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Abstract

User information needs are often highly diverse
and varied. A key challenge in current research
is how to achieve controllable multi-objective
generation while enabling rapid adaptation to
accommodate diverse user demands during test
time. Existing solutions, such as Rewarded
Soup, focus on merging language models in-
dividually tuned on single objectives. While
easy to implement and widely used, these ap-
proaches face limitations in achieving optimal
performance due to their disregard for the im-
pacts of competing objectives on model tuning.
To address this issue, we propose Bone Soup, a
novel model merging approach that first seeks
a series of backbone models by considering the
impacts of multiple objectives and then makes
the soup (i.e., merge the backbone models).
Specifically, Bone Soup begins by training mul-
tiple backbone models for different objectives
using multi-objective reinforcement learning.
Each backbone model is guided by a combina-
tion of backbone reward signals. To ensure that
these models are optimal for the Pareto front,
the backbone rewards are crafted by combin-
ing standard reward functions into basis vec-
tors, which can then be modified through a rule-
based construction method. Bone Soup lever-
ages a symmetric circulant matrix mapping
to generate the merging coefficients, which
are used to merge the backbone models ac-
cording to user preferences. Extensive exper-
imental results demonstrate that Bone Soup
exhibits strong controllability and Pareto op-
timality in controllable multi-objective genera-
tion, providing a more effective and efficient ap-
proach to addressing diverse user needs at test
time. Code is available at https://github.
com/andyclsr/BoneSoups.

1 Introduction

Human preferences and their information needs are
highly diverse, and even for the same task, users

*Corresponding author: Xiao Zhang.
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Figure 1: Illustration of Example 2.1. The RS front
represents the front obtained by the existing soup-like
approach (Yang et al., 2024). The BS front represents
the front obtained by our Bone Soup scheme that seeks
the backbone models first. The heatmap indicates the
magnitude of the testing reward as a function of two
inputs x and y. As shown in the figure, the points on the
BS front are closer to the exact solution, highlighting
the importance of constructing backbone models.

may have distinct personalized demands in differ-
ent scenarios (Wu et al., 2024; Rame et al., 2023;
Wang et al., 2024a; Shi et al., 2024; Chen et al.,
2024). This diversity introduces a significant con-
trollability challenge for AI service providers (Shen
et al., 2024a; Chen et al., 2023; Shen et al., 2024b),
who must develop learning models that can effec-
tively adapt to a wide range of user preferences. A
key area of research addressing this challenge is
controllable multi-objective generation (CMOG),
which focuses on guiding the behavior of language
models (LMs) to meet diverse and real-time user re-
quirements without the need for retraining (Zhang
et al., 2023; Rame et al., 2023; Shi et al., 2024;
Wang et al., 2024a). For example, Bing Copilot
offered users modes like “More Accurate”, “More
Balanced”, and “More Creative”, allowing for cus-
tomization based on their discrete requirements.
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A straightforward approach to implementing
CMOG is through prompt-based control (Dong
et al., 2023; Ramnath et al., 2023; Yang et al., 2024;
Wang et al., 2024a), where LMs are guided to gener-
ate content according to user preferences for differ-
ent objectives by modifying only the input prompts.
These approaches can be seen as an implicit con-
trol mechanism since it does not modify the model
parameters at test time. Recently, some explicit ap-
proaches of controlling LMs have gained attention,
known as model merging (Wortsman et al., 2022;
Rame et al., 2023; Tang et al., 2024; Yu et al., 2024;
Yadav et al., 2024; Yang et al., 2023; Wang et al.,
2024b; Ilharco et al., 2022). In model merging ap-
proaches, model parameters from different LMs
are combined at test time to accommodate varying
user preferences. This form of test-time adaptation
often provides more reliable control for CMOG, as
it achieves control at the parameter level.

However, the performance of model merging heav-
ily depends on the selection of base LMs and the
determination of merging coefficients. This intro-
duces a new challenge: how to effectively seek and
merge base models based on users’ preferences for
multiple objectives? We illustrate the existence of
this challenge through an example, as shown in
Figure 1. The figure presents two different trajec-
tories, each interpolated from solutions optimized
using distinct reward functions, accompanied by a
heatmap that displays the testing rewards for user
preferences. As shown, compared to solutions opti-
mized with reward functions constructed by exist-
ing methods, there are superior solutions optimized
with alternative reward functions that enable the
model trajectories to more closely approximate the
optimal testing reward.

To address the above challenge, we propose Bone
Soup. Our proposed Bone Soup approach follows
the model merging approaches seen in Rewarded
Soup (Rame et al., 2023) and Model Soup (Worts-
man et al., 2022). Overall, we first seek a series
of backbone models, and then, based on the re-
ceived user preferences at test time, we combine
various backbones. Unlike Rewarded Soup, where
models are tuned separately for each reward (with
each reward corresponding to a specific objective)
and then merged, our Bone Soup first identifies the
optimal combination of rewards for different ob-
jectives. Then, these reward combinations are then
used as supervision signals to train the backbone
models. During inference, these backbones are

adaptively merged based on given user preferences.
This process is akin to selecting the right ingredi-
ents (bones) before making the soup. Moreover, we
focus on the task of controllable multi-objective
generation, where content is generated based on
user-provided preference weights across different
objectives at test time. In contrast, the Model Soup
approach merges multiple models fine-tuned with
different hyperparameters to improve model perfor-
mances, while Rewarded Soup focuses on scenar-
ios where the user’s true preference (i.e., a single
true label) is known, and explores how to represent
it as a combination of rewards for different objec-
tives (i.e., reward decomposition). We summarize
our contributions as follows:

• We identify a key challenge in achieving con-
trollable multi-objective generation through
model merging, particularly when manag-
ing competing objectives, where existing ap-
proaches often fail to deliver optimal perfor-
mance.

• We propose Bone Soup, a novel model merg-
ing approach. By introducing combined re-
wards to guide the construction of backbone
models, we enhance the merging process and
optimize generation performance across mul-
tiple objectives, particularly in terms of con-
trollability and Pareto optimality.

• Extensive experiments show that Bone Soup
outperforms existing approaches, offering su-
perior controllability, Pareto-optimal perfor-
mance, and better adaptability to changes in
user preferences.

2 Problem Formulation and Analyses

This section formulates the problem of controllable
multi-objective generation through model merging
and analyzes the sub-optimality of existing model
merging approaches.

2.1 Problem Formulation
Consider n objectives (e.g., factuality, relevance,
completeness, etc.) that users care about, and each
objective can be measured by a reward function
ri, i P t1, 2, . . . , nu. The preference weights
for these n objectives can be represented as an n-
dimensional vector µ “ rµ1, µ2, . . . , µnsJ P ∆n,
where ∆n denotes the n-dimensional probabil-
ity simplex. The problem of controllable multi-
objective generation (CMOG) aims to enable
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Figure 2: An overview of our method and a comparison between existing soup-like approaches and our Bone Soup
method. Compared to existing methods, we incorporate the combined rewards and construct backbone rewards to
guide the restructuring of backbone models. The merging coefficients are then determined based on the relationship
between preference weights and the backbone rewards, improving the Pareto optimality and controllability of the
merged model.
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Figure 3: The solutions corresponding to the same pref-
erence across different methods are connected by blue
lines. For each line, the closer the solution is to the red
point (oracle), the better the result. Many of the yellow
points in the middle are almost overlapping with the
red point, indicating better solutions compared to the
blue points further away. This highlights the importance
of using backbone rewards to construct the backbone
model.

language models (LMs) to dynamically adjust to
changes in user-specified preference weights µ,
allowing them to generate content that meets the
user’s requirements at test time.

To address the CMOG problem, the model merg-
ing approach first trains multiple base LMs us-
ing reward functions triuni“1, parameterized by
θi P Θ, i P t1, 2, . . . , nu. Then, for satisfying
user preferences, a merging strategy M is used
to construct the model parameters for testing, as

follows:

M ptθiuni“1q “
nÿ

i“1

λiθi, (1)

where λ “ rλ1, λ2, . . . , λnsJ denotes the merg-
ing coefficients. Given an evaluation tool H for
achieving optimal solutions, the base LMs tθiuni“1

and their merging strategy aim to optimize the fol-
lowing expression:

argmax
tθiuni“1,M

H pM ptθiuni“1qq . (2)

In existing soup-like model merging ap-
proaches (Rame et al., 2023; Jang et al.,
2023), for any objective i P t1, 2, . . . , nu, the base
language model θi is tuned with an individual
reward function ri for that specific objective,
making it a specialized model θi for objective i.
When applying these model merging approaches
to CMOG, the merging coefficients in Eq. (1) are
directly set to the user’s preference weights, i.e.,
λ “ µ, to combine the specialized models at test
time. In Section 2.2, we will demonstrate that
merging the specialized models tuned individually
with each reward does not lead to an optimal
solution.

Overall, this paper explores model merging ap-
proaches for the CMOG problem, where model
parameters are interpolated and merged based on
user preference weights to achieve the following
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two goals: (1) Pareto Optimality across multiple
objectives (2) Controllability that merged model
parameters satisfy users’ real-time needs.

To measure the two goals mentioned above, we
define the evaluation tool H in Eq. (2) as the fol-
lowing testing reward: given users’ preference
weights µ “ rµ1, µ2, . . . , µnsJ and correspond-
ing rewards triuni“1, for merged model parameters
θ̄ :“ M ptθiuni“1q defined in Eq. (1), the testing
reward is defined as

gµpθ̄q :“
nÿ

i“1

µiripθ̄q. (3)

On one hand, maximizing Eq. (3) allows us to iden-
tify the convex Pareto front, reflecting the Pareto
optimality of the merged model (Zitzler and Thiele,
1999). On the other hand, for any preference
weights µ provided at test time, the correspond-
ing testing reward gµ is defined, and the merged
model is required to adapt controllably to it.

2.2 Problem Analyses
As stated in Section 2.1, in existing soup-like model
merging approaches, the specialized models for
each objective are tuned individually with a single
reward, without considering whether incorporating
other rewards could improve their training.

Rame et al. (2023) demonstrates that a global opti-
mal solution can be derived using a single reward
in certain cases, such as with quadratic rewards.
However, for the CMOG problem we address, we
show that individually tuning specialized models
with a single reward and merging them using pref-
erence weights does not consistently yield, or even
approximate, the global optimal solution.

Example 1. Consider two objectives, respectively
measured by the following two rewards:

r1px, yq “ ´px ´ 1q2 ´ py ´ 1q2 and (4)

r2px, yq “ ´px ´ 3q2 ´ 4py ` 1q2, (5)

which are maximized at θ1 “ p1, 1qJ and
θ2 “ p3,´1qJ, respectively. Given preference
weights µ “ p0.5, 0.5qJ for the two rewards, the
testing reward becomes gµpx, yq :“ µJrr1, r2s “
0.5 ¨r1px, yq`0.5 ¨r2px, yq, and the exact solution
for maximizing gµ is θ˚ “ p2,´0.6qJ. However,
using a soup-like approach, where the preference
weights µ are used to merge the individual
solutions θ1 and θ2, the resulting solution is

θ̄ “ 0.5¨θ1`0.5¨θ2 “ p2, 0qJ, which significantly
deviates from the exact solution θ˚. Now, instead
of directly optimizing r1 and r2, we consider
two backbone rewards that combine the rewards
with different combination weights as follows:

h1px, yq “ 0.4 ¨ r1px, yq ` 0.6 ¨ r2px, yq, (prefer obj 2)

h2px, yq “ 0.6 ¨ r1px, yq ` 0.4 ¨ r2px, yq, (prefer obj 1)
with their respective optimal solutions,
referred to as backbone models, occur-
ring at θbone

1 “ p2.2,´5{7qJ and at
θbone
2 “ p1.8,´5{11qJ. Then, the merging solu-

tion is given by θ̄bone “ 0.5 ¨θbone
1 `0.5 ¨θbone

2 «
p2,´0.58qJ, which is closer to the exact solution
θ˚ “ p2,´0.6qJ than θ̄ “ p2, 0qJ.

In Example 1, consider θ1 and θ2 as model parame-
ters. If they are optimized solely for rewards r1 and
r2 individually and then merged using preference
weights µ, the result will not approximate the op-
timal solution θ˚ for the testing reward. However,
if we first derive backbone rewards h1 and h2 by
combining the rewards, and then train backbone
models θbone

1 and θbone
2 on these backbone rewards,

merging these backbone models with the prefer-
ence weights can lead to a solution much closer to
the optimal testing reward. Moreover, if the user’s
preference weights are given by µ1 “ t0.4, 0.6uJ,
then based on the relationship between µ1 and the
combination weights in the backbone rewards h1
and h2, we can directly output θbone

1 as the solu-
tion, obtaining the optimal solution for maximizing
the testing reward gµ1 .

We also provide a comparison of the disparity be-
tween solutions of different methods and the oracle
in Figure 3.

Through the above example, we have demonstrated
that BoneSoup can achieve solutions closer to the
oracle. To further illustrate this point, we present
the following theorem, which provides a lower
bound on the interval where BoneSoup outperforms
Rewarded Soup. This result proves that the front
obtained by BoneSoup is, in most cases, superior
to that of Rewarded Soup. We follow the setting
in (Rame et al., 2023) using quadratic reward func-
tions and with Hessians proportional to identity
matrices to derive the theorem.

Theorem 1. Given quadratic reward functions with
Hessians proportional to identity matrices:

ripθq “ ripθiq ´ ki}θ ´ θi}2, i P t1, 2u,
27240



where ki P R` are distinct,and θi is the global
maximum for reward ri. Let the reward combina-

tion weight matrix be B “
ˆ

β 1 ´ β
1 ´ β β

˙
, β P

p12 , 1q, then the backbone rewards of the bone-
soup approach can be denoted as rh1, h2sT “
Brr1, r2sT .Let µ “ rµ, 1 ´ µsT be the user
preference and the testing reward can written as

gµpθq :“ µT

„
r1
r2

ȷ
.Denote the approximate solu-

tions for the testing reward gµpθq of the soup-like
approach and the bone-soup approach as θ̄ and
θ̄bone, respectively.Then,for any fixed β P p12 , 1q,

when µ P
ˆ

1´
?

2β2´2β`1
2 ,

1`
?

2β2´2β`1
2

˙
,

gµpθ̄q ă gµpθ̄boneq,

with interval length
a
2β2 ´ 2β ` 1 ě

?
2
2 .

Therefore, constructing appropriate backbone re-
wards to train the backbone models is crucial for
achieving Pareto optimality and controllability in
CMOG.

Proof. Please refer to Appendix A.2.

3 Bone Soup: The Proposed Approach

In this section, we propose a novel approach to
seek a series of superior backbone models, and then
determine the merging coefficients for merging.

3.1 Approach Overview

We design and implement a more sophisticated
merging-based approach Bone Soup for CMOG.
Instead of directly interpolating between original
base models, we propose to first seek the back-
bone models which ensures better Pareto optimality,
and then determine the merging coefficients to con-
tribute to better controllability. Figure 2 illustrates
the overall workflow of our method.

3.2 Restructuring the Backbone Models

We begin by revisiting how specialized models θi
are obtained in existing works. Typically, these
models are tuned through reinforcement learning
from human feedback (RLHF) (Stiennon et al.,
2020; Ouyang et al., 2022; Bai et al., 2022).

Existing soup-like model merging approaches
(Jang et al., 2023; Rame et al., 2023) for

CMOG individually tune the specialized mod-
els as above. However, when considering multi-
objective reinforcement learning from human feed-
back (MORLHF), the approach used by existing
methods represents just one specific case.

Here, we extend tuning the backbone
model from using a single reward to mul-
tiple rewards by introducing MORLHF:

θi “ argmax
πθ

Es∼D,a∼πθpa|sq
„
wJ

i r ´ η log
πθpa|sq
πsftpa|sq

ȷ
,

(6)

where

wi P Ω is the combination weight of the reward
models and Ω “ ta P Rn| řn

i“1 ai “ 1, ai ě 0u
is a n-simplex. r is a collection of all n
optimized reward models r “ trips, aquni“1.
Then we define the backbone reward as
hips, aq “ wJ

i r “ řn
j“1wi,j ¨ rjps, aq. In this

case, the single-reward setup in existing works is
equivalent to setting w as a standard basis vector.

3.2.1 Obtaining Backbone Models
Let n denote the number of objectives to optimize,
B “ rw1,w2, . . . ,wns P Rnˆn denote a weight
matrix composed of n column vectors, with each
column vector corresponding to the reward com-
bination weight for tuning a new backbone model
πθi in MORL as in Eq. (6). Then, the combination
weights twiuni“1 can be viewed as the basis vectors
in the column space of B, where wi “ twi,junj“1.

To simplify the search space from high-
dimensional parameter space in Eq. (2) to a
more manageable matrix space, we employ a
rule-based construction approach to modify the
matrix B composed of twiuni“1 in Eq. (6) from an
identity matrix to matrices of basis vectors which
achieve Pareto optimality:

argmaxtθiuni“1,MH pM ptθiuni“1qq
ÝÑ argmax

B,M
H pM ptθiuni“1qq . (7)

As mentioned earlier, introducing additional reward
models may help restructure better backbone mod-
els, we introduce several rules to efficiently and
effectively determine matrix B :

• Rule 1 (Dominance). Each combination
weight wi P Rn should have exactly one dom-
inant component value, denoted by βi, satis-
fying βi P p1{n, 1q. If we choose a small
value for βi, we will generate a set of back-
bone models with minor differences in abil-
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ities causing the poor Linear Mode Connec-
tivity (LMC) (Wortsman et al., 2022; Frankle
et al., 2020) properties and reducing control-
lability of the resulting solutions.To improve
efficiency, the basis vectors should possess a
similar structure and we set βi “ β,@i.

• Rule 2 (Invertibility). Matrix B should be
invertible. Since the subsequent step involves
determining the merging coefficients, we re-
quire column vectors in B to be linearly in-
dependent to ensure the effectiveness of the
inversion operation and to guarantee that the
column space of B does not contain redun-
dant information.

• Rule 3 (Normalization). @i
řn

j“1wi,j “ 1.
This rule ensures that each wi belongs to the
n-simplex as defined in Eq. (6).

To fulfill all the rules, we adopt a symmetric cir-
culant matrix mapping. The symmetric circulant
matrix mapping B can be specified as follows:

B :“ rw1,w2, . . . ,wns

“

¨
˚̊
˚̊
˝

β 1´β
n´1 . . . 1´β

n´1
1´β
n´1 β . . . 1´β

n´1
...

...
. . .

...
1´β
n´1

1´β
n´1 . . . β

˛
‹‹‹‹‚

P Rnˆn. (8)

In Eq. (8), the non-dominant components are set as
p1 ´ βq{pn ´ 1q. Taking w1 as an example, this
can be interpreted as incorporating the original de-
terministic distribution o1 :“ p1, 0, . . . , 0qJ with
a uniform distribution u :“ p1{n, 1{n, . . . , 1{nqJ
using a mixup approach: w1 “ ξo1 ` p1 ´ ξqu,
where ξ “ pβn ´ 1q{pn ´ 1q P p0, 1q. If we
consider the basis vector wi as a distribution for
allocating rewards, this mixup method is equivalent
to the exploration strategy employed in the Exp3.P
algorithm (Bubeck and Cesa-Bianchi, 2012).

The next step is to select an approximate β which
is the only unknown parameter in the mapping
B. To satisfy Rule 1 and Rule 2, we constrain
β within the range β P p0.5, 1q. Then, we train
the backbone models in much smaller steps to de-
termine which β results in the most controllable
and Pareto-optimal backbone models. Specifically,
we define β P S, where S is a finite set with car-
dinality m, and for any si P S, si is in the closed
interval r0.5, 1s. By adjusting m, we can balance

the trade-off between efficiency and performance:
β “ argmaxβPS H pMβ ptθiuni“1qq .
We then use the symmetric circulant matrix map-
ping B to construct backbone rewards hips, aq “řn

j“1wi,j ¨ rjps, aq and use the reward to tune the
backbone models tθiuni“1.

3.3 Determine the Merging Coefficients

Having prepared the backbone models in the pre-
vious section, we now proceed to the merging
stage. Given users’ preference weights µ “
rµ1, µ2, . . . , µnsJ, our objective is to determine the
merging coefficients λ for better controllability.

As we have trained the backbone model using back-
bone rewards combined with multiple rewards, a
natural and straightforward approach for merging
is then leveraging the reward relationship between
the combination weights of backbone models and
user preference weight µ to merge the models ac-
cordingly which is achieved by mapping the com-
bination weight vector of the backbone rewards
to the user preference illustrated in Figure 6. For
instance, we will represent preference µ by com-
bination weights w1 and w2 and use the solu-
tion λ1 and λ2 to merge models. Specifically:
µ “ B ¨ λ, and λ “ B´1µ since B is invert-
ible. Finally, we got the merged model parameters
θ̄ “ M ptθiuni“1q “ řn

i“1 λi ¨ θi.
Existing soup-like model merging approaches
(Jang et al., 2023; Rame et al., 2023) for CMOG
combine specialized models linearly using µ as
the combination weight i.e. λ “ µ, which can
also be interpreted as solving the linear equation in
particular with B set as an identity matrix.

Finally, We include the extrapolation-based ap-
proach which is firstly introduced in the paper (Il-
harco et al., 2022) to conduct unlearning or elim-
inate the effects on the expert model in specific
tasks, and later used in (Zheng et al., 2024) to get a
better-aligned model. We also apply extrapolation
to the previously merged models as follows:

θ̂b “ p1 ` αqθ̂ ´ αθsft “ θ̂ ` α∆θ, (9)

where θsft is the initial model used for PPO training
and ∆θ “ θ̂ ´ θsft. θ̂b represents the adjusted
model after further diminishing the influence of the
SFT model.
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Table 1: Comparison of results across different methods for different trade-offs HH1 (Helpful vs Harmless),
HH2 (Helpful vs Humor), and FP (Faithful vs Preference 1).

Hypervolume Ò Inner Product Ò Controllability Ò Length of Front Ò Sparsity Ó Spacing Ó
Method HH1 HH2 FP HH1 HH2 FP HH1 HH2 FP HH1 HH2 FP HH1 HH2 FP HH1 HH2 FP

RS 1.06 1.12 0.61 1.70 1.89 1.13 0.84 1.00 1.00 11 11 11 0.24 0.24 0.17 0.02 0.02 0.01
MOD 1.08 1.09 0.62 1.83 1.85 1.17 1.00 1.00 1.00 11 11 11 0.24 0.24 0.18 0.02 0.02 0.02
RiC 0.45 0.66 1.23 1.09 1.52 2.03 0.85 0.80 0.82 8 6 6 0.07 0.25 0.39 0.01 0.07 0.08

Bone Soup 1.24 1.24 1.12 2.11 2.06 1.89 1.00 1.00 1.00 11 11 11 0.33 0.27 0.29 0.07 0.03 0.03

Table 2: Comparison of results across different methods for different trade-offs FR (factuality vs relevance),
CR (completeness vs relevance), and FC (factuality vs completeness).

Hypervolume Ò Inner Product Ò Controllability Ò Length of Front Ò Sparsity Ó Spacing Ó
Method FR CR FC FR CR FC FR CR FC FR CR FC FR CR FC FR CR FC

MORLHF˚ 0.27˚ 0.61˚ 0.16˚ 0.15 0.12 0.23 1.00 1.00 0.33 2 3 2 0.02 0.10 0.06 0.00 0.08 0.03
Rewarded Soups 0.28 0.82 0.17 0.77 0.56 0.82 1.00 1.00 0.98 11 11 10 0.06 0.12 0.02 0.01 0.03 0.01

Bone Soup (β “ 0.7) 0.34 0.89 0.19 0.81 0.61 0.88 0.98 1.00 0.98 10 11 10 0.06 0.13 0.02 0.01 0.05 0.01
Bone Soup 0.35 0.86 0.20 0.82 0.61 0.85 1.00 0.98 0.93 11 10 9 0.04 0.11 0.05 0.01 0.06 0.03

Bone Soup (β “ 0.8) 0.33 0.83 0.21 0.82 0.61 0.88 1.00 1.00 0.96 11 11 10 0.06 0.14 0.04 0.01 0.07 0.02

4 Experiments

In this section, we aim to evaluate the performance
of Bone Soup and other latest typical controllable
controllable multi-objective generation approaches.

4.1 Experiments Setups

Task Setup. We study three controllable multi-
objective generation tasks using eight different re-
wards and two base models: Long Form QA (Wu
et al., 2024), Helpful Assistant (Bai et al., 2022),
and Reddit Summary (Stiennon et al., 2020). We
use the QA-Dataset (Wu et al., 2024) and open-
source reward models Rfact (Factuality), Rrele

(Relevance), and Rcomp (Completeness), consider-
ing the trade-offs: factuality vs relevance, factuality
vs completeness, and relevance vs completeness.
For Helpful Assistant task, we use the HH-RLHF
dataset (Bai et al., 2022; Ganguli et al., 2022) and
two reward models from Huggingface Rϕ,1 (help-
ful) and Rϕ,2 (harmless) to explore trade-offs help-
ful vs harmless and helpful vs humor. Regard-
ing Reddit Summary task, we use two reward
models “faithful” and “preference1” trained on dif-
ferent datasets to evaluate human preference for
summaries. In this task, we seek controllability in
trade-offs faithful vs preference1.

Implementation Details. We use LLama-2 7B
(Touvron et al., 2023) for Helpful Assistant task
and Reddit Summary task and use T5-large (Raffel
et al., 2020) for Long Form QA task. For all three
tasks, we choose the best β P t0.8, 0.7, 0.6u by
only training for 20% total steps and evaluate the
hypervolume. As for the extrapolation of θ̂, we

also select the optimal α P t0.1, 0.2, 0.3, 0.4, 0.5u
using a validation datasets following the approach
in (Zheng et al., 2024).

Baselines. We consider three latest CMOG
approaches including prompt-based approach
Rewards-in-Context (RiC) (Yang et al., 2024),
decoding-time approach MOD (Shi et al., 2024)
and merging-based method (Rame et al., 2023) and
follow their settings of the Hyperparameters. De-
tailed introduction and discussion about baselines
are in Appendix A.4.1.

Evaluation Metrics. We provide both visualiza-
tion and six numerical metrics for evaluation. To
make the results more intuitive, we plot the Pareto
Front of the rewards of each dimension for the
evaluated set of preference vectors. A detailed in-
troduction and discussion of all the metrics can be
found in Appendix A.5.

4.2 Results

4.2.1 Long Form QA task
For the task of Long Form QA (Wu et al., 2024), As
shown in Figure 4, each point in the front represents
the average rewards of the solution corresponding
to a specific user preference evaluated on test set.

In Figure 4 and Table 2, we compare Bone Soup
(BS) at different β values with Rewarded Soup
(RS) and MORLHF. The selection of β is discussed
in A.3.6 and A.3.2. BS consistently outperforms
RS and closely approximates Oracle MORLHF
across three trade-offs. In factuality vs complete-
ness and relevance vs completeness, BS even sur-

27243



0.775 0.800 0.825 0.850 0.875
Factuality Ratios

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
om

pl
et

en
es

s R
ew

ar
ds

MORLHF
Rewarded Soups
Bone Soup ( =0.7)
Bone Soup ( =0.6)
Bone Soup ( =0.8)
Bone Soup ( =0.7) aba
Bone Soup ( =0.6) aba
Bone Soup ( =0.8) aba

(a) factuality vs completeness

0.5 0.6 0.7 0.8 0.9
Factuality Ratios

0.3

0.4

0.5

0.6

0.7

0.8

R
el

ev
an

ce
 R

at
io

s

MORLHF
Rewarded Soups
Bone Soup ( =0.7)
Bone Soup ( =0.6)
Bone Soup ( =0.8)
Bone Soup ( =0.7) aba
Bone Soup ( =0.6) aba
Bone Soup ( =0.8) aba

(b) factuality vs relevance

0.2 0.4 0.6 0.8
Relevance Ratios

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

C
om

pl
et

en
es

s R
ew

ar
ds

MORLHF
Rewarded Soups
Bone Soup ( =0.7)
Bone Soup ( =0.6)
Bone Soup ( =0.8)
Bone Soup ( =0.7) aba
Bone Soup ( =0.6) aba
Bone Soup ( =0.8) aba

(c) relevance vs completeness
(d) factuality vs relevance
vs completeness

Figure 4: Results of the Long Form QA task with (a) “factuality vs. relevance”, (b) “factuality vs. completeness”,
(c) “relevance vs. completeness” and (d) “factuality vs relevance vs. completeness”. We connect the points in the
figure according to the order of the preference weight partial order relation. Bone Soup learns a better front than RS.
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Figure 5: Results of Helpful Assistant task with (a) “helpful vs. harmless”, (b) “helpful vs. humor”, and Reddit
Summary task with (c) “faithful vs. preference1”.

passes MORLHF, achieving a superior Pareto front.

Additionally, experiments in A.3.1 show that com-
bining multiple rewards generally improves the
backbone model. This led us to investigate merging
backbone models based on user preferences, with-
out considering the reward interplay in merging
coefficients. As seen in Figure 4, the direct merge
approach ("ABA") performs worse than RS in fac-
tuality vs completeness, but slightly outperforms it
in the other two trade-offs, though still behind BS.

Overall, the superior performance of BS relative
to MORLHF, together with the instability and sub-
optimality of ABA, validates the necessity and ad-
vantage of the two-stage, seek-and-soup merging
approach employed by Bone Soup.

Recent studies (Mao et al., 2023; Lambert et al.,
2024; Sottana et al., 2023) have suggested that
generative models can serve as unbiased evalua-
tors—especially when ground-truth reward models
are unavailable—making the use of models like
GPT-4 a viable and effective evaluation approach.
Therefore, in addition to using reward models, we
incorporated GPT-based assessments to simulate
more realistic evaluation scenarios. As shown in

Figures 9a and Figure 9b, under the trade-off fac-
tuality vs relevance and across various user pref-
erences, BoneSoup consistently outperforms Re-
warded Soup, which is in line with our previous
consequences.

We also conducted experiments in a three-objective
setting. As shown in Figure 4d, the front obtained
by RS is dominated by that of MORLHF. Addi-
tionally, we observe that the front of BS is Pareto-
dominant over that of MORLHF.

4.2.2 Helpful Assistant
In this task, we focus on trade-offs “Helpful vs
Harmless” (HH1), “Helpful vs Humor” (HH2).
From Figure 5a, Figure 5b and Table 1, we can
observe that the obtained front of RS approaches
and MOD with similar shapes among which BS
achieves the best front compared with all other
baselines while RiC struggles with this task. The
reason may lie in the difference between paradigms
of RLHF and conditional SFT as RS and MOD all
utilize the models tuned from RLHF and may ob-
tain a similar shape.

From Figure 5a, we can observe that Bone Soup
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consistently outperforms MOD which combines
multiple backbone models’ logits to achieve con-
trollability. Compared to RS, both BS and MOD
leverage different techniques to enhance the utiliza-
tion of a set of backbone models, exploring how to
better utilize these models for controllable multi-
objective generation to varying degrees. How-
ever, BS provides a more comprehensive and fine-
grained utilization of RLHF models therefore lead-
ing to a significantly better result.

4.2.3 Reddit Summary
In this task, we focus on trade-offs “Faithful vs
Preference 1” (FP). From Table 1 and Figure 5c,
We can see that BS significantly outperforms RS
and MOD; however, in terms of hypervolume, BS
falls short compared to RiC. Nevertheless, RiC
performs poorly in controllability and has only 6
points on the front as shown in Figure 7. Since
the region of the front generated by RiC differs
significantly from the front of BS, RS, and MOD,
we therefore display RiC separately from BS, RS,
and MOD for clarity.

5 Related Work

To be brief, our work is closely related to research
on model merging, multi-objective optimization,
and controllable generation. Due to space limita-
tions, we provide a detailed discussion of these
topics in Appendix A.1.

6 Conclusions

In this work, we proposed Bone Soup, a novel
model merging approach designed to address the
challenges of controllable multi-objective genera-
tion. By introducing rule-based construction back-
bone models and combining rewards, we improved
the merging process to achieve better controllabil-
ity and Pareto-optimality. Extensive experiments
show that Bone Soup outperforms existing meth-
ods, offering enhanced adaptability to dynamic user
preferences and providing an effective and efficient
solution for multi-objective generation tasks.

7 Limitations

Our work has the following limitations:(1) Our ex-
periments primarily focus on controllable text gen-
eration based on human preferences, but we rely
on automatic evaluators, including reward models
and GPT-4, without conducting human evaluations.
(2) Due to the relatively low additional complex-

ity introduced in MORL (Wu et al., 2024), along
with the existence of multi-value head reward mod-
els (Wang et al., 2023; Köpf et al., 2023; Wang
et al., 2024a), our method is not significantly im-
pacted by the number of objectives during training.
As such, our approach can naturally scale to more
than three objectives, but we have not conducted
additional experiments with a larger number of ob-
jectives. (3) While our model merging approach
can be easily applied to fields such as computer vi-
sion and multimodal tasks, we have not conducted
additional experiments to validate its performance
in these areas.
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A Appendix

A.1 Related Work

A.1.1 Multi-Objective Optimization and
Generation

Reinforcement Learning with Human Feedback
(RLHF) (Christiano et al., 2017; Stiennon et al.,
2020; Ouyang et al., 2022), consisting of two
stages—reward modeling and reinforcement learn-
ing—has become a powerful tool to align large
language models (LLMs) with human preferences.
Many existing models (Touvron et al., 2023;
Achiam et al., 2023) utilize RLHF to enhance
their performance. However, optimizing toward
a single reward has notable limitations, such as its
inability to handle complex, multifaceted prefer-
ences (Casper et al., 2023), the challenge of satisfy-
ing all preferences with a single reward (Jang et al.,
2023; Rame et al., 2023), and issues related to fair-
ness in alignment(Siththaranjan et al., 2023; Boldi
et al., 2024; Rame et al., 2023). To address these
shortcomings, multi-objective RLHF (MORLHF)
has been introduced.

One of the most straightforward ways to adapt
RLHF for multiple objectives is to combine all
rewards linearly (Mossalam et al., 2016). How-
ever, due to the inefficiency of this approach

in MORLHF, this paradigm struggles to quickly
adapt to different preferences and achieve con-
trollable multi-objective generation. Recently, an
increasing number of studies have focused on
controllable multi-objective generation. Meth-
ods for controllable multi-objective generation
can be categorized into three main stages: pre-
processing, in-processing, and post-processing.
Pre-processing methods, like SteerLM (Dong et al.,
2023), DPA (Wang et al., 2024a), and RiC (Yang
et al., 2024), implement control through prompts,
introducing multi-dimensional reward conditions.
These methods use supervised fine-tuning to train
the model to control outputs by prompts. The
fine-tuning strategies and condition representations
vary across methods, including rejection-sampling-
based fine-tuning (Wang et al., 2024a; Yang et al.,
2024) and representing conditions as unit vec-
tors (Wang et al., 2024a) or by theoretical guarantee
mapping (Yang et al., 2024).

In-processing methods (Rame et al., 2023; Jang
et al., 2023) focus on model merging, where spe-
cialized models are combined using different merge
coefficients to quickly generate models that cater
to various preferences. This approach is straightfor-
ward to implement and computationally efficient.

Post-processing methods, such as Controlled Text
Generation (CTG), primarily involve decoding-
time algorithms (Khanov et al., 2024; Deng and
Raffel, 2023; Shi et al., 2024). These methods gen-
erate the next token by taking a linear combination
of predictions from multiple base models, based
on different objective weightings. Reward signals
are used to find the optimal merging coefficients.
For instance, MOD (Shi et al., 2024) identifies
a closed-form solution using the Legendre trans-
form, deriving an efficient decoding strategy, while
ARGS (Khanov et al., 2024) and RAD (Deng and
Raffel, 2023) achieves alignment by reward-guided
search.

This paper focuses on introducing control during
the in-processing phase, incorporating explicit con-
trol mechanisms into the model parameters to en-
able controllable generation.

A.1.2 Model Merging
We denote the policy LLM as πθ whose parameters
are θ P Θ Ď Rd. X and Y represent the input
space (prompt space) and output space individually.
We have summarized the current model merging
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techniques into the following three steps: determin-
ing the base models, merging the backbone models,
and calibration after model merging. We mainly
focus on discussing the first two stages.

Determining the base models, i.e., identifying the
parameter space for interpolation. Denote the mod-
els to merge in the following step as tπθiumi“1.
Here, it is generally assumed that the number of
models to be merged is equal to the number of
objectives or tasks, i.e., m “ n. Moreover, these
models are typically trained using a single loss (Il-
harco et al., 2022; Yu et al., 2024) or reward (Wu
et al., 2024; Jang et al., 2023), meaning they can be
regarded as expert models corresponding to each
task or objective.

Merging the base models. After obtaining n spe-
cializing (expert models in a multi-task setting)
with different focuses, the next step is to determine
the interpolation coefficients λ for model merging,
θtarget “ řn

i“1 λi ¨ θi. Rewarded Soup (Rame
et al., 2023) proposes to merge the models opti-
mized individually against a single objective. And
λi P Ω and Ω “ tλi P Rk| řn

i“1 λi “ 1, λi ě 0u.

In the field of multi-task learning, various model
merging approaches have been proposed. Tang
et al. (2024) using a dynamic routing mecha-
nism trained in test-time adaptation to determine
the model fusion coefficients. Some approaches
exploit model parameter redundancy, leading to
pruning-based approaches (Yadav et al., 2024; Yu
et al., 2024). AdaMerging (Yang et al., 2023) em-
ploys an unsupervised approach to train merging
coefficients and adjusts the merging coefficients at
different layers of the models. TALL-masks (Wang
et al., 2024b) generates a task-specific mask matrix
using a predefined threshold derived from indepen-
dent models. The key distinction between our ap-
proach and the above works lies in that they are not
designed for, nor capable of, achieving controllable
generation. In contrast, we have developed a series
of techniques specifically aimed at optimizing for
Pareto optimality and controllability.

A.2 The Proof of Theorem 1
Theorem 1. Given quadratic reward functions with
Hessians proportional to identity matrices:

ripθq “ ripθiq ´ ki}θ ´ θi}2, i P t1, 2u,
where ki P R` are distinct,and θi is the global
maximum for reward ri. Let the reward combina-
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tion weight matrix be B “
ˆ

β 1 ´ β
1 ´ β β

˙
, β P

p12 , 1q, then the backbone rewards of the bone-
soup approach can be denoted as rh1, h2sT “
Brr1, r2sT .Let µ “ rµ, 1 ´ µsT be the user
preference and the testing reward can written as

gµpθq :“ µT

„
r1
r2

ȷ
.Denote the approximate solu-

tions for the testing reward gµpθq of the soup-like
approach and the bone-soup approach as θ̄ and
θ̄bone, respectively.Then,for any fixed β P p12 , 1q,

when µ P
ˆ

1´
?

2β2´2β`1
2 ,

1`
?

2β2´2β`1
2

˙
,

gµpθ̄q ă gµpθ̄boneq,
with interval length

a
2β2 ´ 2β ` 1 ě

?
2
2 .
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Figure 8: The mean and standard deviation of rewards
per batch during the PPO optimization process for train-
ing the backbone model in Bone Soup (multiple re-
wards) and Rewarded Soup (single reward). The process
of tuning the backbone model in Bone Soup is more
stable compared to that in Rewarded Soup.

Proof. The testing reward gµ “ µr1 ` p1 ´ µqr2
is quadratic thus has an unique global maximum
θ˚,that we find analytically:

∇θgµpθq “ 0 ñ µk1pθ ´ θ1q ` p1 ´ µqk2pθ ´ θ2q “ 0

ñ θ˚ “ µk1θ1 ` p1 ´ µqk2θ2
µk1 ` p1 ´ µqk2

The approximate solution θ̄ for the testing reward
gµ of the soup-like approach is formulated as,

θ̄ “ µθ1 ` p1 ´ µqθ2
Consider the bone-soup approach,we have
the backbone rewards and their corre-
sponding global maximums as follows,

h1 “ βr1 ` p1 ´ βqr2, θbone1 “ βk1θ1 ` p1 ´ βqk2θ2
βk1 ` p1 ´ βqk2

h2 “ p1 ´ βqr1 ` βr2, θ
bone
2 “ p1 ´ βqk1θ1 ` βk2θ2

p1 ´ βqk1 ` βk2
the merging coefficients can be calculated as
λ “ B´1µ “ rλ, 1 ´ λsT ,where λ “ β`µ´1

2β´1 ,then
we have the soup-like approach’s approximate
solution θ̄bone for the testing reward gµ as,

θ̄bone “ λθbone1 ` p1 ´ λqθbone2

We set the error function as Epβ, µq “
}θ̄bone ´ θ˚}2.Since the soup-like approach
can be regarded as a special case of the bone-soup
approach when β “ 1,we use Ep1, µq to denote
the error of the soup-like approach.Under the
current settings, the testing reward gµ can be
written as gµ “ c1 ´ c2}θ ´ θ˚}2,where c1

and c2 are constants, and c2 P R`.Therefore
gµpθ̄q ă gµpθ̄boneq ô Epβ, µq ă Ep1, µq.

The expressions for Epβ, µq and Ep1, µq
can be calculated as follows,

Epβ, µq “
}λβk1θ1 ` p1 ´ βqk2θ2

βk1 ` p1 ´ βqk2 `

p1 ´ λqp1 ´ βqk1θ1 ` βk2θ2
p1 ´ βqk1 ` βk2

´ µk1θ1 ` p1 ´ µqk2θ2
µk1 ` p1 ´ µqk2 }2

“
ˆ

k1k2pk1 ´ k2qpβ ´ µqpβ ` µ ´ 1q
pµk1 ` p1 ´ µqk2qpβk1 ` p1 ´ βqk2qpp1 ´ βqk1 ` βk2q

˙2

}θ1 ´ θ2}2

Ep1, µq “ ppk1 ´ k2qp1 ´ µqµ
µk1 ` p1 ´ µqk2 q2}θ1 ´ θ2}2

To compare Epβ, µq and Ep1, bq, we have:

Epβ, µq ă Ep1, µq
ô p k1k2pβ ´ µqpβ ` µ ´ 1q

rβk1 ` p1 ´ βqk2srp1 ´ βqk1 ` βk2sq2 ă pp1 ´ µqµq2

since

rβk1 ` p1 ´ βqk2srp1 ´ βqk1 ` βk2s
“ k1k2r2β2 ´ 2β ` 1 ` βp1 ´ βqpk1

k2
` k2

k1
qs

ě k1k2p2β2 ´ 2β ` 1 ` 2βp1 ´ βqq “ k1k2

Therefore, we obtain:

ˆ
k1k2pβ ´ µqpβ ` µ ´ 1q

rβk1 ` p1 ´ βqk2srp1 ´ βqk1 ` βk2s
˙2

ă ppβ ´ µqpβ ` µ ´ 1qq2

Epβ, µq ă Ep1, µq
ð pµp1 ´ µqq2 ´ ppβ ´ µqpβ ` µ ´ 1qq2
“ pβ ´ β2qp´2µ2 ` 2µ ` β2 ´ βq ą 0

We can observe that,for any fixed β P p12 , 1q, the
right-hand side of the equation holds, for all µ Pˆ

1´
?

2β2´2β`1
2 ,

1`
?

2β2´2β`1
2

˙
, i.e. Epβ, µq ă

Ep1, µq holds.Besides,we can find that the interval
length

a
2β2 ´ 2β ` 1 ě

?
2
2 .Thus, the theorem

is proved.

A.3 Additional Experiments
A.3.1 RQ1: The Significance of

Reconstructing Appropriate Backbone
Models.

In Section 1, we have already demonstrated the
importance of reconstructing appropriate backbone
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(a) Factuality evaluation results (b) Relevance evaluation results

Figure 9: The real evaluation results by GPT-4 under different user preferences. Bone Soup achieves better
performance compared with Rewarded Soup.

models using a mathematical example. Here, we
further illustrate the significance of basis recon-
struction through some observations and empirical
analysis.

Observation 1: The specializing models
trained with an individual reward for a sin-
gle objective are not necessarily the optimal
models under that specific reward function.

The effectiveness of model merging fundamentally
depends on the quality and diversity of the back-
bone models. Relying solely on models trained for
specific objectives may not yield optimal results, as
such models might not fully explore or exploit the
entire reward landscape. In Figure 4, we observe
that the specializing models extrapolated by the
two backbone models of Bone Soup consistently
extend in two reward dimensions and outperform
the specializing models tuned in RS, verifying the
fact that models tuned with a specific reward may
not always be the optimal ones for that reward and
can be outperformed by models derived through
various interpolation techniques.

Observation 2: Incorporating additional
rewards into the reward function enhances
stability during model tuning.

In addition to the mathematical examples discussed
in previous sections, we present some observa-
tions on incorporating additional rewards. During
the PPO tuning process, a single reward model
may provide incorrect or unreasonable signals
in specific situations due to its inherent limita-
tions (Casper et al., 2023), leading to significant
fluctuations. By employing multiple reward mod-

els, these limitations can be mitigated through mu-
tual complementation or correction, enhancing the
stability of the tuning process.

We empirically validate that using multiple reward
models can help smooth out the high variance prob-
lems introduced by a single model as shown in
Figure 8. And Figure 10 illustrates the training pro-
cess of the factuality-specialized model using both
combined rewards and a single reward during PPO
training. The figure plots various metrics, includ-
ing rewards, KL divergence, policy loss, and total
loss. We observe that a spike in KL divergence dur-
ing PPO training is indicative of model collapse,
accompanied by a decline in the corresponding
rewards, which suggests that early stopping is nec-
essary. As shown in Figure 10d, compared to the
combined reward (especially at β values of 0.6
and 0.8), the single reward leads to a more rapid
increase in KL divergence, reaching the thresh-
old sooner and triggering premature termination
of training. Additionally, despite the combined
reward placing relatively less emphasis on the fac-
tuality dimension—resulting in a lower focus on
factuality during PPO training—it nonetheless de-
livers superior factuality performance. At the same
time, the rewards across other dimensions are also
enhanced compared to the rewarded soup approach,
as evidenced by Figures 10b and 10c.

Moreover, Figures 10d, 10e, and 10f clearly show
that the training process with the combined reward
is more stable. We attribute this stability to the
integration of multiple rewards, which helps to
counteract the incorrect and unstable signals that a
single reward model might introduce. In essence,
by blending multiple rewards, the potential instabil-
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ities during training are effectively mitigated. And
the similar results of training the completeness-
specialized and relevance-specialized models are
shown in Figure 11. In Figure 11d we can also
observe a similar spike and higher KL compared
with combined rewards. In Figure 11e, we also
found a higher policy loss potentially representing
the difficulty of convergence during training.

A.3.2 RQ2: Can the Small-Scale Selection
Yield a β Consistent with or Near the
Optimal β?

In this section, we discuss the approach to selecting
the β parameter when constructing the matrix B.
Table 3 presents BoneSoup’s performance under
various β values for different trade-offs. We expect
that a small-scale training run can effectively ap-
proximate the optimal beta found through full-scale
training. Notably, Table 3 reveals that for all three
trade-offs, a beta value of 0.6 consistently yields the
best performance. Correspondingly, Table 2 shows
that, with full-scale training, the optimal perfor-
mance is achieved at β = 0.6 for the FR (factuality
vs. relevance) and FC (factuality vs. completeness)
trade-offs, while for the CR (completeness vs. rele-
vance) trade-off, β = 0.7 is optimal, with β = 0.6
coming in as a close second. This strong alignment
between small-scale and full-scale training results
underscores the soundness and robustness of our
β selection strategy, enabling us to efficiently ac-
quire a near-optimal β that approximates the best
possible performance.

A.3.3 RQ3: Can Our Bone Soup Matrix
Construction Method Effectively
Identify High-Quality Matrices in a
Vast Solution Space?

To demonstrate the robustness and superiority of
the Bone Soup matrix construction method, this
section presents a performance comparison be-
tween the Bone Soup method and random matrix
construction methods. Due to computational con-
straints, it is infeasible to exhaustively enumerate
all potential backbone matrices B. Therefore, we
randomly constructed eight relatively representa-
tive matrices, as shown in Table 4.

The results are shown in Table 5. From the ta-
ble, we can observe that under three different
trade-offs, all Bone Soup variants utilizing mul-
tiple rewards outperform the naive Rewarded Soup
method, which relies on a single reward. This ad-
vantage stems from the fact that multi-reward RL

facilitates the construction of a superior backbone
model, demonstrating that using combined rewards
can better approximate the optimal solution.

Moreover, employing our proposed rule-based
construction method in combination with the
hypervolume-selection approach further surpasses
the randomly selected reward matrices. Bone Soup
achieves the best performance, while Bone Soup
(β “ 0.7), which solely adopts the rule-based con-
struction without adaptation, attains the second-
best performance, still outperforming the randomly
constructed method.

A.3.4 RQ4: Robustness Analysis of Bone
Soup

Due to the inherent instability and randomness of
PPO optimization(Zheng et al., 2023; Casper et al.,
2023; Engstrom et al., 2019), we randomly selected
three seeds to rigorously assess the robustness of
Bone-Soup. As illustrated in Figure 15, even with
varying seeds, our approach consistently outper-
forms Rewarded Soups and remains very close to
Oracle MORLHF. In several cases—specifically in
Figure 15b, 15c, 15d, and 15f—Bone-Soup even
achieves a Pareto front that surpasses MORLHF,
further demonstrating its robustness. We also show
the results in three-objective setting in Figure 16.

A.3.5 RQ5: How Does the Determination of
Merging Coefficients Affect the
Performance of Bone Soup?

We conducted ablation experiments on determina-
tion of the merging coefficients. Bone Soup with
the suffix ’aba’ refers to using Bone Soup to ob-
tain backbone models, and then setting µ “ λ
during merging, which means directly mapping the
preference. The results in Figure 12a and 12b in-
dicate that, even with better backbone models, the
merged model still underperforms compared to RS,
highlighting the importance of the merging coeffi-
cients determination process. This underscores the
importance of establishing a strong link between
rewards and user preferences, and further validates
the critical role of the “soup” stage in our two-stage
seek-and-soup approach.

A.3.6 RQ6: How Do Different Values of β
Impact the Performance of Bone Soup?

We conducted experiments on the different trade-
offs in Long Form QA task and Reddit Summary
task. In Figure 4 and Figure 13, we can see that
by varying β, the resulting front consistently out-
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Table 3: The results of β selection for three different trade-offs in the Long-form QA task. As shown in the table, β
= 0.6 achieves the best hypervolume(for simplicity of the method, we assume that hypervolume could represent the
overall performance of the front.) on the small-scale validation set, and thus, β = 0.6 is ultimately chosen for the
three different trade-offs.

Hypervolume Ò Inner Product Ò Controllability Ò Length of Front Ò Sparsity Ó Spacing Ó
Method FR CR FC FR CR FC FR CR FC FR CR FC FR CR FC FR CR FC

Bone Soup (6) select 0.159 0.762 0.304 0.799 0.507 0.768 1.000 1.000 0.982 11 11 10 0.015 0.106 0.038 0.006 0.022 0.006
Bone Soup (7) select 0.150 0.735 0.281 0.769 0.493 0.754 1.000 1.000 1.000 11 11 11 0.020 0.090 0.032 0.004 0.015 0.003
Bone Soup (8) select 0.139 0.729 0.296 0.742 0.471 0.766 0.982 1.000 1.000 10 11 11 0.017 0.093 0.035 0.007 0.013 0.006

Table 4: The Specific Representation of the Matrix Bi

The randomly selected matrices Bi

B1 “
¨
˝

0.7 0.2 0.15
0.15 0.6 0.15
0.15 0.2 0.7

˛
‚ B2 “

¨
˝

0.7 0.1 0.1
0.15 0.8 0.1
0.15 0.1 0.8

˛
‚

B3 “
¨
˝

0.7 0.15 0.1
0.15 0.7 0.1
0.15 0.15 0.8

˛
‚ B4 “

¨
˝

0.7 0.15 0.2
0.15 0.7 0.2
0.15 0.15 0.6

˛
‚

B5 “
¨
˝
0.8 0.15 0.2
0.1 0.7 0.2
0.1 0.15 0.6

˛
‚ B6 “

¨
˝

0.7 0.2 0.1
0.15 0.6 0.1
0.15 0.2 0.8

˛
‚

B7 “
¨
˝

0.7 0.2 0.2
0.15 0.6 0.2
0.15 0.2 0.6

˛
‚ B8 “

¨
˝
0.8 0.2 0.2
0.1 0.6 0.2
0.1 0.2 0.6

˛
‚

Table 5: The comparison between Bone Soup and ran-
dom matrix constction methods in 3 different trade-offs

Method RC_Rank FR_Rank FC_Rank Avg_Rank

Rewarded Soups 12.0 12.0 12.0 12.00

Bone Soup 7.0 2.0 2.0 3.67
Bone Soup (β=0.7) 1.0 3.0 8.0 4.00
Bone Soup (β=0.8) 11.0 8.0 1.0 6.67
Bone Soup B1 3.0 1.0 10.0 4.67
Bone Soup B2 9.0 11.0 4.0 8.00
Bone Soup B3 8.0 9.0 6.0 7.67
Bone Soup B4 2.0 6.0 9.0 5.67
Bone Soup B5 4.0 5.0 3.0 4.00
Bone Soup B6 10.0 10.0 7.0 9.00
Bone Soup B7 4.0 6.0 11.0 7.00
Bone Soup B8 6.0 4.0 5.0 5.00

performs and dominates RS. This shows that the
choice of β does not significantly impact the per-
formance of the front and a good β only would
further improve the upper bound of our method.
This demonstrates the robustness in choosing the
β parameter, thereby underscoring both the lower
bound performance and overall robustness of our
method.

A.3.7 RQ7: What is the Impact of
Extrapolation on Performance of Bone
Soup?

We conducted experiments on the trade-off HH1
(Helpful vs Harmless) on Helpful Assistant dataset.

The results in Figure 14 show that after incorporat-
ing interpolation in Equation 9, the front obtained
by BS is indeed improved, indicating that interpo-
lation can further enhance the model’s capabilities.

A.3.8 Comparision with MODPO
Regarding MODPO (Zhou et al., 2024), it is impor-
tant to note that it is not an adaptive multi-objective
generation method in the same sense as Bone Soup,
MOD, RiC, or Rewarded Soup. MODPO requires
re-training a model for each specific user prefer-
ence, which is computationally expensive.

We also conduct additional experiments to include
MODPO as a baseline for completeness. Since
MODPO requires training for each preference,
which incurs a huge overhead, we select values of
α P t0.1, 0.3, 0.5, 0.7, 0.9u for the user preference
pα, 1 ´ αq. The experimental results are shown in
Table 6 and Table 7:

As can be seen, Bone Soup consistently outper-
forms MODPO across various metrics. Although
MODPO and Bone Soup do not share overlapping
solutions, MODPO’s Pareto front is significantly
smaller, covering a more limited solution space.
This limitation is also reflected in its poorer hyper-
volume performance.

Based on our analysis, we suspect that the relatively
weak performance of MODPO can be attributed
to the lack of sufficient distinction of the reward
in the dataset. As described in the original paper
on MODPO, in addition to the margin reward, a
second reward model is required to label the pref-
erence dataset, where the original "chosen" and
"rejected" responses might have low distinction un-
der the current reward model. This reduces the
effectiveness of the DPO training process. On the
other hand, Bone Soup, Rewarded Soup, and other
similar methods utilize reinforcement learning to
obtain diverse backbone models. The process of
sampling responses in RL helps mitigate the issue
of low distinction in rewards. This could be the
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(a) Factuality rewards during PPO training (b) Completeness rewards during PPO training

(c) Relevance rewards during PPO training (d) KL divergence during PPO training

(e) Policy loss during PPO training (f) Total loss during PPO training

Figure 10: The factuality rewards, completeness rewards, relevance rewards, KL divergence, and policy loss during
PPO training. All the subfigures are variations of different metrics of factuality-specialized model.

reason why MODPO performs worse in our experi-
ments.

Table 6: The comparison between Bone Soup and
MODPO on Helpful vs Harmeless

Method HyperVolume Inner Product Controllability

Bone Soup 1.16 2.00 1.00
MODPO 0.93 -0.57 1.00

Table 7: The comparison between Bone Soup and
MODPO on Faituful vs Preference1

Method HyperVolume Inner Product Controllability

Bone Soup 1.12 1.89 1.00
modpo 0.65 0.56 0.70

A.4 Experiments Setup Details
A.4.1 Baselines
We first introduce and compare the three major
categories of CMOG methods, followed by a de-
tailed description of the baselines and experimental
settings used in our study.

• Prompt-based methods: These require the
LLM to understand fine-grained task descrip-
tions encoded as numerical prompts (e.g., dif-
ferences between 0.1 and 0.2). Achieving
such precision through supervised fine-tuning
is challenging, leading to poor controllability,
as noted in Yang et al. (2024) and Table 2 in
our paper.

• Decoding-based methods: For example, Shi
et al. (2024) controls outputs by combining
logits from multiple aligned models and there-
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(a) Factuality rewards during PPO training (b) Completeness rewards during PPO training

(c) Relevance rewards during PPO training (d) KL divergence during PPO training

(e) Policy loss during PPO training
(f) KL divergence during PPO training of completeness-
specialized model

Figure 11: The factuality rewards, completeness rewards, relevance rewards, KL divergence, and policy loss during
PPO training. Subfigure (a), (b), (c), (d), and (e) depict the variations of different metrics during the PPO training
process of the relevance-specialized model, while (f) shows the KL divergence changes during the PPO training
process of the completeness-specialized model.

fore introduces additional inference time and
memory overhead. We believe that the utiliza-
tion of aligned models only at the logit level
is not sufficient. As shown in Table 2 and
Figure 5 in the paper, decoding-based meth-
ods (Shi et al., 2024) only improve upon naive
merging-based methods(RS) marginally.

• Merging-based methods: Our method im-
proves controllability and performance by
adjusting parameters at a deeper level and
leveraging RLHF models more comprehen-
sively, therefore resulting in significantly bet-
ter fronts. The detailed analysis can be found
in Section 4.2.2.

RiC achieves control by adding multiple reward

conditions in the prompt and aligns the model
through two-stage supervised training. Rewarded
Soups (RS) (Rame et al., 2023) trains specializing
models separately for each reward and interpolates
these models linearly. MOD (Shi et al., 2024) also
needs to prepare multiple specializing models as
RS did and achieve controllable alignment in de-
coding time by outputting the next token from a
linear combination of predictions of all special-
izing models. For two objective setting, we uti-
lize ten preferences w1 P t0.0, 0.1, . . . , 1.0u and
w2 “ 1 ´ w1. For the three-objective setting, we
uniformly selected

`
12
2

˘ “ 66 points from the 3-
simplex with a spacing of 0.1.
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Figure 12: Ablation of different approaches for coefficient determination.
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Figure 13: Ablation of the impacts of different β

A.4.2 Long Form QA task

Long-form QA(Stelmakh et al., 2022; Min et al.,
2020; Wu et al., 2024; Bhat et al., 2023; Huang
et al., 2024) requires the model to generate a com-
plete and comprehensive answer and explanation
based on one or more given texts. Since questions
often have multiple meanings and can easily cause
ambiguity, the required answers need to be com-
plete and multi-faceted.

The FineGrainedRLHF (Wu et al., 2024) dataset
is obtained by reconstructing the ASQA(Stelmakh
et al., 2022) dataset and collecting human feed-
back, which is publicly available under the Apache
2.0 License. Our use of the dataset is consistent
with its intended use. It consists of 2,853 training
examples and 500 development examples, form-
ing “train_feedback.json” and “dev_feedback.json”
respectively. Each example consists of a ques-
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Figure 14: Ablation of Extrapolation

tion corresponding to four model-predicted outputs
sampled from the initial policy model. The feed-
back includes fine-grained feedback for the first
model output and preference feedback for the four
model outputs. In the original paper, the authors
obtained 1,000 samples from the ASQA dataset
to form “train_1k.json” for supervised training of
the original policy model. We follow the setup
of Wu et al. (2024), first performing supervised
training on the initial policy model, and then using
the reward models provided by Wu et al. (2024) to
conduct PPO (Schulman et al., 2017) training.

Reward Models. Wu et al. (2024) provides rule-
based reward models of three different granulari-
ties (sub-sentence, sentence, full sequence) based
on error types. These reward models all use
the encoder-only Longformer-base (Beltagy et al.,
2020) as the backbone. Suppose the input format
of the reward model is "question: q context: p1 p2
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(a) Seed2: factuality vs completeness
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(b) Seed2: factuality vs relevance
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(c) Seed2: relevance vs completeness
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(d) Seed3: factuality vs completeness
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(e) Seed3: factuality vs relevance
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(f) Seed3: relevance vs completeness

Figure 15: Ablation study on different random seeds for the Long-Form QA task, evaluating “factuality vs.
relevance”, “factuality vs. completeness”, “relevance vs. completeness”. We connect the points in the figure
according to the order of the preference weight partial order relation. We varied the random seeds and observed that
Bonesoup demonstrates strong robustness and consistently outperforms other baselines.

... answer: [sep] yk1 [sep] yk2 ...", where k represents
different granularity levels corresponding to differ-
ent rewards Rk——for example, the relevance re-
ward corresponds to sub-sentence granularity. Wu
et al. (2024) uses token-level classification loss to
predict whether the segment of that granularity be-
fore each [sep] token contains errors corresponding
to that reward. Therefore, the reward is set in a
rule-based manner: for different rewards, it judges
the different segments; if such an error exists, -1 is
given at the [sep] position; otherwise, +1.

R1 Relevance Reward: . R1 is designed to pre-
dict whether there are errors such as irrelevance,
repetition, or incoherence at the sub-sentence level.
R1 gives a reward at each [sep] position; if there is
no error, +1 is given at that position; otherwise, -1.

R2 Factuality Reward: R2 is designed to predict
whether there are factual errors such as incorrect or
unverifiable information at the sentence level. R2

gives a reward at each [sep] position; if there is no
error, +1 is given at that position; otherwise, -1.

R3: Completeness Reward: R3 is designed to
predict whether there are errors of information in-
completeness at the full-sequence level. R3 gives
a reward at each [sep] position; if there is no error,
+1 is given at that position; otherwise, -1.

A.4.3 Helpful Assistant Task

The Helpful Assistant task requires the model to
generate appropriate responses based on a given
user conversation history, ensuring the response
is as helpful as possible while maintaining safety.
We use the hh-rlhf dataset for training and evalua-
tion. The hh-rlhf dataset consists of 160k prompts,
responses, and corresponding human annotations,
which is publicly available under the MIT License.
Our use of the dataset is consistent with its intended
use. Additionally, we use three open-source reward
models following Yang et al. (2024) to assess the
helpfulness, harmlessness, and humor of the re-
sponses generated by the model. The backbones of
first two reward models are GPT-2 model(Radford
et al., 2019). The two reward models were trained
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(a) factuality vs relevance vs completeness (seed 2) (b) factuality vs relevance vs completeness (seed 3)

Figure 16: Ablation study on different random seeds for the Long-Form QA task, evaluating “factuality vs relevance
vs. completeness”

on the Anthropic/hh-rlhf dataset using pair-wise
feedback. The harmless reward model achieves a
test set accuracy of 0.73698 and the helpful reward
model achieves an accuracy of 0.72621 on the test
set. The humor reward model is a fine-tuned ver-
sion of distilbert-base-uncased (Sanh, 2019) on a
joke/no-joke dataset to detect humor. And there is
no extra prompt for this task.

A.4.4 Reddit Summary Task
The Reddit Summary task (Stiennon et al., 2020)
focuses on summarizing Reddit posts, aiming to
produce concise and coherent summaries that ef-
fectively capture the main content of the post. The
dataset consists of Reddit threads, where the input
comprises a post’s title and body text, and the out-
put is a human-written summary, which is publicly
available under the MIT License. Our use of the
dataset is consistent with its intended use. And the
prefix of the prompt is "Generate a one-sentence
summary of this post." according to (Yang et al.,
2024). We use two open-source reward models
(Yang et al., 2024) to assess the quality of the sum-
mary generated from two different aspects.

A.4.5 Parameters Setting Details
We list the values of parameters used in the ex-
periment in Table 8 and Table 9 corresponding to
Helpful Assitant, Reddit Summary Task, and Long
Form QA task respectively.

A.5 Evaluation Metrics Details

Numerical metrics include hypervolume indica-
tor (Zitzler et al., 2003), Inner Product (Zhong

et al., 2024), Sparsity(SP) (Deb et al., 2002; Zhong
et al., 2024), Spacing (Schott, 1995; Zhong et al.,
2024), controllability and the cardinality of the
Pareto front. It is worth noting that a better front
will also lead to greater Sparsity and Spacing
since the coverage of that front is usually larger
causing the bigger Sparsity and Spacing. There-
fore, we will use HV, Inner Product and control-
lability as our main metrics and other metrics are
for reference when the main metrics are very close.

Since Controllability is the fundamental and most
important aspect of implementing CMOG, we will
formally define it below.

Definition 1 (Controllability). Controllability mea-
sures the degree to which the model’s output aligns
with the desired human preference µ. It is cal-
culated by exhaustively enumerating all pairs of
preferences pµi,µjq, and checking if their relative
order pµi,k, µj,kq matches the relative order of the
evaluation (rewards r) prkpSiq, rkpSjqq in each di-
mension k where Si is the model solution obtained
by CMOG approaches corresponding to the pref-
erence µi. For each pair pµi,µjq, if the above
condition holds for all k dimensions, we increment
the controllability score by 1. The final controlla-
bility score is normalized by dividing by the total
number of solution pairs. The controllability score
C is defined as:

C “ 1

NpN ´ 1q
ÿ

i‰j

1r
nľ

k“1

sign pµi,k ´ µj,kq “

sign prkpSiq ´ rk pSjqqs,
(10)
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where N is the total number of solutions, and 1p¨q
is the indicator function. The closer the score C is
to 1, the better the controllability of the model.

1.Hypervolume

Hypervolume is a key performance indicator in
multi-objective optimization, used to measure the
volume of the space dominated by a set of solutions
in the objective space. The hypervolume is defined
as:

HV pSq “ Volume

˜
nď

i“1

rr, fpxiqs
¸

(11)

where rr, fpxiqs represents the hyper-rectangle re-
gion between the reference point r and each solu-
tion fpxiq. Hypervolume is widely used to evaluate
the performance of multi-objective optimization al-
gorithms. A larger hypervolume indicates a better
coverage of the objective space.

2.Inner Product

The inner product between the preference vector
and the corresponding reward vector serves as a
metric for measuring their correspondence. From
another perspective, this can be interpreted as a
weighted sum of rewards, where the preference
vector reflects the emphasis on different reward
components.

Mathematically, this can be expressed as:

IP pµ, rq “
nÿ

i“1

µi ¨ ri (12)

where µ “ rµ1, µ2, . . . , µns is the preference vec-
tor and r “ rr1, r2, . . . , rns is the correspond-
ing reward vector. The inner product quantifies
the alignment between the preference and reward,
with higher values indicating stronger alignment
between them.

3.Sparsity

Sparsity measures the variation between solutions
corresponding to the consecutive preference vec-
tors (Deb et al., 2002; Zhong et al., 2024). It is
defined as the average squared Euclidean distance
between adjacent vectors. A smaller sparsity value
indicates smoother transitions between successive

rewards, which is desirable in our context. How-
ever, due to the huge cost of evaluating solutions,
we can only obtain a limited number of solutions
and therefore the evaluation of Sparsity is less
convincing.

Sparsity “ 1

n ´ 1
}ri ´ ri´1}2 (13)

4.Spacing

We follow Zhong et al. (2024) to introduce the
Spacing metric to evaluate the front. The Spac-
ing metric evaluates the variance of the minimum
distance between solutions(corresponding reward
vectors). Lower values indicate a better Pareto front
but with the same limitations as Sparsity.

Spacing “
gffe 1

N

Nÿ

i“1

pdi ´ pq2, (14)

where di “ mint||ri ´ rj ||u and p “ 1
N

řN
i“1 pi.

A.6 Discussions

Computational Complexity Analysis The pri-
mary computational cost of our approach occurs
during the training phase. Once training is com-
pleted, the inference stage can adapt to any user
preference without additional overhead. Unlike
MOD (Shi et al., 2024) and MODPO (Zhou et al.,
2024), there is no extra cost during inference. The
process of determining merging coefficients only
requires solving a linear equation, which incurs no
additional computational expense.

On the other hand, although we propose using a
small-scale selection to choose the optimal β P
t0.8, 0.7, 0.6u, the robustness of the constructed
matrix (see Appenidx A.3.3) means we are not
overly dependent on β and can get rids of this addi-
tional expense. In Appendix A.3.6, we discuss the
impact of varying β on Bone Soup, and the conclu-
sion is that, regardless of the β value, the resulting
Pareto front consistently outperforms and domi-
nates other baselines. Our insight is that includ-
ing marginal reward could lead to better backbone
construction. Therefore, the simplest approach is
to select any β, which results in computational
costs identical to those of standard Rewarded
Soup, with no additional overhead. If one aims
to achieve the optimal performance, let the com-
putational cost of Rewarded Soup be C. Then,
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selecting optimal β introduces an additional cost
of 0.2 ˆ C ˆ n, where n ď 3 is the number of pos-
sible choices for β and as the small-scale selection
trained the model with 20% total steps.

Negative Merging Coefficients.

Solving the linear system may result in negative
values, which could lead to negative interpolation
or said extrapolation (Ilharco et al., 2022; Zheng
et al., 2024) of the backbone models.

Previous works have discussed improving
model performance through extrapolation tech-
niques (Zheng et al., 2024), or by deliberately
weakening the initial SFT model to facilitate un-
learning (Ilharco et al., 2022). In these approaches,
negative merging coefficients were determined
through trial-and-error methods using a validation
set.

However, in our approach, we avoid the cumber-
some and somewhat unnatural trial-and-error pro-
cess by directly solving linear equations to estab-
lish a clear mapping between the backbone models’
rewards and user preferences. This not only sim-
plifies the process but can also be regarded as an
interpretable extrapolation. Our method Bone Soup
of constructing non-orthogonal bases and then per-
forming interpolation can thus be seen as a form
of extrapolation. Unlike the naive merging method,
where coefficients are constrained to be nonnega-
tive, the presence of negative coefficients extends
beyond the original model space. More importantly,
the ability to interpret the negative coefficients se-
lected offers the potential to improve performance
in regions that would otherwise be inaccessible
through standard interpolation techniques.

Model Merging in Multi-Objective and Multi-
Task Setting. Here, we emphasize the distinc-
tion between obtaining a Pareto front and single
model. Most current research (Wortsman et al.,
2022; Rame et al., 2023; Tang et al., 2024; Yu et al.,
2024; Yadav et al., 2024; Yang et al., 2023; Wang
et al., 2024b; Ilharco et al., 2022) primarily focuses
on obtaining a single model that, through merging,
possesses the capabilities of multiple models. This
approach works in multi-task scenarios because the
interference between various tasks is present but
often not strong enough to pose significant chal-
lenges.

However, in multi-objective optimization, numer-
ous objectives are inherently conflicting or compro-

mised. For instance, in QA tasks, relevance and
completeness are often at odds (Wu et al., 2024):
a complete answer is likely to include some irrele-
vant content, while a highly relevant answer may
be too narrow, resulting in incomplete responses.
Similarly, in typical alignment tasks, objectives
like helpfulness and harmlessness (Dai et al., 2023;
Bai et al., 2022; Ganguli et al., 2022) frequently
conflict, making it difficult to achieve both fully.
In such cases, it is preferable to aim for a Pareto
front, where the points on the front represent non-
dominated and optimal solutions. Our goal is not
only to find this front but to ensure it is as expansive
as possible, with widely dispersed points, thereby
covering a broad range of trade-offs between com-
peting objectives.

Model and Task Settings
Model LLaMA-2-7B
Helpful Assistant Task 128 tokens
Reddit Summary Task 48 tokens

LoRA Settings
Rank 64
Alpha 128
LoRA Dropout 0.05

SFT Training
Fine-tune Steps 60k steps
Initial Learning Rate 1.41e-4
Learning Rate Decay Linear

RL Training (PPO)
Implementation trl 0.8
Initial KL Penalty Coefficient 0.2
Learning Rate 1e-5
GAE Lambda 0.95
Discount Factor (Gamma) 1
Clip Range 0.2
Maximum Gradient Norm 0.5
Sampling Strategy nucleus sampling,

top_p=0.1
Sampling Temperature 0.7
Target KL Early Stop 5
Training Epochs 1
Batch Size 64
Mini Batch Size 1
Optimization Epochs per Batch 4

Table 8: Helpful Assistant and Reddit Summary Task
Settings and Parrameters
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Model and Task Settings
Model T5-large
Input Length Limit 1024
Max Generation Tokens 200

Data Splits
Dataset QA-FEEDBACK
Splits SFT, Train, Test
SFT Training Data 1000 examples
PPO Training Data 2853 examples
Test Data 500 examples

SFT Training
Epochs 10
Batch Size 32
Learning Rate 5e-5

PPO Training Parameters
Episodes 80,000
PPO Epoch per Rollout 4
Initial Learning Rate 1e-5
Learning Rate Decay Linear
Early Stop KL Threshold 10
GAE Lambda 0.95
KL Coefficient 0.3
Discount Factor (Gamma) 1
Clip Range 0.2
Sampling Strategy Top-k sampling(k=20)
Temperature 0.7

LoRA Settings
Rank 32
Alpha 32

Table 9: Long Form QA Task Settings and Parameters
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### System Prompt:
You are a impartial judge for checking the quality of the answer.

### User Prompt:
[System]
We kindly request your feedback on the performance of two AI assistants in response to the
user question presented below. Act as an impartial judge and evaluate only the factuality of the
response provided by each assistant. Rate each assistant on a scale of 1 to 10, where a higher score
signifies a more factually accurate response. Try to avoid giving the same score.

Your evaluation should focus solely on the factual accuracy of the response. When assessing
factuality, please check whether the response is consistent with the provided context, whether it is
correct, and whether the information is verifiable. A higher score should reflect better adherence to
facts and context.

The question and answers are as follows:

[Question]
{question}

[The Start of Assistant 1’s Answer]
{answer1}

[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
{answer2}

[The End of Assistant 2’s Answer]

[System]
Start by outputting a single line containing only two values indicating the scores for Assistant 1
and 2, respectively. The two scores should be separated by a space. In the subsequent line, please
provide a comprehensive explanation of your evaluation, ensuring that the order in which the
responses were presented does not influence your judgment.

[Answer]

Figure 17: Prompt template for GPT-4 to evaluate Factuality.

27262



### System Prompt:
You are a impartial judge for checking the quality of the answer.

### User Prompt:
[System]
We kindly request your feedback on the performance of two AI assistants in response to the
user question presented below. Act as an impartial judge and evaluate only the relevance of the
response provided by each assistant. Rate each assistant on a scale of 1 to 10, where a higher score
signifies a more relevant response. Try to avoid giving the same score.

Your evaluation should focus solely on whether the response is relevant to the context and the
question, whether it is logically coherent, and whether it is concise and to the point. When
assessing relevance, please check if the response directly answers the question, aligns well with
the provided context, and avoids unnecessary or off-topic information.

The question and answers are as follows:

[Question]
{question}

[The Start of Assistant 1’s Answer]
{answer1}

[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
{answer2}

[The End of Assistant 2’s Answer]

[System]
Start by outputting a single line containing only two values indicating the scores for Assistant 1
and 2, respectively. The two scores should be separated by a space. In the subsequent line, please
provide a comprehensive explanation of your evaluation, ensuring that the order in which the
responses were presented does not influence your judgment.

[Answer]

Figure 18: Prompt template for GPT-4 to evaluate Relevance.
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