Ranki =
n∑

j=1

Rank(Mj(Si)), (2)

where Rank(Mj(Si)) is the rank of the method
based on metric Mj , and n is the total number of
metrics used. The method with the lowest Ranki is
considered the most effective. Since NLI is used
directly in confabulation detection in Stage 2, we
provide two separate rankings for a more objective
comparison: one considering entailment and one
without. Similar to Van Veen et al. (2024), we
use 250 sampled examples for each dataset in our
evaluations due to time and resource constraints.

A.7 Hyperparameter Search
For Stage 2 and Stage 3 of uMedSum, we perform a
qualitative analysis of threshold values. For Stage
2, we perform grid search for Entailment (Te), Con-
tradiction (Tc), Atomic Fact Entailment (Ta), while
for stage 3, we perform grid search for Number
of Key Sentences to Extract (topM) and Minimum
Coverage Score (covmin) thresholds. This analyis
is performed on a subset of all the datasets used for
evaluation, but sample non-intersecting, separate
data points from each dataset for fixing thresholds
so as to not overfit on the test sample. 40 such
data points from each dataset are used for fixing
the thresholds. We used summaries generated by
GPT-4 + ICL + uMedSum for the threshold selection
process.
For Stage 2, in order to optimize the process of
selecting the optimal thresholds, we first start with
Te and Tc fixed to their most extreme values to
maximise the condition for "uncertain" DSU’s to
be split into atomic fact. In this setting, we then
find the optimal Ta which can be reasonably used
without overzealous removal or retention of infor-
mation presented in atomic facts. Next, We fix

Table A.5: Summary of prompts

Key Description
MIMIC-III Summarize the radi-

ology report findings
into an impression in
35 words or less

MeQSum Summarize the patient
health query into one
question of 15 words
or less

ACI-Bench Summarize the pa-
tient/doctor dialogue
into an assessment
and plan

Te and Ta and find the optimal values for Tc, and
finally use the same process to find the optimal
values for Te. The final thresholds used for Stage 2
are provided below:

Te = 0.9, (3)

Tc = 0.8, (4)

Ta = 0.5. (5)

Similar results were found using both the NLI
models used in the ablation studies, which can
be attributed to almost bimodal distribution of
entailed and contradicting facts in the generated
summaries.

For Stage 3, in order to optimize the process
of selecting the optimal thresholds, we first keep
covmin fixed to higher bound to maximise the
chance that kidoc is selected as missing informa-
tion and find the optimal topM. Next, we fix topM
to find optimal values for covmin. The final tuned
thresholds used for Stage 3 are provided below:

topM = 2, (6)

covmin = 0.4. (7)

A.8 Prompts

Table A.5 provides the dataset specific prompts
used for the experiments. These prompts were
used as-is for the Standard Prompting experiments.
For other methods, these prompts were combined
with method specific instructions and logic, which
can be found in the relevant implementations. Each
dataset ensures the protection of personal informa-
tion in the case of patient data.
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A.9 Ablation Study

Table A.2 presents the full ablation study per-
formed. We start from the best-performing sum-
marization method from the benchmark - Element
Aware summarization and first add each stage of
uMedSum separately. Finally, we test on separate
configurations of confabulation removal on the end-
to-end uMedSum pipeline. We first conduct an abla-
tion study using Standard Prompting + ICL, which
was established as the previous SOTA and com-
pare the impact of LLM-based techniques, such
as self-reflection, with our proposed Stage-2 using
DeBERTa. We find that for standard prompting,
self-reflection performs better.

We then conduct a full ablation study using our
best-performing technique (Element Aware sum-
marization). In this ablation, we begin with the
base Element Aware method, and incrementally
add different stages of uMedSum to the generated
summary. Thus, in the next step, we implement
Stage 2 with DeBERTa as well as Self-reflection,
followed by task adaptation using ICL. Since the
results suggest that NLI-based Stage 2 performs
better than self-reflection-based stage 2, we use
DeBERTa-based stage 2 and evaluate the impact
of Element Aware + ICL with stage 2 and stage 3
separately.

Finally, we implement ablations on the final
framework, where we again implement 2 different
NLI models as well as self-reflection and evaluate
the impact on the final uMedSum results. The abla-
tion results suggest that the final uMedSum gives the
most balanced results, with all 5 ablations using
the full framework achieving 5 out of the top 6
ranks. Additionally, using Stage 2 and Stage 3 to-
gether complements performance, as seen from the
fact that there is an improvement in both reference-
based as well as reference-free metrics in Element
Aware + ICL + Stage 2 (DeBERTa) + Stage 3 as
compared to Element Aware + ICL + Stage 2 (De-
BERTa) and Element Aware + ICL + Stage 3.

We also confirm that Element Aware outper-
forms Standard Prompting (Previous SOTA) for
both NLI-based as well as self-reflection-based
methods for Stage 2, further reinforcing the bench-
mark results.

The results show that the best rank is obtained
by uMedSum using DeBERTa as the NLI module
for confabulation detection in Stage 2 achieves the
best performance. The experiments with Stage 3
are ranked high since they directly optimize for the
reference-based metrics, which might not always
necessarily lead to better abstractive summaries but
do improve the reference-based metrics.

Considering a holistic improvement across both
reference-based and reference-free metrics, the end-
to-end pipeline for uMedSum still performs the best.

A.10 Compute Details

1. We used Google Cloud for running our experi-
ments. More specifically, The g2-standard-48
machine type was used for running all experi-
ments. It includes 4 NVIDIA L4 GPUs, with
a total GPU memory of 96 GB VRAM, and
CPU memory of 192 GB. Ollama (Ollama,
2024) was used to deploy and use a standard
interface for using all the open source models.

2. Our core implementation ourtside of the mod-
ules mentioned in the main paper used the
Transformers (Wolf et al., 2020), Pytorch
(Paszke et al., 2019) and LangChain (Chase,
2022) frameworks.

B End-To-End Examples and Qualitative
Analysis

We provide examples of Medium and High per-
forming based on QuestEval in the following ex-
amples.

B.1 Example 2 (Medium QuestEval)

Input Text
S: Study is being compared to prior exam from

[2188-7-10]. No changes are seen compared to
prior examination. White and [**Doctor Last
Name **] matter differentiation is normal. No
intraaxial or extraaxial masses or hemorrhages are
identified. No midline shift or mass effect is seen.
Ventricles and subarachnoid spaces, as well as basal
cisterns are within nromal limits. Patchy areas
of hypodensity are seen in the periventricular and
deep white matter of both cerebral hemispheres,
most likely consistent with chronic microvascular
infarction. Calcification of the basal ganglia is seen
bilaterally, which is stable. Posterior fossa is within
normal limits. Surrounding osseous structures are
unremarkable. s consistent with chronic microvas-
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cular infarction. If clinically indicated, MRI is
more sensitive for acute infarction.

Initial Generated Summary (Stage 1) No
changes from prior exam. Normal white matter dif-
ferentiation. No masses or hemorrhages. Chronic
microvascular infarction and calcification of basal
ganglia observed. MRI recommended if clinically
indicated.

Entailment Scores (Stage 2) Entailment scores
are given in table B.6.

DSU Ent. Neut. Contr.
No changes from prior
exam.

7.2 1.9 90.8

Normal white matter differ-
entiation.

4.6 0.5 94.8

No masses or hemorrhages. 84.1 0.5 15.4
Chronic infarction and BG
calcification.

99.9 0.1 0.1

MRI recommended if indi-
cated.

0.3 99.6 0.0

Table B.6: Entailment Scores (Stage 2)

Recursive Decomposition and Atomic DSU’s

• DSU: No masses or hemorrhages.

– Faithful Atomic DSUs:

* No masses

* No hemorrhages
– Confabulated Atomic DSUs: None

Confabulated DSU (Stage 2)
[’No changes from prior exam. ’, ’Normal white

matter differentiation. ’, ’MRI recommended if
clinically indicated.’]

Faithful DSU (Stage 2)
[’No masses’, ’No hemorrhages’, ’Chronic mi-

crovascular infarction and calcification of basal
ganglia observed. ’]

Source Document Key Sentences (Stage 3)
[’patchy areas of hypodensity are seen in the

periventricular and deep white matter of both
cerebral hemispheres, most likely consistent with
chronic microvascular infarction.’, ’calcification
of the basal ganglia is seen bilaterally, which is
stable.’]

Generated Summary Keyphrases (Stage 3)
[’microvascular infarction and calcification of

basal ganglia observed’, ’no masses no hemor-
rhages chronic microvascular infarction and’, ’no
hemorrhages chronic microvascular infarction and
calcification’]

Missing Info (Stage 3)
[]

Final Output Summary
No masses, No hemorrhages. Chronic microvas-

cular infarction and calcification of basal ganglia
observed.

B.1.1 Qualitative and Error Analysis
This summary recieved a questeval score of 0.34.
In this case there is some excessive removal of faith-
ful information (such as ’No prior changes from
previous exam’, which is faithful to the source doc-
ument). Additionally, this example demonstrates
our recursive decomposition, where the unit ’No
masses or haemorrhages’ does not cross the en-
tailment threshold and is further broken down into
atomic units for further checks. No missing infor-
mation is found since the key sentences found from
the original document are covered in the generated
summary. Implementing an adaptive computation
of missing information as discussed before could
improve the summary quality

B.2 Example 3 (High QuestEval)
Input Text S: A supine portable chest radiograph is
compared to the immediately preceding chest film
obtained earlier the same day at 6:06 hours. The
lung volumes are now mildly increased. Heart size
is normal. The chest film remains slightly rotated.
There is a mild ground-glass appearance of the lung
parenchyma bilaterally, not significantly changed
compared to the prior study. There is currently no
radiographic evidence of pneumothorax.

Initial Generated Summary (Stage 1) Mildly
increased lung volumes with mild ground-glass
appearance of lung parenchyma bilaterally, and
slightly rotated chest film.

Entailment Scores (Stage 2) Entailment scores
are given in table B.7.

DSU Ent. Neut. Contr.
Mildly increased lung vol-
umes, ground-glass lungs,
rotated chest film.

99.9 0.0 0.0

Table B.7: Entailment Scores (Example Case)

Confabulated DSU (Stage 2)
[]
Faithful DSU (Stage 2)
[’Mildly increased lung volumes with mild

ground-glass appearance of lung parenchyma bilat-
erally, and slightly rotated chest film.’]

Source Document Key Sentences (Stage 3)
[’there is a mild ground-glass appearance of

the lung parenchyma bilaterally, not significantly
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changed compared to the prior study.’, ’a supine
portable chest radiograph is compared to the im-
mediately preceding chest film obtained earlier the
same day at 6.06 hours.’]

Generated Summary Keyphrases (Stage 3)
[’lung parenchyma bilaterally and slightly ro-

tated chest film’, ’mild ground glass appearance of
lung parenchyma’, ’increased lung volumes with
mild ground glass’, ’glass appearance of lung’]

Missing Info (Stage 3)
[’a supine portable chest radiograph is compared

to the immediately preceding chest film obtained
earlier the same day at 6.06 hours.’]

Final Output Summary
a supine portable chest radiograph is compared

to the immediately preceding chest film obtained
earlier the same day at 6.06 hours. Mildly increased
lung volumes with mild ground-glass appearance
of lung parenchyma bilaterally, and slightly rotated
chest film.

B.2.1 Qualitative and Error Analysis
This summary recieved a questeval score of 0.52.
The high score is a combination of effective ad-
dition of key missing information, along with a
high-quality initial summary which contains no
confabulations.
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