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Abstract

Humans possess a remarkable ability to inter-
pret underspecified ambiguous statements by
inferring their meanings from contexts such as
visual inputs. This ability, however, may not
be as developed in recent pre-trained vision-
language models (VLMs). In this paper, we
introduce a novel probing dataset called FO-
CUS to evaluate whether state-of-the-art VLMs
have this ability. FOCUS consists of underspec-
ified sentences paired with image contexts and
carefully designed probing questions. Our ex-
periments reveal that VLMs still fall short in
handling underspecification even when visual
inputs that can help resolve the ambiguities are
available. To further support research in un-
derspecification, FOCUS will be released for
public use. We hope this dataset will inspire fur-
ther research on the reasoning and contextual
understanding capabilities of VLMs.

1 Introduction

Underspecification is common in human communi-
cation. It refers to the use of expressions that are in-
tentionally left incomplete or vague. It relies on the
listener’s ability to infer the missing information
from context, because humans are adept at inter-
preting underspecified communication by drawing
on shared knowledge, prior experiences, and con-
textual cues such as body language, tone, or visual
information. This capability enables efficient and
flexible communication, where explicit details are
often unnecessary for mutual understanding. For
example, suppose two people are presented with
the image in Figure 1 and one person mentions that
“the girl attached the sticker to the notebook. It is
yellow.” The other person can easily infer that “it”
here refers to the notebook instead of the sticker,
based on the visual context. We use the term un-
derspecification reasoning to refer to this ability to
use external context, shared knowledge or logical
reasoning to handle underspecified statements.

Figure 1: An example of an underspecified sentence
with a visual context from our FOCUS dataset.

While humans can easily handle underspecified
sentences by incorporating visual context to fill in
the missing information, do vision-language mod-
els (VLMs) have similar underspecification reason-
ing abilities? In an early work, Berzak et al. (2015)
attempted to answer this question by building a spe-
cialized model that operates on first-order logic rep-
resentations of different interpretations of an under-
specified ambiguous sentence with the help of an
external object detector. However, in recent years,
general-purpose pre-trained VLMs such as LLaVA-
NeXT (Liu et al., 2024) have demonstrated strong
zero-shot vision-language understanding abilities
such as visual question answering. A natural ques-
tion to ask is whether these pre-trained VLMs can
use visual input to disambiguate underspecified sen-
tences. To the best of our knowledge, this research
question has not been investigated.

In this paper, we empirically evaluate the capa-
bilities of recent pre-trained VLMs w.r.t. under-
specification, using a new probing dataset we intro-
duce, called FOCUS (Fully Observed Context with
Underspecified Sentences). Our study is motivated
by our belief that underspecification reasoning is a
critical aspect of human communication and thus
also a desirable ability for AI models.

Our FOCUS dataset consists of 2000 image-text
pairs, where each pair contains an underspecified
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English sentence together with an AI-generated
image that provides full visual context. FOCUS
also comes with a set of probing questions. We
use FOCUS to evaluate six pre-trained VLMs:
GPT-4o-mini (OpenAI, 2024), LLaVA-NeXT (Liu
et al., 2024), CogVLM (Wang et al., 2023), MoE-
LLaVA (Lin et al., 2024), Qwen2-VL (Wang et al.,
2024), and InstructBLIP (Dai et al., 2023). These
models can directly interact with end-users through
natural language conversations, making them read-
ily available for wide adoption in end-user applica-
tions.

We center our evaluation on the following re-
search questions. R1: Can a VLM correctly in-
terpret an underspecified sentence when visual
context is given? R2: How does a VLM’s inter-
pretation of an underspecified sentence without
any visual context change after visual context is
given? R3: Does an underspecified sentence affect
a VLM’s visual perception abilities?

Our experiments show that state-of-the-art pre-
trained VLMs struggle to handle underspecified
sentences effectively, even when provided with vi-
sual context. The best-performing models (GPT-
4o-mini, LLaVA-NeXT, and CogVLM) manage to
disambiguate less than 60% of the time. However,
compared to cases where no visual context is avail-
able, we observe that several pre-trained VLMs
still benefit from visual inputs when attempting dis-
ambiguation. On the other hand, underspecified
sentences appear to negatively impact the models’
visual perception abilities. In addition, we found
that VLMs frequently provide inconsistent answers.
Notably, all the underspecification cases we exam-
ine in this study involve ambiguous sentences. Al-
though there are other forms of underspecification
that do not involve ambiguity, those are beyond the
scope of this work. FOCUS dataset will be made
publicly available at https://github.com/K-Square-
00/FOCUS.

2 Related Work

Underspecification. Semantic underspecifica-
tion occurs when a sentence’s meaning is incom-
plete, thus requiring contextual inference (Egg,
2010; Harris, 2020). Some recent studies have as-
sessed pre-trained language models (LMs) on such
scenarios. Wildenburg et al. (2024) introduced the
DUST dataset and found that LMs struggle more
with interpreting than identifying underspecified
sentences. Similarly, Liu et al. (2023) studied the

capabilities of LLMs to handle ambiguities through
the task of textual entailment. However, both stud-
ies focus on language models rather than vision-
language models. Pezzelle (2023) studied under-
specification with VLMs and showed that SOTA
VLMs struggle with underspecification. However,
their study is limited to image-text association
based on the CLIP model (Radford et al., 2021),
without studying VLMs’ disambiguation abilities.
Our work, in comparison, evaluates SOTA VLMs’
abilities to disambiguate underspecified ambiguous
sentences with visual contexts.

It is worth noting that semantic underspecifica-
tion is often studied alongside ambiguity. The key
difference is that some underspecified sentences
have a dominant interpretation (e.g., “Don’t spend
too much” (Wildenburg et al., 2024)), while am-
biguous ones have multiple interpretations.

Pre-trained vision-language models. Early
VLMs like ALBEF (Li et al., 2021), X2-
VLM (Zeng et al., 2023), and CLIP (Radford
et al., 2021) lacked built-in visual question an-
swering capabilities. With the rise of instruction-
tuned LLMs, newer VLMs integrate visual per-
ception via parameter-efficient fine-tuning of
LLMs. Examples include BLIP-2 (Li et al.,
2023a), LLaVA-Next (Liu et al., 2024), Instruct-
BLIP (Dai et al., 2023), trainable visual experts
like CogVLM (Wang et al., 2023), and multi-stage
pipelines such as MoeLlaVA (Lin et al., 2024) and
Qwen2-VL (Wang et al., 2024).

Evaluation of VLMs. VLMs have been eval-
uated in many different aspects such as compo-
sitional reasoning (Thrush et al., 2022), social
bias (Zhou et al., 2022), and hallucination (Li et al.,
2023b). However, evaluating VLMs’ abilities to
handle underspecification or ambiguity has not
been systematically studied. Our work therefore
investigates this underexplored problem.

3 The FOCUS Dataset

To systematically evaluate pre-trained VLMs’ un-
derspecification reasoning abilities using visual
context, we first construct a new evaluation dataset.
Previously, Berzak et al. (2015) released the LAVA
dataset for similar purposes. However, the visual
contexts in LAVA are videos, which cannot be han-
dled by most current pre-trained VLMs. If we take
still images from LAVA’s videos, we encounter two
problems: (1) Some of the ambiguous sentences
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in LAVA involve actions and require temporal in-
formation from the videos for disambiguation; and
(2) the resolution of the still images extracted from
LAVA’s videos is low, making it often hard even
for humans to rely on the visual information for
disambiguation. We therefore need an appropriate
new dataset.

In this section, we present FOCUS (Fully Ob-
served Context with Underspecified Sentences), a
dataset with 2000 (image, sentence) pairs to serve
the purpose above. Sentences in FOCUS are un-
derspecified with linguistic ambiguities, and the
accompanying images show one of the two inter-
pretations of the corresponding ambiguous sen-
tence. FOCUS covers diverse types of linguistic
ambiguities, ranging from prepositional phrase and
verb phrase attachment to ellipsis. It makes a dis-
tinction between ambiguities that require visual
context to resolve and ambiguities that can poten-
tially be resolved through commonsense reasoning.
The dataset also comes with a set of ternary (i.e.,
yes/no/unsure) questions to probe a VLM and test
its ability to resolve the ambiguities in the under-
specified sentences.

3.1 Underspecified Sentences
Following Berzak et al. (2015), we include the
following six types of linguistic ambiguities that
are commonly observed in underspecified sen-
tences: prepositional phrase (PP) attachment, verb
phrase (VP) attachment, conjunction, logical form,
anaphora, and ellipsis. The details of each type
can be found in Appendix A. Furthermore, we dis-
tinguish between two kinds of underspecification:
We use the term strong underspecification to refer
to ambiguities that require external context (in our
case, visual context) to resolve. For instance, in the
example of Figure 1, the pronoun “it” is ambiguous
because it could refer to either the sticker or the
notebook. This is an example of an anaphora am-
biguity, but meanwhile, this ambiguity cannot be
resolved until we can see whether it is the sticker
or the notebook that is yellow. On the other hand,
we use the term weak underspecification to refer to
ambiguities that can likely be resolved using com-
mon sense and logical reasoning. The well-known
Winograd Scheme Challenge (WSC) dataset (Ben-
der, 2015) consists of such cases. For example,
consider the sentence “the fish ate the worm be-
cause it was tasty”. Although this sentence also
contains anaphora ambiguity, by applying common-
sense knowledge, one can almost be certain that

the pronoun “it” here refers to the worm rather than
the fish. As we can see, such cases of weak under-
specification do not require additional visual input
to help with the disambiguation. The reason we
include examples of weak underspecification in FO-
CUS is that in case a pre-trained VLM has limited
commonsense reasoning capabilities (which has
been observed with some VLMs such as Instruct-
BLIP and LLaVA (Zhou et al., 2023)), we wish
to test whether the VLM can benefit from explicit
visual context to handle weak underspecification.

Based on our classification above, we manually
choose a subset of the sentence templates from
LAVA (listed under the CC-by-4.0 license) to cre-
ate our strong underspecification examples and a
subset of the WSC sentences (listed under the CC-
by-4.0 license) as templates to create our weak
underspecification examples. When choosing sen-
tence templates for both strong and weak under-
specification, we cover the six different types of
linguistic ambiguity. We then populate the tem-
plates with various common and realistic scenarios
and objects to create a diverse dataset. Some ex-
amples of underspecified sentences in FOCUS are
shown in Table 1.

3.2 Contextual Images
After collecting the set of underspecified sentences,
our next step is to create accompanying images that
correspond to one of the two interpretations for the
strongly underspecified sentences, and to the more
“reasonable” interpretation based on common sense
for the weakly underspecified sentences. To facil-
itate image generation, we first expand each sen-
tence into a fully specified version. We then input
the fully specified sentences into ChatGPT, pow-
ered by DALL-E-3, to generate the corresponding
images. In the case when a generated image does
not correspond to the input sentence, we discard
it and repeatedly refine the fully specified input
sentence until a valid image is generated. On aver-
age, we have to discard about one invalid image for
every 10 valid images generated. This image gen-
eration process is illustrated through an example in
the Image Generation stage in Figure 2.

For a strongly underspecified sentence, we al-
ways generate two images corresponding to the
two interpretations of the sentence. This is because
previous studies have found that for some strongly
underspecified sentences, humans may have pre-
ferred or default interpretations even when no vi-
sual cues are available (Dwivedi, 2013; AnderBois
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Strong/Weak Ambiguity Type Example Underspecified Sentence

Strong
Underspecification

Anaphora The boy held the cup and the pen. It is white.
Conjunction The girl held the black bag and pen.
Ellipsis The girl is looking at the clock, also the man.
Logical Form The woman and the boy held a book.
PP The boy left the girl with tears.
VP The man looked at the girl walking on the street.

Weak
Underspecification

Anaphora The drain is clogged with hair. It has to be removed.
Conjunction The boy held the yellow hat and snow.
Ellipsis The woman is eating the cake, also the boy.
Logical Form The man and the woman wore a watch.
PP The boy answered the question with confidence.
VP The boy sat on the chair doing the homework.

Table 1: Examples of underspecified sentences.

et al., 2012). For example, for sentences like “every
kid climbed a tree,” it has been found that humans
prefer a plural interpretation, i.e., interpreting the
sentence as “every kid climbed a different tree.”
We used three examples of this kind to test VLMs
and found that several VLMs showed a similar
preference regardless of the image shown. (See
Appendix B.) Therefore, to ensure that the contex-
tual images are not biased towards any human- or
VLM-preferred interpretations, we always include
both interpretations of a strongly underspecified
sentence when generating contextual images.

The image creation process is carried out in-
dependently by two authors of this paper, who
cross-validate each other’s selections. Only im-
ages agreed upon by both researchers to be valid
images corresponding to the given sentences are
retained. The Cohen’s kappa score for the image
creation process is 0.93, indicating a near perfect
level of agreement.

3.3 Probing Questions

Our primary research question is whether state-
of-the-art pre-trained VLMs can effectively han-
dle underspecified sentences when provided with
visual context through an input image. Just like
SOTA LLMs, these SOTA VLMs are typically used
in a zero-shot manner through natural language
prompts. Hence, we propose a set of natural lan-
guage questions as probes to assess these VLMs’
abilities to handle underspecification.

Pre-trained models like LLaVA-NEXT (Liu
et al., 2024) often generate verbose responses to
open-ended questions, which complicates the au-
tomated analysis of their answers. To address this
issue, we design ternary questions that enable effi-
cient response processing by checking if the answer
starts with “yes,” “no,” or “unsure.” The inclusion

of “unsure” accounts for scenarios where ambigu-
ity cannot be resolved and a human would answer
“unsure.”

The first set of questions is designed to directly
check whether a pre-trained VLM can resolve the
ambiguity in the context of the visual input, i.e., the
accompanying image. For each sentence template,
we design two question templates, each correspond-
ing to one of the two interpretations of the ambigu-
ous sentence. For example, given the ambiguous
sentence “the woman and the boy held a book”,
one question asks whether the woman and the boy
held the same book and the other asks whether the
woman and the boy held different books. Examples
of questions for each type of linguistic ambiguity
can be found in Appendix C. We expect the model
to answer “yes” to one of the questions and “no” to
the other question, according to the image given.
By measuring how often a VLM correctly answers
these questions, we can judge the underspecifica-
tion reasoning abilities of the VLM. We refer to
this first setting as Setting 1.

To check whether a VLM indeed uses the pro-
vided visual context to facilitate disambiguation,
we also want to test whether a VLM is confused
and answers “unsure” when no visual context is
given. Specifically, we expect a VLM to answer
“unsure” when a strongly underspecified sentence
is given. Therefore, we design another setting
where the same questions are given to a VLM but
an uninformative image such as a blank image in
black or arguably a random image is provided. For
weakly underspecified sentences, which can be dis-
ambiguated through commonsense reasoning, ide-
ally a VLM should give a firm “yes” or “no” answer
rather than “unsure” based on common sense, even
when an uninformative image is provided. We re-
fer to this setting where uninformative images are
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Figure 2: Examples of probing questions.

provided as Setting 2.
Finally, we consider a third setting where we

give the original informative image and directly
ask the questions without giving the underspeci-
fied sentences. This makes sense for VLMs be-
cause the image contains all the information about
the scenario described in the (underspecified) sen-
tence. Therefore, even without the sentence, ideally
a VLM should also be able to answer the question
based on the visual input. We refer to this setting
as Setting 3.

4 Measurements for Evaluation

We intend to use the images, underspecified sen-
tences, and probing questions in FOCUS to evalu-
ate pre-trained VLMs’ underspecification reason-
ing abilities, or more concretely, to answer the
research questions outlined in Section 1. In this
section, we design several measurements that can
facilitate our analysis later to answer those research
questions. We first introduce some notation. Let
(S, I) denote an underspecified sentence and its
accompanying image that depicts one of the two
interpretations of the sentence. Let QI denote the
ternary question for (S, I) where an answer of “yes”
matches the intended interpretation of S based on I .
Let Q′

I denote the ternary question for (S, I) where
an answer of “yes” corresponds to the alternative
interpretation of S that is not depicted in I .

Answer consistency. In general, given a pair
(S, I), we expect a VLM to give consistent answers

to QI and Q′
I , that is, the answers to the two ques-

tions do not contradict each other. Concretely, we
regard a VLM’s answers to QI and Q′

I as consis-
tent (but not necessarily correct) if and only if one
of the following is true:
1) The answer to QI is “yes” and to Q′

I is “no.”
2) The answer to QI is “no” and to Q′

I is “yes.”
3) The answers to QI and Q′

I are both “unsure.”
Any other answer combination is regarded as

inconsistent.

R1: Can a VLM correctly interpret an
underspecified sentence when visual context is
given?

To answer this research question, we want to mea-
sure the percentage of probing questions that can
be answered correctly and consistently based on
the scenario depicted in the given image. We define
the following metric:
Disambiguation Accuracy (DA): Given a model
M and under Setting 1 defined in Section 3.3, the
DA of M is the percentage of (S, I) pairs for which
M’s answers to QI and Q′

I are consistent and the
answers correspond to the interpretation of S de-
picted by I .

R2: How does a VLM’s interpretation of an
underspecified sentence change after visual
context is given?

To answer this question, we want to observe model
M’s answers to the probing questions when the
visual context is not given so that we can compare
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them with M’s answers after the visual context is
provided. When the visual context is not given, we
expect M to be confused about the meaning of an
underspecified sentence, at least for the strongly
underspecified sentences. But this confusion may
be manifested in different ways. Ideally we ex-
pect M to consistently answer “unsure” to both
questions if it recognizes that the sentence is am-
biguous, but if M gives inconsistent answers to the
two questions, it can also be regarded as a sign of
confusion. Furthermore, we also want to know how
often M gives consistent answers that correspond
to each interpretation of the sentence. In particular,
this is useful when we examine the weakly under-
specified sentences, because this allows us to check
whether M uses any relevant prior commonsense
knowledge to pick the more likely interpretation.
We therefore define the following measurements:

Unsure Rate (UR): Given a model M and under
Setting 2, the UR of M is the percentage of (S, I)
pairs for which M’s answers to QI and Q′

I are
both “unsure”. Note that under Setting 2, instead
of I , a blank image is given to model M.

Inconsistency Rate (IR): Given a model M and
under Setting 2, the IR of M is the percentage of
(S, I) pairs for which M’s answers to QI and Q′

I

are inconsistent (as defined earlier).

Consistency Rate 1 (CR1): Given a model M and
under Setting 2, the CR1 of M is the percentage
of (S, I) pairs for which M’s answers to QI and
Q′

I are consistent and the answers correspond to
the interpretation depicted by I .

Consistency Rate 2 (CR2): Given a model M and
under Setting 2, the CR2 of M is the percentage of
(S, I) pairs for which M’s answers to QI and Q′

I

are consistent and the answers correspond to the
alternative interpretation that is not depicted by I .

It is worth noting that for strongly underspecified
sentences, when visual context is not given (i.e.,
under Setting 2), we expect M to have similar
CR1 and CR2, because the model should not fa-
vor either interpretation in this case. For weakly
underspecified sentences, on the other hand, M
might favor the interpretation depicted by I even
though I is not given, because I depicts the more
“reasonable” interpretation based on common sense.
So for weakly underspecified sentences, a model’s
CR1 might be higher than CR2.

R3: Does an underspecified sentence affect a
VLM’s visual perception abilities?

The probing questions in FOCUS can actually be
answered based solely on the image given without
the underspecified sentence. Therefore, the third re-
search question asks whether giving an underspec-
ified sentence to a model may affect the model’s
ability to use visual perception alone to answer the
questions. To answer this research question, we
can measure M’s accuracy of correctly answering
the questions based on the image without the un-
derspecified sentence. Therefore, we introduce the
following measurement:
Visual Perception Accuracy (VPA): Given a
model M and under Setting 3, the VPA of M
is the percentage of (S, I) pairs for which M’s
answers to QI and Q′

I are consistent and the an-
swers correspond to the interpretation depicted by
I . Note that under Setting 3, S is not given to the
model.

5 Experiments

5.1 VLMs for Evaluation

We focus on six of the latest VLMs: GPT-4o-
mini (OpenAI, 2024), LLaVA-NeXT (Liu et al.,
2024), CogVLM (Wang et al., 2023), Qwen2-
VL (Wang et al., 2024), MoE-LLaVA (Lin et al.,
2024), and InstructBLIP (Dai et al., 2023). Model
configuration details can be found in Appendix D.
We also conduct a sanity check to verify the basic
visual perception abilities of the VLMs and find
that most models can achieve over 97% accuracy
on object detection. See Appendix E for details.

5.2 Main Results

R1: Can a VLM correctly interpret an under-
specified sentence when visual context is given?

The key metric here is DA. As can be seen from
Table 2, across all models including GPT-4o-mini,
when visual context is given, the performance mea-
sured by DA is considerably low, with scores rang-
ing from 0.8% to 59.7%. For both strong and
weak underspecifications, CogVLM, GPT-4o-mini,
and LLaVA-NeXT are the stronger models, achiev-
ing DA scores between 50% and 60%. Mean-
while, Qwen2-VL, MoE-LLaVA, and InstructBLIP
achieve much lower DA scores, all below 40%,
with InstructBLIP giving extremely poor results of
less than 2%. A closer look at InstructBLIP reveals
that it suffers severely from generating inconsis-
tent answers. These DA scores across all models
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With Visual Context Without Visual Context

Strong/Weak Model DA UR IR CR1 CR2

Strong
Underspecification

GPT-4o-mini 55.6 41.2 36.0 11.3 11.6
LLaVA-NeXT 52.0 3.1 64.8 16.0 16.0
CogVLM 59.7 0.0 58.3 20.8 20.8
Qwen2-VL 29.0 25.9 66.0 3.5 4.5
MoE-LLaVA 36.1 0.0 54.9 22.8 22.2
InstructBLIP 0.8 0.0 97.8 1.1 1.1

Weak
Underspecification

GPT-4o-mini 59.1 22.2 28.4 49.1 0.3
LLaVA-NeXT 56.3 2.0 70.5 22.2 5.4
CogVLM 56.5 0.0 41.8 47.4 10.8
Qwen2-VL 39.8 9.9 67.0 18.8 4.3
MoE-LLaVA 26.4 0.0 62.5 28.1 9.4
InstructBLIP 1.4 0.0 94.3 3.7 2.0

Table 2: Comparison of VLMs’ interpretations of underspecified sentences with and without visual context.

indicate that VLMs still struggle to interpret under-
specified sentences when visual context is provided.
Considering the models’ high object detection ac-
curacy, the results suggest that although current
VLMs are adept at identifying visual elements in
isolation, they fail to integrate these elements mean-
ingfully with underspecified linguistic input.

R2: How does a VLM’s interpretation of an un-
derspecified sentence change after visual context
is given?

To answer this question, we want to compare
a VLM’s interpretations of an underspecified sen-
tence before and after visual context is given. We
can use the defined metrics UR, IR, CR1 and CR2
to characterize a VLM’s interpretation of a sentence
without visual context. We separately discuss the
strongly and the weakly underspecified sentences.

For strongly underspecified sentences, when no
visual context is given, ideally we expect a VLM
to consistently answer “unsure” (measured by the
unsure rate UR), but inconsistent answers is also
a (weaker) indication of unsureness (measured by
the inconsistency rate IR). Therefore, we first ex-
amine the UR and IR scores of the models. we can
see from Table 2 that GPT-4o-mini consistently an-
swers “unsure” to 41.2% of the examples whereas
the open-source models are much less likely to
consistently answer “unsure”. Meanwhile, GPT-
4o-mini gives inconsistent answers to 36.0% of
the examples whereas the open-source models give
inconsistent answers to a large percentage of ex-
amples, ranging from 56.2% to 98.8%. These UR
and IR scores suggest the following: (1) Neither
GPT-4o-mini nor the open-source models will con-
fidently pick one interpretation over the other for
strongly underspecified sentences, which demon-

strate that they have recognized the ambiguities
in these sentences. (2) GPT-4o-mini has a much
stronger ability to confidently answer “unsure”,
thus explicitly indicating the ambiguity detected,
whereas the open-source models are generally not
able to explicitly claim the ambiguity and can only
imply the ambiguity by giving inconsistent answers.
Next, we compare these models’ behaviors with
and without visual context. We can see that GPT-
4o-mini, LLaVA-NeXT, CogVLM, and Qwen2-VL
all have a higher DA score than the sum of CR1
and CR2 (which measures how often a model confi-
dently picks one interpretation over the other with-
out any visual context). This suggests that after
visual context is given, these four models, particu-
larly GPT-4o-mini and LLaVA-NeXT, have some
abilities to use the visual context to resolve the am-
biguities and pick the correct interpretation. For
MoE-LLaVA, it has a weaker ability to detect ambi-
guity when no visual context is given (indicated by
the highest CR1 and CR2 scores); therefore, given
its low DA score, it is hard to conclude whether
MoE-LLaVA is able to use visual context to resolve
ambiguity. For InstructBLIP, its extremely low DA
score shows that it cannot use visual context to
resolve ambiguity.

For weakly specified sentences, because these
sentences have a more “reasonable” interpretation,
we compare the DA of a model when visual context
is given with the CR1 of the model when visual
context is not given. Recall that CR1 is the rate
of the model interpreting the sentence based on
common sense without visual context. We can see
that for all models, CR1 is higher than CR2, sug-
gesting that these models can use common sense
to resolve ambiguity to some extent. For GPT-4o-
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Underspecification Model DA VPA

Strong
Underspecification

GPT-4o-mini 55.6 48.9
LLaVA-NeXT 52.0 63.6
CogVLM 59.7 68.5
Qwen2-VL 29.0 42.3
MoE-LLaVA 36.1 47.5
InstructBLIP 0.8 3.9

Weak
Underspecification

GPT-4o-mini 59.1 40.1
LLaVA-NeXT 56.3 51.4
CogVLM 56.5 54.8
Qwen2-VL 39.8 40.1
MoE-LLaVA 26.4 38.4
InstructBLIP 1.4 0.9

Table 3: Comparison of VLMs’ abilities to answer vi-
sual questions with and without underspecified contexts.

mini, LLaVA-NeXT, CogVLM, and Qwen2-VL,
their DA is clearly higher than CR1, indicating that
the visual context helps them to further resolve the
ambiguity.

Overall, for both strongly and weakly under-
specified sentences, we conclude that GPT-4o-mini,
LLaVA-NeXT, CogVLM, and Qwen2-VL can ben-
efit from the provided visual context for under-
specification reasoning, while MoE-LLaVA and
InstructBLIP do not benefit from visual context.
R3: Does an underspecified sentence affect a
VLM’s visual perception abilities?

To answer R3, in Table 3 we compare DA with
VPA, which measures the percentage of question
pairs that can be consistently answered correctly
given an image without the underspecified sentence
as context. For strongly underspecified sentences,
we can see that all models except GPT-4o-mini
have a higher VPA score than DA score. This
suggests that the strongly underspecified sentences
have negatively affected these VLMs’ abilities to
use visual perception to answer questions, probably
because the ambiguous context sentences have in-
creased the cognitive load required to interpret the
questions. For GPT-4o-mini, it is counter-intuitive
to observe that without the strongly underspecified
sentence as context, its ability to answer the ques-
tions based on the visual input has dropped. We do
not have a good explanation for this and will leave
further investigation as future work.

For weakly underspecified sentences, on the
other hand, we find that LLaVA-NeXT, CogVLM,
and Qwen2-VL have higher or similar DA scores
compared with VPA scores. This suggests that the
underspecified context sentences have not added
much extra cognitive load for these VLMs to in-
terpret the questions. In contrast, MoE-LLaVA

has been negatively affected by the weakly under-
specified context sentences, giving lower DA than
VPA. Similar to the case with strongly underspec-
ified sentences, GPT-4o-mini has a clearly higher
DA than VPA for weakly underspecified sentences,
which we do not have a good explanation for.

5.3 Failure Analysis

To analyze VLM errors with visual contexts, we
examine results under Setting 1. Most failures
(88.4%–99.8%) occur when models give inconsis-
tent responses to question pairs, leading to misin-
terpretations of underspecified sentences.

Next, leaving out those cases of inconsistent re-
sponses, we look into all the cases that are incor-
rectly interpreted by CogVLM (the best performing
model for strongly underspecified sentences). We
find that interestingly 77% of these errors (which
are 8.9% of total errors) are due to probing ques-
tions that ask whether two people are wearing (or
carrying, holding, etc.) the same thing. An exam-
ple is “the girl and the man wear a headphone. In
this image, is the girl and the man wearing the same
headphone?” Although the image shows the girl
and the man each wearing their own headphones,
the two headphones look the same. Because “the
same headphone” can be interpreted as “same style
or same model of headphone”, VLMs may answer
“yes”, which is considered wrong based on our cri-
terion but is arguably an acceptable answer due to
the ambiguout meaning of “the same.” The remain-
ing 23% of non-inconsistency-related errors (2.7%
of total errors) occur when VLMs are confused by
complex, underspecified contexts (Figure 7). For
instance, given "The boy looked at the girl drinking
the milk.", most models infer the girl is drinking,
contradicting the image. However, without the un-
derspecified context, they correctly identify the boy
as the drinker. This highlights how underspecified
sentences can impair VLMs’ visual perception. See
Appendix F for details.

6 Conclusion

We have introduced the FOCUS dataset and a prob-
ing framework to assess VLMs on underspecifi-
cation reasoning. Our results show that while vi-
sual input aids disambiguation, VLMs still struggle
with underspecified sentences, even with visual
context. Moreover, underspecification affects their
visual perception. These findings reveal a gap in
VLMs’ ability to infer missing details, crucial for
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real-world communication. We hope FOCUS will
drive research to improve multimodal reasoning
and VLMs’ comprehension of human communica-
tion.

7 Limitations

We acknowledge several limitations with the FO-
CUS dataset we have constructed and the evalua-
tion we have conducted, and we discuss them in
this section. One limitation of our study is the rela-
tively small size of the FOCUS dataset compared to
other larger-scale benchmarks. Because the dataset
was designed to include highly unique and chal-
lenging underspecified scenarios, its creation was
labor-intensive, thus limiting its size. While the
small size of the dataset allowed for feasible man-
ual annotation and ensured high data quality, we
recognize the need for future expansion to increase
its utility and diversity.

The FOCUS dataset is intended to be used for
studying underspecification where the unspecified
information can be inferred from the visual inputs.
However, we acknowledge that when creating data
points that require human involvement, particularly
with visual content, social and cultural biases may
be introduced to the data. In our work, the two an-
notators are Asian males. To reduce the possibility
of introducing social and cultural biases, the an-
notators have chosen underspecified scenarios that
are considered universal in different societies and
cultures, based on their judgment. Nevertheless,
we cannot guarantee that there is no hidden biases
in the data, and this is a potential limitation of our
work. Furthermore, by using ChatGPT to generate
the contextual images, we have inevitably inherited
any social or cultural biases that may exist within
ChatGPT’s image generation model (Cheong et al.,
2024). This is another source of potential bias of
our data that anyone using the dataset should be
aware of.

Additionally, ambiguity in underspecified sen-
tences is not always binary; there may be varying
degrees to which something is considered under-
specified. This makes it difficult to create data
points that are unequivocally underspecified across
different contexts. Furthermore, the trinary ques-
tions we designed to probe VLMs may not fully
engage the models’ reasoning capabilities. Some
models may exhibit improved performance when
prompted in a different manner, suggesting that the
phrasing of queries can influence outcomes. Inves-

tigating more effective ways to prompt VLMs and
exploring why they provide inconsistent responses
to similarly phrased questions will be an important
direction for future research.
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A Common Types of Linguistic
Ambiguity

Ambiguity Type Description

Prepositional Phrase (PP)
Attachment

Occurs when it is unclear which part of the sentence a
prepositional phrase modifies. Example: "The boy looked at the
woman with a telescope." – it is unclear whether "with a
telescope" modifies "the boy" or "the woman."

Verb Phrase (VP) Attachment

Ambiguity arises regarding which verb phrase should be attached
to a modifier. Example: The girl looked at the boy riding a bike."
– it’s ambiguous whether "riding a bike" modifies"the girl" or "the
boy."

Conjunction

Happens when it is unclear how a conjunction relates to the items
or clauses it connects. Example: "The girl held the blue pen and
bag." – the ambiguity lies in whether the color blue applies to
both pen and bag, or only to pen.

Logical Form

Ambiguity in how the logical structure of the sentence should be
interpreted. Example: "The boy and the girl ate a cake." – this
could mean the boy and the girl ate the same cake, or that each of
them ate a different cake.

Anaphora

Refers to ambiguity concerning which antecedent a pronoun or a
noun phrase refers to. Example: "The person held the box and the
ball. It is white." – it is unclear whether "it" refers to the box or
the ball.

Ellipsis

Occurs when the meaning is ambiguous due to omitted words or
phrases. Example: "The dog is running toward the ball, also the
boy." – it’s unclear whether the boy is also running toward the
ball, or the dog is also running toward the boy.

Table 4: Common types of linguistic ambiguity.
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B Experiments for VLMs’ default
interpretation

To check if VLMs have a similar default interpre-
tation of some strongly underspecified sentences
like humans do, we borrow three examples of un-
derspecified sentences from Dwivedi (2013). For
each sentence, we generate two images, each cor-
responding to one of the two interpretations. We
then design questions as shown in Figure 3. It has
been shown by Dwivedi (2013) that when no vi-
sual cues are given, humans tend to interpret these
sentences with the plural interpretation. VLMs’ an-
swers shown in Figure 3 suggest that some VLMs
such as GPT-4o-mini and CogVLM also have simi-
lar preferences.
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Figure 3: Experiment for VLMs’ default interpretation.
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C Sample questions with underspecified
sentence and visual context in FOCUS
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Figure 4: Sample data for weak underspacification.

27579



Figure 5: Sample data for strong underspacification.
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D Experiment Configuration

In this section, we provide additional details regard-
ing the configuration of our computational experi-
ments.

1. Model Parameters and Computing Infras-
tructure
For open-source models, we conduct our ex-
periments using the following variant of each
model family.

Model Model Size

cogvlm2 19B
MoeLlaVa 2.7B
LlaVaNext 7B
Qwen-VL 9.6B
InstructBlip 7B

All experiments for open-source models have
been conducted on two L40 GPUs, each
equipped with 40 GB of memory. The run-
time varies from 1 hour to 8 hours depending
on the model.

In addition to open-source models, we have
conducted experiments using GPT-4o-mini, a
proprietary model accessed via OpenAI’s API.
The exact model size of GPT-4o-mini is not
publicly disclosed.

2. Experimental Setup and Descriptive Statis-
tics
To evaluate each model’s performance under
underspecified conditions using the FOCUS
dataset, we utilized their default configura-
tions. The detailed data pre-processing steps
for the FOCUS testing dataset are described in
Section 3.3. All results reported in this work
are based on a single run.

3. Packages Version
transformers=4.45.0 torch=2.5.1 cuda=11.8
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Model Object Detection
Accuracy

GPT-4o-mini 98.9
LLaVA-NeXT 99.0
CogVLM 98.9
Qwen2-VL 97.3
MoE-LLaVA 97.2
InstructBLIP 74.6

Table 5: Object detection accuracy (scores in %).

E Sanity Check for Basic Visual
Perception

Sanity Check. Our experimental setup aims to
determine whether VLMs can perform underspec-
ification reasoning; however, this setup is based
on the assumption that these VLMs have the basic
visual perception capabilities. To test whether this
assumption holds, we first perform a sanity check
to see whether the pre-trained VLMs we choose
have basic object detection capabilities. Specif-
ically, we use yes/no questions to ask about the
existence of the object mentioned in the probing
question for all images of FOCUS. To make sure
a model cannot “cheat” by answering “yes” to all
questions, we also ask about the existence of ob-
jects that cannot be found in the images.

As shown in Table 5, most models demon-
strate strong object detection capabilities, with
scores above 95%, except for InstructBLIP, which
achieves 74.6%. This indicates that the founda-
tional object detection abilities of these models are
generally robust. However, the underperformance
of InstructBLIP, particularly with a score of 75.4%
for detecting non-existent objects, highlights a ten-
dency towards over-recognition or “hallucination,”
where the model incorrectly identifies objects that
are not present in the image.
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F Examples of Errors

In this appendix we show two examples of errors
made by VLMs. The first example shown in Fig-
ure 6 is an example where the meaning of “the
same” in the probing question is ambiguous. It can
be interpreted as “a common headphone” or “the
same model of headphones”. The second example
shown in Figure 7 is an example where some of the
VLMs can correctly answer the question when the
underspecified sentence is not provided as the con-
text, but when the sentence is provided, the VMLs
become confused and give the wrong answer. The
example shows how underspecified contextual sen-
tences might hurt the visual perception of VLMs.
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Figure 6: Sample VLMs Responses 1.

Figure 7: Sample VLMs Responses 2.
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