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Abstract

Despite their remarkable capabilities, LLMs
learn word representations that exhibit the
undesirable yet poorly understood feature of
anisotropy. In this paper, we argue that the sec-
ond moment in Adam is a cause of anisotropic
embeddings, and suggest a modified optimizer
called Coupled Adam to mitigate the prob-
lem. Our experiments demonstrate that Cou-
pled Adam significantly improves the quality
of embeddings, while also leading to better up-
stream and downstream performance on large
enough datasets.

1 Introduction

Anisotropic Embeddings Large Language Mod-
els (LLMs) take a sequence of tokens as input and
predict the next token. An embedding matrix is
used to map the input tokens to the hidden space
of the model, while an unembedding matrix pro-
vides the inverse mapping to the output token space.
Although the two matrices can in principle be dif-
ferent, it is common practice to apply weight tying
(Press and Wolf, 2017) and use the transpose of
the embedding matrix for unembedding. During
training, the model learns an embedding vector
in hidden space for each token in the vocabulary.
However, it is observed that those embedding vec-
tors are clustered in a small subspace away from
the origin (Gao et al., 2019). This anisotropy limits
the semantic usefulness of the embeddings and, in
turn, the expressiveness and generalizability of the
model. Multiple attempts have been made to both
explain the root cause of the problem and alleviate
it (more on this in Sec. 7). In particular, Biś et al.
(2021) have shown that the problem can be traced
back to a mere shift of the mean embedding vector
away from the origin. With the mean embedding
vector as reference point, the embeddings feature
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near-perfect isotropy. However, the role of the em-
ployed optimization algorithm has, to the best of
our knowledge, not yet been investigated.

Optimization Algorithms Optimization algo-
rithms are an indispensable ingredient in the train-
ing of neural networks generally and LLMs in par-
ticular. While SGD is the foundational optimiza-
tion technique, Adam (Kingma and Ba, 2014) is
the most widely used optimization techniques for
LLMs due to its superior performance and robust-
ness. While it provides multiple conceptional ad-
vantages over SGD, see e.g. Ruder (2017) for a
detailed discussion, the one that is particularly strik-
ing with regard to word embeddings is that Adam
is well-suited for sparse data. More concretely, this
means that using Adam, the embedding update vec-
tors for rare words are scaled up in comparison to
those of more frequent words. This is relevant in
the context of LLMs as word frequencies in the
training data are typically very skewed and may
differ by several orders of magnitude. Formally,
this is captured by the unigram probability distri-
bution p̃ ∈ [0, 1]V , which for a given dataset d and
tokenizer t is defined by

p̃i ≡ p̃i(d, t) =
ni∑
j nj

, (1)

where i ∈ V ≡ {1, . . . , V } is the vocabulary index
and ni is the total number of occurrences of the
i-th token in the tokenized dataset. A visualization
of an example unigram probability distribution can
be found in App. A.

Our Contributions In this work, we combine
the research areas of anisotropic embeddings and
optimization algorithms and provide the following
contributions:

• We show that the Adam optimizer plays a cru-
cial role in causing anisotropic embeddings.
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• We suggest Coupled Adam, an easy-to-
implement yet efficient adjustment of the orig-
inal Adam optimization algorithm, which is
specifically designed for embedding parame-
ters in order to alleviate the anisotropy prob-
lem.

• We demonstrate that our method not only sig-
nificantly improves the quality of word em-
beddings, but also has a beneficial effect on
upstream and downstream performance for
sufficiently large datasets.

2 On the Root Cause of Anisotropic
Embeddings

We study the collective shift of the embeddings
(that underlies the anisotropy problem), by ana-
lyzing their vector updates based on the optimiza-
tion algorithms SGD and Adam. Weight tying is
assumed, but only contributions from the output
layer are considered, following Biś et al. (2021).
Our results apply to all model architectures with a
standard language modeling head.

2.1 Language Modeling Head

The equations for the standard language modeling
head read

L = − log (pt) (2)

pt =
exp (lt)∑V
j=1 exp (lj)

(3)

li = ei • h , (4)

where L ∈ R≥0 is the loss for next token prediction,
and pt ∈ [0, 1] is the predicted probability of the
true token t ∈ V . li ∈ R and ei ∈ RH denote
the logits and embeddings for each token i ∈ V ,
respectively. h ∈ RH is the final hidden state
provided by the model for a single token. Note
that the operation in Eq. (4) is the dot product of
two vectors in RH . Backward propagation yields
the following gradients with respect to the input
vectors ei and h of Eq. (4):

gi :=
∂L
∂ei

= − (δit − pi) · h (5)

This result was first reported using a different nota-
tion in Biś et al. (2021), and is rederived in App. B
for the reader’s convenience.
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Figure 1: Toy example of a hidden state vector h (shown in
blue) and three embedding vectors ei (shown in red) in H = 2
dimensions. The gray arrows represent the embedding update
vectors, for the SGD (dark) and the Adam (light) optimizer.
The update vector of the true token is aligned with h, while
the others point in the opposite direction, see Eq. (5). Note
that the sum of embedding update vectors vanishes for SGD,
while this is not necessarily the case for Adam, cf. Eqs. (11)
and (16).

2.2 Vanishing Sum of Embedding Gradients
Optimization algorithms for neural networks usu-
ally update the model parameters iteratively, using
an additive update vector that points in direction
opposite to the gradient of the loss with respect to
the parameters. In the case of embedding vectors,
this can be expressed by

e
(τ)
i = e

(τ−1)
i + u

(τ)
i , (6)

with
u
(τ)
i ∝ −g

(τ)
i , (7)

where u(τ)i is the update vector for e(τ)i at time step
τ . Eq. (5) implies that the embedding vector et of
the true token is updated in direction +h, while
the update vectors ui for all the other embedding
vectors ei with i ̸= t are proportional to −h, see
Fig. 1. This circumstance is referred to in the lit-
erature as the "common enemy effect" (Biś et al.,
2021), and regarded as the cause of the represen-
tation degeneration problem. However, as we will
see in the following sections, this explanation is
incomplete, as it does not take into account the scal-
ing of the gradients with the predicted probabilities
pi, see Eq. (5). The basis for our argumentation is
the observation that the sum of embedding gradi-
ents vanishes, as the following simple calculation
shows:

V∑

i=1

g
(τ)
i

(5)
= −

V∑

i=1

(
δ
(τ)
it − p

(τ)
i

)
· h(τ)

= −
(
1−

V∑

i=1

p
(τ)
i

)
· h(τ) = 0 (8)
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Next, we will study how Eq. (8) translates to the
sum

∑V
i=1 u

(τ)
i of embedding update vectors, as

well as the mean embedding vector

µ(τ) =
1

V

V∑

i=1

e
(τ)
i (9)

Since the exact definition of the embedding update
vector ui, i.e. the proportionality factor in Eq. (7),
depends on the optimization algorithm, we discuss
SGD and Adam separately.

2.3 Invariant Mean Embedding with SGD
We consider the application of the SGD optimiza-
tion algorithm on the embedding vectors1. At each
training step, an embedding vector is simply up-
dated by adding the associated negative gradient
−gi, multiplied by a global learning rate η. Hence,
Eq. (7) becomes

u
(τ)
i = −η · g(τ)i (10)

Together with Eq. (8), this implies that the sum
of embedding update vectors vanishes at any time
step τ :

V∑

i=1

u
(τ)
i

(10)
= −η

V∑

i=1

g
(τ)
i

(8)
= 0 (11)

Consequently, the mean embedding vector will stay
invariant during the training process:

µ(τ) − µ(τ−1) (9,6)
=

1

V

V∑

i=1

u
(τ)
i

(11)
= 0 (12)

This holds even though the different embeddings
ei will be individually updated in different direc-
tions with different magnitudes. Moreover, all of
the above is true also in the case of SGD with mo-
mentum, which follows from linearity and mathe-
matical induction. Eq. (12) has far-reaching impli-
cations with regard to the anisotropy problem. It
entails that the embedding vectors do not collec-
tively shift away from the origin if SGD (with or
without momentum) is used.

2.4 Shifted Mean Embedding with Adam
In this section, we analyze the behavior of
the mean embedding during optimization with
Adam (Kingma and Ba, 2014), see Algorithm 1.
The update vector Eq. (7) for the Adam algorithm

1Details are given in App. C.

Input: η (lr), e(0)i (initial embeddings), L(ei) (objective),
β1, β2 (betas), T (number of time steps)
Initialize: m(0)

i ← 0 (1st moment), v(0)i ← 0 (2nd moment)
Output: e(T ) (final embeddings)
1: for τ = 1 . . . T do
2: for i = 1 . . . V do
3: g

(τ)
i ←∇eiL(τ)(e

(τ−1)
i )

4: m
(τ)
i ← β1m

(τ−1)
i + (1− β1)g

(τ)
i

5: v
(τ)
i ← β2v

(τ−1)
i + (1− β2)

(
g
(τ)
i

)2

6: m̂
(τ)
i ←m

(τ)
i /

(
1− βτ

1

)

7: v̂
(τ)
i ← v

(τ)
i /

(
1− βτ

2

)

8: if coupled then
9: ν̂(τ)← 1

V

∑V
i=1 v̂

(τ)
i

10: for i = 1 . . . V do
11: if coupled then
12: v̂

(τ)
i ← ν̂(τ)

13: e
(τ)
i ← e

(τ−1)
i − η

m̂
(τ)
i√

v̂
(τ)
i +ϵ

14: return e(T )

Algorithm 1: Pseudocode for the Adam algorithm and our
extension, the Coupled Adam algorithm (highlighted), applied
to the embedding vectors ei. Note that weight decay is not
applied.

is given by

u
(τ)
i = −η

(τ)
i · m̂(τ)

i , (13)

where we have introduced an i-dependent effective
learning rate

η
(τ)
i :=

η√
v̂
(τ)
i + ϵ

(14)

Note that m̂(τ)
i and v̂

(τ)
i denote the exponentially

averaged first and second moments, respectively,
defined according to lines 4-7 in Algorithm 1. The
i-dependent learning rate serves the purpose of in-
dividually normalizing the update vectors for differ-
ent parameters in the Adam optimizer. However, it
also has an unwanted effect specifically on the em-
bedding vectors. While we know from Eq. (8) and
Algorithm 1 (lines 4,6) that the unweighted sum
over the first moments vanishes,

∑V
i=1 m̂

(τ)
i = 0,

this is not true for the weighted sum,

V∑

i=1

η
(τ)
i m̂

(τ)
i ̸= 0 , (15)

unless η(τ)i = η
(τ)
j for all i, j ∈ V . Hence, the sum

of embedding update vectors does not vanish in
general,

V∑

i=1

u
(τ)
i

(13)
= −

V∑

i=1

η
(τ)
i · m̂(τ)

i

(15)

̸= 0 (16)
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This, in turn, causes the mean embedding to change
during training,

µ(τ) − µ(τ−1) (9,6)
=

1

V

V∑

i=1

u
(τ)
i

(16)

̸= 0 , (17)

which is in stark contrast to the case of SGD
(cf. Eq. (12)). We have thus identified that an
i-dependency of the second moment v̂(τ)i of the
Adam optimizer leads to the observed collective
shift of the embedding vectors away from the ori-
gin. Next, we will show that the second moment
indeed depends on i. More concretely, we will ar-
gue that its expectation value is proportional to the
unigram probability2 (see Eq. (1)),

E [v̂i] ∝ p̃i (18)

In App. D.1, Eq. (18) is derived using minimal
assumptions and experimental input. Here, we re-
strict ourselves to confirming the relationship in a
purely experimental manner. E [v̂i] is estimated di-
rectly by measuring v̂i multiple times during train-
ing, using different models. We then perform linear
fits of E [v̂i] as a function of p̃i. Indeed, the fits
yield a high coefficient of determination, on aver-
age R2 = 0.85(7), and a proportionality constant
of

A :=
E [v̂i]

p̃i
≈ 10−4 (19)

Details about the exact procedure and plots show-
ing the data and linear fits can be found in
App. D.2.

3 Coupled Adam

In the previous section, we have identified the in-
dividual scales of the second moments vi for dif-
ferent embedding vectors ei as the root cause of
the anisotropy problem. This implies that a solu-
tion to the problem is to enforce that the second
moments are the same for every i. The question
arises whether and how this can be done in the
best way, without harming the performance of the
model. To answer this, we note that the normaliza-
tion of the embedding update vector by the Adam
second moment can be split into two parts:

E [v̂i]
(19)
= A · p̃i =

A

V
· (p̃iV ) (20)

2Note that from here until Eq. (23), the time index (τ ) is
dropped for the sake of readability.

The first factor introduces a global scale to all up-
date vectors simultaneously:

A

V

(19)
≈ 10−4

5 · 104 = 2 · 10−9 , (21)

where the numbers correspond to our experiments
from the previous section with V ≈ 50000. The
second factor scales the update vectors individually.
It is one on average:

1

V

V∑

i=1

(p̃iV ) = 1 (22)

Our goal is to retain the first, global factor and get
rid of the second, individual factor. The canonical
way to do this is to simply take the average of the
second moment over the vocabulary items i:

1

V

V∑

i=1

E [v̂i]
(20,22)
=

A

V
(23)

In practice, the exponentially averaged second mo-
ments v̂(τ)i as they appear in Eq. (14) are replaced
by their average:

ν̂(τ) :=
1

V

V∑

i=1

v̂
(τ)
i (24)

We call the resulting algorithm Coupled Adam, as
it couples the second moments of the embedding
vectors via Eq. (24). It is displayed in Algorithm 1.
Evidently, with Coupled Adam, the effective learn-
ing rate in Eq. (14) that enters the update vector
in Eq. (13) becomes independent of i. Hence, like
SGD but unlike standard Adam, the sum of em-
bedding updates vanishes. However, like standard
Adam but unlike SGD, Coupled Adam uses a sec-
ond moment to normalize the embedding update
vectors.

4 Experiments

Two types of experiments are conducted to study
the impact of coupling the second moments of
the embedding update vectors. First, a set of
small-scale experiments (Sec. 4.1) with models and
datasets of varying sizes up to 1B parameters and
20B tokens, respectively. Afterwards, we perform
a few large-scale experiments (Sec. 4.2) to ver-
ify that the usefulness of our method extrapolates
to the realm of large language models with more
than 1B parameters trained on at least the corre-
sponding compute-optimal (Hoffmann et al., 2022)
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amount of data. In order to verify the generalizabil-
ity of our method, the small- and large-scale exper-
iments involve different datasets, training frame-
works and dense transformer model architectures.
An overview of the model and dataset sizes em-
ployed in our experiments is given in App. E.1. For
each combination, two models are trained: one us-
ing standard Adam and one using Coupled Adam
for the embeddings, see Eq. (24). Both variants use
standard Adam for all non-embedding parameters.
The various metrics we employ to assess both the
general model performance and the quality of the
model embeddings will be discussed in Sec. 4.3.

4.1 Small-scale Experiments

Our small-scale experiments use the OpenWebText
Corpus (Gokaslan and Cohen, 2019) and the GPT-
2 tokenizer (Radford et al., 2019). The model
architecture also follows GPT-2, while the hy-
perparameter setup is taken from GPT-3 (Brown
et al., 2020), see App. E.2 for further details.
An implementation based on nanoGPT (Karpa-
thy, 2022) is used. We define a grid (D,N) with
dataset sizes D ∈ {5B, 10B, 20B} and model sizes
N ∈ {125M, 355M, 760M}, and repeat each ex-
periment S = 3 times with different seeds in order
to estimate uncertainties and assess statistical sig-
nificance.

4.2 Large-scale Experiments

For our large-scale experiments, we use the SlimPa-
jama dataset (Soboleva et al., 2023) and the GPT-
2 tokenizer. A state-of-the-art dense transformer
model architecture akin to (Touvron et al., 2023)
is chosen, including e.g. RoPE embeddings (Su
et al., 2023) and the SwiGLU activation function
(Shazeer, 2020). Details can be found in App. E.2.
The experiments are conducted using Modalities
(Lübbering et al., 2024) as the training framework.
We consider two model sizes, 1.3B and 2.6B. In or-
der to cover the two common scenarios of compute-
optimal training and overtraining, we conduct two
sets of experiments: Firstly, we use near compute-
optimal dataset sizes, 26B and 52B tokens, respec-
tively. Secondly, we increase the number of tokens
by a factor 4, resulting in 105B and 210B tokens,
respectively. Each large-scale experiment is per-
formed S = 1 times.

4.3 Evaluation

Upstream performance is measured in terms of
test loss, while downstream performance is evalu-

ated using the Language Model Evaluation Harness
(Gao et al., 2023) on the following tasks: ARC
easy and challenge (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), LAMBADA (Paperno et al.,
2016), RACE (Lai et al., 2017), TruthfulQA (Lin
et al., 2022) and WinoGrande (Sakaguchi et al.,
2020). More concretely, the considered metric is
the average3 accuracy, which we will denote by
Acc. To assess the quality of the embeddings, we
first compute their isotropy, defined as (Arora et al.,
2016; Mu et al., 2018)

Iso(E) :=
minc∈X Z(c)

maxc∈X Z(c)
, (25)

where E ∈ RH×V is the embedding matrix,
Z(c) =

∑V
i=1 exp(c

T ei) is the partition function
and X = {c} is the set of eigenvectors c ∈ RH

of EET ∈ RH×H . Secondly, the 2-norm ∥µ∥ of
the mean embedding, see Eq. (9), and the average
2-norm of the embeddings ∥ei∥ = 1

V

∑V
i=1 ∥ei∥ as

well as their ratio

∥µ∥r := ∥µ∥/∥ei∥ (26)

are determined. In addition, we evaluate the mod-
els on embedding benchmarks for word similarity
and relatedness, to assess how well they represent
semantic meaning. Following Biś et al. (2021), we
consider the benchmarks SimLex999 (Hill et al.,
2015), MEN (Bruni et al., 2014), WordSim353
(Finkelstein et al., 2001) and Stanford Rare Words
(Luong et al., 2013). Each dataset provides pairs
of words labeled with a ground truth score that
represents the words’ semantic similarity. We de-
rive model scores from the cosine similarity of the
corresponding embedding vectors, and report the
Pearson correlation of the two scores averaged over
the datasets, which we denote by r. Finally, some
additional important properties of the embedding
matrix are investigated. We study the correlation
between the length of an embedding vector and the
unigram probability,

ρ := 100 · corr
(
(∥ei∥)Vi=1, p̃

)
, (27)

to measure how well the former represents the latter.
Furthermore, the condition number κ, defined as
the ratio of the smallest and largest singular values
of the embedding matrix, is determined in percent:

κ := 100 · miniΣii

maxiΣii
(28)

Here, E = UΣV T denotes the singular value de-
composition of the embedding matrix.

3Individual task performance is reported in App. G.3.
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D N Adam L (↓) Acc (↑) Iso (↑) ∥µ∥ (↓) ∥µ∥r (↓) r (↑) ρ (↑) κ (↑)

5B

125M Standard 3.14 (0) 0.340 (2) 0.31 (2) 1.10 (6) 0.67 (3) 15 (3) -54 (3) 0.6 (1)
Coupled 3.12 (1) 0.339 (2) 0.94 (1) 0.02 (0) 0.01 (0) 55 (0) 87 (1) 4.8 (2)

355M Standard 2.95 (0) 0.352 (3) 0.44 (2) 0.81 (2) 0.67 (1) 16 (2) -47 (0) 0.8 (0)
Coupled 2.93 (0) 0.350 (4) 0.98 (0) 0.01 (0) 0.01 (0) 56 (1) 86 (0) 6.8 (4)

760M Standard 2.85 (0) 0.360 (3) 0.43 (1) 0.84 (1) 0.63 (0) 14 (3) -49 (2) 0.7 (0)
Coupled 2.86 (0) 0.357 (3) 0.97 (0) 0.01 (0) 0.01 (0) 55 (1) 85 (1) 6.9 (3)

10B

125M Standard 3.07 (0) 0.343 (3) 0.21 (3) 1.58 (5) 0.75 (0) 9 (2) -64 (5) 0.4 (0)
Coupled 3.03 (0) 0.343 (1) 0.91 (1) 0.05 (0) 0.02 (0) 57 (2) 82 (0) 3.6 (8)

355M Standard 2.86 (0) 0.359 (2) 0.35 (2) 1.01 (4) 0.74 (2) 10 (3) -55 (3) 0.5 (0)
Coupled 2.83 (0) 0.365 (2) 0.96 (0) 0.02 (0) 0.01 (0) 57 (1) 83 (1) 5.3 (2)

760M Standard 2.75 (0) 0.375 (2) 0.38 (3) 0.97 (4) 0.66 (2) 11 (2) -56 (1) 0.5 (0)
Coupled 2.74 (1) 0.372 (3) 0.96 (0) 0.02 (0) 0.01 (0) 57 (0) 84 (0) 6.2 (0)

20B

125M Standard 3.03 (0) 0.346 (1) 0.10 (3) 2.14 (7) 0.82 (2) 5 (1) -66 (2) 0.3 (0)
Coupled 2.97 (0) 0.350 (1) 0.83 (1) 0.11 (0) 0.03 (0) 57 (2) 77 (0) 1.7 (5)

355M Standard 2.79 (0) 0.366 (4) 0.25 (2) 1.32 (8) 0.82 (2) 5 (2) -65 (4) 0.3 (0)
Coupled 2.75 (0) 0.372 (6) 0.95 (2) 0.04 (0) 0.02 (0) 57 (1) 78 (0) 4.1 (3)

760M Standard 2.68 (1) 0.385 (3) 0.28 (2) 1.21 (8) 0.73 (3) 3 (4) -64 (2) 0.3 (0)
Coupled 2.65 (0) 0.392 (2) 0.94 (2) 0.03 (0) 0.01 (0) 58 (0) 81 (0) 4.4 (2)

Table 1: Results of our small-scale experiments. D and N denote the dataset and model size, respectively. L is the test loss, and
the column Acc represents the accuracy averaged over the downstream tasks listed in Sec. 4.3. The other evaluation metrics are
defined in the same section, see Eqs. (25)-(28). The arrow in parentheses indicates whether a higher or lower value is desirable.
Every training was conducted S = 3 times with different seeds, and the numbers represent the (rounded) averages and standard
deviations in the following shorthand notation format: 0.123 (4) ≡ 0.123 ± 0.004. For each combination (D,N) and each
metric, the respective better value is highlighted in bold if the (unrounded) difference is significant according to Student’s t-test
with a one-sided confidence level of α = 95% (see App. F for details). Plots for L and Acc are shown in Fig. 2.

5× 109 1010 2× 1010

Dataset Size D [Tokens]

−5

−4

−3

−2

−1

0

L(
C

ou
p

le
d

)
−
L(

S
ta

n
d

ar
d

)

×10−2

125M

350M

760M

5× 109 1010 2× 1010

Dataset Size D [Tokens]

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

A
cc

(C
ou

p
le

d
)
−

A
cc

(S
ta

n
d

ar
d

)

×10−2

125M

350M

760M

Figure 2: Difference in loss (left) and average downstream task accuracy (right) between Coupled Adam and standard Adam,
for the different dataset sizes D (horizontal axis) and model sizes N (colors) of the small-scale experiments. The vertical bars
indicate the one-sided 95% confidence interval for the difference to be significant. In order to avoid overlaps, the data points for
N = 125M and N = 760M have been slightly shifted to the left and right, respectively.

5 Results

5.1 Small-scale Experiments

The results of the small-scale experiments
(Sec. 4.1) are listed in Tab. 1 and illustrated in
Fig. 2. We find that both upstream and down-
stream performance are better with Coupled Adam
if the dataset size is sufficiently large. In fact,
the improvement appears to increase monotoni-
cally with the dataset size D. In addition, the
embedding-specific metrics benefit greatly from
Coupled Adam. In particular, the isotropy reaches
values above 0.90 (with a single exception), while
r and κ are hugely improved as well. The mean

embedding is evidently close to the origin. Finally,
Coupled Adam leads to a significantly stronger
(positive) correlation ρ between the length of an
embedding vector and its associated unigram prob-
ability.

5.2 Large-scale Experiments

The results of the large-scale experiments (Sec. 4.2)
are shown in Tab. 2. We observe very similar pat-
terns as for the small-scale experiments. Although
upstream and downstream performance are worse
with Coupled Adam for compute-optimal dataset
sizes, they are better if 4 times larger datasets are
used. Note that for the small-scale experiments, the
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D N Adam L (↓) Acc (↑) Iso (↑) ∥µ∥ (↓) ∥µ∥r (↓) r (↑) ρ (↑) κ (↑)

26B 1.3B Standard 2.433 0.402 0.50 0.67 0.45 53 -41 1.2
Coupled 2.448 0.396 0.96 0.05 0.03 66 74 4.5

52B 2.6B Standard 2.257 0.451 0.51 0.68 0.40 55 -44 1.0
Coupled 2.273 0.441 0.86 0.10 0.06 66 74 3.0

105B 1.3B Standard 2.278 0.446 0.40 0.87 0.43 52 -52 0.6
Coupled 2.277 0.447 0.82 0.23 0.09 67 71 2.2

210B 2.6B Standard 2.131 0.490 0.34 0.96 0.41 54 -52 0.5
Coupled 2.129 0.492 0.65 0.49 0.14 67 69 1.5

Table 2: Results of our large-scale experiments. See the caption of Tab. 1 for an explanation of the column names. For each
combination (D,N) and each metric, the respective better value is highlighted in bold.

upstream and downstream performance were found
to be better already for compute-optimal dataset
sizes. We attribute this to the fact that the batch
size for the large-scale experiments is five times
larger (cf. App. E.2), which results in fewer opti-
mization steps for the same dataset size. Regarding
the embedding-specific metrics, we again find sig-
nificant and consistent improvements throughout
all experiments. However, we do observe a cer-
tain shift of the mean embedding vector away from
the origin, even if Coupled Adam is used. The
shift becomes more pronounced as the model and
dataset sizes increase, and is also reflected in a re-
duced isotropy. As we shall see in the following
section, it comes along with optimal model perfor-
mance though. An obvious hypothesis in light of
our analysis in Sec. 2 is that the residual shift of
the mean embeddings is due to weight tying. This
is supported by the results of Machina and Mer-
cer (2024), who find improved isotropy for models
without weight tying. We leave it for future work
to verify the hypothesis.

6 Ablations

We perform some additional experiments to shed
further light on how Coupled Adam works. A
model size of N = 125M and the dataset sizes
D ∈ {5B, 10B, 20B} from the small-scale experi-
ments (Sec. 4.1) are used, and each experiment is
repeated S = 3 times with different seeds.

6.1 Scaled Coupled Adam

While coupling the second moment of the embed-
ding gradients using the average in Eq. (24) is the
canonical choice, one could also use a multiple of
the average. We conduct additional experiments
where the coupled second moment is scaled by
powers of 2:

ν̂(τ) → 2−n · ν̂(τ) , (29)

with scaling exponents n ∈ {z ∈ Z |−5 ≤ z ≤ 5}.
Note that using a scaling exponent n ̸= 0 is equiv-
alent to using a different effective learning rate for
the embeddings than for all the other parameters,
via Eqs. (24) and (14). In particular, a smaller
scaling exponent n corresponds to a smaller effec-
tive learning rate and vice versa. The results for
D = 20B are shown in Tab. 3, and the dependency
of the loss on the scaling exponent n for that very
dataset size is visualized in Fig. 3. Results for other
dataset sizes and plots for the other evaluation met-
rics can be found in App. G.1. Our data shows
that the loss reaches a minimum close to n = 0,
with a rather weak dependence on the scaling expo-
nent in its vicinity. Nevertheless, for the smallest
and largest scaling exponents studied, we find that
the loss gets significantly worse. Regarding down-
stream performance, we see indications of a similar
pattern, although the statistical uncertainties are too
large to draw definite conclusions. The semantic
usefulness of the embedding vectors as measured
by r seems to suffer from a scaling exponent n < 0.
For the isotropy and the mean embedding, we ob-
serve the opposite behavior. They benefit from
a smaller scaling exponent n and the associated
smaller embedding updates, with the effect being
more pronounced the larger the training dataset
size D. However, this also negatively affects the
model performance. Hence, we conclude that, at
least within the range of our experiments, the opti-
mal setting is to have the same learning rate for the
embedding parameters as for all the other model
parameters, as implied by n = 0 and Eq. (24).

6.2 SGD

We train several models using SGD with mo-
mentum γ = 0.9 as the optimizer for the em-
beddings. Since Adam via the inverse square
root of its second moment effectively scales the
learning rate up by a factor comprising orders
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n L (↓) Acc (↑) Iso (↑) ∥µ∥ (↓) ∥µ∥r (↓) r (↑) ρ (↑) κ (↑)

-5 2.99 (0) 0.349 (2) 0.97 (0) 0.01 (0) 0.01 (0) 55 (1) 76 (3) 6.0 (6)
-4 2.99 (0) 0.348 (5) 0.97 (1) 0.02 (0) 0.01 (0) 55 (1) 78 (3) 4.4 (1)
-3 2.98 (0) 0.352 (5) 0.95 (1) 0.03 (0) 0.02 (0) 57 (2) 78 (2) 2.7 (5)
-2 2.98 (0) 0.352 (1) 0.94 (2) 0.04 (0) 0.02 (0) 57 (1) 78 (2) 2.3 (4)
-1 2.98 (0) 0.348 (3) 0.87 (2) 0.07 (0) 0.02 (0) 57 (1) 79 (2) 2.1 (3)

0 2.97 (0) 0.350 (1) 0.83 (1) 0.11 (0) 0.03 (0) 57 (2) 77 (0) 1.7 (5)

1 2.97 (0) 0.351 (4) 0.66 (6) 0.20 (1) 0.03 (0) 56 (0) 78 (2) 1.6 (5)
2 2.98 (0) 0.353 (2) 0.47 (6) 0.34 (1) 0.04 (0) 58 (1) 78 (2) 1.6 (9)
3 2.97 (0) 0.352 (0) 0.27 (4) 0.54 (2) 0.05 (0) 58 (2) 78 (1) 2.0 (7)
4 2.97 (1) 0.352 (1) 0.09 (0) 0.83 (2) 0.05 (0) 58 (1) 77 (1) 2.3 (2)
5 2.98 (0) 0.349 (4) 0.01 (1) 1.32 (2) 0.06 (0) 57 (1) 75 (1) 2.1 (6)

Table 3: Results of our experiments with Scaled Coupled Adam, for N = 125M
and D = 20B. Values are highlighted in bold if they are significantly better than
all the other values in the same column, see the caption of Tab. 1 for more details.
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Figure 3: Dependency of the loss on the
scaling exponent n, see Eq. (29), for N =
125M and D = 20B. The plot shows the
difference to the loss obtained for n = 0.

of magnitude (see Eq. (21)), we explicitly mul-
tiply the learning rate in SGD by a factor f of
comparable size4. A hyperparameter search using
f ∈ {100, 200, 300, 400, 500, 600} is performed
to search for the optimum with respect to upstream
performance (loss), see App. G.2 for details. It is
found at f = 300 for D ∈ {5B, 10B} and f = 400
for D = 20B. The respective optimal model is
compared to its counterpart trained with Coupled
Adam in Tab. 4. The results show that, although
SGD is advantageous with respect to isotropy, the
mean embedding shift and the condition number,
Coupled Adam consistently achieves better results
on all upstream and downstream task metrics, while
having one less hyperparameter to fine-tune.

7 Related Work

Gao et al. (2019) first described the anisotropy is-
sue, which they referred to as representation de-
generation problem, and suggested cosine regular-
ization as a mitigation strategy. Alternative tech-
niques to address the problem have been developed,
including adversarial noise (Wang et al., 2019),
spectrum control (Wang et al., 2020) and Laplacian
regularization (Zhang et al., 2020). Biś et al. (2021)
have shown that the anisotropy of embeddings can
for the most part be traced back to a common shift
of the embeddings in a dominant direction. They
called this phenomenon common enemy effect, and
provided a semi-quantitative explanation (Eq. (5)),
which we developed further in the present work
by including the optimizer in the analysis. In Yu
et al. (2022), Adaptive Gradient Gating is proposed,
based on the empirical observation that it is the gra-
dients for embeddings of rare tokens that cause
anisotropy. Our analysis conforms to this finding

4Note that the difference between momentum in SGD and
the first moment in Adam also plays a role here.

and attributes it to a massive up-scaling of the gra-
dients for rare embeddings with Adam, cf. Fig. 1.
Machina and Mercer (2024) have demonstrated that
large Pythia models (Biderman et al., 2023) show
improved isotropy compared to similar models, and
attribute this to the absence of weight tying. This
is in accordance with our analysis of the unembed-
ding gradients in conjunction with Adam, Sec. 2.
While all the previously mentioned papers use av-
erage cosine similarity (Ethayarajh, 2019) or Iso
from Eq. (25) to quantify the geometry of embed-
ding vectors, Rudman et al. (2022) deviate from
this. Their notion of isotropy is based solely on
the embeddings’ covariance matrix and embodied
by the metric IsoScore. In particular, IsoScore is
mean-agnostic, while Iso strongly correlates with
the mean embedding (see e.g. Tab. 1). In a follow-
up paper (Rudman and Eickhoff, 2024), IsoScore
is used to regularize isotropy, which appears to
benefit performance for fine-tuning tasks. Finally,
concurrent to our work, Zhao et al. (2024) have
investigated the importance of using the second
moment in Adam with regard to performance and
stability. They found that simplified variants of
Adam that use the same effective learning rate ei-
ther for the whole embedding matrix (Adalayer)
or each embedding vector (Adalayer*) are slightly
worse than Adam but better than SGD. Adalayer*
is similar to Coupled Adam, but corresponds to the
second moment averaged over hidden space instead
of vocabulary space.

8 Conclusions

Our work addresses the well-known anisotropy
problem for LLM embeddings. We have advanced
the theoretical understanding of the phenomenon
by showing that it is a combination of the com-
mon enemy effect and the individual second mo-
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D N Optimizer L (↓) Acc (↑) Iso (↑) ∥µ∥ (↓) ∥µ∥r (↓) r (↑) ρ (↑) κ (↑)

5B 125M SGD (300) 3.17 (0) 0.333 (3) 0.99 (0) 0.00 (0) 0.01 (0) 45 (1) 71 (1) 15.5 (4)
Coupled Adam 3.12 (1) 0.339 (2) 0.94 (1) 0.02 (0) 0.01 (0) 55 (0) 87 (1) 4.8 (2)

10B 125M SGD (300) 3.07 (1) 0.341 (4) 0.99 (0) 0.01 (0) 0.01 (0) 49 (1) 71 (4) 12.2 (2)
Coupled Adam 3.03 (0) 0.343 (1) 0.91 (1) 0.05 (0) 0.02 (0) 57 (2) 82 (0) 3.6 (8)

20B 125M SGD (400) 3.00 (0) 0.346 (5) 0.98 (1) 0.01 (0) 0.02 (0) 54 (0) 76 (5) 7.4 (1.1)
Coupled Adam 2.97 (0) 0.350 (1) 0.83 (1) 0.11 (0) 0.03 (0) 57 (2) 77 (0) 1.7 (5)

Table 4: Comparison of models whose embeddings were trained with SGD and Coupled Adam. The SGD models were obtained
after hyperparameter search for the learning rate. The associated factor f is specified in parentheses in the Optimizer column.
Bold values indicate better results with statistical significance, see the caption of Tab. 1 for more details.

ments in Adam that causes a collective shift of
the embedding vectors away from the origin. To
mitigate the problem, we have introduced Cou-
pled Adam, which enforces the same effective
learning rate for every embedding vector, and
thus suppresses the collective shift of the em-
beddings. We have found that Coupled Adam
consistently improves embedding-specific metrics
across all experiments, while also achieving better
downstream and upstream performance for large
datasets, as they are typically used in LLM training.
The code to reproduce our results is available at
github.com/flxst/coupled-adam .

9 Limitations

Although our method is generally applicable to
all common LLM architectures, as they share the
same language modeling head and embeddings,
only dense decoders were used in our experiments.
In addition, only models with up to N = 2.6B pa-
rameters have been tested. Our experiments involve
pre-training and few-shot downstream evaluation,
yet fine-tuning tasks have not been included. The
cosine decay learning rate schedule was applied
throughout all experiments (App. E.2). Alterna-
tives such as an infinite learning rate schedule are
not incorporated in our study. It would also be
interesting to extend our work to optimizers other
than SGD and Adam. Furthermore, as mentioned
at the end of Sec. 5, we have not explicitly verified
that the slight residual shift of the mean embed-
ding, which is observed even for Coupled Adam,
is caused by weight tying. Finally, we have used a
straightforward implementation of Coupled Adam,
closely following Algorithm 1. More sophisticated
implementations might lead to increased efficiency
and further improvements; we leave it for future
work to investigate this.
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A Unigram Probability Distribution

Fig. 4 shows the unigram probability distribu-
tion for the example of the OpenWebText Corpus
dataset and the GPT-2 tokenizer.
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Figure 4: Logarithm log(p̃i) of the unigram probability dis-
tribution for the OpenWebText Corpus and the GPT-2 to-
kenizer. The maximum probability is maxi p̃i ≈ 0.037
or maxi log(p̃i) ≈ −3.30. The minimum probability (not
shown) is mini p̃i = 0 or mini log(p̃i) = −∞.

B Embedding Gradients

We explicitly derive Eq. (5), which we recall here
for convenience:

gi :=
∂L
∂ei

= − (δit − pi) · h (5)

The chain rule yields

∂L
∂ei

=
V∑

k=1

∂L
∂pt

· ∂pt
∂lk

· ∂lk
∂ei

, (30)
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where the individual factors can directly be ob-
tained from Eqs. (2)-(4):

∂L
∂pt

= − 1

pt
(31)

∂pt
∂lk

=
δkt exp (lt) · Σ− exp (lt) exp (lk)

Σ2

= δktpt − ptpk

= pt(δkt − pk) (32)
∂lk
∂ei

= δkih (33)

Note that in the first line of Eq. (32), we use the
abbreviation Σ =

(∑V
j=1 exp (lj)

)
. Inserting

Eqs. (31), (32) and (33) into Eq. (30) directly leads
to Eq. (5):

∂L
∂ei

= −
V∑

k=1

1

pt
· pt(δkt − pk) · δkih

= −
V∑

k=1

(δkt − pk) · δkih

= −(δit − pi) · h
C SGD Algorithm

For completeness and comparison to (Coupled)
Adam as displayed in Algorithm 1, we summarize
the SGD algorithm in Algorithm 2.

Input: η (lr), e(0)i (initial embeddings), L(ei) (objective), γ
(momentum), T (number of time steps)
Output: e(T ) (final embeddings)
1: for τ = 1 . . . T do
2: for i = 1 . . . V do
3: g

(τ)
i ←∇eiL(τ)(e

(τ−1)
i )

4: if t > 1 then
5: b

(τ)
i ← γb

(τ−1)
i + g

(τ)
i

6: else
7: b

(τ)
i ← g

(τ)
i

8: e
(τ)
i ← e

(τ−1)
i − ηb

(τ)
i

9: return e(T )

Algorithm 2: Pseudocode for the SGD algorithm with op-
tional momentum, applied to the embedding vectors ei.

D Magnitude of the Second Moment in
Adam

In this appendix, the validity of

E [v̂i] ∝ p̃i (18)

is verified. Due to the linearity of lines 5 and 7 in
Algorithm 2, it suffices to show that the squared
gradient has the property in question:

E
[
g2i
]
∝ p̃i (34)

We do this in two different ways. First, we derive
Eq. (34) using a semi-theoretical approach with
minimal experimental input. Afterwards, we con-
firm the relationship in a purely experimental man-
ner.

D.1 Semi-theoretical Derivation
Here, we derive an expression for the expectation
value of the squared gradient in terms of simple
observables (Theorem 2). Subsequently, the de-
pendency of those observables on p̃i is determined
experimentally. Together, this will yield the pro-
portionality expressed by Eq. (34). We begin our
reasoning with a lemma.
Lemma 1 (Expectation Value Decomposition).
The expectation value of the squared gradient can
be decomposed into conditional expectation values
as follows:

E
[
g2i
]
= p̃i · E

[
g2i
∣∣ i = t

]

+ (1− p̃i) · E
[
g2i
∣∣ i ̸= t

]
(35)

Proof. Our starting point is the definition of the ex-
pectation value for the continuous random variable
g2i :

E
[
g2i
]
=

∫
g2i p(gi) dgi , (36)

where p denotes the probability distribution of gi.
Since the vocabulary item i can only be either the
true token t or not, we can decompose p into a sum
of joint probability distributions (using the law of
total probabilities), each of which can be expressed
in terms of conditional probabilities like so:

p(gi) = p(gi, i = t) + p(gi, i ̸= t)

= p(gi | i = t) · p(i = t)

+ p(gi | i ̸= t) · p(i ̸= t) (37)

Using the unigram probability p̃i = p(i = t), this
can also be written as

p(gi) = p̃i · p(gi | i = t)

+ (1− p̃i) · p(gi | i ̸= t) (38)

If we insert Eq. (38) back into Eq. (36), the expec-
tation value becomes

E
[
g2i
]
= p̃i ·

∫
g2i p(gi | i = t) dgi

+ (1− p̃i) ·
∫

g2i p(gi | i ̸= t) dgi ,

(39)

which by definition of the (conditional) expectation
value, Eq. (36), is equivalent to Eq. (35).

27230



Theorem 2 (Expectation Value Squared Gradient).
Given that the squared hidden state vector h2 is
independent of pi and whether i is the true token or
not, the expectation value of the squared gradient
g2i is given by

E
[
g2i
]
= S ·

[
p̃i ·X(i=t)

i + (1− p̃i) ·X(i ̸=t)
i

]
,

(40)

with

S := E
[
h2
]

(41)

X
(i=t)
i := E

[
(1− pi)

2
∣∣ i = t

]
(42)

X
(i ̸=t)
i := E

[
p2i
∣∣ i ̸= t

]
(43)

Proof. We start from Lemma 1 and the square of
the gradient,

g2i
(5)
= (δit − pi)

2 h2 (44)

Note that squared variables of vectors in RH al-
ways denote the elementwise (Hadamard) product,
e.g.

g2i ≡ gi ⊙ gi ∈ RH
≥0 , (45)

with strictly non-negative elements. Using Eq. (44),
the expectation values on the right side of Eq. (35)
can be expressed as

E
[
g2i
∣∣ i = t

]
= E

[
(1− pi)

2 · h2
∣∣ i = t

]
(46)

E
[
g2i
∣∣ i ̸= t

]
= E

[
p2i · h2

∣∣ i ̸= t
]

(47)

Given our assumptions regarding h2, its expecta-
tion value can be factored out:

E
[
g2i
∣∣ i = t

]
= S ·X(i=t)

i (48)

E
[
g2i
∣∣ i ̸= t

]
= S ·X(i ̸=t)

i (49)

Inserting Eqs. (48) and (49) into Eq. (35) yields
Eq. (40).

Note that Eq. (40) is a vector equation, with
E
[
g2i
]
, S ∈ RH

≥0 and p̃i, X
(i=t)
i , X

(i ̸=t)
i ∈ R≥0. It

states that the expectation value of g2i factorizes
into a global constant S that is i-independent, and
a factor that is i-dependent. The latter is a spe-
cific combination of the unigram probability p̃i,
determined by the data, and the conditional expec-
tation values X(i=t)

i and X
(i ̸=t)
i , determined by the

model.

Experimental Input Regarding the unigram
probability, we know that

1. p̃i ≪ 1.
This is the case for virtually all natural lan-
guage datasets with a common vocabulary
size of V > 10000, according to Zipf’s law.

The conditional expectation values X
(i=t)
i and

X
(i ̸=t)
i can be empirically estimated by applying

training data to different checkpoints. We con-
sider the three small-scale experiments of Sec. 4.1
with N ∈ {125M, 355M, 760M} and D = 20B,
and take ten equidistant checkpoints after D′ ∈
{2B, 4B, . . . , 20B} seen tokens for each of them.
We then continue pseudo-training on 20 batches (≈
2k samples or 2M tokens, see Tab. 5) of data using
a zero learning rate, and measure the conditional
probabilities in Eqs. (42, 43) from which our target
quantities can be estimated. Subsequently, linear
fits of the form

X
(i=t)
i = A(i=t) · p̃i (50)

X
(i ̸=t)
i = A(i ̸=t) · p̃i , (51)

with fit parameters A(i=t) and A(i ̸=t) are per-
formed. R2 is used to assess the quality of the fits.
In addition, the mutual information I between the
response and the explanatory variable is computed.
Since we observe only a very weak dependence of
the results for R2 and I on N and D′, we specify
the mean and standard deviation over all experi-
ments for them. Our findings are:

2. X
(i=t)
i is independent of p̃i.

The linear fits yield R2 = 0.003(1), and
the mutual information is I

(
X

(i=t)
i ; p̃i

)
=

0.14(2).

3. X
(i ̸=t)
i is proportional to p̃i.

The linear fits yield R2 = 0.92(1), and
the mutual information is I

(
X

(i ̸=t)
i ; p̃i

)
=

0.50(2).

The three empirical results above, together with
Theorem 2, immediately lead to Eq. (34).

D.2 Experimental Confirmation
We reuse the experiments from the previous section
to measure the second moment v̂i directly, in order
to estimate E [v̂i]. Again, linear fits of the form

E [v̂i] = A · p̃i (52)
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are performed and the mutual information is com-
puted. We find

4. E [v̂i] is proportional to p̃i.
The linear fits yield R2 = 0.85(7), and
the mutual information is I (E [v̂i] ; p̃i) =
1.18(9).

The results for N = 125M and D = D′ = 20B
are depicted in Fig. 5, as an example.

10−7 10−6 10−5 10−4 10−3 10−2 10−1

p̃i

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

E
[v̂
i]

linear fit

Figure 5: Experimental results for E [v̂i] (vertical axis) vs. p̃i
(horizontal axis) for N = 125M and D = D′ = 20B. The
blue line shows the linear fit with R2 = 0.91.

Note that while R2 and I are again virtually in-
dependent of N and D′, the fit parameter A is not.
Instead, it seems to increase with D′, as shown in
Fig. 6. However, as stated in Eq. (19), the order

2 4 6 8 10 12 14 16 18 20

D′ [Tokens] ×109

0.0

0.5

1.0

1.5

2.0

A

×10−4

125M

350M

760M

Figure 6: Experimental results for the linear fit parameter A
as a function of N and D′.

of magnitude is A ≈ 10−4 throughout our experi-
ments.

E Experimental Details

E.1 Model and Dataset Sizes

The model sizes N and dataset sizes D employed
in our experiments are depicted in Fig. 7.
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compute-optimal
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Figure 7: Overview of the dataset (horizontal axis) and model
sizes (vertical axis) involved in our small-scale (blue, green
and orange circles) and large-scale (red squares) experiments.
The dashed, black line shows N = D/20, which is approxi-
mately the compute-optimal trajectory according to Hoffmann
et al. (2022).

E.2 Training Hyperparameters

In Tab. 5, we list the general hyperparameters
used in our small-scale (Sec. 4.1) and large-scale
(Sec. 4.2) experiments. During warm-up, the learn-

Description Small-scale Large-scale

optimizer AdamW
β1 0.9
β2 0.95
ϵ 1e-8
weight decay 0.1
gradient clipping 1.0
dropout 0.0
weight tying true
vocab size 50304
learning rate schedule cosine decay
layer normalization LayerNorm
precision BF16

hidden activation GeLU SwiGLU
positional embedding absolute (learned) RoPE
sequence length 1024 2048
batch size (samples) 96 256
batch size (tokens) ∼100k ∼500k
warmup 100 steps 1% of steps
training framework nanoGPT Modalities
training parallelism DDP FSDP

Table 5: General hyperparameters used in our two sets of
experiments.

ing rate is increased from zero to the maximum
learning rate. This is followed by a cosine decay
which reduces the learning rate to 10% of the maxi-
mum at the end of training. Note that weight decay
is applied only to linear layers, not layer norms or
embeddings. Tab. 6 shows the hyperparameters re-
lated to model size, following GPT-3 (Brown et al.,
2020).

F Error Analysis and Statistical
Significance

For the error analysis, two separate random vari-
ables, X0 and X1, are considered. The symbol X
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N lr heads layers emb. dim.

125M 6.0e-4 12 12 768
350M 3.0e-4 16 24 1024
760M 2.5e-4 16 24 1536
1.3B 2.0e-4 32 24 2048
2.6B 1.6e-4 32 32 2560

Table 6: Model-size dependent hyperparameters used in our
experiments. N denotes the model size in terms of parameters,
while lr corresponds to the maximum learning rate.

represents one of the metrics discussed in Sec. 4.3,
while 0 and 1 stand for two approaches that are
to be compared, like standard Adam and Coupled
Adam, for instance. For each of the two random
variables i = {0, 1}, we conduct and evaluate S
training runs with different seeds, yielding results

{X(1)
i , . . . , X

(S)
i } (53)

While it is desirable to have a large sample size S,
it is prohibitively expensive for large model and
dataset sizes to repeat training runs. We use

S = 3 (54)

except for the large-scale experiments (Sec. 4.2),
where we restrict ourselves to

S = 1 (55)

We are interested in the difference

d = X1 −X0 (56)

For S = 1, it can be computed straight forwardly.
However, no statement about the statistical uncer-
tainty or significance of d can be made. In the case
of S = 3, we apply a one-sided Student’s t-test
with a confidence level of

α = 95% (57)

First, the sample means

X̄i =
1

S

S∑

s=1

X
(s)
i (58)

and the corrected sample standard deviations

σ̂2
i =

1

S − 1

S∑

s=1

(
X

(s)
i − X̄i

)2
(59)

for the two samples i ∈ {0, 1} are estimated. The
sample means from Eq. (58) are combined to an
estimate for their difference,

d̄ = X̄1 − X̄0 (60)

and the sample standard deviations from Eq. (59)
are propagated to the sample standard deviation of
d via Gaussian error propagation:

σ̂d =

√(
∂d

∂X0
· σ̂0
)2

+

(
∂d

∂X1
· σ̂1
)2

(56)
=
√
σ̂2
0 + σ̂2

1 (61)

Student’s t-distribution for the chosen confidence
level α (see Eq. (57)) and the

ν = S − 1
(54)
= 2 (62)

degrees of freedom yields

tα,ν = 2.92 (63)

With S, σd and tα,ν from Eqs. (54), (61) and (63)
as ingredients, the one-sided confidence threshold
for the difference can be computed as

dsignificance = tα,ν ·
σ̂d√
S

(64)

Hence, the estimate d̄ from Eq. (60) is considered
a statistically significant improvement of approach
i = 1 over approach i = 0 if

d̄ < −dsignificance (65)

for metrics where smaller values are desirable (e.g.
L), and

d̄ > dsignificance (66)

for metrics where larger values are better (e.g.
Acc).

G Additional Results

G.1 Scaled Coupled Adam
Tab. 3 of Sec. 6.1 shows the results of varying
the scaling exponent n (see Eq. (29)) for D =
20B. The dependency of the loss is visualized in
Fig. 3. Here, in Fig. 8, we extend the visualization
of the results to D ∈ {5B, 10B, 20B} and the other
evaluation metrics.

G.2 SGD
In Tab. 4 of Sec. 6.2, we showed results for SGD
using the best hyperparameter f . Detailed results
of the corresponding hyperparameter searches can
be found in Tab. 7.

G.3 Individual Downstream Task
Performance

In Tab. 8-11, we list the individual downstream task
performance for all our experiments (Sec. 4-6).
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D N Optimizer L (↓) Acc (↑) Iso (↑) ∥µ∥ (↓) ∥µ∥r (↓) r (↑) ρ (↑) κ (↑)

5B 125M

SGD (100) 3.23 (0) 0.325 (1) 1.00 (0) 0.00 (0) 0.01 (0) 33 (1) 59 (1) 25.0 (1.1)
SGD (200) 3.19 (1) 0.327 (2) 1.00 (0) 0.00 (0) 0.01 (0) 41 (1) 66 (1) 19.2 (9)
SGD (300) 3.17 (0) 0.333 (3) 0.99 (0) 0.00 (0) 0.01 (0) 45 (1) 71 (1) 15.5 (4)
SGD (400) 3.18 (2) 0.332 (3) 0.99 (0) 0.01 (0) 0.01 (0) 48 (3) 75 (1) 14.2 (5)
SGD (500) 3.19 (2) 0.330 (6) 0.99 (0) 0.01 (0) 0.01 (0) 49 (1) 77 (1) 13.2 (2)
SGD (600) 3.24 (2) 0.326 (3) 0.99 (0) 0.01 (0) 0.01 (0) 48 (2) 79 (1) 11.6 (2)

Standard Adam 3.14 (0) 0.340 (2) 0.31 (2) 1.10 (6) 0.67 (3) 15 (3) -54 (3) 0.6 (1)
Coupled Adam 3.12 (1) 0.339 (2) 0.94 (1) 0.02 (0) 0.01 (0) 55 (0) 87 (1) 4.8 (2)

D N Optimizer L (↓) Acc (↑) Iso (↑) ∥µ∥ (↓) ∥µ∥r (↓) r (↑) ρ (↑) κ (↑)

10B 125M

SGD (100) 3.13 (1) 0.337 (4) 1.00 (0) 0.00 (0) 0.01 (0) 41 (1) 58 (4) 22.2 (7)
SGD (200) 3.09 (0) 0.339 (4) 0.99 (0) 0.01 (0) 0.01 (0) 48 (1) 65 (4) 16.1 (3)
SGD (300) 3.07 (1) 0.341 (4) 0.99 (0) 0.01 (0) 0.01 (0) 49 (1) 71 (4) 12.2 (2)
SGD (400) 3.07 (0) 0.340 (3) 0.99 (1) 0.01 (0) 0.01 (0) 51 (2) 76 (3) 10.7 (8)
SGD (500) 3.09 (0) 0.338 (3) 0.99 (0) 0.01 (0) 0.01 (0) 52 (1) 79 (3) 10.3 (2)
SGD (600) 3.11 (1) 0.341 (4) 0.98 (1) 0.01 (0) 0.01 (0) 53 (0) 81 (1) 9.4 (7)

Standard Adam 3.07 (0) 0.343 (3) 0.21 (3) 1.58 (5) 0.75 (0) 9 (2) -64 (5) 0.4 (0)
Coupled Adam 3.03 (0) 0.343 (1) 0.91 (1) 0.05 (0) 0.02 (0) 57 (2) 82 (0) 3.6 (8)

D N Optimizer L (↓) Acc (↑) Iso (↑) ∥µ∥ (↓) ∥µ∥r (↓) r (↑) ρ (↑) κ (↑)

20B 125M

SGD (100) 3.05 (1) 0.343 (2) 0.99 (0) 0.01 (0) 0.01 (0) 50 (1) 57 (7) 18.4 (4)
SGD (200) 3.02 (0) 0.345 (1) 0.99 (0) 0.01 (0) 0.01 (0) 52 (1) 64 (7) 12.7 (7)
SGD (300) 3.01 (1) 0.350 (1) 0.98 (1) 0.01 (0) 0.02 (0) 53 (2) 70 (6) 9.0 (2)
SGD (400) 3.00 (0) 0.346 (5) 0.98 (1) 0.01 (0) 0.02 (0) 54 (0) 76 (5) 7.4 (1.1)
SGD (500) 3.01 (1) 0.348 (4) 0.98 (1) 0.02 (0) 0.02 (0) 55 (1) 78 (5) 7.5 (1.6)
SGD (600) 3.04 (3) 0.348 (5) 0.95 (3) 0.02 (0) 0.02 (0) 52 (5) 81 (5) 6.8 (2.8)

Standard Adam 3.03 (0) 0.346 (1) 0.10 (3) 2.14 (7) 0.82 (2) 5 (1) -66 (2) 0.3 (0)
Coupled Adam 2.97 (0) 0.350 (1) 0.83 (1) 0.11 (0) 0.03 (0) 57 (2) 77 (0) 1.7 (5)

Table 7: Results of our experiments with SGD. Values are highlighted in bold if they are significantly better than all the other
values in the same column.
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D N Adam ARC easy ARC challenge HellaSwag LAMBADA RACE TruthfulQA WinoGrande Acc (↑)

5B

125M Standard 0.41 (0) 0.19 (1) 0.27 (0) 0.26 (0) 0.28 (1) 0.45 (0) 0.52 (1) 0.340 (2)
Coupled 0.40 (0) 0.18 (1) 0.28 (0) 0.27 (0) 0.28 (0) 0.45 (1) 0.52 (1) 0.339 (2)

355M Standard 0.43 (1) 0.19 (1) 0.29 (0) 0.31 (0) 0.29 (0) 0.43 (0) 0.52 (1) 0.352 (3)
Coupled 0.43 (2) 0.19 (1) 0.29 (0) 0.31 (1) 0.29 (0) 0.43 (1) 0.51 (0) 0.350 (4)

760M Standard 0.46 (1) 0.20 (1) 0.30 (0) 0.34 (1) 0.29 (1) 0.43 (1) 0.50 (1) 0.360 (3)
Coupled 0.45 (0) 0.20 (1) 0.30 (0) 0.34 (1) 0.29 (1) 0.42 (1) 0.50 (0) 0.357 (3)

10B

125M Standard 0.42 (1) 0.19 (0) 0.28 (0) 0.29 (1) 0.28 (1) 0.44 (1) 0.51 (1) 0.343 (3)
Coupled 0.42 (1) 0.19 (1) 0.28 (0) 0.29 (0) 0.28 (1) 0.44 (0) 0.50 (1) 0.343 (1)

355M Standard 0.45 (1) 0.19 (1) 0.30 (0) 0.35 (0) 0.29 (1) 0.41 (0) 0.51 (1) 0.359 (2)
Coupled 0.46 (1) 0.19 (1) 0.30 (0) 0.35 (1) 0.30 (1) 0.42 (0) 0.52 (1) 0.365 (2)

760M Standard 0.47 (0) 0.21 (0) 0.32 (0) 0.39 (1) 0.30 (1) 0.41 (0) 0.53 (1) 0.375 (2)
Coupled 0.48 (1) 0.21 (1) 0.32 (0) 0.38 (0) 0.30 (1) 0.41 (1) 0.51 (1) 0.372 (3)

20B

125M Standard 0.43 (0) 0.18 (1) 0.28 (0) 0.29 (1) 0.28 (1) 0.44 (1) 0.51 (1) 0.346 (1)
Coupled 0.44 (1) 0.19 (1) 0.29 (0) 0.31 (0) 0.29 (1) 0.43 (1) 0.51 (0) 0.350 (1)

355M Standard 0.46 (0) 0.21 (1) 0.31 (0) 0.37 (2) 0.29 (0) 0.42 (1) 0.51 (1) 0.366 (4)
Coupled 0.47 (1) 0.21 (1) 0.32 (0) 0.38 (1) 0.30 (0) 0.42 (1) 0.51 (0) 0.372 (6)

760M Standard 0.49 (0) 0.21 (1) 0.33 (0) 0.42 (0) 0.30 (1) 0.41 (1) 0.53 (0) 0.385 (3)
Coupled 0.51 (1) 0.22 (1) 0.33 (0) 0.41 (0) 0.31 (1) 0.41 (1) 0.54 (0) 0.392 (2)

Table 8: Detailed downstream task results of our small-scale experiments from Sec. 4.1 and 5.1. Compare to Tab. 1.

D N Adam ARC easy ARC challenge HellaSwag LAMBADA RACE TruthfulQA WinoGrande Acc (↑)

26B 1.3B Standard 0.55 0.23 0.36 0.45 0.32 0.37 0.54 0.402
Coupled 0.52 0.23 0.36 0.43 0.32 0.38 0.53 0.396

52B 2.6B Standard 0.61 0.27 0.43 0.55 0.35 0.38 0.58 0.451
Coupled 0.60 0.25 0.42 0.54 0.34 0.37 0.56 0.441

105B 1.3B Standard 0.58 0.27 0.42 0.55 0.35 0.38 0.57 0.446
Coupled 0.60 0.26 0.42 0.54 0.35 0.39 0.57 0.447

210B 2.6B Standard 0.65 0.29 0.48 0.63 0.37 0.37 0.63 0.490
Coupled 0.67 0.32 0.48 0.61 0.37 0.39 0.61 0.492

Table 9: Detailed downstream task results of our large-scale experiments from Sec. 4.2 and 5.2. Compare to Tab. 2.

n ARC easy ARC challenge HellaSwag LAMBADA RACE TruthfulQA WinoGrande Acc (↑)

-5 0.43 (0) 0.20 (0) 0.28 (0) 0.30 (1) 0.29 (1) 0.43 (1) 0.51 (0) 0.349 (2)
-4 0.43 (1) 0.19 (1) 0.28 (0) 0.31 (1) 0.28 (0) 0.44 (1) 0.51 (1) 0.348 (5)
-3 0.43 (0) 0.20 (1) 0.28 (0) 0.31 (0) 0.28 (0) 0.44 (2) 0.52 (1) 0.352 (5)
-2 0.43 (1) 0.19 (1) 0.29 (0) 0.31 (1) 0.29 (1) 0.44 (0) 0.52 (1) 0.352 (1)
-1 0.43 (0) 0.19 (1) 0.29 (0) 0.31 (1) 0.28 (1) 0.43 (1) 0.50 (1) 0.348 (3)

0 0.44 (1) 0.19 (1) 0.29 (0) 0.31 (0) 0.29 (1) 0.43 (1) 0.51 (0) 0.350 (1)

1 0.43 (1) 0.20 (1) 0.29 (0) 0.32 (1) 0.29 (0) 0.43 (2) 0.51 (0) 0.351 (4)
2 0.44 (0) 0.19 (0) 0.29 (0) 0.31 (1) 0.29 (1) 0.43 (1) 0.52 (0) 0.353 (2)
3 0.45 (1) 0.19 (0) 0.29 (0) 0.31 (0) 0.29 (1) 0.43 (0) 0.51 (0) 0.352 (0)
4 0.43 (0) 0.19 (1) 0.28 (0) 0.31 (0) 0.30 (1) 0.43 (1) 0.52 (1) 0.352 (1)
5 0.44 (1) 0.19 (1) 0.29 (0) 0.30 (0) 0.28 (0) 0.43 (1) 0.51 (0) 0.349 (4)

Table 10: Detailed downstream task results of our ablations on Scaled Coupled Adam from Sec. 6.1. Compare to Tab. 3.
.

D N Optimizer ARC easy ARC challenge HellaSwag LAMBADA RACE TruthfulQA WinoGrande Acc (↑)

5B 125M SGD (300) 0.40 (1) 0.18 (1) 0.27 (0) 0.26 (0) 0.28 (0) 0.44 (1) 0.50 (2) 0.333 (3)
Coupled Adam 0.40 (0) 0.18 (1) 0.28 (0) 0.27 (0) 0.28 (0) 0.45 (1) 0.52 (1) 0.339 (2)

10B 125M SGD (300) 0.41 (0) 0.19 (1) 0.28 (0) 0.28 (1) 0.28 (1) 0.44 (1) 0.50 (1) 0.341 (4)
Coupled Adam 0.42 (1) 0.19 (1) 0.28 (0) 0.29 (0) 0.28 (1) 0.44 (0) 0.50 (1) 0.343 (1)

20B 125M SGD (400) 0.42 (1) 0.20 (0) 0.28 (0) 0.30 (1) 0.28 (1) 0.43 (0) 0.51 (2) 0.346 (5)
Coupled Adam 0.44 (1) 0.19 (1) 0.29 (0) 0.31 (0) 0.29 (1) 0.43 (1) 0.51 (0) 0.350 (1)

Table 11: Detailed downstream task results of our ablations on SGD from Sec. 6.2. Compare to Tab. 4.
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