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Abstract

Vanilla spiking neurons are simplified from
complex biological neurons with dendrites,
soma, and synapses, into single somatic com-
partments. Due to limitations in performance
and training efficiency, vanilla spiking neurons
face significant challenges in modeling long
sequences. In terms of performance, the over-
simplified dynamics of spiking neurons omit
long-term temporal dependencies. Addition-
ally, the long-tail membrane potential distribu-
tion and binary activation discretization errors
further limit their capacity to model long se-
quences. In terms of efficiency, the serial mech-
anism of spiking neurons leads to excessively
long training times for long sequences. Though
parallel spiking neurons are an efficient solu-
tion, their number of parameters is often tied
to the hidden dimension or sequence length,
which makes current parallel neurons unsuit-
able for large architectures. To address these is-
sues, we propose MMDEND1: a Multi-Branch
Multi-Compartment Parallel Spiking Dendritic
Neuron. Its proportion-adjustable multi-branch,
multi-compartment structure enables long-term
temporal dependencies. Additionally, we intro-
duce a Scaling-Shifting Integer Firing (SSF)
mechanism that fits the long-tail membrane po-
tential distribution, retains efficiency, and mit-
igates discretization errors. Compared with
parallel neurons, MMDEND achieves better
long-sequence modeling capability with fewer
parameters and lower energy consumption. Vi-
sualization also confirms that the SSF mecha-
nism effectively fits long-tail distributions.

1 Introduction

Vanilla spiking neurons are simplified abstractions
of biological neurons, simulating the integrate-fire-
reset dynamics. Advancements in training algo-
rithms (Wu et al., 2018; Duan et al., 2022) have
allowed spiking neurons to achieve success in many
tasks while maintaining energy efficiency (Lv et al.,

1https://github.com/WKX933/MMDEND

2023; Li et al., 2023; Zhu et al., 2023; Wang et al.,
2024; Zhao et al., 2021; Rajagopal et al., 2023;
Yao et al., 2024; Zhou et al., 2022). However, spik-
ing neurons face significant challenges in modeling
long sequences (Fang et al., 2024; Stan and Rhodes,
2024) due to limitations in both performance and
efficiency.

… … … …

soma of dendrite
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Figure 1: Types of Dendritic Neuron Modeling

In terms of performance, the overly simpli-
fied temporal dynamics are a key factor limiting
the ability of spiking neurons to model long se-
quences (Fang et al., 2024; Stan and Rhodes, 2024).
A typical biological neuron structure includes com-
ponents such as dendrites, synapses, soma, and
axon (Spruston, 2008). According to the model-
ing of this typical structure, current neuron mod-
els can be categorized into point neurons and fine-
grained neurons. Vanilla spiking neurons, such as
LIF (Maass, 1997), are a classic example of point
neurons, where the neuron is simplified to a single
soma. Due to this simplification, point neurons
have limited temporal dynamics, making it diffi-
cult to capture long-term dependencies (Legenstein
and Maass, 2011). On the other hand, the fine-
grained neurons incorporate a more comprehensive
biological neuron structure and exhibit long-term
dependent temporal dynamics (Chen et al., 2024;
Zheng et al., 2024). Specifically, the multi-branch,
multi-compartment structure of dendrites in bio-
logical neurons has demonstrated exceptional ca-
pabilities in processing temporal signals (London
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and Häusser, 2005). Although recent research has
explored applying dendritic dynamics to sequential
tasks (Zheng et al., 2024; Chen et al., 2024; Egri-
oglu et al., 2022; Egrioglu and Bas, 2024), the com-
plexity of dendritic structures makes it challenging
to balance detailed modeling with computational
efficiency. Therefore, most of these works focus
on either the multi-compartment or multi-branch
structures as shown in Figure.1(b) and (a), without
fully leveraging the dendritic dynamics.

Figure 2: Long-tail Membrane Potential Probability
Distribution.

Another issue that impacts the performance of
spiking neurons is that binary activation leads to
discretization errors and is difficult to fit long-tail
distributions. Spiking neurons typically transmit
binary spikes, which often require multiple time
steps to mitigate the binary discretization errors.
However, the multiple extended time steps result
in exponentially higher training costs (Guo et al.,
2024). To mitigate the discretization errors, while
also taking the training efficiency into account, ex-
isting works for sequence tasks opt not to extend
time steps. Instead, they employ dedicated firing
mechanisms (Guo et al., 2024; Luo et al., 2024),
such as negative spike activation, learnable spike
activation and integer activation, to replace binary
encoding. However, these methods fire within a
fixed and symmetric range, which limits their abil-
ity to adapt to the asymmetric long-tail distribution
of membrane potentials, as shown in Figure 2.

In terms of efficiency, the challenge is that the se-
rial mechanism inherent in spiking neurons results
in excessively long training time for long sequence
tasks (Fang et al., 2024). Therefore, recent research
has focused on either eliminating or improving the
nonlinear reset mechanism and transitioning to par-
allel mechanisms (Chen et al., 2024; Fang et al.,
2024). However, the number of parameters in cur-
rent parallel neurons is often tied to the hidden
dimension or sequence length, which makes these

works more like modeling of layers rather than
neurons and is unsuitable for large models.

Based on the above analysis, in this work, for se-
quence modeling tasks, we propose a Multi-Branch
Multi-Compartment Parallel Spiking Dendritic
Neuron (MMDEND). As for performance, the
multi-branch, multi-compartment structure of MM-
DEND provides long-term dependent dynamics.
Expanding from a single branch to multiple
branches may introduce exponential computational
complexity. MMDEND achieves adjustable multi-
branch proportions by grouping inputs, which al-
lows it to enhance performance while reducing
computational complexity. To overcome the lim-
itations of binary firing, we introduce a Scaling-
Shifting Integer Firing (SSF) mechanism that ef-
fectively fits the long-tail membrane potential dis-
tribution. SSF uses single-step integer training and
multi-step spike inference, ensuring efficiency in
both training and inference (Luo et al., 2024). To
ensure efficient parallelism, dendritic dynamics are
modeled using State-Space Modeling (SSM) and
nonlinear firing is removed in the soma (Fang et al.,
2024). Unlike traditional parallel neurons, the num-
ber of parameters in MMDEND is independent of
both the channel and sequence length. Our main
contributions can be summarized as follows:

• We propose MMDEND, a multi-branch,
multi-compartment parallel spiking dendritic
neuron with long-term dependency dynamics.
The multi-branch proportion is adjustable for
computing saving and task performance.

• We propose SSF mechanism that dynamically
adapts to long-tail membrane potential distri-
butions through translation and scaling. SSF
adopts single-step integer firing during train-
ing and multi-step spiking firing during infer-
ence for efficiency.

• MMDEND achieves better long sequence
modeling capability than parallel neurons with
fewer parameters and lower energy consump-
tion. Visualization confirms that SSF mecha-
nism effectively fits long-tail distributions.

2 Related work

Spiking Neuron For Sequence Modeling. Due to
the serial temporal mechanisms, lengthy training
times pose a bottleneck for spiking neuron per-
formance in long sequence modeling. To tackle
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this challenge, (Fang et al., 2024) introduced PSN,
which eliminates the nonlinear reset mechanism to
enable parallelism in spiking neurons and incorpo-
rates learnable time decay constants to compensate
for neural dynamics. (Chen et al., 2024), inspired
by pyramidal cells, proposed PMSN, which revis-
its the reset mechanism in spiking neurons while
achieving multi-compartment parallelism. Con-
sidering the superior performance of SSM in pro-
cessing temporal signals, (Stan and Rhodes, 2024)
replaced the LIF dynamics with SSM. This ap-
proach is similar to the multi-compartment model-
ing used in PMSN, but lacks the soma component.
Notably, the neuron size of these works depends
on the sequence length or the hidden dimensions,
which makes these works more like layers model-
ing rather than neurons.

Dendrite Modeling. Dendritic neurons are a
type of biological neuron in the brain, character-
ized by their excellent temporal computation abili-
ties and nonlinear expression properties (Chen and
Liu, 2022; Wu et al., 2023). (Zheng et al., 2024)
combines dendrites with spiking neural networks to
propose DH-LIF, which effectively learns temporal
features at different scales through heterogeneous
timing factors on various dendritic branches. (Ji
et al., 2022) modeled the dendritic neuron from
four levels: synaptic, dendrite, membrane, and
soma, with the dendritic component employing a
multi-branch architecture. (Chen et al., 2024) pro-
posed a single-branch multi-compartment model.
These studies consider either multi-branch or multi-
compartment characteristics alone, lacking compre-
hensive modeling of the full dendritic architecture.

Spiking Firing Mechanism. Multiple time
steps are typically used to compensate for the in-
formation loss caused by binary firing, but this ap-
proach significantly increases computational costs.
Recent work attempts to compensate for the loss
from the firing mechanism. (Sun et al., 2022) intro-
duced dual-thresholds and used integer firing. (Guo
et al., 2024) proposed ternary spikes with negative
activation and designed learnable peak amplitudes
to adapt to different membrane potential distribu-
tions across layers. (Luo et al., 2024) proposed
ILIF with positive integer firing during traing and
spiking firing during inference.

3 Preliminaries

Spiking Neurons. LIF is a classic spiking neuron
with a charge-fire-reset dynamic, and we take LIF

as an example to introduce the spiking neurons.
The dynamic process of LIF can be calculated as:

Ht = (1− 1

τ
)Vt−1 +

1

τ
Xt (1)

St = Θ(Ht − V th) (2)

Vt = V reSt +Ht(1− St) (3)

The sequence from Eq.(1) to (3) describes the
key processes in the LIF neuron model: charging,
firing, and resetting. In these equations, Xt indi-
cates the input current at each time step t, while Ht

refers to the post-charge membrane potential. τ is
the time dynamic factor. The spike tensor at time t
is denoted by St. Θ is the step function, and V th is
the threshold voltage beyond which firing occurs.
After firing, the membrane potential resets to V re.
In this work, we replace the charging dynamics
with dendritic and soma dynamics. Additionally,
we substitute the firing and resetting mechanisms
with the SSF mechanism.

State Space Model. The SSM is a method for
describing and analyzing dynamic systems, appli-
cable to systems described by first-order or higher-
order differential equations (Kalman, 1960). Its
classical formulation can be expressed as:

ḣt = Aht +Bxt (4)

yt = Cht +Dxt (5)

where A,B,C,D represent control matrices. Typ-
ically, before performing computer simulations,
discretization methods are employed, such as the
zero-order hold method (ZOH) (DeCarlo, 1989) for
discretization. The discretized form of Eq. (4) can
be expressed as:

ht = Āht−1 + B̄xt (6)

where Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)−
I) ·∆B, ∆ represents the sampling interval from
continuous to discrete. Since our modeling of the
dendrites starts with Kirchhoff’s current law with
first-order differential equations, the SSM is well-
suited for the dendrites modeling and facilitates the
parallelization of dendrites.

4 Method: MMDEND

In this work, we propose MMDEND, an adjustable
multi-branch, multi-compartment parallel spiking
neuron inspired by dendritic neurons. Starting from
the dendritic model constructed via cable theory
in Figure 1(c), we introduce the dendritic branch
modeling and the soma modeling. Finally, we will
present the SSF mechanism in detail.
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4.1 Single-branch Multi-compartment
Dendrite SSM Modeling

According to cable theory and PMSN (Chen et al.,
2024), each branch of a dendrite can be modeled as
a series of single-compartment circuits. As shown
in the left part of Figure 3, each compartment in-
cludes a leakage resistor RL, a cell membrane ca-
pacitor Cm, and a current source representing exter-
nal input. Rk denotes the axial resistance between
the k-th and (k − 1)-th compartments. Vk repre-
sents the voltage value of the k-th compartment.
The current continuity equation for compartment k
is:

dvjk
dt

=
vj(k−1)

τ fjk
− vjk

τjk
+

vj(k+1)

τpjk
+ γkIj (7)

where vjk represents the voltage of the k-th com-
partment in the j-th branch (j ∈ {1, . . . , J},
k ∈ {1, . . . ,K}), J and K denote the total num-
ber of branches and compartments, respectively.
τ fjk = Rj(k−1)Cm and τpjk = RjkCm represent
the influence of adjacent compartments on the
current compartment’s membrane potential, and
1
τjk

=
Rjk+Rljk

CmRjk+CmRljk
denotes the time constant

of the current compartment’s temporal dynamics.
γk = rk

Cm
, where rk represents the decay coef-

ficient that varies with the distance between the
input current and the compartment. It is important
to note that we decouple the last compartment of
the dendrite from the soma, so each branch for the
input Ij ∈ RD′

can be described as:

V̇c
j =




− 1
τj1

1
τpj1

0 · · ·
1

τfj2
− 1

τj2
1
τpj2

· · ·
...

. . .
0 · · · 1

τfjK
− 1

τjK



Vc

j+




γ1
γ2
...

γK


 Ij

(8)

Vdend
j = [0 0 . . . 1]Vc

j+γoj Ij (9)

where V dend
j is the terminal voltage of branch j,

determined by the voltage of the last compartment
and the decoupling compensation term γoj Ij .

Each dendritic branch described above is a Sin-
gle Input Single Output (SISO) continuous SSM
system. We employ the ZOH method for discretiza-
tion. It is important to note that the state tran-
sition matrix has very high computational com-
plexity when performing exponential operations
as a density matrix, making it difficult for long se-

Branch2

Soma

Branch1

Branch3

Rw1 Rw2 Rwn

RL

Cm

Vk

Vk-1

Vk+1

Rk-1

Rk

RL

Cm

Figure 3: Dendritic Neuron Modeling.

quence operations. Therefore, we perform an eigen-
value decomposition of the state transition matrix
A = PΛP−1. To ensure the transition matrix can
be diagonalized and to enhance the expressiveness
of the diagonalized matrix, we perform calcula-
tions in the complex domain. The terminal voltage
V dend
j of the dendritic branch can be calculated as:

Vj [t] = ÂVj [t− 1] + Γ̂Ij [t] (10)

Vdend
j [t] = ĈVj [t] + γoj Ij [t] (11)

where Vj = P−1Vc
j ,Vj ∈ RK×D′

, the state tran-
sition matrix Â = exp (Λdt) , Â ∈ RK×K , the
distance coefficient matrix Γ̂ = Λ−1(Â− I)P−1Γ,
Γ = [γ1, . . . , γK ]T , Γ̂ ∈ RK×1, the output ma-
trix Ĉ = [0 0 . . . 1]P . Λ, dt, Ĉ, Γ, and γoj
are all learnable parameters. In the hidden state
expressions of each compartment, there is no non-
linear representation. Therefore, Eq.(10) can be
expressed in a parallel form as:

Vj [t] =
t∑

q=0

Ât−qΓ̂Ij [q] (12)

The parallel form of each branch, Eq.(12) can be
efficiently implemented through FFT convolution.

4.2 Multi-branch Multi-compartment
Dendrite Modeling

Extending to multi-branch can lead to an expo-
nential increase in computational cost. To address
this, we group the inputs along the hidden dimen-
sion, enabling the proportion of the multi-branch
adjustable. First, we divide the input I ∈ RD

into J groups, with each group having a window
length of D′, where D ≥ D′ ≥ D

J , and a stride
of S. This results in the input current for each
branch I1,...,J ∈ RD′

. Grouping the input allows
the number of dendritic branches per channel to
dynamically vary between {1, . . . , J}, adapting to
tasks of different difficulty levels. To simulate the
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high nonlinear expressiveness of dendritic neurons,
nonlinear activation is applied to the output current
of each branch:

Vdend
j [t] = f

(
gj

(
I
[
j ∗ S : j ∗ S +D

′
]))

(13)

where f is the nonlinear function, and gj denotes
the dynamic process of dendritic branch j.

4.3 Soma Modeling

As shown in the right part of Figure 3, the soma in-
cludes axial resistances Rwj for each branch, soma
leakage resistance RL, soma capacitance Cm, and
a current source determined by the input. The cur-
rent continuity equation for the soma is:

dvs

dt
= −vs

τ s
+

M∑

j=1

vdendj

τ sj
+ γsI (14)

where vs is the membrane potential of the soma,
τ s and τ sj are the time constants determined by the
axial resistances Rwj and structural parameters of
soma, and γs = rs

Cm
. For the soma, we also use

ZOH for discretization,

Vs[t] = βVs[t− 1] + α(
M∑

j=1

Vdend
j

τ sj
+ γsI)

(15)

S[t] =SSF (Vs[t]) (16)

where β = exp
(
− dt

τs

)
, and α = τ s(1− β). SSF

is a firing mechanism capable of dynamically adapt-
ing to long-tail membrane potential distributions.

4.4 Scaling-Shifting Integer Firing

We propose SSF to dynamically adapt to asymmet-
ric long-tail membrane potential distributions and
negative membrane potentials. The SSF mecha-
nism consists of two main components: membrane
potential fitting and efficient integer firing.

Membrane Potential Fitting. SSF uses thresh-
old as a measure of membrane potential to deter-
mine the integer value or number of spikes that can
be triggered. To tackle the long-tail distribution
and negative membrane potentials, we introduce an
offset ϕp and a scaling factor ϕs in the firing mech-
anism. These parameters translate and scale the
membrane potential to the effective encoding range
[−U,U ], U ∈ Z+, ensuring information complete-
ness. The membrane potential fitting process of

SSF can be written as:

S[t] = ⌊clip(V
s − ϕp

ϕs
,−U,U)/V th⌋ (17)

where ⌊·⌋ is the floor function, clip(∗,−U,U) rep-
resents clipping within the range [−U,U ], and V th

is the threshold.

Figure 4: Scaling-Shifting Integer Firing Mechanism.

Efficient Integer Firing. SSF adopts single-step
integer activation during training, and multi-time-
step binary activation during inference as shown in
Figure 4. During training, the S[t] in Eq.(17) are in-
tegers ∈ [−Ū , Ū ], Ū = ⌊ U

V th ⌋. During inference,
to retain the advantage of low energy consump-
tion, SSF employs a Ū time steps binary firing
S[t, 1 : Ū ] ∈ {−1, 0} or {0, 1}. SSF satisfied:

S[t] =

Ū∑

u=1

S[t, u] (18)

Therefore, taking layer l as an example, it is easy
to prove the equivalence of training and inference:

W lS[t] = W l
Ū∑

u=1

S[t, u] =
Ū∑

u=1

W lS[t, u] (19)

where W l is the model weight of layer l.

5 Experiments

In this section, we demonstrate the modeling ca-
pability of MMDEND on general sequences in
5.1, its high expressiveness on long sequence lan-
guage modeling tasks in 5.2 and large-scale lan-
guage modeling tasks in 5.3. In 5.4, we analyze
MMDEND’s efficiency in energy consumption and
training. Additionally, we validate the effectiveness
of each component of MMDEND in 5.5. The exper-
imental setup is detailed in the Appendix A, B, C.

5.1 General Sequence Modeling
To demonstrate the versatility of MMDEND, as
shown in Table ??, we compare it with expressive
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Dataset Timesteps Approach Parallel
Training Parameters Accuracy

S-Cifar10
&

S-Cifar100
32

LIF N 0.51M 81.50% / 55.45%
LIF wo reset N 0.51M 79.50% / 53.33%
GLIF (Yao et al., 2022) N 0.51M 83.66% / 58.92%
KLIF (Jiang and Zhang, 2023) N 0.51M 83.26% / 57.37%
SPSN (Fang et al., 2024) Y 0.51M 86.70% / 62.11%
masked PSN (Fang et al., 2024) Y 0.52M 85.81% / 60.69%
PSN (Fang et al., 2024) Y 0.52M 88.45% / 62.21%
PMSN (Chen et al., 2024) Y 0.54M 90.97% / 66.08%
MMDEND (Ours) Y 0.51M 92.71% / 67.65%

SSC 250

SRNN (Cramer et al., 2020a) N 0.11M 50.90%
TC-LIF-FF (Zhang et al., 2024) N 0.11M 63.46%
TC-LIF-RNN (Zhang et al., 2024) N 0.11M 61.09%
ALIF (Yin et al., 2021) N 0.73M 74.20%
PSN (Fang et al., 2024)* Y 0.32M 43.71%
masked PSN (Fang et al., 2024)* Y 0.32M 68.04%
SPSN (Fang et al., 2024)* Y 0.13M 71.50%
MMDEND (Ours) Y 0.13M 75.63%

* Our reproduced results based on publicly available codebases

Table 1: Comparison of Performance on General Sequential Tasks.

spiking neurons on spatial-temporal and speech
tasks. For the spatial-temporal tasks, we use the
column-by-column mode of the S-CIFAR10 and
S-CIFAR100 as (Fang et al., 2024). For the speech
tasks, we experiment on the spike speech bench-
mark SSC (Cramer et al., 2020b). Compared to
serial neurons, parallel neurons exhibit significant
performance advantages. Moreover, MMDEND
outperforms the SOTA PMSN by 1.74% and 1.57%
in the spatial-temporal tasks with fewer parameters,
indicating that MMDEND has better general se-
quence modeling capabilities.

5.2 Long Sequence Language Modeling

To validate the effectiveness of MMDEND in long
sequence modeling, we combine parallel neurons
with the S4 model and compare it on the clas-
sic long sequence benchmark Long Range Arena
(LRA). The subtask lengths in LRA range from
1k to 4k. As shown in Table 2, MMDEND out-
performs the baselines on all the long sequence
tasks, with an average improvement of 10% over
SPSN and at least 22.5% over MPSN and PSN. It is
worth to note that MMDEND can effectively han-
dle ultra-long sequence tasks like PATHX, while
both MPSN and SPSN failed on the PATHX task.

5.3 Large Scale Language Modeling
To substantiate the efficacy of MMDEND on large-
scale language models and extensive datasets, we
integrated parallel spiking neurons with the 350M
GLA (Yang et al., 2023), conducting pre-training
on 1B tokens from the Pile (Gao et al., 2020)
dataset. We report our findings on the widely
recognized LLM evaluation benchmark Common-
Sense Reasoning (Davis and Marcus, 2015). Due
to the substantial additional parameters introduced
by PSN, we compared MMDEND with SPSN and
MPSN. As delineated in Table 3, MMDEND shows
superior adaptability for large-scale tasks.

5.4 Energy and Training Efficiency Analysis
Energy efficiency Analysis. Introducing more
complex temporal dynamics in neurons may raise
concerns about increased energy consumption. To
address this, we compare MMDEND with the PSN
family and report energy consumption across vary-
ing numbers of compartments and branches. The
energy consumption calculation formula is:

EMAC ∗ Flopsneu + T ∗R ∗ EAC ∗ Flopslayer

where Flopsneu is the Flops of spiking neuron,
Flopslayer is the Flops of a fully connected layer,
T is the length of sequence, R is the firing rate. The
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Architecture AAN CIFAR IMDB PATHFINDER LISTOPS PATHX AVG
S4-PSN 0.834 0.787 0.633 0.658 0.399 0.507 0.636

S4-MPSN 0.809 0.787 0.672 0.812 0.390 0.502 0.662
S4-SPSN 0.864 0.856 0.857 0.926 0.568 0.503 0.762

S4-MMDEND 0.900 0.878 0.886 0.943 0.599 0.963 0.861

Table 2: Long Sequence Moding Experiments on Long Range Arena Benchmark.

LOGIQA WSC273 BOOLQ PIQA HS WG ARC-easy OBQA AVG
GLA-MPSN 0.238 0.490 0.378 0.527 0.258 0.509 0.255 0.254 0.363
GLA-SPSN 0.236 0.494 0.435 0.535 0.258 0.485 0.292 0.248 0.373

GLA-MMDEND 0.227 0.513 0.475 0.540 0.260 0.487 0.292 0.254 0.381

Table 3: Large Scale Experiments on CommonSense Reasoning Benchmark.

MODEL Flops
PSN DT 2

SPSN/MPSN DWT

MMDEND
dend:

∑n
i=1 fiiD(3K + 1)T

soma: 2
∑n

i fiiDT + 3DT

Fully Connected D2T

Table 4: Flops of spiking neurons and layers. D is the
hidden dimension, T is the sequence length, W is the
window length, K is the number of compartments, n is
the number of branches, fi is the portion of i branches.

detailed calculation of FLOPs is shown in Table 4.
Eadd = 0.9pJ and Emac = 4.6pJ are the energy
consumption of add and MAC operations at 45nm
process nodes for full precision (FP32) SynOps.

As shown in Figure 5, due to the grouping mech-
anism, the energy consumption of MMDEND does
not increase significantly as the number of branches
and compartments increases, and remains much
lower than that of PSN families. Compared to
MMDEND with binary firing, the energy consump-
tion of MMDEND with SSF shows only a slight
increase. Furthermore, when compared to the ver-
sion without a grouping mechanism, MMDEND
saves about 30% in energy, with savings growing
as the number of branches increases.

Training Efficiency Analysis. MMDEND is
more suitable for long sequences and large-scale
tasks compared to vanilla spiking neurons, not only
because of its long-term dependent temporal dy-
namics but also due to its training efficiency. In
Table 5, we compare the time cost of MMDEND
and LIF as sequence length increases. Unlike LIF,
whose time cost grows significantly with longer
sequences, MMDEND’s time cost remains stable

Figure 5: Energy Consumption and Performance on
S-CIFAR10.

regardless of sequence length.

Time (ms) L128 L256 L512 L1024

LIF 10.98 21.41 44.67 83.56
MMDEND 0.78 0.77 0.78 0.77

Table 5: Forward time comparison under different se-
quence lengths.

5.5 Component Analysis of MMDEND
To verify the effectiveness of each component of
MMDEND, we conducted ablation and visualiza-
tion experiments on the S-CIFAR10 dataset in this
subsection.

Branch and Compartment. As shown on the
right part of Figure 6, we exhibit the performance
variation from a single branch to 8 branches. It is
evident that as the number of branches increases,
the performance improves. Notably, there is a sig-
nificant performance improvement when increasing
from a single branch to two branches. Similarly,
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Figure 6: Ablation Study on Compartments and
Branches.

in the compartments ablation experiments, perfor-
mance improves with more compartments, though
overly large compartments can hinder MMDEND’s
expression. Therefore, it is essential to choose the
number of branches and compartments according
to the task complexity.

Figure 7: Ablation Study on Branch Group.

Group Dendrite Branch. As shown in Fig-
ure 7, the percentages represent the proportion of
each channel sharing branch. An interesting ob-
servation is that sharing branches from 0% to 25%
improves performance, but further increasing the
shared proportion gradually decreases performance,
indicating that the multi-branch proportion can be
adjusted based on the task difficulty, and reducing
information redundancy.

MMDEND-SSF Variants Accuracy
baseline (ranging from [−4, 4]) 92.21
w/o scaling and translation 91.34
w/o scaling and translation & integer 90.67
Ranging from [−1, 1]
(i.e., ternary spiking)

91.04

Ranging from [−3, 3] 92.68

Table 6: Ablation on SSF Mechanism.

Scaling-Shifting Integer Firing. To investigate
the impact of the translation-scaling mechanism,
integer firing, and the firing range on performance
within the SSF mechanism, we present the ablation
results in Table 6. Removing the translation-scaling
coefficients from the SSF mechanism resulted in
a 0.87% decrease in accuracy. Furthermore, re-
placing integer firing with binary firing (i.e. 0-1
firing without reset), led to an additional 0.67%
drop in performance. We also observed that as
the firing range expanded from [−1, 1] to [−3, 3],
performance gradually improved, but it slightly de-
clined when the range was extended to [−4, 4].

Figure 8: Visualization of long-tail soma membrane
potential and spike activations.

Membrane Potential Distribution and SSF. To
demonstrate that the SSF mechanism effectively
addresses the issue of binary spike activation fail-
ing to fit asymmetrical long-tail distributions, we
present the membrane potential distribution and
SSF spike firing distribution in the soma, as shown
in Figure 8. The SSF effectively covers the asym-
metrical long-tail membrane potential distributions,
preserving the completeness of the information.

6 Conclusion

In this work, we propose MMDEND to overcome
the challenges that traditional spiking neurons face
in long-sequence tasks. MMDEND is designed
based on the circuitry of dendritic neurons derived
from cable theory achieving long-term dependent
temporal dynamics. We introduce the SSF mecha-
nism, which dynamically adapts to long-tail mem-
brane potential distributions by adjusting scale and
shift parameters. SSF balances efficiency and low
energy consumption by using integer activation
during training and event-driven operations during
inference. To achieve efficient parallelization, we
model the dendrites using SSM and eliminate the
nonlinear firing in the soma. Results show that
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MMDEND outperforms all the serial and paral-
lel spiking neuron baselines on general sequence,
long-sequence, and large-scale tasks, proving the
effectiveness and efficiency of dendritic dynamics.

7 Limitation

Since the modeling process of MMDEND starts
from a single branch and extends to multiple
branches, although we use grouping to prevent
an exponential increase in computation, the multi-
branch structure still inevitably leads to some in-
crease in computational cost and energy consump-
tion. We look forward to future work that will di-
rectly model the multi-branch, multi-compartment
structure to eliminate this limitation.
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A Computing Setting

For the Highly Expressive Language Modeling ex-
periment, we used 8 A100 GPUs. For all other
experiments, we completed them on a single A100
GPU.

B Dataset

The datasets in this work are as follows:
Wikitext-103 is a widely used NLP dataset that

includes over 100000 Wikipedia articles, totaling
approximately 103 million words. In our experi-
ments, we follow the setup described in (Merity
et al., 2016), where the training set, validation set,
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and test set consist of 28475, 60, and 60 articles,
respectively.

Long Range Arena (LRA) is a dataset and
benchmark designed to evaluate the ability of mod-
els to handle long sequences (Tay et al., 2021).
LRA aims to test model performance in managing
long-range dependencies and includes tasks such
as text classification, image classification, retrieval,
list operations, and pathfinding. In our experiments,
the sequence length distribution ranges from 1K to
4K.

S-Cifar10 and S-Cifar100 are image sequence
classification tasks derived from CIFAR-10 and
CIFAR-100. In this task, each image with size
32 × 32 is segmented into a column-by-column
sequence from left to right.

Spiking Speech Command (SSC) is a speech
recognition dataset specifically designed for the
neuromorphic computing field. Unlike traditional
speech datasets, the SSC dataset uses spike encod-
ing to convert audio signals into spike sequences.
Each spike input consists of 700 channels, encom-
passing 35 different word categories.

C Experiment Setting

In this subsection, we will introduce the model
architecture and hyperparameter settings in each
experiment.

Model Architectures are shown as follows:

• For the Wikitext task, we followed the model
architecture in (Gu et al., 2021), which con-
sists of 16 transformer layers with a hidden
size of 512. We replaced the activation layer
in each transformer block with a 2-branch,
4-compartment MMDEND.

• For the LRA task, we followed the model
architecture described in (Gu et al., 2021),
which consists of 6 S4 blocks. We replaced
the activation layer in each block with a 2-
branch, 4-compartment MMDEND.

• For S-CIFAR10 and S-CIFAR100, we used
the same model architecture setup as (Fang
et al., 2024), which includes one convolu-
tional layer and two linear layers. Sequence
modeling between layers is performed using
MMDEND. S-CIFAR10 utilizes a MMDEND
with 8 compartments and 6 branches, while
S-CIFAR100 employs a MMDEND with 8
compartments and 4 branches.

• For the SSC task, we used a four-layer linear
network with a hidden size of 128. Sequence
modeling between layers was performed us-
ing a MMDEND with 8 compartments and 4
branches.

(a) serial (b) parallel

Figure 9: serial and parallel spiking neuron.

(a) Compartment 1 (b) Compartment 2

(c) Compartment 3 (d) Compartment 4

Figure 10: Visualization of dendritic compartment mem-
brane potential information patterns on the SSC dataset.

Hyperparameters Our hyperparameter Settings
in each experiment are shown in the Table 7.

D Supplementary Preliminaries

Parallel spiking neuron When the nonlinearity
is removed from Eq. (3), such that Vt = Ht,
the membrane potentials at each time step H =
{H0, H1, . . . ,HT−1} as shown in Figure 9(b) can
be calculated in parallel as (Fang et al., 2024):

Ht =
1

τ

t∑

i=0

(1− 1

τ
)t−i ·Xt =

t∑

i=0

Wt,iXt (20)

where Wt,i =
1
τ (1− 1

τ )
t−i, which determines the

temporal dynamics of the parallel neurons. Eq.
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Table 7: Long Sequence Moding Experiments on Long Range Arena Benchmark.

Dataset Learning Rate Weight Decay Batchsize Epoch Compartment Branch
AAN 0.01 0.05 64 20 4 2

CIFAR 0.01 0.05 50 200 4 2
IMDB 0.01 0.05 16 32 4 2

PATHFINDER 0.004 0.05 64 200 4 2
LISTOPS 0.01 0.05 32 40 4 2
PATHX 0.001 0.05 16 50 4 2

Wikitext-103 5e-4 0.0 32 40 4 2
S-Cifar10 0.1 0.0 128 256 8 6
S-Cifar100 0.1 0.0 128 256 8 4

SSC 0.01 0.0 32 200 8 4

(20) can be efficiently implemented using the FFT
convolution.

(a) Branch 1 (b) Branch 2

(c) Branch 3 (d) Branch 4

Figure 11: Visualization of dendritic branch membrane
potential information patterns on the SSC dataset.

E Information Patterns of Dendritic
Compartments and Branches

In this subsection, we visualize the membrane po-
tentials across multiple branches to demonstrate
their functions. Additionally, we exhibit the consis-
tency between the soma membrane potential and
the spike distribution under the SSF mechanism.
As shown in Figure 11, we present the membrane
potential distribution of MMDEND across four
branches on the SSC dataset. We observed that
different branches exhibit channel-specific charac-
teristics. Specifically, Figures 11(a), 11(b), and
11(d) demonstrate concentrated responses to the
anterior, posterior, and central segments of the

channel, respectively, while Figure 11(c) shows
a uniform response across the entire channel. Addi-
tionally, we also found that different compartments
exhibit sequence-specific characteristics, which can
be found in the Appendix E.

Unlike the information distribution observed in
dendritic branches, the membrane potential distri-
bution across dendritic compartments, as shown in
Figure 10, exhibits different response patterns to
various positions within the input sequence. For
instance, Figures 10(a) and 10(b) show responses
concentrated in the latter and middle-latter parts
of the sequence, while Figures 10(c) and 10(d)
demonstrate concentrated responses in the middle
and early-middle parts of the sequence.
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