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Abstract

The rapid development of large language and
multimodal models has sparked significant in-
terest in using proprietary models, such as GPT-
4o, to develop autonomous agents capable of
handling real-world scenarios like web naviga-
tion. Although recent open-source efforts have
tried to equip agents with the ability to explore
environments and continuously improve over
time, they are building text-only agents in syn-
thetic environments where the reward signals
are clearly defined. Such agents struggle to
generalize to realistic settings that require mul-
timodal perception abilities and lack ground-
truth signals. In this paper, we introduce an
open-source framework designed to facilitate
the development of multimodal web agent that
can autonomously conduct real-world explo-
ration and improve itself. We first train the
base model with imitation learning to gain the
basic abilities. We then let the agent explore
the open web and collect feedback on its trajec-
tories. After that, it further improves its policy
by learning from well-performing trajectories
judged by another general-purpose model. This
exploration-feedback-optimization cycle can
continue for several iterations. Experimental
results show that our web agent successfully im-
proves itself after each iteration, demonstrating
strong performance across multiple test sets.1

1 Introduction

Developing autonomous agents that can complete
complex tasks such as web navigation has been a
significant challenge for the AI community (Zhou
et al., 2023; Gur et al., 2023; Deng et al., 2024; Koh
et al., 2024). Recent advancements of large lan-
guage and multimodal models such as Claude (An-
thropic, 2024) and GPT-4o (OpenAI, 2024) have

*Work done during the internship at Tencent AI Lab.
†Work done while at Tencent AI Lab.
1Code and data will be released at https:

//github.com/MinorJerry/OpenWebVoyager. Contact:
hehongliang@westlake.edu.cn

made it possible to build such agents via prompt
engineering (He et al., 2024; Zheng et al., 2024b;
Ma et al., 2023). However, these agents struggle
to improve further due to their reliance on closed-
source models. Another line of work has explored
alternative ways to build agents by starting off with
weaker open-source models and gradually improv-
ing model performance by iteratively exploring the
environment, collecting feedback signals, and up-
dating the policy model (Xi et al., 2024; Putta et al.,
2024; Patel et al., 2024). However, existing studies
have only focused on building text-only agents in
synthetic environments (Song et al., 2024; Murty
et al., 2024). The synthetic environments provide
the benefit of well-defined reward signals, allowing
the agents to effectively differentiate the quality of
the trajectories and learn accordingly. However,
synthetic environments fail to capture the complex-
ity of real-world scenarios, leading to potential
generalization issues when applied to real-world
tasks. Moreover, real-world environments often
lack built-in reward signals, while web elements are
becoming increasingly diverse, trajectory sampling
more time-consuming and prone to obsolescence,
all of which pose other challenges in agent’s learn-
ing and improvement process (He et al., 2024; Pan
et al., 2024). Additionally, real-world webpages
are designed based on human visual preference, ig-
noring the visual inputs can cause significant infor-
mation loss that impacts the agent’s performance.

To address above limitations and explore open-
source models in real-world settings, we propose
OpenWebVoyager, an open-source framework for
building multimodal web agents via iterative real-
world exploration, feedback and optimization. We
show that OpenWebVoyager can learn to perform
real-world web navigation tasks through an initial
imitation learning (IL) phase followed by multiple
exploration-feedback-optimization cycles. To do
so, we start by compiling a diverse set of web task
queries and collecting corresponding agent trajecto-
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Figure 1: The overall process of OpenWebVoyager, including the Imitation Learning phase and the exploration-
feedback-optimization cycles. The agent learns basic multimodal web navigation skills through Imitation Learning
and continues to explore real-world web environments. GPT-4o provides feedback on explored multimodal
trajectories, leaving successful trajectories for the agent to improve.

ries using a state-of-the-art multimodal agent Web-
Voyager (He et al., 2024) based on GPT-4o, which
we refer to as WebVoyager-4o. During the imi-
tation learning phase, we train OpenWebVoyager
on trajectories where WebVoyager-4o successfully
completes the task to teach the agent basic skills
to perform web navigation. Subsequently, within
the exploration-feedback-optimization cycle, we
continue to synthesize new web tasks, allowing
our agent to explore and gather more trajectories.
During this stage, we follow He et al. (2024) and
leverage GPT-4o to automatically evaluate the cor-
rectness of the trajectories produced by OpenWeb-
Voyager. After gathering feedbacks, we retain suc-
cessful trajectories and merge them with the data
from IL phase to conduct the next round of training
to improve OpenWebVoyager. The improved agent
is then used to sample new trajectories in the next
iteration. This streamlined and effective design
frees us from the limitations and obsolescence of
manually collected trajectories, relying more on
GPT-4o’s supervision, thus bringing the feasibility
of continuous optimization.

In our experiments, we employ idefics2-8b-
instruct (Laurençon et al., 2024) as our backbone
model and select 48 common websites from the
WebVoyager and Mind2Web datasets (Deng et al.,
2024) to gather trajectories. The overall process
includes one imitation learning phase and three
exploration-feedback-optimization cycles. For
each phase, we leverage self-instruct (Wang et al.,
2022) to generate new web queries. We assess the
agent’s performance using the Task Success Rate
on the WebVoyager and Mind2Web test sets. Re-

sults indicate a gradual increase in task success rate
across the four phases on the WebVoyager test set
from 19.9% to 25.8% and on the Mind2Web cross
task set from 6.3% to 19.6%, demonstrating the
potential for iterative optimization in multimodal
web agents. Additionally, a slight improvement
is observed on the Mind2Web cross-web (unseen
web) set from 6.6% to 10.4%, suggesting that the
exploration-feedback-optimization cycle can, to
some extent, generalize to unseen websites.

2 Related Work

2.1 Multimodal Web Agents

Recently, there has been a growing interest in
building multimodal web agents, particularly those
that combine visual and textual understanding ca-
pabilities. Unlike traditional HTML-dependent
LLM-based agents (Lutz et al., 2024; Zhou et al.,
2023; Gur et al., 2023; Nakano et al., 2021; Ma
et al., 2023), Large Multimodal Model (LMM)-
based agents can perform a wider variety of web
tasks and adapt to more complex web environ-
ments. The main difference lies in the observa-
tion space. To acquire multimodal input signals,
SeeAct (Zheng et al., 2024a) focuses on annotat-
ing images of web pages using bounding boxes
and index labels of candidate web elements. We-
bVoyager (He et al., 2024) and VisualWebArena
(Koh et al., 2024) both use a JavaScript tool to
extract web elements and annotate them on screen-
shots in a Set-of-Mark (Yang et al., 2023) for-
mat. DUAL-VCR (Kil et al., 2024) contextualizes
each web element with its neighbors in the screen-
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shot. SCAFFOLD (Lei et al., 2024) introduces dot
matrices and coordinates on images to enhance
visual grounding. Most of the aforementioned
multimodal web agents rely on prompting closed-
source multimodal models such as GPT-4V (Ope-
nAI, 2023), Claude (Anthropic, 2024), and Gemini
(Team et al., 2023). These models’ strong visual
grounding and understanding capabilities enable
them to correctly interpret webpage screenshots
and engage in proper planning using paradigms
like ReAct (Yao et al., 2022) or Chain-of-Thought
(Wei et al., 2022). While some previous works at-
tempted to leverage open-source vision-language
models to build web agents (Zheng et al., 2024a;
Koh et al., 2024), they found that models such as
BLIP-2-T5 (Jian et al., 2024), LLaVA (Liu et al.,
2024), and Idefics (Laurençon et al., 2023) can
hardly achieve satisfactory performance. The main
reason is that the pretraining of those open-source
vision-language models mostly focuses on aligning
image-text features and visual question answering
instead of image-text interleaved agent trajectories.
In this work, we propose an agent built upon an
open-source model that can automatically collect
trajectories to continuously improve itself, leading
to salient gains in performance. And unlike prior
methods that focus on specialized agent frame-
works (Lutz et al., 2024; Abuelsaad et al., 2024),
our approach is model-agnostic and adaptable to
diverse frameworks.

2.2 Self-Improving Web Agents

Researchers also have attempted to boost agents
and adapt them to complex environments through
exploration and self-improvement (Yu et al., 2024;
Zhang et al., 2024b). AgentGYM (Xi et al.,
2024) proposes a framework that unifies a wide
range of environments for real-time exploration
and evolution of LLM-based agents. AgentQ (Putta
et al., 2024) integrates Monte Carlo Tree Search
(MCTS) and Direct Preference Optimization (DPO;
Rafailov et al., 2024) algorithms to iteratively up-
date the policy of LLM-based web agents based
on successful and failed web trajectories. Patel
et al. (2024) suggests improvement by utilizing web
agents to collect and filter in-domain trajectories,
plus out-of-domain tasks along with hypothetical
solution trajectories. However, there is still a lack
of exploration on how to leverage multimodal web
signals to achieve self-improvement. We aim to
enable multimodal web agents to adapt to complex
and dynamic online environments, enhancing their

generality and ability to operate across numerous
online websites.

3 Method

In this section, we introduce OpenWebVoyager, an
innovative web agent that outlines a path of iter-
ative optimization for LMM-based Web Agents
to handle intricate online web tasks. Firstly, we
enable the agent to learn web navigation trajecto-
ries of WebVoyager-4o in the first stage to gain
basic web knowledge and navigation skills, namely
Imitation Learning (IL). Subsequently, the agent
iteratively explores and improves with the feedback
from GPT-4o.

3.1 Task Formulation
In the web browsing environment E , consider the
web navigation process as a Partially Observable
Markov Decision Process (POMDP). The setup
is defined by the tuple (S,O,A, T , R), where S
denotes the state space, O represents the observa-
tion space, and A is the action space. T is the
deterministic transition function that performs web
operations in the browser to promote the process.
The reward R in this environment is typically a
sparse signal indicating success or failure, with
values of 1 or 0, respectively.

Given a task query q and its corresponding web-
site w, we can initialize the web environment E
by setting the state s1 to this web page, and obtain
the first step observation o1 ∈ O. In this work,
we adopt the vision-language setting that the ob-
servation in each step will include an accessibility
tree and a screenshot, i.e., o1 = (oa1, o

s
1). Let θ

represents the parameters of the Large Multimodal
Models (LMMs). Following the ReAct paradigm,
we derive thoughts and actions using LMMs:
(h1, a1) ∼ πθ(·|I, q, o1) = πθ(·|I, q, oa1, os1),
where I denotes the system prompt, including an-
swer formats, the introduction of web operations
and some guidelines. The transition function T is
then applied to parse the action and execute it on
the web page, obtaining the next state s2. There-
fore, at time step t, we have:

(ht, at) ∼ πθ(·|I, q, oa1, os1, h1, a1, ..., oat , ost ) (1)

st+1 = T (st, at; E). (2)

The full trajectory can be represented as τ =
(oa1, o

s
1, h1, a1, ..., o

a
T , o

s
T , hT , aT ), where T is the

number of iterations in web navigation, i.e., the
length of the trajectory.
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Figure 2: The model architecture of our multimodal web agent. We use the most recent 3 web screenshots to
demonstrate the page changes after performing web actions and label the web elements in the accessibility tree to
facilitate the agent in selection and response. Considering the limitation of sequence length and to avoid confusion,
we only retain the most recent accessibility tree.

3.2 OpenWebVoyager Overview

Environment We adopt the Selenium-based on-
line web navigation environment provided by Web-
Voyager (He et al., 2024). In contrast to WebVoy-
ager, we do not employ the Set-of-Mark approach
to mark elements on screenshots because open-
source LMMs face significant visual grounding
issues in identifying numerical tags on screenshots.
We modify the observation of the web page to in-
clude the accessibility tree and its corresponding
unmarked screenshot. Figure 4 in Appendix A
shows a specific example of the observation space.

Model and Learning We adopt Idefics2 (Lau-
rençon et al., 2024) as the backbone LMM for
building OpenWebVoyager. Idefics2 is well-
suited for our task as it incorporates interleaved
image-text documents during training, boosting the
model’s multi-image reasoning and long-context
comprehension capabilities. Additionally, Idefics2
supports encoding high-resolution images up to
980x980 pixels, which is necessary for preserv-
ing the fine-grained visual details on the webpage
screenshots. In Figure 2, we elaborate on how we
adapt the Idefics2 architecture to build OpenWeb-
Voyager. Similar to the messages fed into GPT-4o,
we embed the <image> token at the corresponding
position in the context, aligning it with the acces-
sibility tree. The Idefics2-based agent will make a
decision based on the observation containing multi-
modal information. Figure 1 illustrates the full pro-
cess of IL and exploration-feedback-optimization
cycle: collecting trajectories for Imitation Learn-
ing via WebVoyager-4o, training the base agent,
and then continuously exploring new trajectories.

Based on feedback from GPT-4o, successful trajec-
tories are leveraged for optimization.

3.3 Web Task Queries Collection

Queries for the Imitation Learning The IL
phase is crucial as it forms the foundation for subse-
quent improvements. We aim to gather a diverse set
of web tasks of varying difficulty, enabling GPT-4o
to collect diverse trajectories. We choose 48 popu-
lar websites, then select and synthesize queries QIL
from multiple perspectives before IL. The details
of QIL are shown in Appendix D.

Queries for Real-World Exploration We con-
tinue to use the self-instruct (Wang et al., 2022)
approach to generate new queries that are similar
but not duplicated based on existing queries. In
each exploration-feedback-optimization cycle, we
automatically generate 480 queries for 48 websites,
with 10 queries for each website. The agent then
conducts web exploration based on these tasks.

3.4 Imitation Learning

Trajectories Collection We utilize GPT-4o
along with the WebVoyager paradigm (He et al.,
2024) to generate web navigation trajectories corre-
sponding to the above queries. The agent is named
WebVoyager-4o and configured to receive obser-
vations consisting of the latest k steps, including
accessibility trees and screenshots. i.e., for each
qi ∈ QIL, τi ∼ πθg(τ |I, qi), we clip long context
ct to avoid performance degeneration when t > k:

c
clip
t = (h1, a1, h2, a2, ..., ht−k, at−k,

ot−k+1, ht−k+1, at−k+1, ..., ot), (3)
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(ht, at) ∼ πθg(·|I, q, cclip
t ). (4)

It is worth noting that we preserve the thought and
action of each step to maintain the full reasoning
process without occupying excessive context. The
collected trajectories fall into three pre-defined cat-
egories: unfinished (exceeding the maximum itera-
tion of Navigation), finished & unsuccessful, and
finished & successful. In this stage, to better distill
knowledge from GPT-4o, we filter out unfinished
trajectories, retaining only the other ones for train-
ing in Imitation Learning. Meanwhile, we resample
the unfinished tasks once to improve the utilization
of queries and reduce the problem of navigation
failure due to sampling randomness. Throughout
the process, all trajectories are collected through
online interactions, with no offline data being uti-
lized.

Learning We adopt Idefics2 (Laurençon et al.,
2024) to learn trajectories collected through
WebVoyager-4o. In Idefics2, screenshots are en-
coded as 64 visual tokens. However, the length
of each accessibility tree is much longer than 64
tokens. Considering the sequence length issue, we
further truncate the context and the number of im-
ages, retaining the latest k images while keeping
only one accessibility tree of the current page. That
is, we remove k − 1 accessibility trees in Eq. 3:

c
clip′
t = (h1, a1, ..., ht−k, at−k,

ost−k+1, ht−k+1, at−k+1, ..., o
s
t , o

a
t ). (5)

Let DIL represents the collected trajectories, and θ
denote the parameters of the Idefics2 model. We
aim to maximize the following objective function:

JIL(θ) = E(q,τ)∼DIL

T∑

t=1

[
log πθ(at|q, cclip′

t , ht)

+ log πθ(ht|q, cclip′
t )

]
, (6)

where the system prompt I is no longer provided
because of its considerable length. Through Imi-
tation Learning, the agent has already learned the
basic operation logic and response format, so there
is no need for the system prompt.

3.5 Iterative Optimization
After the Imitation Learning phase, the trained
agent πθb will proceed to explore websites and
undergo multiple cycles of exploration-feedback-
optimization. We continue to generate more

queries using self-instruct. Instead of relying on
WebVoyager-4o to collect trajectories, the agent
collects trajectories on its own. At each exploration-
feedback-optimization cycle, we employ trajectory-
level rejection sampling via GPT-4o. An LMM
capable of evaluating multimodal web trajectories
is indispensable to ensure the quality of the tra-
jectories and automate the process. GPT-4o is a
natural choice for this task, as its capabilities are
comparable to those of humans, and its stability is
even slightly higher than that of humans. We dis-
cuss more reasons for choosing GPT-4o to provide
feedback in Appendix C. Let Qj

SI be the query set
for j-th optimization, for every q ∈ Qj

SI, we sam-
ple several trajectories from the model πθj−1

, with
GPT-4o acting as the Auto Evaluator, accepting
only trajectories that GPT-4o deems as success-
fully navigated. We consider this auto evaluation
method reliable because assessing the correctness
of a trajectory is much easier than obtaining a cor-
rect trajectory. He et al. (2024) also demonstrates a
high level of evaluation consistency between GPT-
4o and humans.

Let Dj
SI represent the set of trajectories collected

after rejection sampling in the j-th optimization.
We mix the collected trajectory sets with DIL and
continue fine-tuning πθj−1

by maximizing the fol-
lowing objective:

J j
SI(θ) = E(q,τ)∼DSI

T∑

t=1

[
log πθ(

at|q, cclip′
t , ht) + log πθ(ht|q, cclip′

t )
]
, (7)

where j = 1, ...,m denotes the times of optimiza-
tion, DSI = DIL∪Dj

ev denotes the mixed trajectory
set and πθ0 is set to πθb . The complete procedure
is shown in Algorithm 1 in Appendix B.

4 Experiment

4.1 Dataset and Metric

Training Dataset In §3.4, we have outlined the
composition of the query set QIL during the Im-
itation Learning stage, which includes 48 web-
sites mentioned in Mind2Web (Deng et al., 2024)
and WebVoyager (He et al., 2024), along with
1516 relevant task queries collected. Notably, in
the real-world and online setting, some websites
in Mind2Web have become inaccessible ("shut
down" or blocked by CAPTCHAs). As a result,
we have to exclude these websites and retained
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Allrecipes Amazon Apple ArXiv GitHub Booking ESPN Coursera

OpenWebVoyagerIL 17.8% 12.2% 20.9% 14.0% 14.6% 9.1% 9.1% 31.0%
OpenWebVoyageriter-1 35.2% 26.8% 11.6% 18.6% 24.4% 6.8% 2.3% 28.6%
OpenWebVoyageriter-2 22.2% 36.6% 27.9% 20.9% 19.5% 6.8% 6.8% 33.3%
OpenWebVoyageriter-3 24.4% 24.4% 20.9% 18.6% 31.7% 18.2% 11.4% 42.9%
OpenWebVoyageriter-3-dgs 20.0% 31.7% 18.6% 23.3% 24.4% 13.6% 25.0% 42.9%
OpenWebVoyageriter-3-dgs-g 22.2% 29.3% 32.6% 20.9% 26.8% 11.4% 11.4% 42.9%

Cambridge BBC Google Google Google
Huggingface

Wolfram
Overall

Dictionary News Flights Map Search Alpha

OpenWebVoyagerIL 37.2% 9.5% 9.5% 22.0% 44.2% 20.9% 26.1% 19.9%
OpenWebVoyageriter-1 25.6% 9.5% 19.0% 26.8% 44.2% 25.6% 32.6% 22.6%
OpenWebVoyageriter-2 23.3% 14.3% 19.0% 22.0% 41.9% 11.6% 34.8% 22.7%
OpenWebVoyageriter-3 37.2% 11.9% 11.9% 26.8% 39.5% 30.2% 37.0% 25.8%
OpenWebVoyageriter-3-dgs 30.2% 11.9% 21.4% 22.0% 39.5% 23.3% 34.8% 25.5%
OpenWebVoyageriter-3-dgs-g 34.9% 14.3% 21.4% 29.3% 44.2% 32.6% 37.0% 27.4%

Table 1: Task success rate on WebVoyager test set (643 queries). All websites are seen during training. ‘IL’, ‘iter-1’,
‘iter-2’, and ‘iter-3’ represent agents after IL, 1st, 2nd, and 3rd optimization, respectively. ‘dgs’ and ‘dgs-g’ denote
difficulty-guided sampling, i.e., sample more trajectories for webs with low sampling accuracy, the former by adding
trajectories sampled by the agent itself and the latter by adding trajectories sampled by GPT-4o.

Agents
Mind2Web cross-task (unseen task) Mind2Web cross-web (unseen web)

Entertainment Shopping Travel Overall Entertainment Shopping Travel Overall

OpenWebVoyagerIL 8.2% 5.9% 4.3% 6.3% 3.0% 13.3% 4.7% 6.6%
OpenWebVoyageriter-1 12.2% 0.0% 4.3% 7.1% 6.1% 6.7% 9.3% 7.5%
OpenWebVoyageriter-2 24.5% 5.9% 6.5% 14.3% 15.2% 10.0% 7.0% 10.4%
OpenWebVoyageriter-3 26.5% 23.5% 10.9% 19.6% 6.1% 20% 7.0% 10.4%
OpenWebVoyageriter-3-dgs 18.4% 23.5% 10.9% 16.1% 9.1% 16.7% 25.6% 17.9%
OpenWebVoyageriter-3-dgs-g 22.4% 29.4% 15.2% 20.5% 3.0% 20.0% 23.3% 16.0%

Table 2: Task success rate on Mind2Web cross-task and cross-web test set. In cross-task set, the queries from the
same websites are seen during training. In cross-website set, the websites are not seen during training but still
belong to the Entertainment, Shopping, and Travel Domain.

as many tasks as possible. We use WebVoyager-
4o to gather corresponding trajectories for these
queries, with each query having a maximum of 2
trajectories. Then we retain 1165 finished (includ-
ing both successful and unsuccessful) trajectories,
with a total of 7253 interaction turns. During the
j-th exploration-feedback-optimization cycle, we
expend 480 queries for 48 selected websites. The
trajectories are sampled via πθj−1

and the maxi-
mum resampling count is set to 5.

Evaluation Dataset To evaluate the performance
of our agent, we use the following datasets: 1) We-
bVoyager (He et al., 2024) test set, comprising 15
websites seen during training and 643 queries; 2)
Mind2Web (Deng et al., 2024) cross-task test set,
which includes 33 websites seen during training
and a total of 112 queries. 3) Mind2Web cross-
website test set, we select 2 websites each from
“Entertainment”, “Shopping”, and “Travel” cate-

gories; the websites are unseen during training,
amounting to a total of 106 queries.

Metric Following WebVoyager, we adopt Task
Success Rate automatically evaluated by GPT-4o
as the primary metric. To view the exploration ef-
ficiency in the exploration-feedback-optimization
cycle, we define Success@K (S@K) as the ratio
of tasks that get success within K samples. Addi-
tionally, we pay attention to the finish rate (F@1),
where a task is considered finished as long as the
agent selects ‘ANSWER’ within the maximum nav-
igation steps. Table 3 shows the details of the
query set and collected trajectories in exploration-
feedback-optimization cycles.

4.2 Experimental Details

To collect data for imitation learning phase, we
adopt the state-of-the-art model GPT-4o with We-
bVoyager framework (WebVoyager-4o) to sample
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Figure 3: Performance growth of OpenWebVoyager
on WebVoyager and Mind2Web test set from Imi-
tation Learning phase to 3rd exploration-feedback-
optimization cycle.

web navigation trajectories. We set k = 3, i.e.,
the context contains at most 3 screenshots and
corresponding accessibility trees but retains the
thoughts and actions generated by GPT-4o in each
step. Our agent builds upon Idefics2-8b-instruct
with outstanding vision-language capabilities to
complete the imitation learning and exploration-
feedback-optimization cycles. During fine-tuning,
the max sequence length is set to 8192. We no
longer use system prompts and further clip the con-
text to accept a maximum of 3 screenshots and 1
accessibility tree. The original resolution of the
screenshots is 1024*768 and the screenshots are
resized such that the longer length is no larger than
980, before feeding into Idefics2. We set the batch
size to 64 and train for 300 iterations in each phase,
approximately 2 - 3 epochs. In the exploration-
feedback-optimization phase, we iteratively train
our agent with a total of m = 3 iterations. When
the agent performs exploration, we set the tem-
perature to 1.2 to improve the randomness. The
agent samples up to 5 trajectories for each given
task query. We still select GPT-4o as the feedback
model and trajectories with positive feedback are
gathered for further optimizations.

4.3 Main Results

Throughout the entire process of Imitation Learn-
ing and exploration-feedback-optimization cycles,
we trained four models: OpenWebVoyagerIL,
OpenWebVoyageriter-1, OpenWebVoyageriter-2, and
OpenWebVoyageriter-3. Table 1 shows the perfor-
mance of these models on the WebVoyager test set.
Table 2 presents the results of these models on the
Mind2Web cross-task and cross-website test set.
We show the performance changes of our agent on
these datasets from imitation learning phase to the

third optimization cycle in Figure 3.
From the results in Table 1 and Table 2, we ob-

serve a general improvement in task success rates
in both WebVoyager and Mind2Web cross-task test
set as optimization progressed. This indicates the
effectiveness of our method when the webs in the
test set have been trained on or explored during
the training phase. In the Mind2Web cross-web
test set, the optimization cycle also provides some
enhancement in agent’s performance, although not
as prominently as in the cross-task set. Also, the
improvement is unstable on these unexplored web-
sites, agent suffers from sampling randomness and
is more likely to get stuck during web navigation.

Table 3 shows the results of GPT-4o’s feed-
back on the trajectories sampled by the agent
during the exploration phase. We find that
despite having 5 chances for resampling, The
agent still performs poorly on many websites.
Therefore, we consider increasing the number
of trajectories specifically for these “difficult”
websites during exploration-feedback-optimization
phase. To investigate the effectiveness of
this difficulty-guided sampling (DGS) strat-
egy, we train OpenWebVoyageriter-3-dgs-g and
OpenWebVoyageriter-3-dgs. The former involves
adding some trajectories sampled by WebVoyager-
4o for webs with S@5 below 40% during the
third iteration, while the latter adds some trajec-
tories sampled by the agent itself. Compared to
OpenWebVoyageriter-3, adding exploration trajec-
tories to the “difficult” websites can improve per-
formance for certain websites like Google Flights.
However, influenced by the sampling randomness,
the optimization is not stable, as seen in Book-
ing, GitHub, and others. We believe the potential
reason why DGS failed to consistently enhance
performance lies in the fact that, although DGS
increases trajectory sampling for these websites,
only a small fraction of simple tasks succeeded,
which does not provide more diversity. So, in-
corporating WebVoyager-4o’s sampling of more
diverse trajectories during exploration has led to
some overall performance improvements.

4.4 Discussion
The average length of trajectories. During in-
ference, we record the length of trajectories when
they are finished (the agent provides answers) and
successful. The variation of the average length of
web navigation trajectories is shown in Table 4.

In our experiments, we observe that as iterative
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Improvement
Iteration

Query
Traj.
From

Success
Traj.

Turns F@1 S@1 S@2 S@3 S@4 S@5

iter-1 480 πθb 152 943 74.6% 10.4% 19.6% 24.4% 27.5% 31.7%
iter-2 480 πθ1 205 1324 87.1% 16.0% 24.0% 30.2% 36.9% 42.7%
iter-3 480 πθ2 207 1333 91.5% 18.8% 27.9% 35.2% 41.0% 43.1%

Table 3: Details of query set and trajectory set during the exploration-feedback-optimization cycle. The feedback on
task success or not is provided by GPT-4o. F@1 indicates the finish rate of the first exploration. S@K represents the
task success rate within K explorations. Each task will sample the trajectory up to 5 times until it succeeds or fails
all 5 times, successful trajectories will be retained to improve our agent.

Agent
WebVoyager

Mind2Web
cross-task

Mind2Web
cross-website

Finish Success Finish Success Finish Success

OpenWebVoyagerIL 6.47 5.26 8.77 7.00 9.28 9.29
OpenWebVoyageriter-1 6.17 5.02 7.58 5.00 7.98 9.63
OpenWebVoyageriter-2 5.89 5.04 7.33 6.31 7.13 7.45
OpenWebVoyageriter-3 5.47 5.07 7.67 7.59 6.16 6.91

Table 4: The average length of trajectories across differ-
ent optimization cycles on various test sets. ‘Finish’ and
‘Success’ indicates that we calculate the average length
for finished or successful trajectories, respectively.

Agent
WebVoyager (643 tasks)

R RS S RS / R RS / S

OpenWebVoyagerIL 61 8 128 13.1% 6.3%
OpenWebVoyageriter-1 75 16 145 21.3% 11.0%
OpenWebVoyageriter-2 88 22 146 25.0% 15.1%
OpenWebVoyageriter-3 142 40 166 28.2% 24.1%

Table 5: The frequency of the agent using the restart
action: Let R denote the number of trajectories with
restart, RS the number of successful trajectories with
restart, and S the total number of successful trajectories.

optimization progresses, agents tend to complete
tasks in fewer interaction steps and navigate more
quickly on familiar websites. This phenomenon
creates a cycle where trajectories obtained dur-
ing the exploration-feedback phase become shorter,
leading the model to increase its focus on learning
from shorter trajectories during optimization.

Hallucination limits performance. We find that
agents often directly hallucinate answers that do
not appear during the navigation. The decrease
in trajectory length might have increased the fre-
quency of this issue. The agent tends to terminate
navigation directly instead of continuing the search
after a certain length of the trajectory. As shown
in Table 3, we can also observe that the results for
F@1 are high, but S@1 are relatively low. This
indicates that agent believes it has finished the task
but is actually unsuccessful. While the finish rate
and success rate in GPT-4o-sampled trajectories
are close. This insight suggests that in future explo-

Training
Trajectories

Result

DIL ∪Diter-1 ∪Diter-2 20.8%
DIL ∪Diter-2 23.3%

Table 6: Study on whether to use a mixture of data from
previous phases in exploration-feedback-optimization
cycle (OpenWebVoyageriter-1 → OpenWebVoyageriter-2).

ration, we can increase the diversity of sampling
by varying the task difficulty and trajectory length.

Restart to the search engine and solve tasks. In
WebVoyager’s paradigm, an important web action
is to restart navigation from the search engine when
encountering difficulties. In this paper, the ‘Restart’
action is also provided in the data for training dur-
ing the Imitation Learning phase. We observe the
frequency of our agent using restart action, calcu-
late their success rates, and the ratio of successful
tasks using restart to the total successful tasks, as
shown in Table 5. We can infer from the results
in the WebVoyager test set that as agents undergo
iterative optimization, they increasingly prefer to
use the search engine. The proportion of successful
trajectories achieved by using the search engine is
rising among all successful trajectories, addressing
some of the navigation failure issues.

Why using GPT-4o for Feedback during Explo-
ration The way GPT-4o is used in the exploration
phase differs from its use in the imitation learning
phase. During imitation learning, the agent distills
GPT-4o’s web navigation capabilities. However, in
the exploration phase, the agent samples its own tra-
jectories, and GPT-4o only provides a reward signal
to ensure trajectory quality. The number of GPT-
4o calls is significantly lower than in the imitation
learning phase. Therefore, from a cost-efficient
perspective, it is undesirable to extend the imita-
tion learning phase for too long. After the agent
has learned a certain level of web navigation skills,
transitioning to exploration-feedback-optimization
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becomes a better choice.
In addition, we select GPT-4o for the follow-

ing reasons: (1) Currently, there is no available
open-source reward model capable of providing
feedback to LMM-based web agents, especially
for trajectories that include multiple consecutive
screenshots. (2) For judging the success of multi-
modal web navigation trajectories, GPT-4o exhibits
high consistency with human judgments (kappa =
0.72). This ensures the accuracy of feedback and
the quality of explored trajectories. (3) Automa-
tion of the entire process is necessary. Therefore, a
tool that can provide feedback for explored trajec-
tories is essential. GPT-4o naturally fits this role,
and other models with high agreement with human
evaluations could also be utilized.

Other settings and parameters. Trajectory col-
lection is time-consuming, especially in the explo-
ration phase where each query requires up to 5
resampled trajectories to tackle relatively difficult
navigation tasks. So we primarily adjust hyper-
parameters such as learning rate and global batch
size during the IL phase. However, we ultimately
find that this has little significance, as the error is
much smaller compared to the challenges posed by
webpage navigation and sampling randomness.

In optimization cycles, we also try to mix all
trajectories that considered success through GPT-
4o’s feedback, for example, using DIL ∪Diter-1 ∪
Diter-2 to improve OpenWebVoyageriter-1. We select
120 WebVoyager queries and compare task success
rate in Table 6.

Other discussions are shown in Appendix C.

5 Conclusion

In this paper, we explore how to construct a multi-
modal web agent via iterative exploration, feedback
and optimization. We adopt idefics2-8b-instruct as
the backbone LMM model and collect web task
queries from numerous websites. Initially, our
agent learns the web operation logic of GPT-4o
through Imitation Learning. Then it enters the
exploration-feedback-optimization cycles, explor-
ing and collecting trajectories based on new web
tasks, retaining the trajectories that GPT-4o con-
siders correct for further learning, updating, and
optimization. We focus on building an LMM-based
iterative optimization web agent with multi-image
understanding capabilities, enabling it to adapt to
complex and dynamic online web environments.
The entire process primarily involves the agent’s

self-exploration and GPT-4o’s supervision, reduc-
ing human intervention and allowing continuous
expansion to ensure the agent’s generality.

Limitations

First, we only consider the most common exe-
cutable web actions in the simulated environment,
including clicking, typing, and scrolling, without
more advanced actions such as dragging and zoom-
ing. Additionally, our approach is based on a rel-
atively small LMM Idefics2 with 8B parameters,
which may limit the agent’s ability to effectively
navigate websites of unseen domains and respond
to complex user queries. The low performance on
complex websites might further affect exploration
efficiency, leading to minimal improvement and
time-consuming during the exploration-feedback-
optimization process. Last, our model still primar-
ily relies on accessibility trees, we hope to improve
the visual grounding and multi-image reasoning ca-
pabilities so that it can directly use web screenshots
for planning like GPT-4o.

Ethics Statement

In light of the potential risks associated with online
web navigation, all our experiments adhere strictly
to ethical guidelines. Our approach includes hu-
man supervision as well as GPT-4’s monitoring
for content violations. Throughout the sampling
of all web task trajectories, no violations by the
agent are detected. A small portion of tasks are
filtered due to the sensitivity of advertisements or
content on news websites. None of the tasks in-
volve private information such as personal names,
account passwords, etc. The tasks typically include
information-seeking activities and do not include
actual bookings or payment transactions. In our
work, the web agent’s sampled trajectories are in-
tended solely for research purposes. The agent
operates in a simulated human-like manner, with a
slow sampling frequency, ensuring no pressure is
placed on the explored websites.
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A Environment and Prompts

We adopt the framework of WebVoyager for online
real-world web navigation. The web actions used
are the most basic clicks, inputs, and scroll oper-
ations as shown in Table 7. Unlike WebVoyager,
we do not use the Set-of-Mark approach to label
screenshots. Instead, we combine screenshots and
the accessibility tree as observations for the agent
to make decisions. Figure 4 illustrates an example
of observation.

Based on the changes in observations, we
slightly modify the system prompt of WebVoy-
ager (He et al., 2024) during the Imitation Learning
phase to accommodate the paradigm of accessibil-
ity tree + screenshot. In terms of web operation
implementation, each element in the accessibil-
ity tree has pre-saved attribute information, where
‘union_bound’ labels the position information of
the element.We use Selenium to locate the element
that appears in this position and then access it.

In the WebVoyager framework, in addition to
the system prompt, the author has designed error
reflection to ensure effectiveness. When a certain
action fails, there will be a prompt saying: "The
action you have chosen cannot be executed.
Please double-check if you have selected
the correct element or used the correct
action format. Then provide the revised
Thought and Action." This prompt serves to
remind the agent to correct errors. While training
our own Agent, although we no longer use the
system prompt, we still retain the error reflection
mechanism.

B Algorithm

In Algorithm 1, we present the complete algorithm
of OpenWebVoyager. It mainly consists of an Imita-
tion Learning (IL) phase and multiple exploration-
feedback-optimization cycles. In the IL phase,
GPT-4o (πθg ) serves as an expert to sample tra-
jectories via WebVoyager framework, requiring a
significant number of OpenAI API calls. In the
exploration-feedback-optimization cycle, GPT-4o
acts as an expert to evaluate trajectories, with only
one API call needed for each trajectory. Hence,
during the execution of the algorithm, there is a
trade-off. On one hand, we aim to increase the
sampling in the IL phase to enhance the model’s
capabilities and obtain a strong base model (πθb),
which can improve exploration efficiency. How-
ever, if the improvement in the IL phase is not obvi-

Algorithm 1 OpenWebVoyager
Input: LMM-based Agent πθ , GPT-4o Agent πθg , GPT-
4o Evaluator Rθg , query set QIL for Imitation Learning,
Q1

SI,..., Q
m
SI for exploration-feedback-optimization stages.

Output: The fine-tuned Agent πθm

procedure IMITATION LEARNING:
DIL =

{
(qi, τi)|qi ∈ QIL, τi ∼ πθg (τ |I, qi)

}|DIL|
i=1

;
Maximize JIL(θ) shown in Equation 6 to get πθb ;

end procedure
procedure EXPLORATION-FEEDBACK-OPTIMIZATION:

πθ0 ← πθb ;
for iteration j = 1, ...,m do

Collect trajectories Dj
SI with rejection sampling:

Dj
SI ← {};

for q ∈ Qj
SI do

while l < max resampling count do
τl ∼ πθj−1(τ |q);
ifRθg (τ

l
i ) = 1 then

Dj
SI ← Dj

SI ∪ {τl};
break;

end if
end while

end for
DSI ← DIL ∪Dj

SI;
Maximize J j

SI(θ) shown in Equation 7 to get πθj ;
end for

end procedure

ous, using additional GPT-4o calls for the IL phase
might not be cost-effective. In such cases, letting
the agent explore on its own with GPT-4o serving
as auxiliary supervision might be more beneficial.

C Additional Discussion

Why Using Iterative Self-Improvement Itera-
tive self-improvement through self-play is a well-
established technique in adapting to complex and
dynamically changing environments, such as real-
world websites. While the concept is not novel,
its application in our work is driven by practical
engineering necessities. Given the periodic up-
dates and inherent complexity of websites, iter-
ative self-improvement provides a robust frame-
work for continuous exploration and adaptation,
making it a reasonable choice for our multimodal
web agent, OpenWebVoyager. Besides, iterative
self-improvement is a more efficient method for
distilling GPT-4o, which minimizes resource con-
sumption by reducing the frequency of GPT-4o
calls. These advances enhance the practicality and
scalability of our approach.

Resource and Time Requirements Navigating
real-world websites can be time-consuming due to
the following reasons: (1) Poor network conditions
or slow server responses from the websites. (2)
Websites with a large number of elements often
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(a) Screenshot of a page from Apple website  (b) Corresponding Accessibility Tree  

[1] RootWebArea 'Apple Events - Apple' focused: True
    [2] navigation 'Global'
        [3] link 'Apple'
        [4] link 'Store'
        [5] button 'Store menu' expanded: False
        [6] link 'Mac'
        [7] button 'Mac menu' expanded: False
        [8] link 'iPad'
        [9] button 'iPad menu' expanded: False
        ...
        [14] link 'Vision'
        [15] button 'Vision menu' expanded: False
        [16] link 'AirPods'
        [17] button 'AirPods menu' expanded: False
        [18] link 'TV and Home'
                [19] StaticText 'TV & Home'
        [20] button 'TV and Home menu' expanded: False
        [21] link 'Entertainment'
        [22] button 'Entertainment menu' expanded: False
        ...
        [27] button 'Search apple.com'
        [28] button 'Shopping Bag'
    [29] navigation 'Local'
        [30] link 'Apple Events'
    [31] image 'The Apple logo, defined by an outline of ...

Figure 4: An example of observations fed into the agent, where the screenshot is rendered by the browser, and the
accessibility tree is extracted from the HTML and numbered starting from ‘[1]’.

require Selenium to wait for elements to load in the
simulation environment. (3) The agent may fail to
find the optimal navigation trajectory.

In practice, each task query takes approximately
3 minutes for web interaction (and up to 5 runs or
15 minutes per task query during the exploration
phase). To perform large-scale exploration and
evaluation as presented in this paper, we recom-
mend using 2–3 Selenium processes per computer
to make more efficient use of network resources.

Complex web pages often contain a large num-
ber of web elements, leading to lengthy accessibil-
ity trees. Despite only capturing the accessibility
tree of the current window and applying certain
simplifications, the model still requires a sequence
length of 8192. For training the idefics2-8b model,
we recommend using 8 or more A100 80G GPUs.

Additional backbone models Recent advances
in large vision-language models (LVLMs), such as
LLaVA-OneVision (Li et al., 2024) and Qwen2.5-
VL (Bai et al., 2025), have demonstrated superior
capabilities in visual grounding and visual ques-
tion answering. To evaluate their potential as back-
bones for our framework, we conduct experiments
on five WebVoyager websites, testing both imita-
tion learning and the first self-improving iteration
for Qwen2.5-VL-7B. Due to resource and time
constraints mentioned above, we leverage explo-
ration data collected during idefics2-8b trials. As
shown in Table 8, even with off-policy exploration
data (i.e., not derived from Qwen2.5-VL itself),
we observe measurable performance improvements
across self-improving cycles—aligning with our

core conclusion. These findings reinforces our pa-
per’s core contribution: the proposed method gener-
alizes across different models and noisy real-world
constraints. We hypothesize that using on-policy
exploration data from Qwen2.5-VL would further
amplify these improvements.

Sampling Quality and Efficiency During the
exploration phase, the agent samples its own tra-
jectories, and the sampling efficiency is influenced
by its current web navigation capability. We aim
to maintain the diversity of trajectories during the
exploration phase to avoid worsening the agent’s
hallucination. Therefore, the task queries used in
each exploration phase should not be too similar to
those used previously. At the same time, we should
prioritize selecting longer trajectories to prevent
the trajectory length from continuously decreas-
ing. In this paper, we also explore: (1) Conducting
more exploration on difficult websites to balance
capability improvement across different websites.
(2) Incorporating a small portion of trajectories
sampled by close-sourced models to correct some
biases that may arise during the optimization phase.

D Details of Datasets

Selected Websites In the Imitation Learning
phase and exploration-feedback-optimization cy-
cles, we collect task queries from 48 websites for
exploration. We utilize all 15 webs from Web-
Voyager and 37 webs from Mind2Web, totaling
48 webs (with 4 duplicates). Table 9 displays
the specific website names used during the train-
ing phase. During inference, we employ all task
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Web Actions Format Notes

Click Click [Label]
Perform a single Click operation
on an web element.

Input Type [Label]; [Content]
Type something in the text box
and press enter.

Scroll Scroll [WINDOW or Label]; [up or down]

In some web pages where only a
partial area can be scrolled, agent
need to lock an element in that
area first, otherwise scrolls are
performed on the whole page.

Go back GoBack Go back to previous page

Restart Restart
Restart from Google Search
and solve tasks.

Wait Wait Sleep 5 seconds

Answer ANSWER; [content] Provide final answer.

Table 7: Web Actions used in this paper.

Allrecipes ArXiv GitHub

Idefics2IL 17.8 14.0 24.4
LLaVA-OneVisionIL 35.7 27.9 19.5
Qwen2.5-VLIL 31.1 23.3 19.5
Qwen2.5-VLiter-1 26.7 32.6 24.4

Cambridge
Dictionary

Wolfram
Alpha

All 5 Webs

Idefics2IL 37.2 26.1 22.0
LLaVA-OneVisionIL 27.9 39.1 30.3
Qwen2.5-VLIL 20.9 23.9 25.7
Qwen2.5-VLiter-1 37.2 37.0 31.7

Table 8: Performance comparison of different back-
bones during the Imitation Learning (IL) phase.
We additionally evaluate Qwen2.5-VL’s first self-
improvement iteration (Iter1) using off-policy data.
LLaVA-OneVision is trained using LLaVA-NeXT,
while Qwen2.5-VL is trained via the LLaMA-Factory
framework.

queries from the WebVoyager test set and select
some task queries from the Mind2Web cross-task
and cross-website test setincluding both learned
and unlearned websites. To facilitate testing, we
update the time information of some tasks but do
not change their task expressions. Table 10 presents
detailed statistics about the test set.

Queries Preparation for Imitation Learning
The learning effectiveness during the Imitation
Learning phase is not only related to the exper-

tise of GPT-4o but also to the richness of the task
queries used. To diversify trajectories as much as
possible during the Imitation Learning phase, we
collect task queries from the following perspec-
tives:

• Queries from Mind2Web Training Data. We
have chosen 37 available websites along with
their corresponding queries, updating the date
information for travel-related tasks, totaling
516 queries.

• Synthesised queries via self-instruct. Employ-
ing the self-instruct (Wang et al., 2022) based
method mentioned in WebVoyager (15 web-
sites), we have generated 20 queries for each
website, resulting in a total of 300 queries.
The sentence-embedding model all-mpnet-
base-v22 is used to calculate the query similar-
ity and filter out the queries with high similar-
ity to ensure task diversity. There are 4 web-
sites overlapping between WebVoyager and
Mind2Web, making a total of 48 websites.

• Human-written queries. Recognizing the ran-
domness and complexity of the above tasks,
we borrow the idea of Curriculum Learning
(Soviany et al., 2022) and manually designed
5 easier task queries for each website, which

2https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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can be completed by humans between 2 - 6
steps, amounting to a total of 240 tasks.

• General queries from users. To enhance gen-
eralization, we gather 460 queries provided
by Zhang et al. (2024a), and standardize them
to begin navigation from search engines. This
approach allows the agent to explore a wider
range of websites and helps it recognize that
in case of navigation failures, using a search
engine could be attempted.

E Example Trajectories

In Figures 5 and 6, we present two ex-
amples of successful webpage navigations by
OpenWebVoyageriter-3. As shown in Figure 5,
agent navigates directly on the Google Flights web-
page and succeeds. The agent makes decisions
based on the screenshots and the specific text infor-
mation of web elements in the accessibility trees.
In Figure 6, the agent mistakenly thinks that log-
ging in is required to search on GitHub, then it
chooses to restart from Google Search and finds
the answer.

We also present an example where an agent hallu-
cinates an answer when it cannot find one. As Illus-
trated in Figure 7, while navigating the Allrecipes
website, the agent fails to locate a chocolate chip
cookie recipe that meet the task requirements. How-
ever, it provides an answer titled "Classic Choco-
late Chip Cookies." This discrepancy may be at-
tributed to the agent interpreting the word "Classic"
in the accessibility trees as a recipe and even hallu-
cinating a cook time, despite the lack of relevance.
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From Domain Subdomain Website Name

WebVoyager - -

Allrecipes; Amazon; Apple; ArXiv;
BBC News; Booking; Cambridge Dictionary;

Coursera; ESPN;GitHub; Google Flights;
Google Map; Google Search; Huggingface; Wolfram Alpha

Mind2Web

Entertainment

Event eventbrite; nyc; ticketcenter
Game boardgamegeek; store.steampowered
Movie imdb; rottentomatoes; tvguide
Music discogs; last.fm; soundcloud;
Sports espn; foxsports; sports.yahoo;

Shopping

Digital apple
Fashion uniqlo
General amazon; ebay; target

Speciality cvs; ikea

Travel

Airlines ryanair
Car rental enterprise
General agoda; booking
Ground amtrak; mbta; thetrainline; us.megabus
Hotel airbnb; koa; marriott

Restaurant resy; yelp
Others flightaware; nps.gov; spothero

Table 9: In the Imitation Learning and exploration-feedback-optimization cycles, a total of 48 websites are selected,
including 15 from WebVoyager and 37 from Mind2Web (4 duplicates).
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Test set
Num of
queries

Web seen
in training?

Domain Subdomain
Websites and

num of queries

WebVoyager 643 Yes - -

Allrecipes: 45; Amazon: 41; Apple: 43;
ArXiv: 43; BBC News: 42; Booking: 44;
Cambridge Dictionary: 43; Coursera: 42;

ESPN: 44; GitHub: 41; Google Flights: 42;
Google Map: 41; Google Search: 43;
Huggingface: 43; Wolfram Alpha: 46

Mind2Web
cross-task

112 Yes

Entertainment

Event eventbrite: 6; nyc: 3; ticketcenter: 4
Game boardgamegeek: 1; store.steampowered: 1
Movie imdb: 5; rottentomatoes: 1; tvguide: 3
Music discogs: 6; last.fm: 5; soundcloud: 4
Sports espn: 4; foxsports: 5; sports.yahoo: 1

Shopping

Digital apple: 4
Fashion uniqlo: 3
General amazon: 2; target: 5

Speciality cvs: 1; ikea: 2

Travel

Airlines ryanair: 6
General agoda: 3; booking: 2
Ground amtrak: 6; mbta: 4; us.megabus: 1
Hotel airbnb: 3; koa: 3; marriott: 5

Restaurant resy: 2; yelp: 4
Other flightaware: 4; spothero: 3

Mind2Web
cross-website

106 No

Entertainment
Event stubhub: 16
Sports nba: 17

Shopping
Auto cars: 13

General shopping.google: 17

Travel
Restaurant tripadvisor: 23

Other recreation.gov: 20

Table 10: Detailed statistics of the test dataset. Websites from WebVoyager and Mind2Web cross-task have been
seen during training, while websites from Mind2Web cross-websites have not been encountered.
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                  Step 1: Type [19]; Chicago
([19]  combobox 'Where from? ' autocomplete: inline 
hasPopup: menu required: False expanded: False)

                  Step 2: Type [22]; London
([22]  combobox 'Where to? ' autocomplete: inline 
hasPopup: menu required: False expanded: False)

    Step 3: Type [24]; October 20, 2024
([24] textbox 'Departure' required: False)

 Step 4: Type [25]; October 23, 2024
([25] textbox 'Return' required: False)

                                Step 5: Click [70]
([70] button 'Done. Search for round trip flights, departing 
on October 20, 2024 and returning on October 23, 2024')

  Step 6: Click [28]
([28] button 'Search')

  Step 7: ANSWER

Figure 5: Agent (OpenWebVoyageriter-3) navigates on the Google Flights and completes the task successfully.
TASK: "Find flights from Chicago to London on 20 October and return on 23 October." REPLY: "Thought: The
search results for flights from Chicago to London on October 20 and October 23, 2024, are displayed. The prices
start from $706 and go up to $834. The average price for the round trip is approximately $750. Action: ANSWER;
The average price for a round trip flight from Chicago to London on October 20 and returning on October 23 is
approximately $750."
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        Step 1: Click [16]
([16] button 'Search or jump 
to…' hasPopup: dialog)

                    Step 4: Click [27]
([27] heading 'Web Result with Site Links')

Step 2: Restart      Step 3: Type [8]; electron/electron GitHub releases
([8] combobox 'Search' focused: True autocomplete: 
both hasPopup: listbox required: False expanded: False)

           Step 5: Click [45]
([45] link 'Tag v33.0.0-beta.4')

                   Step 6: ANSWER
([55] generic 'Sep 25, 2024, 2:48 PM PDT'
       [56] StaticText '3 days ago' )

Figure 6: Agent (OpenWebVoyageriter-3) Restart navigation from Google Search with success after failing to
navigate on GitHub pages. TASK: "Retrieve the latest release from the ’electron/electron’ repository on GitHub
and note down the release version number and date." REPLY: "Thought: I have navigated to the latest tag for the

’electron/electron’ repository. The version number shows 33.0.0-beta.4, and the release date is Sep 25, 2024, as
displayed on the right column. Action: ANSWER; Latest release of the ’electron/electron’ repository is 33.0.0-beta.4
on Sep 25, 2024."
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Step 1: Type [5]; five star rated chocolate 
chip cookie recipe
([5] textbox 'Search the site' required: True )

                               Step 2: Click [14]
([14] link 'Five chocolate chip cookies on a marble 
background IN THE KITCHEN I Tested 5 Reader Favorite 
Chocolate Chip Cookie Recipes in Search of the Best' )

Step 3: Scroll [WINDOW]; down

Step 4: Scroll [WINDOW]; down Step 5: ANSWER

Figure 7: Agent (OpenWebVoyageriter-3) hallucinates an incorrect answer while navigating on Allrecipes. TASK:
"Find a five-star rated chocolate chip cookie recipe that takes less than 1 hour to make on Allrecipes." REPLY:
"Thought: I have found the section listing the main ingredients and the bake time for the "Classic Chocolate Chip
Cookies." The cookies take 15 minutes to make and additional 45 minutes to bake, totaling 1 hour and 10 minutes.
I now have all the necessary information to answer the task. Action: ANSWER; The C̈lassic Chocolate Chip
Cookiesr̈ecipe on Allrecipes has a rating of 4.5 stars with 4,580 reviews. The main ingredients include butter, heavy
cream, eggs, all purpose flour, and unsweetened cocoa powder. The cookies take 15 minutes to make and additional
45 minutes to bake, totaling 1 hour and 10 minutes."
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