Controllable and Reliable Knowledge-Intensive Task-Oriented Conversational Agents with Declarative Genie Worksheets

Harshit Joshi, Shicheng Liu, James Chen, Larsen Weigle, Monica Lam


Abstract
Large Language Models are capable of carrying out human-like conversations in diverse settings in response to user requests for tasks and knowledge. However, existing conversational agents implemented with LLMs often struggle with hallucination, following instructions with conditional logic, and integrating knowledge from different sources. These shortcomings compromise the agents’ effectiveness, rendering them unsuitable for deployment. To address these challenges, we introduce Genie, a programmable framework for creating knowledge-intensive task-oriented conversational agents that handle involved interactions and answer complex queries. Unlike LLMs, Genie delivers reliable, grounded responses through advanced dialogue state management and supports controllable agent policies via its declarative specification – Genie Worksheet. This is achieved through an algorithmic runtime system that implements the developer-supplied policy, limiting LLMs to (1) parse user input using a succinct conversational history, and (2) generate responses according to supplied content. Agents built with Genie outperform SOTA methods on complex logic dialogue datasets by up to 20.5%. We conducted a user study with 62 participants. Genie agents with GPT-4 Turbo outperformed the GPT-4 Turbo agents with function calling, improving goal completion rates from 21.8% to 82.8% across three real-world tasks.
Anthology ID:
2025.acl-long.1323
Volume:
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
27264–27308
Language:
URL:
https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.1323/
DOI:
Bibkey:
Cite (ACL):
Harshit Joshi, Shicheng Liu, James Chen, Larsen Weigle, and Monica Lam. 2025. Controllable and Reliable Knowledge-Intensive Task-Oriented Conversational Agents with Declarative Genie Worksheets. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 27264–27308, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Controllable and Reliable Knowledge-Intensive Task-Oriented Conversational Agents with Declarative Genie Worksheets (Joshi et al., ACL 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.1323.pdf