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Abstract

Large Language Models (LLMs) have demon-
strated impressive in-context learning (ICL) ca-
pabilities from few-shot demonstration exem-
plars. Recent learning-based demonstration se-
lection methods have proven beneficial to ICL
by choosing more useful exemplars. While
these methods generally assume they learn bet-
ter similarity measurements between exemplars
and test cases from the proxy task, what kinds
of similarities are captured by them and are vi-
tal to performing ICL still need to be explored.
To dive into this question, we analyze the work-
ing mechanism of learning-based demonstra-
tion selection methods and empirically identify
two essential factors of their similarity mea-
surements: 1) Integrating task-agnostic simi-
larities of different levels between the input
of exemplars and test cases; 2) Incorporating
task-specific similarity between the output of
exemplars and test cases. We validate these two
findings through extensive quantitative analysis
across ten datasets and various LLMs. Based
on these insights, we introduce two simplified
exemplar selection methods, MLSM and TTF,
catering to task-agnostic and task-specific de-
mands to eliminate costly data collection. The
effectiveness of both methods evince our find-
ings again and pave the way for future studies.

1 Introduction

In-context learning (ICL) has emerged as a promis-
ing paradigm that employs a sequence of demon-
stration exemplars as prompts to assist large lan-
guage models (LLMs) in effectively performing
unseen tasks (Brown et al., 2020; Su et al., 2023).
However, the performance of ICL can be sensitive
to the choice, format, and order of the in-context
exemplar (Zhao et al., 2021; Zhou et al., 2023;
Voronov et al., 2024; Lu et al., 2022). To mitigate
this challenge, given a test case 2!, the exemplar se-
lection task assumes access to a demonstration set
D containing input-output pairs (x,y) and focuses

on selecting the most effective exemplar from D to
inform the target output y/'.

To address this task, it is the most common prac-
tice to select demonstration exemplars based on a
similarity measurement between z and =’ (Rubin
et al., 2022; Ye et al., 2023; An et al., 2023; Ton-
glet et al., 2023; Li and Qiu, 2023; Milios et al.,
2023). Some work utilizes task-agnostic similar-
ity like term frequency-based similarity BM25 and
semantic similarity computed by off-the-shelf text
encoders (Liu et al., 2022; An et al., 2023). Recent
learning-based studies (Rubin et al., 2022; Ye et al.,
2023; Li et al., 2023), however, separately train a
retriever to learn implicit similarity measurements
using a contrastive leaning-based proxy task where
positive exemplars T and negative exemplars
are labeled by interacting with LLMs. This data
creation process often requires hundreds of thou-
sands of queries to LLMs for each task to collect
sufficient positive/negative data.

Although learning-based methods consistently
exhibit significant performance improvements over
task-agnostic similarity across various tasks, the
implicit similarity they capture and their connec-
tion to the performance of ICL remain unclear.
Through a detailed examination of previous works,
we observe 1) While the low-level similarity like
BM25 and semantic similarity excel in different
tasks (e.g., Top-K BM25 outperforms Top-K BERT
on NI2Bash (Lin et al., 2018) and SWAG (Zellers
et al., 2019) in Table 2 and Table 3), learning-based
similarity generally performs well across all tasks.
2) In the proxy task, the input and output simi-
larity between positive exemplars and test cases
is higher than that of negative exemplars and test
cases. Moreover, learning-based methods often suf-
fer from poor generalization across different tasks,
as corroborated by findings in (Ye et al., 2023).
Based on these initial observations, we propose
two hypotheses regarding learning-based methods:

H1: After training, the retriever acts as an en-
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semble model that adaptively integrates multi-level
task-agnostic similarities between the exemplar in-
put () and test cases (z') for different tasks.

‘Ho: Beyond input similarities, the training pro-
cess encourages selecting exemplars with similar
output (y) to the output of the test case (yh), im-
plicitly predicted during retrieval, enhancing the
retriever’s discriminative power for a specific task.

Extensive quantitative experiments are designed
to validate these hypotheses: 1) We take various
layers of BERT as anchors for similarities of dif-
ferent levels and discover learning-based methods
exhibiting varying preferences for these anchors
before and after training, suggesting an adaptive
combination of these similarities tailored to specific
tasks. 2) We investigate the exemplar retrieved by
learning-based methods and find these exemplars
show a higher similarity in output to the test case
than other task-agnostic similarity-based methods.
This finding indicates that learning-based methods
incorporate task-specific similarities between the
outputs of exemplars and test cases during the ex-
emplar selection process, potentially capturing the
joint distribution of inputs and outputs between ex-
emplars and test cases. Additionally, by connecting
our findings with existing interpretative theories of
ICL (Olsson et al., 2022; Kossen et al., 2023; Yan
et al., 2023; Halawi et al., 2023; Wang et al., 2023),
we further qualitatively validate our conclusions.

Drawing insights from these findings, we pro-
pose two cost-effective exemplar selection meth-
ods: 1) Multi-level Similarity Maximization
(MLSM) retriever that maximizes agreement across
different similarity levels represented by various
layers of BERT in the inference of LLMs. 2)
Test Task Fine-tuning (TTF) retriever, which uses
labeled data from the demonstration set to fine-
tune the retriever to learn task-specific informa-
tion. Both retrievers eliminate the need for costly
data collection for the proxy task, catering to cross-
task and task-specific demands. To validate the
effectiveness of these methods, we conduct exper-
iments across five distinct LLMs and a range of
tasks. These promising applications confirm our
hypotheses and benefit future demonstration selec-
tion studies for more efficient LLM deployment.

2 Preliminary

2.1 Learning-based Demonstration Selection

Demonstration selection aims to identify a se-
quence of high-quality exemplars from the demon-

stration set as a prompt to enhance test case ac-
curacy on LLMs. Prior studies (Liu et al., 2022;
Gao et al., 2021) find that good exemplars exhibit
similarities with the test case. They employ the pre-
trained text encoder like BERT (Devlin et al., 2019)
as a retriever to encode inputs and take the average
embedding of all tokens from the final layer of this
encoder to represent test cases and exemplars. Sub-
sequently, cosine similarity scores are computed
between test cases and exemplars to retrieve the
top-K most similar exemplars as prompts.

While the pipeline of learning-based demonstra-
tion selection methods (Rubin et al., 2022; Ye et al.,
2023; Li et al., 2023) is similar to the above strat-
egy, they further exploit LLMs to label positive
and negative exemplars to construct a proxy task
to fine-tune the retriever, aiming to learn a better
similarity metric. Specifically, let D denote the
demonstration set. Given an exemplar (z;,y;) in
D, Rubin et al. (2022) propose EPR to sample a
sequence of candidate examples from D, denoted
as S = {(Z1,91),-- -, (@m, Yy,)} and score them
by s(7,7) = Poom(Y = 4il(Z,9), x;), meaning
the probability of producing correct output y; for
x; conditioned on (Z,7) using an LLM. Subse-
quently, T with the highest score is selected as the
positive sample, denoted as ™ and the lowest as
the hard negative sample, denoted as z~ for z;.
These samples are then used to train the retriever
by maximizing the similarity between x and x*
and minimizing the similarity between x and ™~
via contrastive learning. In subsequent sections,
without special note, we analyze EPR to unravel
the mechanics of learning-based demonstration se-
lection methods and adopt BERT' consisting of
twelve transformer layers as the retriever.

2.2 Layers of BERT as Anchors of Multi-level
Similarities
Previous studies (Jawahar et al., 2019a; Ma et al.,
2019; Jawahar et al., 2019b) have empirically
shown that the intermediate layers of BERT en-
code a rich hierarchy of linguistic information
with surface features at the bottom, syntactic fea-
tures in the middle and semantic features at the
top through probing tasks. Moreover, BERT has
been pre-trained on a vast corpus capturing general
linguistic features that can be utilized for various
tasks. These inspire us to take different layers of

"https://huggingface.co/google-bert/
bert-base-uncased

2624


https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased

the original BERT (i.e., BERT without task-specific
fine-tuning) as anchors of multi-level similarities.
Especially for a layer [, given two texts s; and so,
we can extract all token embedding from this layer
and compute their average pooling as the represen-
tation of both texts, denoted as h) and h). Then,
the similarity between s; and s corresponding to
layer [ can be obtained by computing the cosine
similarity between h} and h.

3 Rethinking Learning-based
Demonstration Selection

This section proposes two key hypotheses re-
garding the underlying similarity mechanism of
learning-based exemplar selection methods: (1)
The learning-based retriever is analogous to an en-
semble model which adaptively aggregates multi-
level similarities computed by different BERT lay-
ers between the input of exemplar and test cases
(z and 2%). (H2) The learning-based retriever fa-
vors selecting exemplars with similar output (y) to
the test case output (y'). Both hypotheses are val-
idated through quantitative analysis as below and
qualitative analysis in Appendix D.

3.1 Multi-level Similarity (%)

Although semantic similarity generally excels in
text retrieval, our observations show that low-level
similarity (e.g., BM25) can sometimes outperform
semantic counterpart in the demonstration selection
task, especially on N12Bash (Lin et al., 2018) and
SWAG (Zellers et al., 2019). Thus, we speculate
that a critical aspect that makes the learning-based
exemplar retriever effective lies in its ability to
potentially learn and automatically integrate task-
agnostic similarities of different levels during train-
ing (H1). In the following quantitative validation,
we empirically find that the learning-based method
EPR dynamically ensembles the similarity encoded
by various layers of an off-the-shelf BERT encoder.

As the first step, we validate the assumption that
different layers of BERT, representing various lev-
els of similarities, can exhibit different behaviors
for different tasks as a retriever. To do that, follow-
ing EPR, which builds a positive set {(z;, z; )}V
using an LLLM (as described in Sec. 2.1), we treat
each :cz+ as a gold exemplar to be retrieved for
x;. Then we utilize different layers of the origi-
nal BERT to retrieve/rank exemplars (as discussed
in Sec. 2.2) for each x; and evaluate the Top-10
retrieval accuracy, representing the probability of

retrieving the positive exemplar x:r in top 10 pre-
dictions. The results on four tasks are depicted in
Fig. 1 when using GPT-Neo as the LLM, which re-
veals that different tasks exhibit distinct preferences
towards specific layers, emphasizing different simi-
larities levels. More information on these tasks can
be found in Appendix B.1. Furthermore, while it
is prevalent to employ the final layer of BERT for
exemplar retrieval (Liu et al., 2022; Zhang et al.,
2023a), it is not consistently optimal, likely due
to the potential inclusion of irrelevant information
caused by BERT’s pre-training tasks.

In the next step, we investigate what is encap-
sulated in the retriever learned by EPR. As this
retriever utilizes the last layer of BERT to compute
similarities, we extract the representations from this
layer and compare those with representations from
each layer of the original BERT to study the corre-
lations between the EPR retriever and each original
BERT layer. For this purpose, We introduce CKA
(Kornblith et al., 2019), which effectively identi-
fies correspondences between representations in
different networks. Let X* € R"*P! denote a ma-
trix of activations of p; neurons for n examples
and X® € R™ P2 denote a matrix of activations
of po neurons for the same n examples. The core
insight of CKA lies in measuring the similarity
between two matrices X and X by considering
the inter-sample similarities. Specifically, CKA
computes K and K to derive the inter-example
similarity structures for X and X°, where K¢ =
ke(Xe, X, Kb = kb(X?, X?), k® and k® repre-
sent two linear kernels (i.e., k(X,X) = XX7T).
Then, the CKA metric can be formulated as fol-
lows:

CKA(K, K" — HSIC(K?*, KP) 7

V/HSIC(K®, K*)HSIC(K?, K?)

6]
where HSIC(K®*,K") = Appu(K*HK"H) and
HSIC is the aberration of Hilbert-Schmidt Inde-
pendence Criterion. H is the centering matrix
H,=1,— %Jn where I, is the identity matrix
of size n and J,, is a n-by-n all-ones matrix.

To measure the similarity between the last layer
of the EPR retriever and each layer of the original
BERT, we randomly sample n = 2000 instances
from the demonstration set D (If |D| < 2000,
n = |D|) for each task. Denote XFFR as the ma-
trix composing n rows of last-layer representations
from the EPR retriever, and X as the matrix com-
posing n rows of the /th-layer representations from
the original BERT. Then we can calculate the CKA
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Figure 1: Left: Top-10 retrieval accuracy using each of the twelve layers of the original BERT to retrieve positive
exemplars to solve the proxy task of EPR across ten tasks. Different colors represent different layers. Top-10
accuracy refers to the probability of retrieving the positive exemplar in the top 10 predictions. Middle: CKA scores
between twelve layers of original BERT (x-axis) and the final layer of BERT of EPR trained on ten tasks and the
training-free BERT. Right: CKA scores between each layer of the original BERT. These CKA scores are min-max
normalized for better visualization. We use GPT-Neo (Black et al., 2021) as the LLM.

score CKA (KEPR| K1) for each task using Eq. 1.

The results are depicted in Fig. 1 (Middle). Each
row reflects the CKA similarity between the EPR
retriever and each layer of the original BERT for a
specific task. The CKA distribution across various
tasks exhibits significant diversity among differ-
ent BERT layers. This finding supports #; that
learning-based methods can adaptively aggregate
multi-level (layer) similarities catering to different
tasks. For instance, the results suggest that the ex-
emplar retriever trained on NI2Bash and SWAG
tasks may prioritize low-level similarities, corrob-
orating our experimental results where the BM25-
based method outperforms higher-level semantic-
based ones on these two datasets. Moreover, a sim-
ilar validation using Llama 3 (Dubey et al., 2024)
as the LLM is depicted in Fig. 5 to evince #; can
generalize to more advanced LLMs.

3.2 Output Similarity (H>)

When employing the learning-based paradigm to
acquire better similarity measurements between ex-
emplars and test cases for ICL, such mechanics
are expected to perform well on unseen tasks, thus
justifying the high cost of data collection. How-
ever, the sub-optimal generalization performance
revealed by Ye et al. (2023) suggests that the exem-
plar retriever, trained on the proxy task, primarily
learns task-specific information.

As data and training objectives can serve as a
lens to analyze the behavior of neural network mod-
els, we first investigate the data generated for the
proxy task involving positive and negative pairs,
as shown in Fig. 2 (Left), which depicts the simi-
larity between the input of positive/negative exem-
plars and the test case as well as the output of posi-
tive/negative exemplars and the test case. Specifi-
cally, for input similarity, we compute text similar-

ity using sentence-transformers? for all tasks, while
we compute exact match for the first three classi-
fication tasks and text similarity for other tasks as
output similarity. Let (z,y), (z©,y"), (z7,y7)
denote the test case and corresponding positive and
negative exemplars. The results indicate that the
similarity between x " and x is significantly higher
than between = and x~, affirming the efficacy of
input similarity-based exemplar selection methods.
Moreover, it is noteworthy that the similarity be-
tween yT and y is also markedly higher than that
between y and y .

Acknowledge that the training objective of the
proxy task is to push the embedding of x and =™
closer and push x and =~ away through contrastive
learning in the embedding space. As a result, dur-
ing the training phase, demonstration exemplars
with similar outputs will resemble each other in
this space due to the strong correlation between
y and y ™, which leads to a higher probability of
selecting exemplars with outputs similar to the test
case as prompts when the test case’s output is un-
known. Therefore, we suggest that the success of
learning-based approaches partly stems from the
implicit prediction of the output of test cases during
exemplar retrieval (Hs2), which could be viewed as
computing similarity of the joint distribution of in-
put and output between the test case and exemplars.

After training on the proxy task, we utilize the
EPR retriever to assess the similarity between the
input of the test case and exemplars from the
demonstration set to select top-K exemplars as
prompts. To validate Ho, we evaluate the retriever’s
ability to learn the output similarity by computing
the average similarity between the output of test
cases and the retrieved exemplars. We compare

2https://huggingface.co/sentence-transformers/
paraphrase-MinilM-L6-v2
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Figure 2: Left: Comparison of similarity between the input/output of positive and negative demonstration examples
and the input/output of the test case across ten tasks for EPR. Right: Difference between EPR and three task-
agnostic demonstration exemplar selection methods in average similarity between the output of test case and
retrieved exemplars. We use GPT-Neo (Black et al., 2021) as the LLM.

EPR trained using GPT-Neo against task-agostic
methods (i.e., Random, Top-K BM25 and Top-K
BERT), as depicted in Fig. 2 (Right). We compute
the output similarity for all tasks in the same way as
experiments in Fig. 2 (Left). The results show that
the exemplar chosen by EPR has outputs more akin
to the test case than other competitors, particularly
in classification tasks where the output similarity
can be well-captured by exact match. Similar val-
idation is conducted for EPR with GPT2-XL and
Llama 3 in Fig. 4 and Fig. 6, and these results align
with the above findings obtained for GPT-Neo, thus
providing consistent support for Hs.

4 Methodology

Building on the above findings, we propose two
simple yet effective alternatives for learning-based
demonstration exemplar section methods, which
do not require costly interaction with LLMs to
construct the proxy task. Specially, we introduce
1) Multi-level Similarity Maximization (MLSM)
leveraging an adaptive ensemble of task-agnostic
layer-wise anchors from BERT to achieve better
cross-task generalization given H1; 2) Test Task
Fine-tuning (TTF) infusing task-specific informa-
tion to the retriever to enhances performances for a
specific task on the test task according to Ho.

4.1 Multi-level Similarity Maximization
(MLSM)

‘H1 emphasizes that learning-based methods can
adaptively integrate diverse similarities, which can
be captured through different layers of a pretrained
text encoder (e.g., BERT) from bottom to top. In-
spired by ensemble learning (Polikar, 2009; Barber
and Bishop, 1997; Zhang et al., 2022b), each layer
can work as an expert for exemplar selection. The

goal of MLSM is to integrate the insights from all
experts by maximizing their agreement during the
inference of LLMs.

However, as depicted in Fig. 1 (Right), each
layer of BERT shows a high similarity to adjacent
layers due to the residual design of transformers.
Hence, we initially filter out redundant layers to
avoid overfitting to the similarity of specific levels
and reduce computational overhead. Specifically,
given a task and its corresponding demonstration
set D, we sample a subset of unlabeled exemplars
from D and compute layer-wise CKA scores be-
tween every pair of BERT layers, forming a simi-
larity matrix S € R12*12 where S; ; signifies the
similarity between the ¢-th and j-th layers of BERT.
We then employ an unsupervised K-means clus-
tering algorithm to derive n; clusters, maximizing
the intra-cluster CKA score while minimizing the
inter-cluster CKA score, and designate the central
node in each cluster as the representative layer. Fi-
nally, we attain a set of refined layers, denoted as
L = {l;}",, as experts to represent the similarity
at varying levels.

For a given test case x!, we first sample a mini
training set D, = {x;};”, and validation set
D, = {z;};2, from D. Then, for each l; € L,
we compute the average of all token embeddings
extracted from [; as the representation of z! (de-
noted as h') and demonstration exemplars z; € D),
(denoted as h;). Following this, we compute the
cosine similarity between x! and each exemplar
in D, as r; = [cos(h’, hy), ..., cos(h’ by, )], and
normalize it to obtain the probability distribution of
these exemplars via y; = softxmax(7%) for layer
l;, where 7 is the temperature parameter. Intuitively,
such distribution can represent the ranking distri-
bution of the demonstration exemplars when using
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the similarity level captured at [; for retrieval. Af-
ter collecting the output distribution of all experts
in L, we aggregate them with learnable aggrega-
tion weights, denoted as w € R™ andn get the
ensembled prediction as y = softmax(w)
where w is normalized before aggregation, i.e.,
>i"w; = 1. To encourage agreement among ex-
perts, we minimize the loss £ = — > 1", § - y;.
The optimal w can be determined based on the
loss on the validation set D,, by an early stopping
strategy to prevent overfitting.

While MLSM focuses on the online scenario,
where only one test point is observed during infer-
ence to align with the real-world demand (Zhang
etal., 2022a; VS et al., 2023; Zhang et al., 2022b),
it can enable batch inference by updating w using
a batch of test cases, thereby enhancing compu-
tational efficiency. Notably, MLSM focuses on
general information regardless of specific tasks,
thus catering to task-agnostic demands.

bl

4.2 Test Task Fine-tuning (TTF)

Hso posits that the learning-based demonstration
retriever inherently acquires the output similarity
between exemplars and test cases for one specific
test task when training on the proxy task. However,
this proxy task requires costly interactions with
LLMs for each test task. To alleviate this issue, we
propose TTF to infuse the output information to the
retriever by fine-tuning it with additional modules
customized for distinct tasks using labeled data
from the demonstration set D straightforwardly.
For convenience, let fg denote the retriever and
¢¢ denote the extra module, containing 6 and ¢
as learnable paramters. For classification tasks, g4
will be instantiated through various classification
heads. Given a test input z, assuming a linear classi-
fier, the predication is derived by taking the argmax
over the approximated probability distribution:

argmax o (Y = yilz) = <22 P

i Sl 7 2
S o b)) O

where z = fg(z) and ¢; is the i-th component of
the weights ¢ corresponding to label y;. As the
prediction is determined by evaluating the distance
between ¢; and z, test cases with a similar out-
put are more likely to exhibit a smaller distance
in the semantic space, as they are closer to their
corresponding ¢. Furthermore, previous research
(Zhang et al., 2023b; Iwasawa and Matsuo, 2021)
has leveraged z as a pseudo-prototype for each

label to construct non-parameter classifiers, provid-
ing evidence that TTF can effectively encapsulate
the input-output relationship in the wild classifica-
tion application.

For generation tasks, while decoder-only frame-
works are unsuitable for deriving sentence em-
beddings without prompting or fine-tuning (Muen-
nighoff, 2022), we adopt the encoder-decoder archi-
tecture, where gy is instantiated by the decoder and
the retriever fg works as the encoder. Since the de-
coder generates new tokens based on the encoder’s
output, allowing the encoder’s output to capture
pertinent input-output information naturally, we
follow Ni et al. (2022) to use the average pooling
of all token embeddings extracted from the last
layer of the encoder to represent test cases and ex-
emplars. Ultimately, TTF acquires the output sim-
ilarity between demonstration exemplars and test
cases by training the retriever on the demonstration
set, thereby adapting to task-specific requirements.

S Experiments

Datasets. We conduct experiments on ten
datasets spanning seven categories of NLP tasks:
sentiment analysis, paraphrase detection, natural
language inference, commonsense reasoning, open-
domain question answering, code generation and
semantic parsing. As certain datasets lack a test
set, we take the training split as the demonstration
set and the validation split for evaluation across all
datasets. The statistics of all datasets are listed in
Table 1. A detailed description of these datasets
and prompts to reproduce our experimental results
are shown in Appendix B.1.

Baselines. In line with previous studies (Rubin
et al., 2022; Ye et al., 2023; Li et al., 2023), we con-
sider two baseline categories based on whether to
use labeled data in the demonstration set: unsuper-
vised and supervised methods. The unsupervised
category includes RANDOM, which randomly se-
lects exemplars from the demonstration set without
repetition; TOP-K BM25, which employs BM25
(Robertson and Zaragoza, 2009) to retrieve the Top-
K most similar exemplars based on low-level text
similarity; ToOP-K BERT, which generates text
representations by averaging token embeddings
from the final layer of BERT (Devlin et al., 2019)
and retrieves the Top-K most similar exemplars
based on semantic similarity; and TOP-K SBERT
replaces BERT of TorP-K BERT with Sentence
Bert (Reimers and Gurevych, 2019). The super-
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Table 1: The statistics of ten datasets. We report the number of training instances after deduplicating.

Type Dataset Task Train  Validation
SST-5 (Socher et al., 2013) Sentiment Analysis 8,534 1,101
MRPC (Dolan et al., 2004) Paraphrase Detection 3,668 408

Classification QNLI (Wang et al., 2018) Natural Language Inference 104,707 5,463
CMSQA (Talmor et al., 2019) Commonsense Reasoning 9,740 1,221
HellaSwag (Zellers et al., 2019) Commonsense Reasoning 52,611 20,006
WebQs (Berant et al., 2013) Open-Domain QA 3,778 2,032
GeoQuery (Zelle and Mooney, 1996) Code Generation 404 280

Generation NI2Bash (Lin et al., 2018) Code Generation 7,441 609
MTOP (Li et al., 2021) Semantic Parsing 15,564 2,235
SMCalFlow (Andreas et al., 2020) Semantic Parsing 102,491 14,751

Table 2: Main results on the classification task. & in-
dicates requiring costly interaction with LLMs, and &
denotes no such requirement.

Table 3: Main results on the generation tasks.é indicates
requiring costly interaction with LLMs, and & denotes
no such requirement.

Method SST-5 MRPC QNLI CMSQA SWAG Avg. Method WebQs GeoQ. NL2B. MTOP SMCal. Avg.
Unsupervised Unsupervised
Random 2861 6593 5508 4234 4139 46.67 Random 379 2536 3127 398 370 13.62
Top-K BM25 3206 6593 60.11 3579 4335 4745 Top-K BM25 1417 6571 58.81 49.66  44.02 46.48
Top-K SBERT 39.50 7034 60.46  31.53  40.92 48.55 Top-K BERT  14.17  64.64 5245 5136 4476 4548
Top-K BERT 3270  69.12 60.94 3587  41.09 47.94 Top-K SBERT 1515  60.71 46.87 46.80 4279 4246
MLSM 3315 69.87  65.02 3726 4149 49.36 Top-K T5 1624 7035 4329 53.02 42.83 4514

5 MLSM 1614 6893 56.11 5405 4772 4859
Supervised
EPR* 36.88 8137 77.87 3874 4339 55.65 Supervised
CEIL* 37.69 7794 80.58 3890 4384 55.79 EPR* 17.62 7321 7787 60.82  60.49 53.43
TTF* 4214 7451 85.08  47.83 5572 61.06 CEIL* 17.08 7071 53.66 6340 5630 52.23

TTF* (T5)  17.07 7143 4630 5812 51.06 4880

vised category includes EPR (Rubin et al., 2022),
which utilizes Top-K BM25 to generate demon-
stration candidates and scores them using LL.Ms
to construct a proxy task, subsequently fine-tuning
BERT in TopP-K BERT using this task; and CEIL
(Ye et al., 2023), which employs EPR to generate
demonstration sequence candidates, scores them
using LLMs to construct a proxy task, and further
fine-tunes BERT using this task. CEIL balances
diversity and relevance using a trade-off parameter
and searches for the optimal exemplar combination
using Determinantal Point Processes (Kulesza and
Taskar, 2011). While mainly utilizing BERT as the
retriever of MLSM and TTF, we exploit T5 for
TTF on the generation tasks because BERT-based
encoder-decoder models cannot handle generation
tasks effectively without sufficient training data
due to the random initialization of external cross-
attention modules. The implementation detail of
our methods and all baselines can be found in Ap-
pendix B.2.

Experiment settings. Following Ye et al. (2023),
we employ GPT-Neo (2.7B) (Black et al., 2021)
as the main LLM in this study and conduct experi-
ments on a smaller GPT-2 XL (Radford et al., 2019)
(1.5B) and text-davinci-002 to verify the transfer-
ability of our methods. Furthermore, we extend

our experiments to more advanced LLMs, includ-
ing Llama 3 (8 B) and GPT-3.5, to support our
hypotheses and findings in Appendix C. Due to
computational constraints and different maximum
context sizes among LMs, we restrict the number
of in-context exemplars to 20. These exemplars
are sorted based on their similarities to test cases
in ascending order following prior practices (Ru-
bin et al., 2022; An et al., 2023; Liu et al., 2022).
For model evaluation, we compare the predicted
output with ground truth for all methods and re-
port Accuracy (Acc.) and Exact Match (EM) for
classification and generation tasks, respectively.

Main Results. We compare MLSM and TTF
with existing unsupervised (using off-the-shelf
models directly) and supervised learning-based
baselines on classification tasks (Table 2) and gen-
eration tasks (Table 3). The results show that
MLSM consistently outperforms all unsupervised
baselines in most cases, achieving an average im-
provement of 1.42% over the best baseline, Top-K
BERT (semantic similarity), on classification tasks,
and an average improvement of 2.11% over the
best baseline, Top-K BM25 (low-level similarity),
on generation tasks. This suggests that while dif-
ferent similarities excel at different tasks, MLSM
can adaptively integrate multi-level similarities for
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Figure 3: Left: Comparison of transferability between
EPR and MLSM. We show the absolute improvement
of MLSM over EPR. Right: Comparisons of different
batchsizes for MLSM.

various tasks by updating the aggregation weight
of the experts for each test case, thus providing evi-
dence for ;. Moreover, supervised methods gen-
erally show a clear advantage over MLSM across
all tasks, highlighting the benefit of incorporating
task-specific information into the retriever. No-
tably, TTF, despite avoiding costly integration with
LLMs, surpasses both EPR and CEIL, achieving
over 5% absolute improvements on classification
tasks, and consistently outperforms MLSM across
all generation tasks except NL2Bash. It suggests
that test task fine-tuning can be a more effective
alternative to constructing proxy tasks in resource-
limited scenarios, further validating 5. However,
TTF underperforms compared to EPR and CEIL
on some generation tasks likely due to inherent
limitations of the encoder-decoder framework in re-
trieval tasks, particularly in identifying which parts
of the model capture relevant input-output informa-
tion. For instance, Top-K T5 performs worse than
Top-K BERT regarding average accuracy across all
generation tasks.

Transfer across Tasks for MLSM. We compare
EPR and MLSM on cross-task experiments, where
EPR is trained on a source task and transferred to
a target task, as depicted in Fig. 3 (Left). The re-
sults show that EPR generally performs worse than
MLSM, particularly when transferring between
classification and generation tasks. It suggests that
learning-based exemplar selection methods overfit
task-specific features when trained on the proxy
task, making it challenging to justify the high cost
of data collection. In contrast, MLSM is a practi-
cal solution for task-agnostic demands, as it only
leverages information from the test case to adapt to
different tasks during LLLM inference.

Ablation of Batchsize for MLSM. While
MLSM assumes only a single test case is available
for learning the aggregation weight w of different
similarity levels, we perform an ablation study to
assess the impact of increasing batchsize in Fig.

Table 4: Results of cross-LLM transferability validation.
We show the absolute improvement of TTF and MLSM
over Top-K BERT.

TTF MLSM

LLM SST-5 MRPC QNLI CMSQA Avg. | SST-5 MRPC GeoQ. NL2Bash Avg.
GPT-2XL (1.5B)  3.54 0.00 535 6.38 3.82 1.54 0.00 1.07 4.57 1.74
GPTNEO (2.7B) 945 539 2414 11.96 12.73 | 0.05 0.75 429 3.66 2.29
text-davinci-002  3.27 151 1852 1.15 6.11 | 1.82 1.47 321 3.02 238

3 (Right). The results indicate that MLSM gen-
erally benefits from a larger batch size, especially
on classification tasks, showing over 4% average
improvements when the batchsize equals 8. This
improvement can be because test cases in the same
batch tend to share similar patterns of multi-level
analogs (i.e., similar w), further suggesting that
multi-level analogs are versatile features for select-
ing good demonstration exemplars.

Transfer across LLMs. We validate the versa-
tility of TTF and MLSM on GPT-2 XL, GPT-
NEO, and text-davinci-002 in Table 4. The re-
sults indicate that both methods can enhance ICL
performance across different LLMs. TTF consis-
tently outperforms MLSM, verifying the effective-
ness of acquiring task-specific output similarity
between exemplars and test cases. However, TTF
exhibits higher variance in performance across dif-
ferent LLMs than MLSM, suggesting different
LLMs have varying abilities to exploit exemplars
with similar outputs to the test case. Addition-
ally, the better performance of TTF on GPT-NEO
compared to text-davinci-002 implies that the lat-
ter’s stronger ability may make it more resilient to
prompt choices.

6 Conclusion

In this work, we delve into the mechanism of
learning-based demonstration exemplar selection
methods. We speculate the advantages of these
methods stem from their ability to integrate similar-
ities of different levels for exemplar selection (1)
and their capacity to choose exemplars with similar
outputs to the test case (H2). Motivated by these
hypotheses, we introduce two simple but effective
exemplar section methods, MLLSM and TTF, tai-
lored to task-agnostic and task-specific demands
without costly interactions with LLMs. Quantita-
tive validations and the effectiveness of both meth-
ods provide substantial evidence for H; and Hs.
In summary, our work offers insights into more
efficient LLM deployment in practical applications
and may benefit transparent research on exemplar
selection methods and ICL.
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Limitations.

In this section, we discuss two technical limitations.
Combination of MLSM and TTF: Based on our
two findings related to the working mechanism
of learning-based exemplar section methods, we
propose two cost-effective selection approaches:
MSLM maximizing the agreement across the sim-
ilarities of different levels and TTF fine-tuning a
retriever with labeled data from the demonstration
set to learn task-specific similarity between the out-
put of exemplars and test cases. While MSLM and
TTF excel in task-agnostic and task-specific sce-
narios, combining them could potentially further
enhance task-specific performance. To investigate
this, we replace the original BERT in MSLM us-
ing the trained retriever in TTF and conduct experi-
ments on five classification tasks using the same im-
plementation detailed in Appendix B.2. As shown
in Table 5, although the combination of both meth-
ods significantly outperforms MSLM, it falls short
of TTF by over 6%. This performance drop sug-
gests that the similarity between the output of ex-
emplars and test cases is superior to similarities
from other layers, and while TTF’s final layer effec-
tively captures such task-specific output similarity,
integrating it with other sub-optimal ones could
introduce noise, negatively impacting the exemplar
selection for ICL.

Better Implementation of 7> than TTF: In Ho,
we empirically find that the success of learning-
based methods partially stems from their ability
to choose the demonstration exemplar with similar
output to the test case. We propose TTF to simulate
such output-based similarity by implicitly learning
task-specific information from labeled demonstra-
tion exemplars using different task heads. Despite
showing promise on classification tasks, TTF is
ineffective for generation tasks compared to EPR
and CEIL. We attribute this to 1) the difficulty in
identifying model components that capture effec-
tive input-output relationships in a decoder-encoder
framework and 2) the need for extensive data to
fine-tune generation task heads or more advanced
pre-trained models.

To further explore Ha, we try two approaches:
First, akin to EPR, we select the exemplar with the
most similar output to the test case as a positive
pair and the most dissimilar one as a negative pair
and then fine-tune a retriever. However, this led to a
performance collapse, likely due to the complexity
of modeling nuanced input-output similarities for

Table 5: Experimental results for the combination of
MLSM and TTF

Method SST-5 MRPC QNLI CMSQA SWAG Avg.
MLSM 3315 6987 6502 3726 4149 4936
TTF 4214 7451 8508 4783 5572 61.06
TTFand MLSM  36.14 7107 6531 4561 5027 53.69

generation tasks. Secondly, building upon TTF,
we generate outputs using TS for each test case and
compute similarities between inputs and outputs of
demonstration exemplars and test cases. Finally,
we integrate these similarities with a predefined ra-
tio (0.9 and 0.1), yielding an average improvement
of 1% over TTF. However, this method requires
first generating answers for test cases, making it
less efficient than using input embedding for exem-
plar retrieval. Additionally, recent exemplar selec-
tion methods (An et al., 2023; Zhou et al., 2024;
Sun et al., 2024) that use LLMs to briefly describe
the reasoning process and compute the similarity
between such descriptions of exemplars and test
case for retrieval, can be seen as an instantiation of
‘Ho, as they also implicitly model the input-output
relationship.

In summary, the main contribution of our work
lies in suggesting and validating two hypotheses
regarding learning-based exemplar selection meth-
ods. While MSLM and TTF show advantages over
existing demonstration exemplar section methods,
they are just two possible implementations of our
findings. More advanced exemplar selection meth-
ods could be developed based on these insights.
As a result, we advocate for further research in
this area to enhance the efficient deployment and
transparency of LLMs and ICL.

Ethics Statement

This paper adheres to the ACM Code of Ethics and
Professional Conduct. This work presents two key
findings about the working mechanism of learning-
based demonstration selection and two methods
for low-cost exemplar selection, which do not pose
any societal harm. All datasets used are publicly
available. We will release our code following the
licenses of any utilized artifacts.

Acknowledgment

This research is supported by Sichuan Science and
Technology Program 2025ZNSFSCO0511, RGC-
RMGS 9229106 and the University Grants Com-
mittee (UGC)’s Fund for Innovative Technology-
in-Education (FITE)

2631



References

Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen,
Nanning Zheng, Weizhu Chen, and Jian-Guang Lou.
2023. Skill-based few-shot selection for in-context
learning. In EMNLP, pages 13472—13492. Associa-
tion for Computational Linguistics.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen Jr, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DelLoach, Leah Dorner, Jason Eisner, et al.
2020. Task-oriented dialogue as dataflow synthesis.
Transactions of the Association for Computational
Linguistics, 8:556-571.

David Barber and Christopher M. Bishop. 1997. En-
semble learning for multi-layer networks. In NIPS,
pages 395—401. The MIT Press.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on Freebase
from question-answer pairs. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1533—1544, Seattle,
Washington, USA. Association for Computational
Linguistics.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Xuanting Chen, Junjie Ye, Can Zu, Nuo Xu, Rui Zheng,
Minlong Peng, Jie Zhou, Tao Gui, Qi Zhang, and
Xuanjing Huang. 2023. How robust is gpt-3.5 to pre-
decessors? a comprehensive study on language un-
derstanding tasks. arXiv preprint arXiv:2303.00293.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1), pages 4171-4186.
Association for Computational Linguistics.

William B Dolan, Chris Quirk, and Chris Brock-
ett. 2004. Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel
news sources. In COLING 2004: Proceedings of
the 20th International Conference on Computational
Linguistics, pages 350-356.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,

Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021.
Making pre-trained language models better few-shot
learners. In ACL/IJCNLP (1), pages 3816-3830. As-
sociation for Computational Linguistics.

Danny Halawi, Jean-Stanislas Denain, and Jacob Stein-
hardt. 2023. Overthinking the truth: Understanding
how language models process false demonstrations.
arXiv preprint arXiv:2307.09476.

Fabian Caba Heilbron, Victor Escorcia, Bernard
Ghanem, and Juan Carlos Niebles. 2015. Activitynet:
A large-scale video benchmark for human activity un-
derstanding. In 2015 IEEE conference on computer
vision and pattern recognition (CVPR), pages 961—
970. IEEE.

Yusuke Iwasawa and Yutaka Matsuo. 2021. Test-time
classifier adjustment module for model-agnostic do-
main generalization. In NeurIPS, pages 2427-2440.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019a. What does BERT learn about the structure of
language? In ACL (1), pages 3651-3657. Associa-
tion for Computational Linguistics.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019b. What does bert learn about the structure
of language? In ACL 2019-57th Annual Meeting of
the Association for Computational Linguistics.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey E. Hinton. 2019. Similarity of neu-
ral network representations revisited. In ICML,
volume 97 of Proceedings of Machine Learning
Research, pages 3519-3529. PMLR.

Jannik Kossen, Tom Rainforth, and Yarin Gal. 2023.
In-context learning in large language models learns

label relationships but is not conventional learning.
CoRR, abs/2307.12375.

Alex Kulesza and Ben Taskar. 2011. k-dpps: Fixed-size
determinantal point processes. In ICML.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
Mtop: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 2950-2962.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei
Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang, and
Xipeng Qiu. 2023.  Unified demonstration re-
triever for in-context learning. In Proceedings
of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 4644-4668, Toronto, Canada. Associ-
ation for Computational Linguistics.

2632


https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/D13-1160
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256

Xiaonan Li and Xipeng Qiu. 2023. Finding sup-
port examples for in-context learning. In EMNLP
(Findings), pages 6219-6235. Association for Com-
putational Linguistics.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D. Ernst. 2018. NI2bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In LREC. European
Language Resources Association (ELRA).

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for gpt-3? In
DeeLIO@ACL, pages 100-114. Association for
Computational Linguistics.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In ACL (1), pages
8086-8098. Association for Computational Linguis-
tics.

Xiaofei Ma, Zhiguo Wang, Patrick Ng, Ramesh Nal-
lapati, and Bing Xiang. 2019. Universal text rep-
resentation from BERT: an empirical study. CoRR,
abs/1910.07973.

Aristides Milios, Siva Reddy, and Dzmitry Bahdanau.
2023. In-context learning for text classification with
many labels. CoRR, abs/2309.10954.

Niklas Muennighoff. 2022. SGPT: GPT sen-
tence embeddings for semantic search. CoRR,
abs/2202.08904.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant,
Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei Yang.
2022. Sentence-t5: Scalable sentence encoders from
pre-trained text-to-text models. In ACL (Findings),
pages 1864—1874. Association for Computational
Linguistics.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam
McCandlish, and Chris Olah. 2022. In-context learn-
ing and induction heads. CoRR, abs/2209.11895.

Robi Polikar. 2009. Ensemble learning. Scholarpedia,
4(1):2776.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Gautam Reddy. 2023. The mechanistic basis of data
dependence and abrupt learning in an in-context clas-
sification task. CoRR, abs/2312.03002.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: Bm25 and beyond.

Foundations and Trends in Information Retrieval,
3:333-389.

Anna Rohrbach, Atousa Torabi, Marcus Rohrbach,
Niket Tandon, Christopher Pal, Hugo Larochelle,
Aaron Courville, and Bernt Schiele. 2017. Movie de-
scription. International Journal of Computer Vision,
123:94-120.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In NAACL-HLT, pages 2655-2671. Asso-
ciation for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP, pages 1631-1642. ACL.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao Yu. 2023.
Selective annotation makes language models better
few-shot learners. In ICLR. OpenReview.net.

Hao Sun, Yong Jiang, Bo Wang, Yingyan Hou, Yan
Zhang, Pengjun Xie, and Fei Huang. 2024. Retrieved
in-context principles from previous mistakes. arXiv
preprint arXiv:2407.05682.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149-4158, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Jonathan Tonglet, Manon Reusens, Philipp Borchert,
and Bart Baesens. 2023. SEER : A knapsack ap-
proach to exemplar selection for in-context hybridqa.
In EMNLP, pages 13569-13583. Association for
Computational Linguistics.

Anton Voronov, Lena Wolf, and Max Ryabinin. 2024.
Mind your format: Towards consistent evalua-

tion of in-context learning improvements. CoRR,
abs/2401.06766.

Vibashan VS, Poojan Oza, and Vishal M Patel. 2023.
Towards online domain adaptive object detection. In
Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 478-
488.

2633


https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023. Label
words are anchors: An information flow perspective
for understanding in-context learning. In EMNLP,
pages 9840-9855. Association for Computational
Linguistics.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-
ner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question understand-
ing benchmark. Transactions of the Association for
Computational Linguistics, 8:183—198.

Jianhao Yan, Jin Xu, Chiyu Song, Chenming Wu, Yafu
Li, and Yue Zhang. 2023. Understanding in-context
learning from repetitions. CoRR, abs/2310.00297.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars
for in-context learning. In ICML, volume 202 of
Proceedings of Machine Learning Research, pages
39818-39833. PMLR.

Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin Wang,
Yueqi Zhang, Chuyi Tan, Boyuan Pan, Heda Wang,
Yao Hu, and Kan Li. 2024. Focused large language
models are stable many-shot learners. arXiv preprint
arXiv:2408.13987.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In AAAI/TAAI pages 1050-1055,
Portland, OR. AAAI Press/MIT Press.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Marvin Zhang, Sergey Levine, and Chelsea Finn. 2022a.
Memo: Test time robustness via adaptation and
augmentation. Advances in Neural Information
Processing Systems, 35:38629-38642.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-
Hao Chen, Jiale Liu, Qingyun Wu, and Tongliang
Liu. 2023a. IDEAL.: influence-driven selective anno-
tations empower in-context learners in large language
models. CoRR, abs/2310.10873.

Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi
Feng. 2022b. Self-supervised aggregation of diverse
experts for test-agnostic long-tailed recognition. In
NeurIPS.

Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi
Feng. 2022c. Self-supervised aggregation of diverse
experts for test-agnostic long-tailed recognition. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9,
2022.

Yifan Zhang, Xue Wang, Kexin Jin, Kun Yuan, Zhang
Zhang, Liang Wang, Rong Jin, and Tieniu Tan.
2023b. Adanpc: Exploring non-parametric classifier
for test-time adaptation. In ICML, volume 202 of
Proceedings of Machine Learning Research, pages
41647-41676. PMLR.

Anhao Zhao, Fanghua Ye, Jinlan Fu, and Xiaoyu Shen.
2024. Unveiling in-context learning: A coordinate
system to understand its working mechanism. arXiv
preprint arXiv:2407.17011.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.
In ICML, volume 139 of Proceedings of Machine
Learning Research, pages 12697-12706. PMLR.

Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu,
Jilin Chen, Katherine A. Heller, and Subhrajit Roy.
2023. Batch calibration: Rethinking calibration for
in-context learning and prompt engineering. CoRR,
abs/2309.17249.

Hanzhang Zhou, Junlang Qian, Zijian Feng, Hui
Lu, Zixiao Zhu, and Kezhi Mao. 2024. Llms
learn task heuristics from demonstrations: A
heuristic-driven prompting strategy for document-
level event argument extraction. In Proceedings
of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pages 11972-11990.

2634


http://www.cs.utexas.edu/users/ai-lab?zelle:aaai96
http://www.cs.utexas.edu/users/ai-lab?zelle:aaai96
http://www.cs.utexas.edu/users/ai-lab?zelle:aaai96
http://papers.nips.cc/paper_files/paper/2022/hash/dc6319dde4fb182b22fb902da9418566-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/dc6319dde4fb182b22fb902da9418566-Abstract-Conference.html
https://doi.org/10.18653/V1/2024.ACL-LONG.647
https://doi.org/10.18653/V1/2024.ACL-LONG.647
https://doi.org/10.18653/V1/2024.ACL-LONG.647
https://doi.org/10.18653/V1/2024.ACL-LONG.647

A Outline of the Appendix

The appendix is organized as follows: Appendix
B provides descriptions of the datasets used in
our experiments, the prompts for reproducing our
work, and the implementation details for all base-
lines as well as our proposed MLSM and TTF
methods. Appendix C examines the generaliza-
tion of our findings and methods to more advanced
LLMs. Appendix D offers qualitative validation of
‘H1 and Ho by connecting our results with existing
explanatory work on ICL. Appendix E presents the
statistical significance of our proposed methods.
Appendix F outlines the theoretical foundation of
MLSM and TTF, while Appendix G analyzes the
aggregation weights in MLSM. Lastly, Appendix
H discusses the running efficiency of both methods
and Appendix I provide more ablation study of our
methods.

B Experimental Setup

B.1 Datasets

Following existing work (Ye et al., 2023), we con-
duct experiments on five classification tasks and
five generation tasks®. While we advise readers
to refer to the detail of each dataset in the origi-
nal work (Ye et al., 2023), we provide the prompts
and examples for each dataset in Table 6 and of-
fer a detailed description of each dataset below for
completeness.

SST-5 (Socher et al., 2013) is a sentiment clas-
sification benchmark containing five fine-grained
classes including ‘very positive’, ‘positive’ ‘neu-
tral’, ‘negative’, and ‘very negative’.

MRPC (Dolan et al., 2004) is a corpus of sen-
tence pairs automatically extracted from online
news sources, with human annotations for whether
the sentences in the pair are semantically equiva-
lent.

MNLI (Williams et al., 2017) is a crowdsourced
collection of sentence pairs with textual entailment
annotations. Given a premise sentence and a hy-
pothesis sentence, the task is to predict whether the
premise entails the hypothesis (entailment), con-
tradicts the hypothesis (contradiction), or neither
(neutral).

3We exclude MNLI (Williams et al., 2017) to reduce com-
putation cost and Break (Wolfson et al., 2020) because of
failure to reproduce its evaluation method.

QNLI (Wang et al.,, 2018) is a question-
answering dataset consisting of question-paragraph
pairs, and the task is to determine whether the con-
text sentence contains the answer to the question.

CMSQA (Talmor et al., 2019) (short for
CommonsenseQA) is a multiple-choice question-
answering dataset that requires different types of
commonsense knowledge. The task is to predict
the correct answer out of five provided candidate
answers.

HellaSwag (Zellers et al., 2019) is a large-scale
dataset of grounded commonsense reasoning. Each
question has four candidate answers: a video cap-
tion from ActivityNet Captions (Heilbron et al.,
2015) and the Large Scale Movie Description Chal-
lenge (Rohrbach et al., 2017). The three incorrect
answers are adversarially generated and human-
validated to deceive machines. The correct answer
is the actual video caption for the subsequent oc-
currence in the video.

WebQs (Berant et al., 2013) is question-answer
pairs obtained from the web. The questions are se-
lected using Google Suggest API, and the answers
are entities in Freebase.

NI2Bash (Lin et al., 2018) is a dataset for the
problem of mapping English sentences to Bash
commands. The corpus consists of text—-command
pairs, where each pair consists of a Bash command
scraped from the web and an expert-generated nat-
ural language description.

GeoQuery (Zelle and Mooney, 1996) contains
a parallel corpus of 880 English questions about
US geography paired with Prolog queries.

Break (Wolfson et al., 2020) is a dataset that
maps complex natural language questions into a
language-based meaning representation. The ques-
tion is decomposed into an ordered list of atomic
steps used as the target sequence. We use the low-
level Break subset following (Rubin et al., 2022).

MTOP (Li et al., 2021) is a multilingual task-
oriented semantic parsing dataset covering six lan-
guages and 11 domains. The target commands are
complex queries featuring nested intent-slot predic-
tion. Similar to past work (Rubin et al., 2022), we
use the English subset of MTOP.

SMCalFlow (Andreas et al., 2020) is a large
dialogue dataset featuring natural conversations
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Table 6: Datasets with corresponding prompts and examples used in the experiments.

Dataset Prompt Example
. . Input: this is a stunning film , a one-of-a-kind tour de force .
. I 1 S
SST-5 {input} It is {output} Output: very positive
Inputl: The company didn 't detail the costs of the replacement and repairs.
MRPC {inputl} Can we say "{input2}"? {output} Input2: But company officials expect the costs of the replacement work to run into the millions of dollars .
Output: No
Inputl: yeah i know and i did that all through college and it worked too
MNLI {inputl} Can we say "{input2}"? {output} Input2: I did that all through college but it never worked
Output: No
Inputl: As of that day, the new constitution heralding the Second Republic came into force.
QNLI {inputl} Can we know "{input2}"? {output}  Input2: What came into force after the new constitution was herald?
Output: Yes
. Input: Sammy wanted to go to where the people were. Where might he go?
v
CMSQA {input} {output} Output: populated areas
. Input: Members of the procession walk down the street holding small horn brass instruments. A drum line
HellaSwag {input} {output} X . ..
Output: passes by walking down the street playing their instruments
. Input: what does jamaican people speak?
1
WebQs {input} {output} Output: Jamaican Creole English Language
. Input: what is the population of montana ?
p s ! Wef 1 . .
GeoQuery {input}t{output] Output: answer(A,(population(B,A),const(B,stateid(montana))))
. Input: find all executable files in /home directory.
v
NL2Bash {input}tfoutput} Output: find /home -type f -perm /a=x
. Input: How many large metallic items are there?
y { Nt 1
Break {input}t{output] Output: 1#) return items 2#) return #1 that are large 3#) return #2 that are metallic 4#) return number of #3
Mto {input}\t{output} Input: Resume the timer in 10 seconds
P puts P Output: [IN:-RESUME_TIMER [SL:METHOD_TIMER timer ] [SL:DATE_TIME in 10 seconds ] ]
Input: Can you create me a new meeting on thursday morning?
SMCalFlow {input}\t{output} Output: (Yield (CreateCommitEventWrapper (CreatePreflightEventWrapper (Event.start ?

(DateTimeConstraint (Morning) (NextDOW (Thursday)))))))

about tasks involving calendars, weather, places,
and people. The meaning representation is an exe-
cutable dataflow program featuring API calls, func-
tion composition, and complex constraints.

B.2 Implementation Details

We employ the implementation* from Ye et al.
(2023) for all baselines. Specifically, for EPR
and CEIL, we limit the maximum instances in the
proxy task to 4,000 (|D*| = 4,000) and sample
50 candidates for each instance to create positive
and negative pairs. It is worth noting that collecting
these data for both methods (i.e., 200,000 queries to
LLMs) is pretty expensive and time-consuming, es-
pecially for CEIL, where each candidate sequence
involves 16 exemplars.

For our proposed MLSM, we randomly sample
1,000 examples (n. = 1, 000) from the demonstra-
tion set D to compute layer-wise CKA scores and
obtain three representative layers through cluster-
ing (n; = 3). Then, we randomly sample 256 and
64 examples (n; = 256 and n,, = 64) for each
test case from D as mini training and validation
sets, respectively. The temperature of the softmax
function is set to 0.01 (7 = 0.01). We utilize Adam

*https://github.com/HKUNLP/icl-ceil

optimizer with batch size 32 and learning rate 0.1
to learn the aggregation weight w in fewer epochs.

For our proposed TTF, we instantiate fg with
BERT and ¢4 with different task heads for classi-
fication tasks. Concretely, for SST-5, MRPC and
QNLI, we utilize the sequential classification head’
and train the model using Adam optimizer with
batchsize 32, learning rate Se-4 and weight decay
le-4. For SWAG and CMSQA, we adopt the multi-
choice head® and also train the model using Adam
optimizer with batchsize 8, learning rate Se-4 and
weight decay le-4. Additionally, we instantiate
fo with BERT and g4 with decoder for generation
tasks. We utilize Adam optimizer with batchsize 16
for all tasks, learning rate Se-5. Especially for TTF
(T5), we instantiate fg and g¢ using the encoder
and decoder of T57 and utilize to Adam optimizer
with batchsize 8, learning rate 4e-5 and weight
decay 0.01.

Furthermore, we conducted all experiments for
EPR and CEIL on two NVIDIA A100 GPUs

5https://huggingface.co/docs/
transformers/model_doc/bert#transformers.
BertForSequenceClassification

®https://huggingface.co/docs/
transformers/model_doc/bert#transformers.
BertForMultipleChoice

7https://huggingface.co/google—tS/tS—base
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(40GB), while the remaining experiments were
performed on two NVIDIA V100 GPUs (30GB).
Each main experiment is repeated three times using
different random seeds to mitigate the effects of
randomness.

C Experiments on Advanced LLMs

Table 7: Main results of MLSM and TTF on four
datasets when using Llama 3 (8B) as the main LLM.
Llama 3 (8B) performs worse on NL2Bash because of
the repetitive generation

Method MRPC CMSQA SWAG NL2B. Avg. Avg. (w/oNL2B.)
Random 67.65  68.39 74.67  9.89 55.15 70.23
Top-K BERT | 72.28  68.29 74.03 977 56.09 71.54
MLSM 71.32  68.88 76.69 1567 58.13 7230
EPR 7230  66.77 7414 9.87 55.77 171.07
TTF 7279  68.80 76.77 1237 57.67 7279

Generalization of of 7{;and H5: In the main body
of our paper, we validate H; and Hy using GPT-
Neo and GPT-2 XL. To extend this to more ad-
vanced LLMs, we utilize Llama 3 (8B) for the
learning-based method EPR on four datasets (i.e.,
MRPC, CMSQA, SWAG, and NI2Bash) due to the
high cost of data collection for EPR’s proxy task.
As illustrated in Fig. 5 (Left), different tasks ex-
hibit distinct preferences for specific layers, and
the CKA distribution across various tasks shows
significant diversity among different pre-trained
layers of BERT in Fig. 5 (Right). These results
support H1, indicating that learning-based meth-
ods can effectively aggregate multi-level (layer)
linguistic similarities across tasks. Additionally,
as depicted in Fig. 6 (Left), positive exemplars
have consistently higher input-output similarities
with test cases than negative ones. Furthermore, as
shown in Fig. 6 (Right), the exemplars chosen by
EPR have outputs more similar to the test case than
those selected by unsupervised competitors, sup-
porting Hs. Thus, our findings can be generalized
to more advanced LLMs.

Generalization of MLSM and TTF: We further
verify the generalization capabilities of MLSM
and TTF to more advanced LLMs using Llama 3
(8B) and GPT-3.5 on four tasks. First, we com-
pared these methods against both supervised (EPR)
and unsupervised approaches (Top-K BERT, Ran-
dom) with Llama 3 (8B), as shown in Table 7. The
results demonstrate that MLLSM consistently sur-
passes Top-K BERT, while TTF achieves the high-
est performance overall. We also evaluated MLSM
and TTF against Top-K BERT on Llama 3 (8B)
and GPT-3.5 across varying shot numbers in Ta-

ble 8. Both methods generally outperform Top-K
BERT, except for TTF when using 20 shots. We
speculate that GPT-3.5 may learn incorrect patterns
from selected exemplars when it could answer cor-
rectly using its inherent knowledge, but the implicit
prediction by TTF and EPR is wrong. Moreover,
advanced LLMs are more sensitive to the instruc-
tion prompt choice rather than exemplar, particu-
larly when the shot of exemplars reaches a certain
threshold (e.g., 3 shots) (Chen et al., 2023; Yuan
et al., 2024). In summary, our methods demonstrate
strong generalization across advanced LLMs.

D Connection with Explanatory Work of
ICL

Our work presents two hypotheses regarding the
types of similarity measurements acquired by
learning-based demonstration selection methods:
Integrating task-agnostic similarities of different
levels between the input of exemplars and test
cases (#H1), Incorporating task-specific similarity
between the output of exemplars and test cases
(H2). While we have quantitatively validated both
hypotheses in Sec. 3, we qualitatively support
both hypotheses by demonstrating the exemplars
selected based on the corresponding similarity mea-
surements will contribute to the ICL performance
based on the explanatory mechanisms of ICL.
Qualitative Validation of 7{;: 7, argues learning-
based exemplar selection methods retrieve exem-
plars with multi-level analogs to the test case.
These exemplars are more likely to lead LLMs
to correct predictions than dissimilar ones when
they contain relevant patterns (i.e., token and to-
ken sequences that aid correct predictions) for the
test case. For example, previous investigation (Ols-
son et al., 2022; Reddy, 2023) proposed a possible
inner working of ICL that LLMs can learn from sur-
face patterns in the demonstration sequence, such
as copying tokens from contextual prompts. Fur-
thermore, recent research (Yan et al., 2023) em-
pirically demonstrated that increased contextual
co-occurrences will strengthen the connection be-
tween two tokens during generation caused by the
maximizing likelihood objective of LLMs. These
insights suggest that influential demonstration ex-
emplars may exhibit more token or phrase-level
correspondence with the test case corresponding to
the low-level similarities in the lower or middle lay-
ers of pre-trained BERT, significantly influencing
LLM outputs and supporting H;.
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Figure 4: Left: Comparison of similarity between the input/output of positive and negative demonstration examples
and the input/output of the test case across ten tasks for EPR. Right: Difference between EPR and three task-
agnostic demonstration exemplar selection methods in average similarity between the output of test case and
retrieved exemplars. We use GPT-2 XL (Black et al., 2021) as the LLM.
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Figure 5: Left: Top-10 retrieval accuracy using each
of the twelve layers of the original BERT to retrieve
positive exemplars to solve the proxy task of EPR across
four tasks. Different colors represents different layers.
Top-10 accuracy refers to the probability of retrieving
the positive exemplar in the top 10 predictions. Middle:
CKA scores between twelve layers of original BERT
(x-axis) and the final layer of BERT of EPR trained on
four tasks and the training-free BERT. We use Llama3
(8B) as the main LLM.

Qualitative Validation of 7{5: In line with the
qualitative validation of H;, we illustrate the ex-
emplar with similar input and output to test cases
also contributes to the performance of ICL. Prior
work has demonstrated that ICL typically learns
input-output relation from exemplars even for a
genuinely novel task the LLM cannot know from
pre-training (Kossen et al., 2023; Halawi et al.,
2023; Zhao et al., 2024). Moreover, Kossen et al.
(2023) further proposed that LLMs prefer utilizing
information closer to the query rather than treat-
ing all available information equally. Hence, if
the exemplar selection method successfully learns
the output similarity via the proxy task, it selects
demonstration examples exhibiting useful input-
output correlations for the test case due to their
shared relevant input-output correlations and po-
sitions it closely to the test query in the prompt.
These advantages align with the previously men-

Figure 6: Left: Comparison of similarity between the
input/output of positive and negative demonstration ex-
amples and the input/output of the test case across four
tasks for EPR. Right: Difference in average similarity
between the output of test case and retrieved exemplars
for EPR and each of the three learning-free prompt re-
trieval methods. We use Llama3 (8B) as the main LLM.

tioned underlying working mechanisms of LLMs,
thereby validating Ho.

Table 8: Results of cross-LLM Transferability Valida-
tion of TTF and MLSM on Llama 3 8B and GPT 3.5
Turbo.

TTEF Verification

LLM Shot Method SST-5 MRPC QNLI CMSQA Avg.
3 Top-K BERT 4850 70.34 78.13 63.05 65.00
) TTF 48.68  70.83  77.96 63.55 65.26
GPT 3.5 Top-K BERT 4941 7132 7725 60.52  64.63
20 TTF 4796 6691 7734 60.94 63.29
EPR 49.14 6422 71.03 59.79 62.55
Llama3 20 Top-K BERT 7228 71.28 73.73 68.29 71.40
TTF 7279 7279 7772 68.80 73.03

MLSM Verification

LLM Shot Method SST-5 MRPC GeoQ. NL2Bash Avg.
3 Top-K BERT 49.50 70.34 17.14 63.52  50.13
GPT 35 MLSM 4932 7059  18.00 64.56 50.62
20 Top-K BERT 49.41  71.32 4.64 60.52 46.47

MLSM 50.23  74.02 5.36 68.24  49.46

Liama3 20 Top-K BERT 72.28  71.28 0.00 9.77 3833
MLSM 7279 7279 0.00 15.67 40.31

E Statistical Significance

To strengthen our evaluation, we re-ran MLSM
and TTF for the main experiments in Table 2 and
Table 3 using GPT-Neo as the LLM. We report
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Table 9: Main results of MLSM and TTF when using
GPT Neo as the main LLM. { represents the probability
that the performance of MLSM exceeds that of Top-K
BERT is over 95% by t-test. Org represents the perfor-
mance reported in our original version.

Main results on the ion task.

Method SST-5 MRPC QNLI CMSQA SWAG AVG.
Top-K BERT | 32.64 69.70 61.94 35.25 41.46 48.20
MLSM (Org) | 33.15 69.87 65.02 37.26 41.49 49.36
MLSM 35.00+ 1770 69.60+£0.20  65.10+0.117 38.07+0.811 41.82+0.32  49.94+0.607
EPR (Org) [ 36.88 SL.37 TT.87 3874 1339 55.65
TTF 4204+ 1.50  74.18+0.58 8515+ 1.00 4639+ 1.55 56.51 £0.69  60.85+0.27
Main results on the task.
Method WebQs GeoQ. NL2B. MTOP SMCal. AVG.
Top-K BERT | 14.13 64.44 53.15 51.49 1476 1559
MLSM (Org) | 16.14 68.93 56.11 54.05 47.72 48.59
MLSM 15.65 £0470 69.14 £0.197 56.24 £1.277  53.924+0.207  47.59 £0.191 4851 £0.17"

the average accuracy and standard deviation for
both methods and statistical significance for the
comparison between MLSM and Top-K BERT in
Table 9. The results demonstrate the effectiveness
of both methods, particularly MLSM, which shows
stable performance improvements, which may be
attributed to the used loss function.

F Theoretical Foundation Of MLSM and
TTF

While MLSM and TTF are naturally supported by
our findings (H and H5) as they are two implemen-
tations of these findings, we provide a preliminary
theoretical foundation for both methods. Specifi-
cally, MLSM treats different layers as experts and
uses the loss function £ = — ) ",y - y; to en-
semble them for demonstration selection. This
approach is theoretically proportional to mutual
information /(Y Y) and inversely proportional to
selection entropy H (Y), maximizing expert agree-
ment and ensuring stable selection. The detailed
proof is available in (Zhang et al., 2022c). For
TTEF, we conduct preliminary theoretical analysis
showing how features from layers before the final
classification task heads can model input-output
distribution in Section 4.

G Analysis of aggregation weight

We analyze the probability density distribution of
aggregation weights of MLSM on four datasets
in Fig. 7. The results show that: 1) Different
datasets exhibit varying weight probability den-
sity distributions and mean values, indicating that
MLSM adaptively adjusts the weights of each layer
to maximize agreement for demonstration retrieval.
2) The weights w; and ws are often higher than
ws, suggesting that MLSM focuses more on lower-
level features, possibly due to the greater similarity
of features extracted from these layers. Although
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Figure 7: Probability density distribution of aggregated
weights for n; layers of MLSM, with n; = 3 for MRPC,
CMSQA, SWAG, and NI2Bash, presented from top-left
to bottom-right. The weights wy, wa, w3 correspond to
layers from low to high. The mean (standard deviation)
of the weights are as follows: 0.35 (0.08), 0.43 (0.08),
0.21 (0.07) for MRPC, 0.34 (0.07), 0.48 (0.08), 0.17
(0.06) for CMSQA, 0.34 (0.07), 0.50 (0.08), 0.15 (0.06)
for SWAG and 0.26 (0.06), 0.43 (0.07), 0.30 (0.07) for
NI2Bash.

MLSM’s performance is impressive, this method
is just one possible instance of our proposed H;.
Other alternatives, such as integrating MLSM with
training examples from the proxy task of learning-
based methods, may also be viable, which we leave
in future exploration.

H Running Efficiency

Take the experiments on the QNLI dataset using
a V100 GPU as an example. QNLI, a natural lan-
guage inference task, comprises 5,463 test samples
and 104,707 demonstration samples. For MLSM,
in an online streaming scenario with a batch size of
1 (i.e., only one test point is observed during infer-
ence), this method processes approximately 1.6—-1.7
data points per second. However, as indicated in
Ablation of Batchsize for MLSM in Sec. 5, MLSM
benefits significantly from larger batch sizes. In
this case, with batch sizes of 8 and 64, MLSM can
process approximately 4 and 32 data points per
second, respectively. Additionally, the GPU mem-
ory overhead for MLSM is small (400-800 MB),
enabling multi-process execution to accommodate
deployment requirements. In comparison, TTF can
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process approximately 60 data points per second.

I More Ablation Study

Ablation study of demonstration examples. To
evaluate the effect of the number of demonstra-
tion examples on classification performance, we
conducted an ablation study using GPT-NEO-2.7B
on four classification tasks: SST-5, MRPC, QNLI,
and CMSQA. We experimented with three different
shot settings: 5, 10, and 20. The results are shown
in Tables 10-12. As observed, performance gener-
ally improves with more demonstration examples.
Notably, the exemplar selection methods MLSM
and TTF exhibit consistent gains across tasks as
the number of examples increases, supporting their
efficacy in enhancing generalization. For instance,
TTF outperforms all baselines at 20-shot with an
average accuracy of 62.54%. These findings con-
trast with our observations on the GPT-3.5-Turbo
model, discussed in the Appendix. C, where in-
creasing the number of examples beyond a certain
point did not yield further improvements due to its
more advanced in-context learning capabilities.

Table 10: Performance on classification tasks when shot
number = 5

Method SST-5 MRPC OQNLI CMSQA Avg.

BERT 03179 0.6373 0.5792  0.3317  0.4665
MLSM  0.3224 0.6225 0.5938 0.3325  0.4678
EPR 0.3833 0.7206 0.7630  0.3161  0.5457
TTF 0.3851 0.7353 0.7505 0.3456  0.5541

Table 11: Performance on classification tasks when shot
number = 10

Method SST-5 MRPC QNLI CMSQA Avg.
BERT 03442 0.6614 06136 03038  0.4808
MLSM 03488 0.6617 0.6282 0.3267  0.4913
EPR 0.3896 0.7083 0.7639  0.3227  0.5461
TTF 0.3896 0.7108 0.7827 0.3276  0.5527

Table 12: Performance on classification tasks when shot
number = 20

Method SST-5 MRPC QNLI CMSQA Avg.

BERT 0.3270 0.6912 0.6094  0.3584  0.4965
MLSM 03315 0.6987 0.6502 0.3726  0.5133
EPR 0.3688 0.8137 0.7787 0.3874  0.5872
TTF 0.4274 0.7451 0.8508 0.4783  0.6254

Comparison with Universal Demonstration Set
Methods. Our work focuses on understanding

and improving learning-based demonstration se-
lection in the context of input-dependent exem-
plar retrieval for in-context learning. This setting
is distinct from approaches that construct a sin-
gle, fixed set of demonstrations to serve multiple
test queries, which is commonly explored in low-
resource scenarios. Despite this conceptual differ-
ence, our method can be adapted to enhance meth-
ods designed for universal demonstration sets by
providing a more effective similarity measure. To
demonstrate this, we integrate our proposed TTF
retriever into the IDEAL framework (Zhang et al.,
2023a), which selects exemplars based on the max-
imum marginal gain with respect to a similarity-
based influence measure. Specifically, we replace
the original Sentence-BERT similarity metric used
in IDEAL with our TTF retriever.

The results, presented in Table 13, show that
this substitution leads to substantial performance
gains on both the MRPC and SST-5 tasks. These
results suggest that our model not only improves
input-specific exemplar selection but also enhances
the construction of universal demonstration sets.

Table 13: Comparison with IDEAL using a universal
demonstration set.

Method MRPC SST-5

IDEAL 0.6300 0.4320
IDEAL + TTF  0.6914  0.5733

Explanation of Non-existence of strict alignment
between two subfigures in Fig.1. We acknowl-
edge that Fig. 1 (Left) and Fig. 1 (Middle) are
conceptually related, as both aim to capture aspects
of similarity modeling across different representa-
tion layers. However, we emphasize that there is
no expectation of a quantitative correlation or strict
alignment between them. This is due to several rea-
sons outlined below. On the one hand, the behavior
of the EPR retriever is governed not only by the
input representation layers but also by the induc-
tive biases of BERT and specific training dynamics
such as fine-tuning objectives and hyperparameters.
Therefore, rather than expecting an exact correla-
tion between retrieval accuracy across layers and
the similarity integration behavior of the EPR re-
triever, it is more meaningful to analyze how the
retriever changes before and after fine-tuning on
the proxy task. For example, the final layer of the
original BERT-based retriever does not inherently
prefer low-level similarities. However, after fine-
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tuning on proxy tasks where low-level similarities
are more important (e.g., SWAG and NL2Bash), we
observe that the CKA score between the final layer
of the EPR retriever and BERT’s low-level lay-
ers increases significantly—from 0.2 to 0.5. This
suggests that EPR adapts its similarity preference
based on the proxy task, even if simple correla-
tion metrics do not fully capture such changes. On
the other hand, to further illustrate this point, we
report Spearman’s rank correlation coefficients be-
tween layer-wise top-10 retrieval accuracy on the
proxy task and CKA similarity scores between the
final EPR layer and the original BERT layers. Re-
sults are shown in Table 14. While some tasks
(e.g., MRPC) show high correlation for the EPR re-
triever, others (e.g., SWAG, NL2Bash) exhibit low
or even negative correlations. This variability fur-
ther supports the notion that accurate retrieval does
not strictly align with layer-wise CKA patterns. Fi-
nally, there is no theoretical reason to expect that
the EPR retriever must integrate various similarity
levels in a way that strictly mirrors the distribution
of retrieval accuracy across BERT layers. For ex-
ample, if a proxy task benefits most from low-level
similarities, the retriever may heavily weight those
layers while largely ignoring middle- or high-level
representations—even if they offer moderate util-
ity. Thus, Fig. 1 (Left), which reflects raw retrieval
accuracy per layer, and Fig. 1 (Middle), which re-
flects learned integration patterns, are related but
not expected to be perfectly aligned. In summary,
while both subfigures offer insights into the model’s
similarity behavior, they capture different aspects
of the system. The lack of strict alignment does
not undermine our findings or the validation of Hy-
pothesis 1 (H1), and we make no such claim in the

paper.

Table 14: Spearman’s rank correlation (p) between top-
10 retrieval accuracy using BERT layers and CKA simi-
larity scores between EPR and BERT layers.

Task EPR Retriever Original BERT
Coefficient p-value Coefficient p-value
MRPC 0.8881 0.00011 0.3986 0.1993
CMSQA 0.6294 0.0283 0.4545 0.1377
SWAG -0.8111 0.00136 0.4685 0.1245

NL2Bash -0.1888 0.5567 -0.0629 0.8459
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