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Abstract

Current advanced long-context language mod-
els offer great potential for real-world software
engineering applications. However, progress in
this critical domain remains hampered by a fun-
damental limitation: the absence of a rigorous
evaluation framework for long code understand-
ing. To gap this obstacle, we propose a long
code understanding benchmark LONGCODEU
from four aspects (8 tasks) to evaluate LCLMs’
long code understanding ability required for
practical applications, including code unit per-
ception, intra-code unit understanding, inter-
code unit relation understanding, and long code
documentation understanding. We evaluate 9
popular LCLMs on LONGCODEU (i.e., 6 gen-
eral models and 3 code models). Our exper-
imental results reveal key limitations in cur-
rent LCLMs’ capabilities for long code un-
derstanding. Particularly, the performance of
LCLMs drops dramatically when the long code
length is greater than 32K, falling far short of
their claimed 128K∼1M context windows. In
the four aspects, inter-code unit relation under-
standing is the most challenging for LCLMs.
Our study provides valuable insights for opti-
mizing LCLMs and driving advancements in
software engineering.

1 Introduction

Recent advances in long-context language mod-
els (LCLMs) like Gemini-1.5 (Team et al., 2024)
and GPT-4o (GPT, 2024), which support context
windows exceeding hundreds of thousands of to-
kens, offer unprecedented potential for real-world
software engineering applications. These models
promise transformative improvements in related
downstream tasks, such as repository-level code
generation (Zhang et al., 2024b; Bi et al., 2024),
real-world GitHub issues resolution(Jimenez et al.,
2023), and long code summarization (Dhulshette
et al., 2025). However, progress in this critical area

*Corresponding authors.

import codecs
def decode_utf7(enc):
  return codecs.decode(enc, 'utf-7')

def namespace(self): 
  data = self._command_and_check(“namespace”)
  parts = []
  for item in parse_response(data):
  (more lines . . )
    for prefix, separator in item:
      prefix = decode_utf7(prefix)
      parts.append((prefix, to_unicode)
  return Namespace(*parts)

def calculate_positive_average(lst):
  pos_n = [i for i in lst if i > 0]
  return sum(pos_n) / len(pos_n) if pos_n else 0

def upper_and_sort(str_list):
  upper_str = []
  for string in str_list:
    upper_str.append(string.upper())
  return sorted(upper_str, key=len)
(more lines . . )

(a) A long code with independent functions

(b) A real-world long code with non-standalone functions
Figure 1: Examples of a synthetic long code with inde-
pendent functions and a real-world long code with non-
standalone functions. Dependencies are highlighted.

remains hampered by a fundamental limitation: the
lack of rigorous evaluation frameworks for long
code understanding—a capability essential for
real-world software development tools that require
accurate code unit perception, intra-code unit un-
derstanding, inter-code unit relation understand-
ing, and long code documentation understanding
in code repositories.

Current benchmarks generally fall into two cat-
egories, which face five fundamental limitations
that hinder comprehensive evaluation of LCLMs’
long code understanding capabilities. The first cat-
egory includes studies such as RepoQA (Liu et al.,
2024), whose task design has insufficient diver-
sity like only focusing on needle function search.
While these evaluations are useful, ❶ they do not
capture the real-world full range of code under-
standing capabilities needed for practical coding
scenarios. Additionally, benchmarks like L-Eval
An et al. (2023) further compound these limita-
tions by using synthetic “long code” through a
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simple joining of independent code snippets. ❷

This approach overlooks the natural dependen-
cies between code segments, as shown in Figure 1.
❸ These studies also face issues with data con-
tamination. They neither enforce temporal con-
straints on code release dates nor address potential
model pre-exposure through evaluating on previ-
ously published datasets. ❹ Their maximum sup-
ported context length of 36.5K tokens also falls
far short of stress-testing the claimed 128K-1M
context windows of modern LCLMs. The sec-
ond category includes benchmarks like Long Code
Arena (Bogomolov et al., 2024), LongBench (Bai
et al., 2023), SWE-bench (Jimenez et al., 2023),
and DevEval (Li et al., 2024b), which evaluate
long-context understanding based on performance
in downstream tasks. ❺ However, these bench-
marks entangle code understanding with other
task-specific challenges like code generation and
bug fixing. This makes it hard to determine whether
performance limitations are due to a lack of code
understanding or other factors.

To address these limitations, we propose LONG-
CODEU, a benchmark designed to isolate and com-
prehensively evaluate LCLMs’ capacity to under-
stand and reason about real-world, dependency-
rich, long code contexts. Our benchmark offers the
following key features:

• Comprehensive Tasks stem from Practical
Applications. We evaluate LCLMs from four
aspects (8 tasks) to evaluate the LCLMs’ long
code understanding capability required for
practical applications, including code unit per-
ception, intra-code unit understanding, inter-
code unit relation understanding, and long
documentation understanding.

• Extra-long Code Context. Each task con-
tains around 500 gathered long codes. The
lengths of examples change in 0∼8K, 8∼16K,
16∼32K, 32∼64K, and 64∼128K following
the normal distribution, which far exceeds the
maximum length of 36.5K supported by exist-
ing benchmarks (An et al., 2023).

• Real-world Repository. The benchmark is
collected from real-world code repositories.
Long code consists of one or more real code
file contents, instead of being composed of
multiple independent code units like current
benchmarks (Liu et al., 2024).

• Reducing Data Contamination. We collect
up-to-date code repositories that are created

after 2024-06 from GitHub1, which are later
than most prevailing LCLMs’ cut-off dates
thus reducing the risk of data contamination.

We evaluate 9 popular LCLMs, which con-
tain 6 general models (i.e., GPT-4o (GPT, 2024),
Claude-3.5-Sonnet (cla, 2024), Gemini-1.5-Flash
(Team et al., 2024), DeepSeek-V2.5 (Bai et al.,
2023), Mistral-v0.3 (Jiang et al., 2023), and Phi-
3.5 (Abdin et al., 2024) ) and 3 code models (i.e.,
DeepSeek-Coder-V2 (Bai et al., 2023), Qwen2.5-
Coder (Hui et al., 2024), CodeLlama (Roziere et al.,
2023)) on LONGCODEU. The experimental results
reveal key limitations in current LCLMs’ capa-
bilities for long code understanding. Especially,
LCLMs’ performance drops dramatically when
the long code length is greater than 32K, falling
far short of their claimed context windows such
as 128K-1M tokens. In the four aspects, inter-
code unit relation understanding is the most
challenging for LCLMs. Our findings provide
valuable insights for optimizing LCLMs and driv-
ing advancements in software engineering.

2 Related Works

Benchmarks on Long Code Understanding.
Existing studies can be mainly categorized into
two types. The first category predominantly ex-
plores the long code understanding ability required
in downstream applications like the needle-in-a-
haystack task, but they face significant limitations.
RepoQA (Liu et al., 2024) is a pioneer introduced
needle function retrieval task. However, the sin-
gle task is insufficient to evaluate the complex
long code understanding ability. L-Eval (An et al.,
2023), a widely-used benchmark, has limitations as
well. It constructs artificial "long code" by concate-
nating independent code snippets, ignoring context
dependency in real-world source code. These lim-
itations highlight the need for a more comprehen-
sive and reliable benchmarking approach for eval-
uating LCLMs’ long code understanding ability.
The second category includes research like LCArea
(Bogomolov et al., 2024). They verify LCLMs’
long code understanding ability by measuring their
performance on downstream tasks such as Long-
Bench (Bai et al., 2023), SWE-bench (Jimenez
et al., 2023), and EvoCodeBench (Li et al., 2024a).
Although they provide an intuitive way to assess
LCLMs, it suffers from a significant drawback. The
performance of downstream tasks is confounded by

1https://github.com/
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Table 1: The comparison between existing benchmarks and LONGCODEU. #Num is the abbreviation of number.
#Div Tasks refers to diverse tasks. #High Disp represents high dispersion. #Max-L and #Avg-L mean the maximum
length and the average length of long code. #Trunk-L means whether each example has the length label. #Doc
refers to documentation related to repositories. #Task represents the number of tasks (i.e., examples).

Benchmark
Comprehensive Code Tasks Extra-long Data Real-world Repository Reduce Data Leaking Data Scale

#Num #Div Tasks #High Disp #Max-L #Avg-L #Length-L Code #Doc #Num Data Time #Task

The second category benchmarks (Only some benchmarks are listed)

LongBench [6] 2 ✗ ✗ – 0.4K ✗ Function ✗ – 2023.02–2023.08 1,000
LC-Arena [8] 6 ✗ ✗ – – ✗ File ✗ 62 2023.01–2024.05 –
LONGPROC [30] 1 ✗ ✓ – 2K ✓ Function ✗ 0 No Limit 200
DevEval [21] 1 ✗ ✓ – 0.3K ✓ File ✗ 164 2023.11-2024.02 1,825

The first category benchmarks

RepoQA [22] 1 ✗ ✗ 16K – ✗ Function ✗ 50 No Limit 500
L-Eval [5] 1 ✗ ✗ 36.5K 31.5K ✗ Function ✗ 0 No Limit 90
LONGCODEU 8 ✓ ✓ 128K 54.8K ✓ File ✓ 116 2024.06–2024.11 3,983

Unit Code Perception

Inter-Code Unit Relation Understanding

Long Documentation Understanding

Code 
Repository

Code Generation Bug Fixing Code Summarization

...

LCLM









…

Intra-Code Unit Understanding

Figure 2: Four understanding aspects in LONGCODEU.

multiple factors, and these works do not decouple
the long code understanding ability independently,
which is orthogonal to our objective-evaluating
LCLMs’ capacity to understand and reason about
real-world, dependency-rich, long code.

Long Context Language Models. Recent stud-
ies have explored diverse ways to extend large
language models’ context window size. The di-
rect way is to fine-tune models on long sequences
(Wu et al., 2021), but they are often effort-costing.
Some approaches involve additional fine-tuning for
a longer context (Xiong et al., 2023; Chen et al.,
2023a,b,c; Peng et al., 2023). They down-scale the
input position indices to match the original context
window size of models with several training steps.
There are also some training-free studies, which
use window attention to clip the long sequences
(Han et al., 2023; Ding et al., 2023; Xiao et al.,
2023). Concurrently, a series of approaches mod-
ify the relative distance to extend the extrapolation
length (Zhang et al., 2024a; Jin et al., 2024). In this
paper, we construct a comprehensive benchmark to
evaluate LCLMs’ long code understanding ability.

3 LONGCODEU Benchmark

In this section, we first introduce long code un-
derstanding tasks (§3.1). Then, we describe the
construction process of LONGCODEU (§3.2). Fi-
nally, we present the evaluation metrics (§3.3).

3.1 Tasks

In real-world software development, long code un-
derstanding is usually oriented towards code repos-
itories. These repositories take functions as ba-
sic code units, establish relations among units to
achieve complex applications, and introduce doc-
umentation to describe code-related information.
LCLMs with good long code understanding abil-
ities should be able to perceive and understand
basic code units, relations among units, and asso-
ciated code documentation, which is essentially
required for dealing with downstream tasks such as
repository-level code generation, issue resolving,
and long code summarization. In this paper, we
propose LONGCODEU to comprehensively evalu-
ate LCLMs’ long code understanding ability from
four aspects: code unit perception, intra-code unit
understanding, inter-code unit relation understand-
ing, and long documentation understanding. Four
aspects of LONGCODEU are shown in Figure 2

These long code understanding tasks share the
following procedure: given an instruction, long
code, and anchor input, LCLMs output the desired
answer. The instruction briefly describes the re-
quest of each task. The anchor input is the detailed
demand such as a code unit. In LONGCODEU,
instruction and anchor input are generally short,
while long code is long containing 0∼128K tokens.

3.1.1 Code Unit Perception
Understanding long code, particularly in code
repositories, requires identifying its numerous func-
tions, as they form the foundational code unit for
comprehending long code’s overall functionality.
In this paper, we treat a function as the code unit
and introduce the code unit perception task to eval-
uate LCLMs’ code unit identifying ability in long
code. Concretely, this task requires LCLMs to iden-
tify all defined functions in long code and return
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their corresponding function names, where long
code is composed of one or more code file contents
collected from real-world repositories. This ability
is the cornerstone for downstream tasks.

3.1.2 Intra-Code Unit Understanding
Based on code unit perception, we further evaluate
LCLMs’ ability to understand the internal logic and
semantics of code units.

Code Unit Data Flow Analysis. In this section,
we propose the code unit data flow analysis task
that verifies whether LCLMs can understand the
internal logic of code units by tracking data flow
to a certain extent. Given a code unit in long code
and a variable name in the code unit, LCLMs are
required to figure out lines where the value of the
given variable changes by tracing data flow. For
example, after executing the line “upper_string +=
2", the value of variable “upper_string" changes.
The given code unit is randomly selected from long
code and its position in long code is also random.
Evaluating code unit understanding ability is sig-
nificant for LCLMs to discover potential vulnera-
bilities, repair vulnerabilities, and optimize code.

Code Unit Semantic Analysis. In addition to an-
alyzing the data flow of code units, we propose the
code unit semantic analysis task to further verify
LCLMs’ intra-code unit understanding ability. The
task asks LCLMs to return a code unit from the
long code that satisfies the given description. The
long code contains real-world code files, where all
descriptions of code units are removed to prevent
LCLMs from acquiring clues in them. This task
requires LCLMs understand the semantics of code
units and then return the desired code unit.

3.1.3 Inter-Code Unit Relation Understanding
In real-world long code, especially in code repos-
itories, code units are non-standalone. Grasping
code unit relations is essential for LCLMs to un-
derstand the complex functionality of long code,
where code unit relations mainly containing de-
pendency relations and semantic relations. The
dependency relation indicates the calls among code
units. The semantic relation focuses on the func-
tional similarities of code units.

Dependency Relation Analysis. (T1) Given a
code unit, this task requires LCLMs to find code
units that are invoked by the given unit from long
code, where the long code covers one or multiple
code files and is collected from the same repository

with the given code unit. The dependency relation
analysis ability can assist LCLMs correctly identi-
fying other code units related to vulnerable units
and determining vulnerability scopes in real-world
applications. (T2) Considering that in real-world
applications, apart from long code as LCLMs’ in-
put, developers usually use natural language re-
quirements to interact with LCLMs. Thus, LCLMs
also need to understand dependency relation be-
tween long code and requirements. Given a natural
language description, this task requires LCLMs
to find code units from the long code that are in-
voked for generating the desired code that satisfies
the given description. The ability can ensure that
LCLMs sucessfully invoke existing code units in
repository-level code generation and correctly inte-
grate generated code into the current repository.

Semantic Relation Extraction. Even if two code
units have no dependency relationship, they might
be semantically similar such as having similar im-
plementation or logic. This section analyzes seman-
tic relations of code units in long code. (T1) Given
a code unit, this task asks LCLMs to extract seman-
tically similar code units with the given unit from
long code. Extracting semantic relations of units
can effectively help LCLMs to improve software
development efficiency by reusing similar code
units when programming, and enhance software
maintainability such as finding potentially similar
vulnerabilities among semantically similar units.
(T2) As described in dependency relation analy-
sis (T2), understanding the semantical relations of
code units and natural language requirements is
more in line with practical development scenarios.
For instance, in repository-level code generation,
developers input a requirement to LCLMs. LCLMs
can find semantically similar units with the given
requirement from the current repository and then
refer to these units to generate desired codes. In
this task, LCLMs need to extract semantically sim-
ilar code units to a given requirement, which chal-
lenges LCLMs to understand the semantics of units
in long code and reason their semantic relations.

3.1.4 Long Documentation Understanding

In real-world software engineering, code documen-
tation also plays a crucial role. It encompasses a
diverse range of code-related information includ-
ing descriptions of code units, usage patterns, ar-
chitecture designs, and more. Consequently, it is
essential not merely to verify the long code under-
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Table 2: Statistics of LONGCODEU. #Num means the
number of examples in each task. #C-File represents
whether the output can be obtained by aggregating cross-
file content. #Avg-L is the average length of the output.
#Gran means the granularity of the output.

Task
Input Output

#Num Format #C-File #Avg-L #Gran

CU_P 487 Code ✗ 0.4K Name
CU_SA 500 Code ✗ 0.2K Function

CU_DFA 500 Code ✗ 0.03K Line

DRA_T1 500 Code ✓ 0.3K Function
DRA_T2 500 Code ✓ 0.3K Function
SRE_T1 500 Code ✓ 1.0K Function
SRE_T2 500 Code ✓ 1.1K Function

LDU 500 Document ✗ 0.7K NL

standing ability, but also to analyze the long code
documentation understanding ability of LCLMs.
We introduce the long documentation understand-
ing task. Given long documentation and a code
unit name such as a function name contained in
the documentation, this task requires LCLMs to ex-
tract the related information to the unit name. We
ensure that the long documentation contains the
related knowledge of the given unit name, aiming
to effectively evaluate LCLMs. Analyzing long
documentation is critical to verify the performance
of LCLMs in real-world software development.

3.2 Benchmark Construction

The pipeline for constructing LONGCODEU en-
compasses 6 stages as follows.
Stage ❶: Repository Selection. Referring to the
TIOBE index (Tio, 2024) for programming lan-
guage popularity, the most popular language is
Python. Thus, we conduct experiments on Python
and will expand to other languages in the future.
In Python source platforms, PyPI is a rich Python
package index tool. We identify the top 10 pop-
ular programming topics in PyPI and obtain the
top 50 packages with the most stars in each topic.
We then select repositories following four crite-
ria: open-source repositories, created after 2024-
06, non-fork and non-malicious, and more than 50
stars. Finally, we crawl these repositories from
GitHub and obtain 116 real-world repositories.
Stage ❷: Code Parse. We use tree-sitter2 to de-
sign a code parser. This parser identifies code units
defined in repositories, traces the definition of code
units, and analyzes unit relations: First, it performs
static analysis of each file in a repository and ex-
tracts unit names defined in it. Then, it executes

2https://tree-sitter.github.io/tree-sitter/

unit symbol navigation, finding the definitions of
all code units in the repository. Finally, it extracts
unit names invoked in a code unit to grasp their
dependency relations. Combining the three steps,
the parser can traverse predefined code units within
a repository and obtain intricate dependencies. To
obtain semantic relations among units, we apply an
advanced embedding model to encode code units,
and use the cosine similarities of their representa-
tions to measure semantic relations.
Stage ❸: Requirement Collection. We extract re-
quirements contained in the signature of code units
with tree-sitter and invite two developers to check
requirements. Not that it is enough to construct
examples for T2-type tasks even if some code units
do not contain requirements in repositories.
Stage ❹: Documentation Annotation. We collect
documentation from collected code repositories
and select the documentation with standard: being
easy to distinguish the related information of code
units. Then we invite two developers to manually
label 500 examples.
Stage ❺: Deduplication. For tasks whose input
is code unit, we exclude trivial units (e.g., empty
or initialization functions). To ensure the quality
of LONGCODEU, we randomly select files from
repositories as long codes, and ensure long codes
of all examples in each task are non-repetitive.
Stage ❻: Benchmark Construction. Based on the
above stages, we construct around 500 examples
for each task supporting the maximum length of
128K tokens. We make LONGCODEU satisfy fol-
lowing goals: comprehensive tasks from practical
applications, extra-long code context, real-world
repositories, and reducing data contamination.

3.3 Automatic Evaluation
We focus on evaluating the long code understand-
ing ability required for LCLMs to complete down-
stream tasks. Tasks in LONGCODEU commonly
require LCLMs to retrieve dispersive snippets from
long code and execute reasoning. Thus, we mainly
adopt metrics used in retrieval tasks to measure
LCLMs, including recall and precision.

For proper evaluation, we refine existing met-
rics according to the output granularity of tasks:
❶ Output with code lines refers to the code unit
data flow analysis task, which extracts several lines
from long code. We first use exact match (EM) to
measure each line in outputs. Then, we calculate
recall and precision based on EM, acquiring EM-R
and EM-P metrics. ❷ Output with code unit names
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is related to the code unit perception task. We first
find the correct names in output and then calculate
the longest common subsequence (LCS) of unit
names between output and ground truth, since it
not only reflects whether the unit name is correct
but also indicates LCLMs’ ability to perceive the
position of units in long code. Then, we calculate
recall and precision based on LCS, named LCS-
R and LCS-P. ❸ Output with code units refers
to code unit semantic analysis and inter-code unit
relation understanding tasks. Code unit semantic
analysis only returns one unit. We use CodeBLEU
as its metric, where it is a popular metric to indicate
the consistency of two code sequences. For inter-
code unit relation understanding, it returns multiple
code units. We first determine whether the name
of each generated unit is in ground truth. Then,
we calculate CodeBLEU of each unit if it exists in
the ground truth. For the code unit whose name
is not in the ground truth, its CodeBLEU value is
set to 0. Based on CodeBLEU value of each unit,
we finally calculate CodeBLEU-based recall and
precision, dubbed CB-R and CB-P. ❹ Output with
descriptions is related to the long documentation
understanding task. Considering that documenta-
tion contains many text descriptions, we employ
BLEU for evaluation, which is commonly used to
measure the consistency between two sequences in
the natural language process field.

These automatic evaluations can effectively mea-
sure LCLMs’ long code understanding ability since
the outputs of each task are deterministic and task’
features are incorporated into these metrics. Figure
5 shows the automatic evaluation correlates well
with human annotation, which further demonstrates
the reliability of our automatic metrics.

4 Experiment Setups

In this section, we aim to answer the following
research questions through a series of experiments.
RQ1. How is the long code understanding abil-
ity of LCLMs? We evaluate LCLMs’ long code
understanding ability on LONGCODEU in §5.1.
RQ2. What is performance of LCLMs across
long code lengths? We explore the performance of
LCLMs on long code with different lengths. §5.2
demonstrates LCLMs’ performance comparison
across long code lengths.
RQ3. How do developers select models in real-
world application scenarios? Based on the experi-
mental results, we summarize the empirical lessons
we learned, aiming to help developers select suit-

able LCLMs (§5.3).

4.1 Base LCLMs

We evaluate 9 advanced LCLMs on LONGCODEU,
which contain 6 general models (i.e., GPT-4o (GPT,
2024), Claude-3.5-Sonnet (cla, 2024), Gemini-1.5-
Flash (Team et al., 2024), DeepSeek-V2.5 (Bai
et al., 2023), Mistral-v0.3 (Jiang et al., 2023), and
Phi-3.5 (Abdin et al., 2024) ) and 3 code mod-
els (i.e., DeepSeek-Coder-V2 (Bai et al., 2023),
Qwen2.5-Coder (Hui et al., 2024), CodeLlama
(Roziere et al., 2023)). DeepSeek-R1 and GPT-
o3-mini are newly released LCLMs, but their avail-
ability through invoking API is unstable or limited
to usage frequency. We can not present their per-
formance now and will evaluate them in the future.

4.2 Experimental Setup

We use greedy search for all experiments. We
evaluate LCLMs within their maximum context
window length. In the semantic relation extrac-
tion task, we use an advanced embedding model
stella_en_400M_v5 to encode code units and nat-
ural language requirements with the 1,024 dimen-
sion version, and select the top five similar code
units by calculating the cosine similarities of their
embeddings. Constrained by computing resources,
we evaluate DeepSeek-V2.5 by invoking API3 pro-
vided by DeepSeek. Although the context length
of DeepSeek-V2.5 achieves 128K tokens, the API
provided by DeepSeek only supports up to 60K
tokens. Thus, we analyze DeepSeek-V2.5 on long
codes with 0∼64K tokens.

5 Results and Analysis

5.1 Long Code Understanding Capability

Table 3 presents the performance of LCLMs on
LONGCODEU. For LCLMs with a context length
of less than 128K tokens, we only evaluate them
within their supporting maximum lengths.

Comparison across LCLMs. We observe sig-
nificant performance gaps among LCLMs. For
similar-scale models, the performance of code
LCLMs is better than the counterpart of general
models on most tasks. For example, Qwen2.5-
Coder outperforms Phi-3.5 24.31% on intra-
code unit understanding (the second-aspect task)
in terms of CodeBLEU, and DeepSeek-Coder-
V2 achieves 11.75% average improvements on

3https://api-docs.deepseek.com/api/deepseek-api
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Table 3: The performance of LCLMs on LONGCODEU. We only report recall-based results (EM-R, LCS-R, and
CB-R) due to page limitation. The precision-based results (EM-P, LCS-P, and CB-P) can be found in Appendix A.

#Param Context Size
Task

CU_P CU_SA CU_DFA DRA_T1 DRA_T2 SRE_T1 SRE_T2 LDU #Avg

Code Models Open-Source LCLMs
Qwen2.5-Coder 7.6B 128K 43.47 71.06 74.01 30.38 9.59 24.34 21.81 21.83 37.06
DeepSeek-Coder-V2 15.7B 128K 38.67 65.21 48.42 47.26 22.92 24.61 26.21 50.69 40.49
CodeLlama 33.7B 16K 68.57 62.41 79.87 68.82 34.94 44.48 36.34 46.92 55.29

General Models Open-Source LCLMs
Phi-3.5 3.8B 128K 39.92 46.75 49.52 30.76 9.66 18.99 14.48 34.14 30.53
Mistral-v0.3 7.3B 32K 57.42 63.90 58.00 46.66 18.92 33.91 32.50 58.64 46.24
DeepSeek-V2.5 236B 128K 70.58 82.11 77.47 72.25 56.80 49.08 47.42 85.85 67.70

Proprietary Source LCLMs
Claude-3.5-Sonnet – 200K 43.82 40.60 45.65 29.37 28.70 26.55 27.77 41.81 35.53
Gemini-1.5-Flash – 1000K 58.45 83.46 80.37 72.51 46.42 39.84 38.69 81.43 61.39
GPT-4o – 128K 56.42 86.76 87.87 71.58 48.88 44.45 43.14 87.54 65.83

CodeLlama 73.2 62.3 - - - 88.0 74.4 - - - 60.4 68.6 - - - 72.7 64.5 - - -

Mistral-v0.3 77.0 55.2 37.3 - - 73.0 67.1 43.7 - - 66.0 65.2 52.2 - - 37.4 48.3 52.9 - -

Phi-3.5 75.9 56.9 45.3 27.6 10.2 62.0 63.3 48.4 49.4 39.3 55.8 58.2 44.3 34.4 32.1 45.4 47.7 43.1 22.5 17.3

DeepSeek-Coder-V2 85.6 63.7 40.3 20.2 4.8 80.0 76.0 56.8 50.2 17.0 68.4 73.9 70.2 53.4 34.3 56.5 57.1 56.2 43.9 37.5

Qwen2.5-Coder 80.0 61.3 51.8 25.6 15.0 76.0 79.3 85.0 76.1 61.7 71.8 75.0 69.1 69.6 65.0 45.0 36.0 32.6 15.5 33.7

DeepSeek-V2.5 87.4 72.1 72.4 53.3 - 94.0 84.9 72.6 70.3 - 79.9 83.8 80.7 85.4 - 79.0 76.3 77.1 75.0 -

Gemini-1.5-Flash 84.7 70.8 65.5 47.1 36.1 84.0 85.1 79.5 77.6 79.7 76.2 85.2 83.0 83.5 84.5 68.6 72.0 74.9 66.9 76.9

Claude-3-5-Sonnet 88.2 55.5 46.4 27.5 15.5 92.0 66.7 48.0 40.3 22.7 81.2 38.3 36.6 21.4 22.1 68.1 27.6 47.9 25.5 10.0

GPT-4o 85.4 68.2 61.6 48.6 31.4 92.0 90.2 88.0 85.6 87.1 80.5 86.4 87.7 90.7 81.8 65.4 74.0 75.6 67.3 74.6

0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K

CodeLlama 40.7 28.5 - - - 49.6 36.5 - - - 43.0 26.0 - - - 65.3 34.0 - - -

Mistral-v0.3 14.9 16.9 24.1 - - 46.1 37.4 20.4 - - 48.7 34.0 16.9 - - 76.6 59.7 48.9 - -

Phi-3.5 16.4 23.7 13.5 3.6 4.7 41.6 29.8 21.8 13.8 4.0 33.7 25.7 15.8 8.8 2.6 30.7 47.2 49.9 21.9 23.4

DeepSeek-Coder-V2 20.5 30.7 27.6 28.1 17.3 52.4 39.7 24.8 20.3 6.2 53.0 45.6 25.8 22.0 6.8 84.5 73.3 58.9 43.8 8.2

Qwen2.5-Coder 4.2 7.3 7.2 7.0 18.3 52.8 41.6 21.0 14.0 11.9 50.9 39.3 17.6 12.9 8.5 60.0 35.2 16.0 11.8 8.3

DeepSeek-V2.5 57.7 60.4 62.9 57.6 - 72.5 62.0 38.4 38.2 - 70.9 60.5 38.1 37.2 - 87.5 85.3 89.6 82.5 -

Gemini-1.5-Flash 42.2 48.8 51.6 39.9 50.0 69.9 58.9 30.8 35.4 25.6 70.4 58.1 28.8 31.1 26.4 88.1 83.6 82.7 77.2 80.1

Claude-3-5-Sonnet 60.0 46.8 36.2 19.5 13.0 66.4 58.8 23.1 11.7 5.0 70.0 54.0 18.4 15.3 10.4 80.7 66.6 46.7 20.1 22.2

GPT-4o 44.4 52.1 48.3 45.5 52.4 72.5 60.3 36.2 37.0 34.4 73.3 58.8 37.0 36.7 29.6 93.3 85.6 90.6 85.7 84.7

0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K

Semantic Relation Extraction (T2) Long Documentation Understanding

Code Unit Perception Code Unit Data Flow Analysis Code Unit Semantic Analysis Dependency Relation Analysis (T1)

Dependency Relation Analysis (T2) Semantic Relation Extraction (T1)

Figure 3: Performance comparison across tasks and long code lengths on LONGCODEU (grey blocks indicate
unavailable configurations). The rate of performance degradation exhibits task-specific and model-specific patterns.

inter-code unit relation understanding (the third-
aspect task) in CB-R. Among open-source models,
DeepSeek-V2.5 performs the best, which is related
to its large number of parameters. In proprietary
source models, GPT-4o achieves the best perfor-
mance, while Claude-3.5-Sonnet is not satisfactory.

Comparison across Tasks. In the four aspects,
LCLMs perform the best in code unit percep-
tion and long documentation understanding, and
achieve moderate results in intra-unit code under-
standing. Inter-code unit relation understanding
is the most challenging. Their performances are
reasonable. Because it’s a fundamental ability for
LCLMs to understand code documentation and per-
ceive code units. Based on this, LCLMs understand
intra-unit code and then analyze inter-code unit re-
lations, thereby comprehending long code. When
observing the third-aspect task (i.e., inter-code unit
relation understanding) closely, it can be seen that
the performance of dependency relation analysis
is lower than that of semantic relation extraction.
We also find that no LCLM outperforms others on
all tasks. For instance, in terms of scale-similar
code models and general models, the former out-

performs the latter in code unit perception, while
code models perform worse than general models in
long documentation understanding.

5.2 Performance across Long Code Lengths

To address RQ2, we classify examples into five
buckets according to the long code length, in-
cluding 0∼8K, 8∼16K, 16∼32K, 32∼64K, and
64∼128K on each task. We conduct experiments
on these classes to investigate the true context abil-
ity supported by LCLMs in long code understand-
ing. Figure 3, Appendix A, and B show the results
of LCLMs across long code lengths.

Our experimental results reveal key limitations
in current LCLMs’ capabilities for long code un-
derstanding. We can also observe a negative cor-
relation between the long code length and the per-
formance of LCLMs. LCLMs’ performance drops
dramatically when the long code length is greater
than 32K tokens, falling well short of their claimed
128K∼1M context windows. Besides, when the
long code contains 64∼128K tokens, the perfor-
mance of LCLMs is near to 10 or even close to 0
on some tasks such as dependency relation analy-
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sis and semantic relation extraction. In addition,
the degradation slopes of performances vary by
task. For example, there is a large slope in long
documentation understanding, which means that
LCLMs are suitable for processing relatively short
documentation. The slope on code unit under-
standing including code unit data flow analysis and
code unit semantic analysis tasks is relatively small.
LCLMs fail to model code context effectively in
their claimed context windows.

5.3 Empirical Lessons.

Based on the above experiments, we summarize
the empirical lessons we learned as: ❶ The small-
size LCLMs such as Qwen2.5-Coder can satisfy
developers’ need for code unit perception and un-
derstanding if long code length is less than 16K.
Otherwise, we suggest choosing larger-size mod-
els. ❷ For understanding long code documentation
with more than 32K tokens, it is recommended
to use GPT-4o and Gemini-1.5-Flash. Otherwise,
Mistral-v0.3 and DeepSeek-Coder-V2 can achieve
satisfying performances. ❸ For tasks with high
requirements for understanding inter-code unit re-
lations, we suggest selecting the most powerful
LCLMs that developers can access. Because when
long code length exceeds 64K which is common in
repository-level tasks, strong LCLMs also achieve
weak perfrmances. These poor performances ex-
plain why powerful LCLMs perform unsatisfac-
torily in repository-level downstream tasks. For
example, GPT-4o only achieves 4.00% Success@1
on repository-level code translation benchmark-
RepoTransBench (Wang et al., 2024).

6 Discussion

6.1 Case Study

We analyze the outputs of LCLMs, particularly
GPT-4o, on the inter-code unit relation understand-
ing task. Appendix D presents two notable exam-
ples. GPT-4o often extracts code units that are
structurally similar or share overlapping tokens but
have distinct or even opposite functionalities. This
highlights the need to enhance models’ ability to
distinguish confusing code units.

6.2 Code Understanding or Memorization?

We collect a small number of early-released code
repositories from GitHub that LCLMs have poten-
tially encountered during LCLMs training, aiming
to analyze the dependency degree of LCLMs on

0

20

40

60

80

100

DS-
Cod

er
-V

2

GM
-1

.5-
Fla

sh

GPT
-4

o

DS-
Cod

er
-V

2

GM
-1

.5-
Fla

sh

GPT
-4

o

C
B

-R

w Code Context
w/o Code Context 

Figure 4: Assessing long code understanding vs. mem-
orization on CU_SA (left) and DRA_T2 (right) tasks.

memorization and long code understanding abil-
ity. Concretely, we enter only an instruction and
anchor input to models, withholding the long code
context, and assess their performance. We select
tasks where models can work normally even with-
out long code context, such as code unit semantic
analysis and dependency relation analysis (T2). As
shown in Figure 4, the memorization performance
(w/o context) is much lower than the results with
long code context, even though models might have
met these contexts when training. The δ score
(the results with context minus the performance
without context in yellow) relieves the memory
phenomenon (Yu et al., 2023) and also reveals the
significant importance for measuring LCLMs’ long
code understanding ability.

6.3 Reliable Evaluation Metrics?

Reliable evaluation metrics are essential for assess-
ing long code understanding. We measure the con-
sistency between our metrics and human evaluation
by selecting 20 GPT-4o outputs on each task and
inviting two advanced developers to manually eval-
uate them. Using Kendall-Tau τ (Kendall, 1938),
we found that the average τ value is at least 0.75
across all tasks, with the minimum value exceeding
0.7 (Figure 5). This demonstrates a strong corre-
lation between our metrics and human evaluation,
confirming the reliability of our metrics.

6.4 Further Evaluation of LCLMs on DCC
and CCI Tasks

We conduct a code change impact (CCI) analy-
sis task to further evaluate LCLMs’ long code un-
derstanding ability. Meanwhile, we also evaluate
LCLMs on understanding dynamic code character-
istics (DCC) like runtime behavior tracing. The
details and results are shown in Appendix C.
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Figure 5: The value of Kendall-Tau τ between our auto-
matic metrics and human evaluation.

7 Conclusion

In this paper, we propose a comprehensive long
code understanding benchmark LONGCODEU.
It introduces four aspects (8 tasks) to evaluate
LCLMs’ long code understanding ability required
for practical applications, including code unit per-
ception, intra-code unit understanding, inter-code
unit relation understanding, and long code docu-
mentation understanding. Our experimental results
reveal key limitations in current LCLMs’ capabil-
ities for long code understanding. When the long
code length contains more than 32K tokens, the per-
formance of LCLMs drops dramatically, falling far
short of their claimed 128K∼1M context windows.
We hope our findings can provide valuable insights
for optimizing LCLMs and driving advancements
in software engineering.

8 Acknowledgement

This research is supported by the National Key
R&D Program under Grant No. 2023YFB4503801,
the National Natural Science Foundation of China
under Grant Nos. 62192731, 62192730, 62192733,
62072007, and the Major Program (JD) of Hubei
Province (No.2023BAA024).

Limitations

This paper proposes a benchmark - LONGCODEU
to evaluate the long code understanding ability
of long context language models from four as-
pects which are essential capabilities required for
LCLMs to complete real-world downstream tasks.
Based on LONGCODEU, we evaluate 9 popular
LCLMs and analyze their strengths and shortcom-
ings. We think that DevEval has three limitations.

❶ LONGCODEU is a monolingual benchmark
(i.e., requirements in English and code in Python)

and ignores other languages. In practice, LLMs
require understanding requirements in different nat-
ural languages (e.g., Chinese, Spanish) and gener-
ating programs in various programming languages
(e.g., Java, C). Thus, we plan to build a multilingual
LONGCODEU in future work.

❷ Most recently, there are a few newly released
LCLMs such as DeepSeek-R1 and OpenAI o3-
mini-high. Constrained by the availability or stabi-
lization of API, we do not provide the performance
of these newly released models. In the future, we
will evaluate their long code understanding abilities
on LONGCODEU.

❸ In our experiments, we only consider the
long code with 0∼128K tokens, although some
LCLMs have supported longer context windows,
e.g., Claude-3-5-Sonnet with 200K context size
and even Gemini-1.5-Flash with 1000K context
size. We will continue to update and evolve our
benchmark, in order to support LONGCODEU to
measure LCLMs on longer codes.
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A Rrecision-based results in RQ2

We present the performance of LCLMs on several
tasks which can be measured by precision-based
metrics in Figure 7.

B Recall-based performance of LCLMs
in moderate-length (16∼64K)

We also conduct experiments to evaluate LCLMs
on moderate-length (16∼64K) codes. As shown in
Figure 6, the performances of all LCLMs on the
moderate-length scenario need to be improved.

Mistral-v0.3 37.3 52.2 43.7 52.9 24.1 20.4 16.9 48.9

Phi-3.5 36.4 39.1 48.9 30.0 7.1 17.8 12.2 34.3

DeepSeek-Coder-V2 30.2 61.5 53.1 48.4 27.9 22.6 23.9 50.5

Qwen2.5-Coder 38.6 69.4 80.0 21.7 7.1 17.5 15.2 13.6

DeepSeek-V2.5 62.7 83.2 71.3 75.8 59.5 38.3 37.6 85.7

Gemini-1.5-Flash 56.2 83.8 78.4 69.8 44.1 33.0 30.0 79.7

Claude-3-5-Sonnet 36.8 28.7 43.8 33.6 25.4 17.4 16.8 31.8

GPT-4o 55.0 89.3 86.7 70.3 46.5 36.6 36.9 87.9

CU_P CU_SA CU_DFA DRA_T1 DRA_T2 SRE_T1 SRE_T2 LDU

Figure 6: Performance of LCLMs on all tasks within
16∼64K code length.

C The performance of LCLMs on DCC
and CCI tasks

Given a modified code unit and its original unit,
CCI requires LCLMs to identify other units that
are affected by the given code unit changing. We
use tree-sitter to analyze dependency relations and
identify affected units. We invite two developers to
check the affected units. For the DCC task, given a
code unit name and its specific inputs, it requires
LCLMs to output lines that are executed based on
the specific inputs. We use BLEU as the evaluation
metric. From Table 4, we can find that the dynamic
code characteristics task and the code change im-
pact analysis task are difficult for LCLMs.

D Case Study

Figure 8 shows a representative error case in the
dependency relation analysis task. We can find that
the output of GPT-4o extracts an error code unit
“stream_async" that is confusing to correct invoked
function “stream" since the two code snippets have
similar structures.

Figure 9 demonstrates a generated result of GPT-
4o in the semantic relation extraction task. We can
observe that the output contains an error “delete"
function which has opposite functionalities to the
anchor input, i.e., the given natural language de-
scription.

E Instructions in Our Benchmark

We present the instructions employed in diverse
tasks. Each instruction has undergone iterative re-
finement to ensure that different models can not
only achieve relatively high metrics but also pro-
duce outputs that appear satisfactory and are appli-
cable to real-world development scenarios when us-
ing these instructions. These instructions standard-
ize the output format of the models (even though
some models may not output strictly in accordance
with these specifications), facilitating the parsing
of the streaming output of the models using regular
expressions during the evaluation process.
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Table 4: The performance of LCLMs on DCC and CCI tasks.

Qwen2.5-Coder DeepSeek-Coder-V2 CodeLlama Phi-3.5 Mistral-v0.3 DeepSeek-V2.5 Claude-3.5-Sonnet Gemini-1.5-Flash GPT-4o
CCI 24.62 40.81 47.91 27.25 55.92 68.07 42.39 70.34 67.31
DCC 53.13 57.58 67.88 57.68 38.46 72.51 52.30 83.68 57.40

CodeLlama 74.5 63.7 - - - 61.5 58.9 - - - 44.0 35.5 - - -

Mistral-v0.3 76.0 62.4 65.3 - - 38.3 39.6 20.9 - - 20.5 30.9 33.8 - -

Phi-3.5 72.0 50.8 46.5 30.6 17.9 45.0 43.1 33.6 33.9 22.7 36.3 36.4 36.8 19.0 16.2

DeepSeek-Coder-V2 82.9 60.1 48.3 29.8 15.7 42.8 35.2 20.4 21.7 7.7 56.5 57.1 56.2 43.9 37.5

Qwen2.5-Coder 88.7 81.8 79.7 67.2 51.1 55.5 61.8 60.5 55.6 44.1 23.3 19.2 16.7 9.1 17.7

DeepSeek-V2.5 96.6 89.2 89.1 71.1 - 81.7 72.4 58.8 54.1 - 62.3 62.6 66.6 61.4 -

Gemini-1.5-Flash 93.5 86.9 89.6 85.1 67.2 75.0 77.2 68.4 67.7 68.0 56.9 63.7 66.4 52.9 59.6

Claude-3-5-Sonnet 98.7 89.3 91.2 85.6 77.8 76.0 55.0 40.3 33.9 19.1 60.2 26.3 45.1 21.2 6.4

GPT-4o 94.3 94.8 92.5 88.2 67.9 82.4 82.5 79.5 78.0 75.7 62.3 70.5 73.7 63.3 66.0

0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K

CodeLlama 23.6 13.9 - - - 56.8 40.1 - - - 47.2 29.9 - - -

Mistral-v0.3 7.9 9.8 12.9 - - 50.6 41.5 26.6 - - 53.4 37.2 21.0 - -

Phi-3.5 16.1 18.1 11.5 3.4 4.5 51.9 37.7 29.7 17.9 13.2 44.5 32.6 21.0 13.4 8.9

DeepSeek-Coder-V2 15.3 16.6 16.9 17.8 7.9 58.6 45.1 30.5 24.6 9.4 59.0 51.0 30.1 25.2 10.9

Qwen2.5-Coder 2.1 3.6 3.9 2.8 8.6 60.2 46.8 30.0 20.0 17.2 59.0 46.4 25.1 17.2 13.4

DeepSeek-V2.5 38.9 42.0 45.5 40.1 - 79.1 66.1 47.2 43.2 - 77.7 63.7 47.3 41.9 -

Gemini-1.5-Flash 37.0 36.5 37.6 32.1 35.4 77.0 60.8 38.6 41.1 31.8 75.4 60.1 36.7 35.5 32.8

Claude-3-5-Sonnet 54.8 42.5 35.0 19.7 11.5 25.9 5.0 7.6 2.6 1.4 27.0 9.1 5.1 3.0 1.4

GPT-4o 39.2 43.7 44.5 39.3 43.4 75.8 62.0 42.6 39.8 40.2 76.0 60.4 44.3 39.4 32.9

0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K 0～8K 8～16K 16～32K 32～64K 64～128K

Semantic Relation Extraction (T2)

Code Unit Perception Code Unit Data Flow Analysis Dependency Relation Analysis (T1)

Dependency Relation Analysis (T2) Semantic Relation Extraction (T1)

Figure 7: Performance comparison across long code lengths on tasks which can be measured by precision-based
metrics. (grey blocks indicate unavailable configurations). The rate of performance degradation exhibits task-specific
and model-specific patterns.
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You're an expert Python programmer...Extract all functions and methods that the 
list function calls from the long Python source codes.
...
Do not include any explanations or additional text.

The long Python source codes are as follows:
```
...
def stream(
        ...
    ) -> Iterator[ExecutionInstance]:
        ...
        page = self.page(
            date_created_from=date_created_from,
            date_created_to=date_created_to,
            page_size=limits["page_size"],
        )

        return self._version.stream(page, limits["limit"])
...
async def stream_async(
        ...
    ) -> AsyncIterator[ExecutionInstance]:
     ...
        page = await self.page_async(
            date_created_from=date_created_from,
            date_created_to=date_created_to,
            page_size=limits["page_size"],
        )

        return self._version.stream_async(page, limits["limit"])
...
```

The programming requirement of the list function is:
```
def list(
        ...
    ) -> List[ExecutionInstance]:
        """
        Lists ExecutionInstance records from the API as a list.
        ...
        :param datetime date_created_from: 
        ...
        :returns: list that will contain up to limit results
```

```
###### function_1 ######
def stream_async(
        ...
    ) -> AsyncIterator[ExecutionInstance]:
        ...
        page = await self.page_async(
            date_created_from=date_created_from,
            date_created_to=date_created_to,
            page_size=limits["page_size"],
        )

        return self._version.stream_async(page, limits["limit"])
...

...

...
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Figure 8: For the dependency relation analysis task, the output of GPT-4o extracts a error code unit “stream_async"
that is confusing to correct invoked function “stream".
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You're an expert Python programmer...Identify and extract the five functions or 
classes that are most semantically similar to the __call__ function from the long 
Python source codes. 
...
Do not include any explanations or additional text.

The long Python source codes are as follows:
```
...
    def create(self) -> AssistantsKnowledgeInstance:
        """
        Create the AssistantsKnowledgeInstance

 ...
        """

 ...
        return AssistantsKnowledgeInstance(
            self._version, payload, assistant_id=self._solution["assistant_id"]
        )
...
    def delete(self) -> bool:
        """
        Deletes the AssistantsKnowledgeInstance

 ...
        """
        return self._version.delete(
            method="DELETE",
            uri=self._uri,
        )
...
def forward(
        ...
    ) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Applies the poison noise and compute the loss with respect to the target 
gradient.
    ...
```

The programming requirement of the list function is:
```
def __call__(self, id: str) -> AssistantsKnowledgeContext:
        """
        Constructs a AssistantsKnowledgeContext

        :param id: The knowledge ID.
```

```
...
###### Top-3 ######
def delete(self) -> bool:
    """
    Deletes the AssistantsKnowledgeInstance
    ...
...
###### Top-5 ######
def create(self) -> AssistantsKnowledgeInstance:
    """
    Create the AssistantsKnowledgeInstance
    ...
...
```

...

...
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Figure 9: For the semantic relation extraction task, the output contains an error “delete" function which has opposite
functionalities to the anchor input, i.e., the given natural language description.

27323



(a) Code Unit Perception

You’re an expert Python programmer. Identify all defined Python functions and extract their function names from the long
Python source codes.

Only extract the Python function names that are defined in the long Python source codes.
Do not extract the Python function names that are mentioned but not defined in the long Python source codes.
Do not extract the Python function names that are defined in the classes of the long Python source codes.
All extracted Python function names are stored in a list Function_names according to the order these function names appear
in the long Python source codes.

Make sure the output is strictly in this format:
“
Function_names = [Function_name_1, Function_name_2, ..., Function_name_k]
”

Do not include any explanations or additional text.

(b) Code Unit Data Flow Analysis

You are an expert Python programmer. Identify the {Target_function_name} function from the long Python source code
and extract the lines where the value of the {Target_variable_name} variable changes within the {Target_function_name}
function.

Only extract lines where the value of the {Target_variable_name} variable changes.
Do not extract lines where the {Target_variable_name} variable is referenced but its value does not change.

Return the extracted lines according to the order they appear in the {Target_function_name} function.

Make sure the output is in the following format:

“
###### The extracted code line ######
{extracted_code_line}
###### Line number ######
{line_number}

###### The extracted code line ######
{extracted_code_line}
###### Line number ######
{line_number}
...
###### The extracted code line ######
{extracted_code_line}
###### Line number ######
{line_number}

“

Do not include any explanations or additional text in the output.

27324



(c) Code Unit Semantic Analysis

You’re an expert Python programmer. Understand the long Python source codes. Identify and extract the function that
satisfies the given programming requirement.

Extract the entire source code of the function that satisfies the given programming requirement.
Do not only extract the name of the function that satisfies the given programming requirement.

Extracted the entire source code of the function:
“
def function_name(parameters):
# function body
”

Do not include any explanations or additional text.

(d) Dependency Relation Analysis (T1)

You’re an expert Python programmer. Extract all functions and methods that the {Target_function_name} function calls
from the long Python source codes.

Only extract functions and methods from the given long Python context.
Do not extract functions and methods from the Python standard library or third-party libraries.
Only extract functions and methods that the {Target_function_name} function directly calls.
Do not extract functions and methods that the {Target_function_name} function indirectly calls.
Extract the entire source code of functions and methods that the {Target_function_name} calls.
Do not only extract the name of functions and methods that the {Target_function_name} function calls.
Ensure indentation is preserved.

Please follow the format to complete the skeleton below:
“
###### function_1 ######
def function_name_1(parameters):
# function body

###### function_2 ######
def function_name_2(parameters):
# function body

###### method_1 ######
def method_name_1(self, parameters):
# method body

###### method_2 ######
def method_name_2(self, parameters):
# method body
”

Do not include any explanations or additional text.

(e) Dependency Relation Analysis (T2)
You’re an expert Python programmer. Understand the Python programming requirement of the {Target_function_name}
function. Extract all functions and methods that the {Target_function_name} function calls from the long Python source
codes.

Only extract functions and methods from the given long Python context.
Do not extract functions and methods from the Python standard library or third-party libraries.
Only extract functions and methods that the {Target_function_name} function directly calls.
Do not extract functions and methods that the {Target_function_name} function indirectly calls.
Ensure indentation is preserved.

Do not include any explanations or additional text.
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(f) Semantic Relation Extraction (T1)

You’re an expert Python programmer. Identify and extract the functions or classes that are most semantically similar to the
{Target_function_name} function from the long Python source codes.

Extract the entire source code of functions and classes that are the top-5 semantically similar to the {Target_function_name}
function.
Do not only extract the name of functions and classes that are the top-5 semantically similar to the {Target_function_name}
function.
The order of extracted five functions or classes is in order of decreasing similarity to the {Target_function_name} function.
Ensure indentation is preserved.

**Do not extract the target function {Target_function_name} itself.**

Please follow the format to complete the skeleton below:
“
###### Top-1 ######
def name_1(parameters):
# function body

###### Top-2 ######
def name_2(parameters):
# body

###### Top-3 ######
def name_3(parameters):
# body

###### Top-4 ######
def name_4(parameters):
# body

###### Top-5 ######
def name_5(parameters):
# body
”

Do not include any explanations or additional text.
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(g) Semantic Relation Extraction (T2)

You’re an expert Python programmer. Understand the Python programming requirement of the {Target_function_name}
function. Identify and extract the functions or classes that are most semantically similar to the {Target_function_name}
function from the long Python source codes.

Extract the entire source code of functions and classes that are the top-5 semantically similar to the {Target_function_name}
function.
Do not only extract the name of functions and classes that are the top-5 semantically similar to the {Target_function_name}
function.
The order of extracted five functions or classes is in order of decreasing similarity to the {Target_function_name} function.
Ensure indentation is preserved.

**Do not extract the target function {Target_function_name} itself.**

Please follow the format to complete the skeleton below:
“
###### Top-1 ######
def name_1(parameters):
# function body

###### Top-2 ######
def name_2(parameters):
# body

###### Top-3 ######
def name_3(parameters):
# body

###### Top-4 ######
def name_4(parameters):
# body

###### Top-5 ######
def name_5(parameters):
# body
”

Do not include any explanations or additional text.

(h) Long Documentation Understanding

You are an expert Python programmer. Understand the multiple natural language documentations and identify the one that
describes the {Target_API_name} API.

Each documentation is labeled with a sequence number and enclosed between special markers: <BEGIN >indicates the start
of a documentation, and <END >indicates its conclusion.

Extract and return only the complete documentation corresponding to the {Target_API_name} API, exactly as it appears.

Please follow the format to complete the skeleton below:

“
# The sequence number
{sequence number}

# The complete documentation
{complete documentation}
”

Do not include any explanations or additional text.
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