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Abstract

While originally designed for unidirectional
generative modeling, decoder-only large lan-
guage models (LLMs) are increasingly being
adapted for bidirectional modeling. However,
unidirectional and bidirectional models are typ-
ically trained separately with distinct objectives
(generation and representation learning). This
separation overlooks the opportunity for devel-
oping a more versatile language model and for
these objectives to complement each other. In
this work, we propose MAGNET, a method for
adapting decoder-only LLMs to generate robust
representations and infill missing text spans.
MAGNET employs three self-supervised train-
ing objectives and introduces an attention mech-
anism that combines bidirectional and causal
attention, enabling unified training across all
objectives. Our results demonstrate that LLMs
adapted with MAGNET (1) surpass strong text
encoders on token-level and sentence-level rep-
resentation learning tasks, (2) generate contex-
tually appropriate text infills by leveraging past
and future contexts, (3) perform open-ended
text generation without excessive repetition of
words or phrases, and (4) preserve the knowl-
edge and reasoning capability gained by the
LLM during pretraining.

1 Introduction

Decoder-only LLMs have gained popularity in
NLP due to their efficient training and scalabil-
ity. However, their reliance on causal attention re-
stricts their effectiveness in tasks that require under-
standing of bidirectional context. This limitation is
particularly evident in (1) representation learning
tasks such as sentiment analysis and named entity
recognition, where understanding the full context
of sentences or words is crucial, and (2) text in-

*Work done during internship at Adobe Research. Corre-
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filling, where filling in missing spans must ensure
coherence with the surrounding text.

Some recent efforts (BehnamGhader et al., 2024;
Li and Li, 2023; Li et al., 2023; Duki’c and vSna-
jder, 2024; Du et al., 2021; Donahue et al., 2020)
have sought to adapt decoder-only LLMs for rep-
resentation learning and text infilling. However, as
shown in Figure 1, methods that enhance LLMs
for text infilling fail to make them effective text
encoders, while methods focused on representation
learning diminish their generative capabilities.

In this work, we introduce MAGNET (Modified
Attention for Generation and Encoding of Text), a
method for adapting decoder-only LLMs that have
been trained for text generation into more versatile
language models. Specifically, MAGNET enables
an LLM to (1) generate robust sentence-level and
token-level representations, (2) infill missing text
spans while maintaining coherence with bidirec-
tional context, (3) perform open-ended text gen-
eration without excessive repetition, and (4) pre-
serve the knowledge acquired during pretraining.
In essence, MAGNET equips an LLM with repre-
sentation learning and infilling capabilities while
preserving its generative strengths. To achieve this,
we use three self-supervised training objectives: (1)
a masked modeling objective to learn token-level
representations, (2) a contrastive objective to learn
sentence-level representations, and (3) a missing-
span generation objective to infill text and retain
generative capabilities. To facilitate simultaneous
training across all these objectives, we deploy a
specially crafted attention mask that combines bidi-
rectional and causal attention.

Without any model-specific design, we apply
MAGNET to Llama-2-7B (Touvron et al., 2023).
We demonstrate that the proposed method requires
simple modification and fine-tuning of an off-the-
shelf LLM to augment it with representation learn-
ing and infilling capabilities. Our results show that
MAGNET-adapted Llama-2-7B outperforms other
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Figure 1: Traditionally, LLMs are trained for text generation using unidirectional attention between the input x and
output y (depicted by black lines), whereas text encoders are trained for representation learning using bidirectional
attention (depicted by gray lines). MAGNET adapts the attention mechanism of LLMs to combine both unidirectional
and bidirectional attention, enhancing them with representation learning and infilling capabilities, while retaining
their core generative functions.

methods that adapt the same model for token-level
and sentence-level representation learning tasks1.
We also show that MAGNET improves the infill-
ing capability of the LLM by enabling it to con-
sider the bidirectional context. Further, we analyze
the repetition problem in text generated by models
that are trained or fine-tuned to encode text and
demonstrate that MAGNET-adapted models are sig-
nificantly better at open-ended text generation than
other text encoders. Lastly, we show that MAGNET

preserves the knowledge and reasoning capabilities
acquired by the LLM during pretraining.

2 Related Works

Representation Learning. Text representation
learning focuses on understanding contextual rela-
tionships within sentences. Traditionally, encoder
models dominated this field due to their bidirec-
tional context modeling, using masked language
modeling for token-level representations (Devlin
et al., 2019; Liu et al., 2019; He et al., 2020; Clark
et al., 2020; He et al., 2021) and special tokens
with similarity-based optimization for sentence-
level understanding (Gunel et al., 2020; Reimers
and Gurevych, 2019; Wu et al., 2020; Carlsson
et al., 2021; Gao et al., 2021; Wei et al., 2020).
Recent work has explored adapting decoder-only
LLMs for text encoding through various methods,

1It is to be noted that while these other methods adapt
the model exclusively for representation learning, MAGNET
incorporates additional objectives, making the LLM more
versatile and showcasing the advantages of unified training.

including introducing special tokens to the model’s
vocabulary (Zhang et al., 2024), using last-token or
mean-pooled representations (Neelakantan et al.,
2022; Wang et al., 2023), or fine-tuning with
masked modeling (BehnamGhader et al., 2024)
or label supervision (Li et al., 2023; Duki’c and
vSnajder, 2024). While some approaches mod-
ify the decoder’s causal attention to be bidirec-
tional (BehnamGhader et al., 2024; Muennighoff
et al., 2024; Li and Li, 2023; Duki’c and vSnajder,
2024; Man et al., 2024), this often compromises
the model’s text generation abilities. In contrast,
MAGNET employs a hybrid attention mechanism
that combines causal and bidirectional attention,
enabling both robust representation learning and
preserved generation capabilities.

Text Infilling. Text infilling requires considering
both left and right context when generating text in
the middle of a sequence. Encoder-decoder mod-
els (Raffel et al., 2019; Lewis et al., 2019; Kalin-
sky et al., 2023) can handle this task by encoding
available context and decoding infilled text. Other
approaches have extended masked language mod-
eling to perform span infilling (Joshi et al., 2019;
Shen et al., 2023, 2020). Decoder-only models
have also been adapted for infilling through various
strategies: training models to directly fill marked
blanks (Donahue et al., 2020; Du et al., 2021), re-
arranging training examples to align with infilling
objectives (Bavarian et al., 2022; Yang et al., 2019;
Aghajanyan et al., 2022; Fried et al., 2022), or us-
ing dual generation from both ends of a sentence
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until convergence (Nguyen et al., 2023; Serdyuk
et al., 2017). However, while these approaches
successfully enhance LLMs with infilling capabili-
ties, none have attempted to simultaneously equip
them with both infilling and representation learning
abilities, as done by MAGNET.
Unifying Text Understanding and Generation.
Prior works on unifying natural language under-
standing and generation within a single framework
usually focus on proposing pretraining objectives
and task formulations. These approaches typi-
cally extend traditional masked language modeling,
with innovations like permutation-based objectives
for bidirectional context modeling (Yang et al.,
2019), autoregressive blank infilling (Du et al.,
2021), multi-directional attention masks (Dong
et al., 2019), and sequence-to-sequence pretrain-
ing (Song et al., 2019; Raffel et al., 2019). How-
ever, these approaches require pretraining new net-
works from scratch, despite decoder-only models
demonstrating exceptional scalability and effective-
ness. Instead of starting from scratch, we propose a
parameter-efficient method that builds upon the
rich representations already learned by existing
large language models, transforming them into a
unified framework for representation learning, text
infilling, and text generation.

3 Method

Decoder-only models process input sequences
through successive blocks of multi-head self-
attention, feed-forward networks, and layer nor-
malization. The self-attention mechanism converts
the input x ∈ Rl×d into queries Q, keys K, and
values V using linear projections, and computes
attention using the formula:

Attni(Q,K,V) = softmax

(
QK⊤ +M√

dk

)
V

where Attni is the ith head of the multi-head self-
attention, dk represents the dimensionality of the
keys/queries, and M represents the causal mask.
This causal mask M for an autoregressive LLM is
a l × l strictly upper triangular matrix, as shown in
Figure 2a, and it ensures that each token can only
attend to itself and tokens that precede it.

MAGNET updates the causal attention mecha-
nism of an LLM to incorporate elements of bidirec-
tionality and thereafter fine-tunes the model using
self-supervised objectives. We look at the modifi-
cations to the attention mechanism in Section 3.1
and the training objectives in Section 3.2.

(a) Causal mask (b) Bidirectional mask

(c) Mask with 1 span (d) Mask with 2 spans

Figure 2: Attention masks for different types of attention
mechanisms. The rows of the matrices correspond to
the query tokens and the columns correspond to the
key tokens. Light gray cells indicate 0, dark gray cells
represent −∞, green marks span token positions, and
blue marks context token positions. Each context token
attends to every other context token, and each span
token attends to all context tokens and the preceding
span tokens in the same span.

3.1 Modifying Attention

We categorize the input tokens as either context
tokens or span tokens and use the attention mask
shown in Figure 2.
Context tokens. Each context token (shown in
blue in Figure 2) attends to all other context to-
kens in the sequence. The attention mask has 0s at
output positions corresponding to context tokens,
allowing each context token to access information
at every other context token. This transformation
shifts the original unidirectional LLM into a bidi-
rectional model.
Span tokens. The span tokens (shown in green in
Figure 2) are a contiguous span of input tokens that
attend to all context tokens and have causal atten-
tion among themselves. By enabling span tokens to
access surrounding context, we effectively convert
the original LLM into an infilling language model.
Additionally, the causal attention among span to-
kens preserves the LLM’s generative capabilities,
which could be compromised if bidirectionality is
fully unlocked (see Section 4.4 for details).

During training, an input sequence includes
one or more spans of span tokens surrounded by
context tokens. During inference, the attention
mechanism can operate in three modes: (1) fully
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(a) Masked Next Token Prediction (b) Self-Supervised Contrastive Learning (c) Missing Span Generation

Figure 3: MAGNET training objectives include: (a) Masked next token prediction, which is applied on the output
corresponding to the token preceding the masked context token. (b) Self-supervised contrastive learning, which is
applied on the model’s representation corresponding to the last token. (c) Missing span generation, which is applied
on the output corresponding to the span tokens. In this illustration, the red lines denote bidirectional attention and
the black lines denote causal attention. Further, for (a) and (c), the output token yi is trained to predict the input
token xi+1, as denoted by "yi ∼ xi+1"

causal/unidirectional for open-ended text genera-
tion tasks, (2) fully bidirectional representation
learning tasks, or (3) a combination of causal and
bidirectional for text infilling.

3.2 Training Objectives

MAGNET fine-tunes an off-the-shelf LLM using
three self-supervised objectives. These objectives
are illustrated in Figure 3 and discussed below.

3.2.1 Masked Next Token Prediction (MNTP)
MNTP enables the model to realize its newly en-
abled bidirectional attention capability. The task
is defined as follows: Given an input sequence
x = (x1, x2, ..., xL), we select a fraction of the
input tokens for masking and train the model to
predict these masked tokens. In our setup, we find
that selecting 20% of the input tokens for mask-
ing works well. Further, following (Devlin et al.,
2019), we replace 80% of the selected tokens with
a [MASK] token, 10% with a random token from
the model’s vocabulary, and leave the remaining
10% unchanged. Since LLMs are trained to pre-
dict the next token in a sequence, we use the token
representations from position l to predict a masked
token at position l + 1 (as shown in Figure 3a).
In Appendix D, we also explore the possibility of
using the standard masked token prediction (MTP)
objective, where the output at token l predicts the
masked token at position l and find that MTP per-
forms poorly for LLMs that are trained to predict

autoregressively. MNTP is optimized using cate-
gorical cross-entropy loss:

LMNTP =
−1

NL

N∑

n=1

L∑

l=1

V∑

v=1(
1mask(l + 1) · (y(n)lv log(ŷ

(n)
lv ))

)

where N denotes batch size, L denotes sequence
length, V denotes vocabulary size, 1mask(l+1) is 1
if position l+1 is masked and 0 otherwise, and ylv
and ŷlv represent true and predicted probabilities
for vth token in vocabulary at position l in the se-
quence. Note that this task is conducted exclusively
with the context tokens.

3.2.2 Self-Supervised Contrastive Learning
(SSCL)

Since LLMs are not explicitly trained to capture
the entire input context and generate sentence-level
representations, we employ SSCL to transform
them into text encoders. The task is defined as
follows: Given an input sequence x, we generate
its augmented view x+ and align their encoded
representations e = f(x) and e+ = f(x+) in the
embedding space, while distancing them from the
encodings e− = f(x−) of other input sequences
x− in a training batch. Specifically, we employ
paraphrasing (Damodaran, 2021) to generate aug-
mented views of an input, and add an instruction
"Given the sentence, find its representation:" to
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Figure 4: MAGNET processes three views of the input using different attention mechanisms within the same LLM.
The model is trained (or fine-tuned) using three self-supervised learning objectives simultaneously to augment it
with the ability to generate token-level and sentence-level representations and perform text infilling tasks, while
maintaining its original left-to-right text generation capability.

the training examples (Jiang et al., 2023). Then,
we use the output corresponding to the last token
([EOS]) of the final hidden states as the sentence
encoding. Our choice of using the last token repre-
sentation as the encoding is guided by the fact that
MAGNET optimizes simultaneously for token-level
and sentence-level representations. Since the last
token’s representation is not used for token-level
optimization (because the representation of input
token l is given by output token l − 1), this choice
enables us to disentangle the two representation
learning tasks during joint training. We use In-
foNCE (van den Oord et al., 2018) with in-batch
negatives as the loss function:

LSSCL =
−1

N

N∑

i=1

log
exp(ei · e+i /τ)∑N
j=1 exp(ei · e−j /τ)

where N represents the batch size and τ denotes
the temperature for logit scaling.

3.2.3 Missing Span Generation (MSG)

MSG provides text infilling capabilities to the left-
to-right autoregressive model. The task is defined
as: Given a position p and an input sequence
x = (x1, ..., xp, xq, ..., xL), generate a plausible
sequence of m tokens y = (y1, y2, ..., ym) that
fits between xp and xq. More specifically, in our
training setup, this task entails predicting a span
token yl conditioned on all context tokens in x and
the preceding span tokens y[1..l−1]. We train using
categorical cross-entropy loss computed over the

predicted span tokens:

LMSG =
−1

N

N∑

n=1

L∑

l=1

V∑

v=1

1span(l) ·(y(n)lv log(ŷ
(n)
lv ))

where N denotes batch size, L denotes sequence
length, V denotes vocabulary size, 1span(l) is 1 if
the token at position l is a span token and 0 oth-
erwise, and ylv and ŷlv are the true and predicted
probabilities for token v in the vocabulary at po-
sition l in the sequence. The standard next token
prediction task of LLMs can be considered as a
special case of this objective, wherein all input to-
kens are span tokens (and the attention mechanism
reduces to causal attention). Thus, a beneficial side
effect of this task is that the model retains its text
generation capability while learning bidirectional
representations.

3.3 Approach Overview
Figure 4 provides an overview of MAGNET. Start-
ing with a training example x, the process unfolds
in two parallel streams – (1) One or more contigu-
ous spans of M tokens in x are marked as span
tokens, while a fraction of the remaining tokens
(context tokens) is masked to form xm. (2) x is
augmented to get x+. The input sequences x, xm

and x+ are processed by the base decoder model
to produce hidden states h, hm and h+. From hm,
a language modeling head generates ym, which is
used to compute LMNTP and LMSG. Parallelly, h
and h+ are processed using a projection head to
get e and e+, which are used to compute LSSCL.
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The overall loss function is:

L = λ1LMNTP + λ2LSSCL + λ3LMSG

For processing x and x+, the decoder uses a bidi-
rectional attention mask (as shown in Figure 2b).
For processing xm, the decoder employs an atten-
tion mask similar to those depicted in Figures 2c
and 2d. In some cases, when all input tokens are
marked as span tokens, the attention mask reduces
to causal attention, as shown in Figure 2a.

4 Experiments

In this section, we demonstrate that MAGNET en-
hances a decoder-only LLM with representation
learning and infilling capabilities while preserving
its original generative abilities. Specifically, we
show that LLMs adapted with MAGNET outper-
form the base model and other adaptation methods
on representation learning tasks (Sections 4.1 and
4.2). We then highlight how MAGNET significantly
improves the LLM’s ability to infill missing spans
(Section 4.3) and analyze the effect of MAGNET on
the original generative and reasoning capabilities
of the LLM (Section 4.5). Finally, we provide a
brief analysis highlighting which layers retain sim-
ilarity to the base model and which undergo the
most modification.

All training details are mentioned in Appendix A.
Additionally, we present ablation experiments
demonstrating the benefits of training a bidirec-
tional language model with a causal objective in
Appendix C. Note that our goal is not to achieve
state-of-the-art results on a specific benchmark. In-
stead, we aim to enhance a pretrained LLM with
additional capabilities while preserving its original
performance. Therefore, our main baselines are
the base LLM and other methods that augment the
same LLM with specific capabilities.

4.1 Word-Level Tasks
We evaluate the token-level representations on
three tasks – (1) chunking, (2) named entity recog-
nition, and (3) part-of-speech tagging – using the
CoNLL-2003 dataset (Sang and Meulder, 2003).
After applying the training objectives proposed in
Section 3.2, we train a linear classifier on top of
the frozen representations obtained from the last
hidden state of the model. The word-level embed-
dings are obtained by averaging the representations
of the tokens that make up that word. Further, the
representation of the token at position i is given by
the embedding at position i− 1.

Model Chunking NER POS-Tags

Encoder models

BERT-Large 71.77 90.09 75.12
XLNet-Large 79.70 93.67 83.02

DeBERTa-Large 85.74 94.97 86.49
StructBERT-Large 89.99 97.31 90.86

Llama 2 models

Llama-2-7B 88.23 96.59 91.53
LLM2Vec 89.66 96.05 90.53

LLM2Vec[MNTP] 91.61 97.16 92.61
MAGNET 92.64 98.31 93.34

Table 1: Results on word-level tasks. LLM2Vec
(BehnamGhader et al., 2024) adapts the model using
MNTP and SimCSE. LLM2Vec[MNTP] is an intermedi-
ate state of LLM2Vec that is trained only on MNTP.
All numbers except those for MAGNET are taken from
(BehnamGhader et al., 2024).

Table 1 compares MAGNET with powerful en-
coder models and LLM2Vec (BehnamGhader et al.,
2024), a recent method for adapting decoder-only
LLMs for representation learning. The second-
best approach, LLM2Vec[MNTP], relies solely on
MNTP for model adaptation. In contrast, MAGNET

integrates both representation learning objectives
(MNTP and SSCL) and generative objectives
(MSG). The superior performance of MAGNET

over LLM2Vec[MNTP], despite using the same train-
ing data, model, and parameters, highlights the syn-
ergistic advantages of a unified training strategy for
word-level representation learning.

4.2 Sentence-Level Tasks

We evaluate sentence-level representations on mul-
tiple semantic similarity and clustering benchmarks
(Muennighoff et al., 2022). We perform these
tasks using the representation corresponding to the
last token ([EOS]), without performing any task-
specific training. Further, task-specific instructions
(Table 10) are used for extracting relevant represen-
tations (Su et al., 2022; Wang et al., 2023).

We compare the text encoding capabilities of
MAGNET with other recently proposed methods
for transforming decoder models into text encoders,
viz. LLM2Vec (BehnamGhader et al., 2024) and
Echo Embeddings (Springer et al., 2024). Table 2
shows the results on Semantic Textual Similarity
(STS) task and Table 3 shows the results on cluster-
ing tasks. As can be seen, MAGNET outperforms
other adaptation methods on STS and clustering
tasks. As previously noted, the fact that MAGNET

surpasses LLM2Vec suggests the potential benefit
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

Encoder models (finetuned using SimCSE)

BERT-Base 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
RoBERTa-Base 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
RoBERTa-Large 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90

Llama 2 models

Llama-2-7B 50.98 74.02 62.86 67.09 71.03 63.56 67.22 65.25
Echo Embeddings 52.40 72.40 61.24 72.67 73.51 65.73 64.39 66.05

LLM2Vec 65.39 79.26 72.98 82.72 81.02 78.32 71.77 75.92
MAGNET 67.98 84.66 77.67 84.17 79.44 82.88 78.77 79.36

Table 2: Results on STS tasks. The encoder models are trained using SimCSE and their results are taken from Gao
et al. (2021). The results for Llama-2-7B are obtained using the last token embedding from the final hidden state as
the sentence representation. The results for LLM2Vec and Echo Embeddings are taken from BehnamGhader et al.
(2024) and Springer et al. (2024), respectively.

Dataset BiorxivClustering TwentyNewsgroups MedrxivClustering

Echo Embeddings 25.92 23.42 24.30
LLM2Vec 34.69 30.76 29.49
MAGNET 35.10 53.31 30.21

Table 3: Results on clustering tasks. The results for LLM2Vec and Echo Embeddings are taken from (BehnamGhader
et al., 2024) and (Springer et al., 2024), respectively.

Method ROC Stories Wikitext-103

Llama-2-7B 13.9347 22.0399
MAGNET 9.5161 15.4573

Table 4: Results on the infilling tasks. We measure the
perplexity (PPL) for sentence infilling and block-of-text
infilling on ROC-Stories and Wikitext-103, respectively.

Method Score

Unidirectional Llama-2-7B 53.5
Zero-Shot Setup 5.5
Five-Shot Setup 54.5

MAGNET 62.0

Table 5: Human evaluation for the infilling tasks. The
score denotes the percentage of infillings that were con-
sidered contextually appropriate by human evaluators.

of a unified training approach.

4.3 Infilling Task

To test infilling capabilities, we evaluate the
perplexity (PPL) of Llama-2-7B and MAGNET-
adapted Llama-2-7B on the test set of ROC Sto-
ries (Mostafazadeh et al., 2016) and Wikitext-103
(Merity et al., 2016). For ROC Stories, we ran-
domly mask out a sentence from each 5-sentence
story, while for Wikitext-103, we mask up to three
spans with lengths ranging from 8 to 32 tokens.
Following (Donahue et al., 2020), we compute
PPL only for the tokens comprising the original

masked out spans. The results are presented in Ta-
ble 4, and they show that the base model (Llama-2-
7B) exhibits significantly higher perplexity for the
masked spans compared to MAGNET, demonstrat-
ing that MAGNET effectively augments the base
model with text infilling capabilities.

We also conduct experiments using zero-shot
and few-shot learning to enable Llama-2-7B to in-
corporate all the surrounding context when infill-
ing a missing span. We explore various prompting
strategies and found that while a zero-shot setup
did not yield sensible infillings, a five-shot setup
with descriptive prompts resulted in more context-
aware infillings (refer to Appendix B for details).
For a comprehensive analysis, we conducted a hu-
man evaluation to compare the quality of infillings
generated by the base model, its zero-shot variant,
its few-shot variant, and its MAGNET adaptation.
In this evaluation, we randomly sampled 100 sto-
ries from the ROC Stories dataset, masked out one
of their middle sentences, and tasked the models
with infilling the missing sentence. Two human
annotators on Amazon Mechanical Turk (with at
least a high school diploma) then independently
assessed whether each generated sentence was con-
textually appropriate and contributed to a coherent
story. The results are presented in Table 5, showing
that the infillings generated by MAGNET-adapted
model are more coherent than those generated by
the base model. We show some qualitative exam-
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Method Wikitext-103 ROC Stories
Rep-Sen Rep-4 Rep-Sen Rep-4

Llama-2-7B 0.0056 0.0601 0.0381 0.0163
LLM2Vec 0.2044 0.4747 0.2945 0.5243
MAGNET 0.0151 0.2047 0.0737 0.2573

Table 6: Analyzing the repetition problem. Both
LLM2Vec and MAGNET are applied for 3400 iterations.

Training Iterations

R
ep

-S
en

MAGNETLLM2Vec

Figure 5: LLM2Vec increases text repetition with more
training, while no such trend is observed for MAGNET.

ples of infilling in Table 12.

4.4 Repetition Problem

The repetition problem in text generation refers to
the issue when generative models repeatedly pro-
duce the same phrases or sentences. Prior studies
have identified that this issue often results from bi-
ases in the training data, limitations in the model’s
design, or standard likelihood training and infer-
ence (Holtzman et al., 2019; Welleck et al., 2019;
Fu et al., 2020; Xu et al., 2022). In our study,
we find that when generative decoder models are
adapted into text encoders by enabling bidirectional
attention (BehnamGhader et al., 2024; Li and Li,
2023; Li et al., 2023), the issue of repetition is
significantly worsened. For example, Table 13
shows the texts generated (using greedy decod-
ing) by the original Llama-2-7B and its LLM2Vec
adaptation (BehnamGhader et al., 2024). We ob-
serve noticeable repetitions in the text generated
by LLM2Vec-adapted-LLaMA, although the fine-
tuning data (Wikitext-103) had almost no sentence-
level repetitions (0.02%).

For quantitative detection of text repetitions,
we compute Rep-Sen = 1.0 − |unique sentences|

|sentences| and

Rep-n = 1.0 − |unique n-grams|
|n-grams| , as done by prior

works analyzing the repetition problem (Holtzman
et al., 2019; Welleck et al., 2019; Xu et al., 2022).
Specifically, we create a prefix-dataset from the test
sets of Wikitext-103 and ROC Stories, consisting of

5-word and single-sentence prefixes, respectively.
The model is then tasked with autoregressively gen-
erating text based on these prefixes. Table 6 shows
the repetition metrics for Llama-2-7B and its adap-
tations using LLM2Vec and MAGNET. As can
be seen, in comparison to LLM2Vec, MAGNET

makes the base model significantly less prone to
repeating sentences. For instance, for Wikitext-
103, LLM2Vec makes Llama-2-7B 36.5 times more
likely to repeat sentences, while MAGNET only
makes it 2.7 times more likely. Further, as shown
in Figure 5, the repetition problem exacerbates with
additional iterations of LLM2Vec training, whereas
no similar trend is observed with MAGNET.

We conjecture that LLM2Vec is significantly
more prone to generating repetitive text because
it exclusively focuses on learning representations
with bidirectional attention. This training approach
perhaps makes the decoder model somewhat sim-
ilar to bidirectional LMs like BERT, which are
known to repeat words when used for text gener-
ation (Table 13). MAGNET solves this issue by
having autoregressive generation as an objective.

4.5 Knowledge and Reasoning Tasks

We assess the effect of MAGNET on the knowl-
edge and reasoning capabilities acquired by the
LLM during pretraining. Specifically, we evalu-
ate its performance on HellaSwag (0-shot) (Zellers
et al., 2019), BBH (3-shot) (Suzgun et al., 2022),
ARC (0-shot) (Clark et al., 2018), MMLU (5-
shot) (Hendrycks et al., 2021), and NaturalQues-
tions (5-shot) (Kwiatkowski et al., 2019), covering
commonsense reasoning and world knowledge.

For this evaluation, we fine-tune the model on
the SlimPajama dataset (Soboleva et al., 2023),
which includes diverse text sources such as Com-
monCrawl, C4, GitHub, Books, ArXiv, Wikipedia,
and StackExchange. This choice ensures that
the fine-tuning data resembles Llama-2-7B’s origi-
nal pretraining distribution (despite its exact com-
position being unknown). By doing so, we
mitigate potential biases introduced by highly
structured datasets like Wikitext, which could fa-
vor Wikipedia-derived tasks such as NaturalQues-
tions while disadvantaging commonsense reason-
ing benchmarks like HellaSwag.

As shown in Table 7, MAGNET has minimal
impact on the model’s knowledge and reasoning
capabilities. The minor variations observed can
be attributed to differences in dataset composition
during fine-tuning. Furthermore, to ensure a com-

27335



Model HellaSwag BBH ARC NQ MMLU

Easy Challenge Humanities STEM Social Science Other

Llama-2-7B 75.51 33.57 73.95 44.28 24.02 43.27 36.09 53.04 54.84
MAGNET 75.08 32.22 74.33 44.52 24.22 42.25 36.63 52.64 52.40

Table 7: Evaluating the impact of MAGNET on Llama-2-7B’s performance across benchmarks. The metrics are
computed using the LM Evaluation Harness (Gao et al., 2024). Due to the undisclosed evaluation prompts for Llama,
reproducing the exact baseline results is difficult. We adopt the same setup for both Llama-2-7B and MAGNET.

Projection Type Average Norm

query 1.2386± 0.4749
key 1.2659± 0.4244

value 0.3013± 0.0610
output 0.2716± 0.0358

Table 8: Average Frobenius norm of LoRA updates
across layers in LLaMA-2-7B.

prehensive evaluation, we assess the performance
of the model fine-tuned with SlimPajama on rep-
resentation learning tasks and find the results con-
sistent with the metrics reported in Tables 1 and
2 (where Wikitext-103 was used for fine-tuning).
Specifically, when fine-tuned with SlimPajama, the
model attains 92.00% on chunking, 98.30% on
NER, 93.21% on POS-tagging, and an average of
79.33% on the STS tasks.

4.6 Parameter Adaptation Analysis

MAGNET fine-tunes the model using LoRA applied
to the query, key, value, and output projections
of the pretrained LLM. The adapted projection
weights can be expressed as:

Wadapted = Wbase +AB⊤

where Wbase denotes the original weight matrix,
and A ∈ Rd×r, B ∈ Rd×r are the low-rank matri-
ces learned during fine-tuning.

To quantify the extent of adaptation, we compute
the Frobenius norm of the update matrix AB⊤. Ta-
ble 8 reports the average ∥AB⊤∥F across all layers
for each projection type in LLaMA-2-7B, indicat-
ing that MAGNET induces larger updates to the
query and key projection matrices compared to the
value and output projections. This aligns with the
method’s focus on modifying the attention mecha-
nism by altering the attention mask. Since attention
scores are computed using the product QK⊤, ad-
justing the query and key matrices is essential to
support the updated attention maps. In contrast,
value projections carry contextual information af-
ter attention is applied. As these components are

already well learned during pretraining, they re-
quire minimal modification for effective adaptation.
We observe no clear pattern in the magnitude of
parameter changes across layers.

5 Conclusion

In this work, we presented MAGNET, a method to
transform causal LLMs into text encoders and in-
filling language models with bidirectional context-
capturing ability. Through extensive experiments,
we show that MAGNET uniquely equips LLMs with
abilities that are beyond the scope of traditional text
encoders or decoders. Thus, MAGNET shows the
potential to unify text generation and text encoding
within a single framework.

Limitations

Given Llama-2-7B’s undisclosed pre-training data
composition, there is a potential risk of test set
contamination. We mitigate the undue influence
of data contamination by benchmarking against
the base model and other Llama-2-7B adaptations
(LLM2Vec and Echo Embeddings). Future work
should establish benchmarks guaranteed to be ex-
cluded from LLM pre-training data.

While MAGNET preserves open-ended genera-
tion better than other bidirectional adaptation meth-
ods, it does impact the generation quality. For
instance, fine-tuning Llama-2-7B with MAGNET

increases Wikitext-103 test-set perplexity from 6.4
to 7.6, indicating slightly reduced next-token pre-
diction confidence despite maintaining artifact-free
generation.

For infilling tasks, we focus solely on enabling
the base LLM to leverage surrounding context for
coherent text completion. The MAGNET-adapted
LLM shows reduced performance when infilling
lengthy (more than 128 tokens) mid-text sequences.
This limitation can be addressed by: chunking long
infills into smaller segments, modifying MSG pa-
rameters, or task-specific fine-tuning for the infill-
ing task.
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A Training Details

MAGNET fine-tunes Llama-2-7B using LoRA (Hu
et al., 2021) with r = 16 and α = 32. We use the
AdamW optimizer with β1 = 0.9, β2 = 0.999 and
ϵ = 1e − 8, apply bfloat16 quantization, and use
scaled-dot-product attention (SDPA). All experi-
ments are performed on a single NVIDIA A100
GPU, with the MAGNET adaptation of Llama-2-7B
taking approximately 7 hours. We discuss the train-
ing dataset and hyperparameters for the different
objectives/tasks below.
Datasets. For representation learning and infilling
tasks, we train on Wikitext-103 (Merity et al., 2016)
to ensure a fair comparison with our baselines in
Sections 4.1 and 4.2. For knowledge and reasoning
tasks (Section 4.5), we use SlimPajama (Sobol-
eva et al., 2023) to mitigate biases from highly
structured datasets like Wikitext, which could fa-
vor Wikipedia-derived tasks. The WikiText-103
dataset is released under the Creative Commons
Attribution-ShareAlike license, and SlimPajama is
available under the Apache 2.0 license, both per-
mitting use in open-source research.
MNTP. We train for 4200 iterations using a batch
size of 32, a learning rate of 3e-5, and a max se-
quence length of 512. We select 20% of the to-
kens for masking – 80% of the selected tokens
are replaced with a [MASK] token, 10% tokens are
replaced with a random token from the model’s vo-
cabulary, and 10% tokens are left unchanged. For
Llama-2-7B, we use "_" as the mask token.
SSCL. We train for 800 iterations using a batch
size of 64, a learning rate of 3e-5, and a max se-
quence length of 128. To extract representations
we use the prompt "Given the sentence, find its rep-
resentation:" and extract the representations cor-
responding to the last token. The training data is
created by extracting lines longer than 20 words
and paraphrasing them for the positive examples.
We set τ = 0.1 in equation 3.2.2.
MSG. Similar to MNTP, we train for 4200 iter-
ations using a batch size of 32, a learning rate of
3e-5, and a max sequence length of 512. A training
example can have up to 2 missing spans, with span
length ranging from 4 to 128 tokens.
Overall Loss. For the first 3400 iterations, we
optimize the loss (equation 3.3) with λ1 = 1, λ2 =
0, and λ3 = 1, and for the next 800 iterations λ1 =
1, λ2 = 9, and λ3 = 1. Initially, we train with
only MNTP and MSG, as these objectives help the
model learn to capture future context—a capability
the base model lacks. However, this choice mainly

contributes to faster training, as similar results are
obtained when training with all objectives from the
start.
Word-Level Tasks. Using the frozen representa-
tions from the last hidden layer of the base model,
we train a linear classifier for the three word-level
tasks (Chunking, NER, and POS-tagging). Specif-
ically, we train on the CoNLL-2003 train set for
4000 steps using a batch size of 8, a learning rate
of 5e-4, and a dropout rate of 0.1.

B Contextual Prompt Infilling

To thoroughly evaluate the infilling capability of
the base model, we perform zero-shot and few-
shot experiments where the model is shown both
preceding and following context of a missing span
of text.

B.1 Zero-Shot Evaluation

To this end, we experimented with four types of
prompts to infill a missing line in five-line stories
from the ROC Stories dataset. The four prompting
strategies we used are:
Blank Infilling Prompt. In this setting, we add a
blank token (_) at the infilling position and use the
following prompt:

Generate the missing line represented by _ in the
given text: <text>.

Generate a single sentence.
The missing line is:

Here, <text> represents the input text with "_" in
place of a missing sentence.
Contextual Prompt. In this setting, we provide
the past and future context of the missing line and
use the following prompt:

Fill in the missing sentence between
"<past-context>" and "<future-context>".

Generate only one sentence. The missing sentence
is:

Prefix-Suffix Prompt. In this setting, we give the
past context of a missing sentence as a prefix and
the future context as a suffix and ask the model
to generate the middle. Specifically, we use the
following prompt:

Given the prefix and the suffix, generate the middle
sentence.

Prefix: <past-context>.
Suffix: <future-context>.

Generate only one sentence.
Middle: .
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Line-by-Line Prompt. In this setting, we make
the prompt more descriptive by providing all the
available context, specifying the line number for
all the available lines, and asking for the missing
line. For instance, if the task is to infill the second
line of a five-sentence story, the prompt would be:

You have a five-sentence story with some missing
text.

Here is the context for each line, with the missing
line indicated:

Line 1: <line-1>
Line 2: [Missing Line]

Line 3: <line-3>
Line 4: <line-4>
Line 5: <line-5>

Please generate the missing line of the story.
Please generate only the missing line and nothing

else.
The missing line is: Line 2:

For the abovementioned prompting strategies,
we experimented with various prompt variations,
including paraphrasing the instructions, using
"[MASK]", "[blank]" or "_" to denote the miss-
ing line, and addressing common avoidable errors
using the instructions (for e.g., adding "Generate
only one line." to enforce single line infillings and
avoid formatting issues). In general, we find that
regardless of the prompting strategy used, Llama-
2-7B repeats/paraphrases one of the provided lines
or summarizes the context as the infilling. In some
cases it even ends up generating totally random text
(like code). This is perhaps because the model is
not trained for the infilling task. Table 11 shows
some qualitative examples of text infilling using
the different prompting methods.

B.2 Few-Shot Evaluation

To improve infilling results from the base model,
we employed few-shot learning techniques with
various prompting styles – blank infilling, prefix-
suffix, and line-by-line. Specifically, we provided
five solved examples in the model’s context using
the chosen prompt format and asked the model to
infill the missing line in the sixth example. We
observed that more descriptive prompts and exam-
ples led to better output from the model, and the
line-by-line prompting style seemed to be the most
effective in enabling coherent infillings. We present
qualitative examples of the infilling generated using
this approach in Table 12.

C Training Objective Ablation Analysis

We perform ablation experiments to evaluate the
effectiveness of our unified training with the three
proposed objectives. Specifically, we compare the
performance on representation learning tasks after
adapting the LLM using different combinations of
the objectives. The results are presented in Table 9.
We find that while MNTP is the only objective that
explicitly trains the model for better token-level
representations, adding MSG marginally improves
performance on word-level tasks. We conjecture
that MSG, being closer to the original next-token
prediction objective of the base LLM, acts as a reg-
ularizer and helps prevent extreme variations in the
token representations produced by the model. For
sentence-level tasks, which use the SSCL objective
on the last token’s representation, we observe no no-
ticeable benefit or drawback from including MNTP
and MSG. This shows that we can add token-level
representation learning and infilling capabilities
to the model without hampering performance on
sentence-level tasks. We conjecture that the ef-
fects of unified training on sentence-level tasks
are not evident from Table 9 due to the separa-
tion of sentence-level representation learning from
token-level representation learning and generation,
achieved by using only the last token’s output as
the sentence encoding.

D Comparing MTP and MNTP
Objectives

Traditionally, language models for representation
learning are trained to predict a masked token at
position l using the output at position l in the final
hidden states (Devlin et al., 2019; Liu et al., 2019;
Lan et al., 2019; Sanh et al., 2019). This approach
is logical because the residual connections in the
transformer block incorporate the lth token’s input
representation into its output representation.

We conducted an experiment to test whether we
can use LoRA to adapt the base LLM for l-to-l pre-
diction (similar to BERT). The training curves for
masked token prediction (MTP) and masked num-
ber token prediction (MNTP) are shown in Figure 6.
As illustrated, with MTP, the loss converges, but
the evaluation accuracy for masked token predic-
tion decreases. This likely occurs because the base
model is trained to predict the (l+1)th token at po-
sition l, and shifting to l-to-l prediction introduces
a significant distributional shift that the model may
struggle to accommodate swiftly. Thus, overall, we
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Training Objectives Chunking NER POS STS12 STS13 STS14 STS15 STS16

MNTP 92.44 98.11 93.18 – – – – –
SSCL – – – 69.06 84.53 78.07 84.09 78.52

MNTP + MSG 92.51 98.20 93.38 – – – – –
SSCL + MSG – – – 68.46 84.52 77.33 84.35 79.17

MNTP + SSCL + MSG 92.64 98.31 93.34 67.98 84.66 77.67 84.17 79.44

Table 9: Ablation analysis of the proposed training objectives to assess the potential benefits of unified training.

(a) Masked Token Prediction

(b) Masked Next Token Prediction

train/loss eval/loss

train/loss eval/loss eval/accuracy

eval/accuracy

Figure 6: Training curves for MTP and MNTP objectives. When using MTP, model’s performance on masked token
prediction (measured using eval set accuracy) deteriorates over training iterations.

find that MNTP is a more effective objective for
converting a decoder-only LLM into a text encoder.
Additionally, MNTP aligns well with the causal
MSG objective and paves the way for a unified text
generator and encoder.
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Task Instruction

STS* Retrieve semantically similar text
BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and abstracts
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles

TwentyNewsgroupsClustering Identify the topic or theme of the given news articles
MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and abstracts
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles

Table 10: Instructions used for getting sentence encoding for the different sentence-level tasks. "STS*" refers to all
the STS tasks.
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Method Infilled Line

John was at the gym. _____ He couldn’t get the barbell off his chest. He was too embarrassed to call for
help. John suffocated as the weights crushed his chest.

Blank Infilling John was at the gym.

Contextual John was at the gym, trying to lift a particularly heavy barbell, when he suddenly
found himself unable to breathe and his face turned blue.

Prefix-Suffix John suffocated as the weights crushed his chest.

Line-by-Line John was at the gym, sweating profusely.

Toni took a trip to the local fair with her family. _____ The balloon was red and star shaped.
Unfortunately it slipped out of her hands. She was sad to see it go.

Blank Infilling " She watched as it soared high up in the sky."tt = 0 while t < 10: t += 0.

Contextual Toni took a trip to the local fair with her family and won a red and star-shaped balloon
as a prize.

Prefix-Suffix Toni took a trip to the local fair with her family and was excited to see a red
star-shaped balloon.

Line-by-Line Toni took a trip to the local fair with her family.

I was resting on my couch. _____ They raised their water guns. I immediately ran. I went outside and
sprayed them with the hose when they followed.

Blank Infilling They raised their water guns at me.

Contextual I heard the sound of water splashing and knew they were coming for me.

Prefix-Suffix I immediately ran.

Line-by-Line I was resting on my couch, bored out of my mind.

Kaylee owned a ferret who always ran free around the house. _____ She put flyers all over the
neighborhood. There was a knock at the door three days later. Someone found her ferret.

Blank Infilling She was overjoyed to see her ferret wagging its tail when she opened the door.

Contextual Kaylee put flyers all over the neighborhood.

Prefix-Suffix Kaylee found her ferret three days after putting flyers all over the neighborhood.

Line-by-Line She found the ferret hiding under the bed.

Cody really wanted a smart phone. _____ Cody protested that all of his friends had their own phones. His
parents phoned some of the other parents. His parents learned that Cody had been exaggerating.

Blank Infilling Cody really wanted a smart phone.

Contextual Cody’s parents discovered that he had been lying about wanting a smartphone when
they phoned some of the other parents and found out that none of their children had

ever mentioned anything about Cody wanting a new phone.

Prefix-Suffix Cody’s parents phoned some of the other parents.

Line-by-Line Cody really wanted a smart phone because he thought it would make him cooler.

Darla was afraid of spiders. _____ She screamed and jumped away. She yelled for her father to come in
and help. Her father came and removed the spider.

Blank Infilling Darla was afraid of spiders.

Contextual Darla was afraid of spiders because she had a bad experience with one when she was
younger.

Prefix-Suffix Darla was afraid of spiders and screamed and jumped away.

Line-by-Line Darla was afraid of spiders.

Table 11: Zero-shot sentence infilling examples using Llama-2-7B with different prompting strategies.
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Method Infilled Line

John was at the gym. _____ He couldn’t get the barbell off his chest. He was too embarrassed to call for
help. John suffocated as the weights crushed his chest.

Uni-Llama He was on the treadmill, running at a steady pace.

FS-Llama He was doing bench presses.

MAGNET John was doing bench presses when he accidentally dropped the barbell on top.

Toni took a trip to the local fair with her family. _____ The balloon was red and star shaped.
Unfortunately it slipped out of her hands. She was sad to see it go.

Uni-Llama She won a prize for her drawing of a cat.

FS-Llama She won it in a game of darts.

MAGNET She was so excited to see the balloon vendor and bought a red one.

I was resting on my couch. _____ They raised their water guns. I immediately ran. I went outside and
sprayed them with the hose when they followed.

Uni-Llama I was feeling a bit under the weather, so I decided to take a break.

FS-Llama My neighbor’s kids were playing tag in the backyard.

MAGNET I heard a noise and looked out the window and saw two boys with water guns.

Kaylee owned a ferret who always ran free around the house. _____ She put flyers all over the
neighborhood. There was a knock at the door three days later. Someone found her ferret.

Uni-Llama She loved her ferret, but she knew that ferrets have a tendency to get into things they shouldn’t.

FS-Llama She put up a reward for the safe return of her ferret.

MAGNET She was devastated when she lost him and searched everywhere for him.

Cody really wanted a smart phone. _____ Cody protested that all of his friends had their own phones. His
parents phoned some of the other parents. His parents learned that Cody had been exaggerating.

Uni-Llama He had been saving up his allowance for months, but he just couldn’t.

FS-Llama Cody’s friends told him they had been saving up for their phones.

MAGNET His parents refused to buy him one because they thought it was too expensive and dangerous.

Darla was afraid of spiders. _____ She screamed and jumped away. She yelled for her father to come in
and help. Her father came and removed the spider.

Uni-Llama She had always been afraid of them, even as a child.

FS-Llama She saw a spider crawling on her bed.

MAGNET She was in her room when she saw a spider on her bed.

A strange structure appeared on the outside of Connie’s house one day. _____ She called an exterminator
to come get them. The exterminator came and got rid of the wasps quickly. Connie was happy that the nest

was gone.

Uni-Llama It was a large, glowing crystal that seemed to pulse with.

FS-Llama She saw a wasp flying around her kitchen window.

MAGNET Connie noticed that there were wasps in the house and outside.

Table 12: Sentence infilling examples using Llama-2-7B and its adaptation using MAGNET. Uni-Llama refers to the
unidirectional model that only considers the left context, and FS-Llama is the few-shot variant that learns to use the
full context to generate the infilling.
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Model Generated Text

Initial phrase: The film was well received

Llama The film was well received by critics and audiences alike, with many praising its unique blend of humor and heart.
Here are some of the key reasons why critics and audiences loved "The Big Sick":

1. Unique blend of humor and heart: The film’s ability to balance humor and heart was widely praised by critics
and audiences. The film’s lighthearted moments are often juxtaposed with more serious and emotional scenes,

creating a film that is both funny and heartwarming.
2. Authentic representation: The film is ...

LLM2Vec The film was well received by critics and audiences alike.
The film was well received by critics and audiences alike.
The film was well received by critics and audiences alike.
The film was well received by critics and audiences alike.
The film was well received by critics and audiences alike.
The film was well received by critics and audiences alike.
The film was well received by critics and audiences alike.

The film was well received by critics and ...

MAGNET The film was well received by critics and audiences alike and was nominated for several awards including the
Academy Award for Best Visual Effects and the Saturn Award for Best Science Fiction Film. The film was also a

commercial success and grossed over $100 million at the box office.
= = Plot = =

In the year 2018, a meteorite crashes into the Pacific Ocean, causing a massive tsunami that destroys most of the
world’s coastal cities. The survivors of the disaster band together ...

BERT The film was well received and the " " " " " " " " " " " " " " are " " are " are " are " are " are are " are are the are the
the the the the the the the the the the the the so so and and and and and and and and and and and and and and and
and and and and and and and and and and and and and and and and and and and and and and and and and and and

and and and and ...

Initial phrase: After 1805, the exploits of

Llama After 1805, the exploits of the British East India Company in India became increasingly controversial, and the
company faced growing criticism from both the British public and Indian nationalists. Here are some of the key

events that contributed to the decline of the British East India Company: 1. The Battle of Buxar (1757): The
British East India Company defeated the French and their Indian allies in the Battle of Buxar, which gave them

control over Bengal. This marked the beginning of the company’s expansion in India. 2. The Battle of Plassey ...

LLM2Vec After 1805, the exploits of the French army in Egypt continued to be successful. In 1806, the French army
defeated the Ottoman army at the Battle of Aboukir. In 1807, the French army defeated the Ottoman army at the
Battle of Austerlitz. In 1808, the French army defeated the Ottoman army at the Battle of Wadi Abu Jarai. In 1809,

the French army defeated the Ottoman army at the Battle of Roli. In 1810, the French army defeated ...

MAGNET After 1805, the exploits of the pirates of the Caribbean became less frequent and the British Navy began to take a
more active role in suppressing piracy. The British Navy began to patrol the Caribbean and the Spanish Main, and

the pirates were forced to flee to other areas. The pirates of the Caribbean were not completely eliminated,
however, and piracy continued to be a problem in the Caribbean until the mid 19th century. The last pirate to be

executed in the Caribbean was Captain Kidd, who was hanged ...

BERT After 1805, the exploits of the the - the - way - to - the - other - to - the - other - to - the - other - to - the - other -. -.
-. -. -. -. -. -. -. -. -. -. -. -. -. -. -. -. -. - " - " - " " - " " " " " " " " " " " - " " - " " " " " " " " " " and the " - " " " - " " - " -

" " - " " - " " " " " " " "

Table 13: Text generated using greedy decoding with BERT-Base, Llama-2-7B, and its adaptations using LLM2Vec
and MAGNET. To generate text from BERT, we recursively add a mask token at the end of the input sentence and
use the model to predict the mask.
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