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Abstract

Contrastive Language-Image Pretraining
(CLIP) enables zero-shot inference in down-
stream tasks such as image-text retrieval
and classification. However, recent works
extending CLIP suffer from the issue of
modality gap, which arises when the image
and text embeddings are projected to disparate
manifolds, deviating from the intended
objective of image-text contrastive learning.
We discover that this phenomenon is linked to
the modality-specific characteristic that each
image or text encoder independently possesses.
Herein, we propose two methods to address
the modality gap: (1) a post-hoc embedding
standardization method, I0Tpost that reduces
the modality gap approximately to zero and
(2) a trainable method, I0Tasync, to alleviate
the modality gap problem by adding two
normalization layers for each encoder. Our
I0T framework can significantly reduce the
modality gap while preserving the original
embedding representations of trained models
with their locked parameters. In practice,
I0Tpost can serve as an alternative explainable
automatic evaluation metric of widely used
CLIPScore (CLIP-S). The code is available in
https://github.com/xfactlab/I0T.

1 Introduction

Utilizing Vision-language models (VLMs) such as
Contrastive Language-Image Pretraining (CLIP)
(Radford et al., 2021) has been a common prac-
tice for performing multimodal tasks (Goel et al.,
2022; Fürst et al., 2022; Li et al., 2023b; Zhang
et al., 2024; Gao et al., 2024; Sarto et al., 2023;
Hu et al., 2023; Lee et al., 2024). Despite these
successes, CLIP and its variants (Xu et al., 2021;
Zhang et al., 2022b; Goel et al., 2022; Sarto et al.,
2023; Zhang et al., 2024) suffer from a significant
limitation known as the modality gap; image and
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Figure 1: Improved scoring system using our proposal
(I0T-S) than CLIP-S. I0T-S assigns a higher similarity
score for the correct image-text pair than for irrelevant
pairs.

text embeddings diverge in the latent space, pro-
jected to separate manifolds (Liang et al., 2022;
Fahim et al., 2024) (not only limited to image-text
pairs but is also apparent in audio-visual inputs
(Malard et al., 2024)). This is in contrast to the orig-
inal image-text contrastive learning (CL) objective,
which pulls and pushes the positive and negative
pair of image and text embeddings (Radford et al.,
2021), deviating from the shared statistical model
representing reality (Huh et al., 2024).

The undesirable symptom of modality gap is
that data within the same modality always have
higher semantic similarity than the cross-modal
data. Therefore, CLIP cannot draw an accurate
semantic relationship for the data pool mixed with
different modalities. This problem is especially
noticeable when CLIP is extended as an automatic
evaluation metric, widely used CLIPScore (CLIP-
S) (Hessel et al., 2021; Sarto et al., 2023), which
measures the cosine similarity between image and
text embeddings. Figure 1 shows that CLIP-S re-
turns an unintuitive lower score for the correct
image-text pair than the irrelevant image-image
and text-text pairs due to embedding discrepancy
between images and texts.
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Prior approaches to mitigate the modality gap
have focused on shifting (Liang et al., 2022) or
training (Fahim et al., 2024; Eslami and de Melo,
2024) the embeddings of the positive pairs closer
together. However, they did not attempt to find
and attribute explicit factors in the image and text
embeddings that lead to the modality gap. In con-
trast, we explore the actual attributing factor of
the modality gap; CLIP inadvertently learns the
inherent characteristic of each modality (referred
to as modality-specific characteristic in this pa-
per), inducing similar activation patterns within the
normalized embeddings of all different images (or
texts) from each image (or text) encoder. These
patterns, characterized by peak activations with
distinct negative and positive directions for image
and text embeddings (later visualized in Figure 3),
significantly contribute to the modality gap. We
find that it is crucial to discard not only these peak
activations on a specific few dimensions but also ex-
isting modality-specific characteristics across all di-
mensions from each encoder to mitigate the modal-
ity gap.

Here we propose a framework, Zero (0) Modality
Gap between Image-Text embedding representa-
tions (I0T) that aims to minimize the modality gap
towards zero. Correspondingly, it is also crucial to
maintain rich semantic embedding representations,
even if they become closely aligned or shifted. The
first stage of I0T is a plug-and-play module that
can be implemented with any readily available fine-
tuning strategies. The second stage of I0T can
be addressed with two proposed approaches. We
first develop I0Tpost that standardizes the normal-
ized image and text embedding activations inde-
pendently by subtracting the mean vectors of each
modality and renormalizing with Frobenius nor-
malization on the frozen encoders from the first
stage.

I0Tpost offers a more explainable image caption-
ing evaluation metric than CLIPScore (Hessel et al.,
2021) (referred to as I0TScore (I0T-S) in Figure 1)
by assigning a similar range of scores for across
different modalities and within the same modal-
ity, attributable to the low modality gap property.
However, this post-hoc embedding standardization
method needs a sufficient amount of data samples
with a similar distribution as a test set; hence, we
present I0Tasync that learns the aligned embeddings
with no access to the test distribution. Our main
contributions can be summarized as follows:

• Achieving both modality gap and downstream
performances is challenging; yet, we propose
an I0T framework that significantly reduces
the gap without hurting performances.

• I0Tpost and I0Tasync significantly reduce the
modality gap while enhancing text-to-image
retrieval scores by 9.2% and 6.7%.

• We are the first to propose an automatic evalu-
ation metric, I0TScore, that can be applied to
data across different modalities, overcoming
the limitation of CLIPScore that only works
within a single modality.

2 Related Works

2.1 CLIP-Based Models

Vision-language models (VLMs) have addressed
multimodal tasks that require a joint understanding
of visual and textual data (Liu et al., 2024; Li et al.,
2022). Most modern VLMs utilize CLIP-style ar-
chitectures due to CLIP’s exceptional performance
in zero-shot downstream tasks using pre-trained
image and text encoders (Radford et al., 2021; Jia
et al., 2021). However, CLIP alone shows limita-
tions in producing consistent representations (Goel
et al., 2022); Hence, CyCLIP (Goel et al., 2022) re-
duces the similarity of mismatched pairs of image
and text (cross-modal cyclic) and the image pairs
and the corresponding text pairs (in-modal cyclic).
Long-CLIP (Zhang et al., 2024) uses knowledge-
preserved enlarged positional embedding, handling
up to 248 input tokens, significantly greater than the
77 tokens restricted in CLIP. FLIP (Li et al., 2023b)
proposes a technique where a significant portion
of image patches is randomly masked during train-
ing. SoftCLIP (Gao et al., 2024) uses softened
target labels derived from fine-grained intra-modal
self-similarity. ProtoCLIP (Chen et al., 2023a) in-
troduces a prototype back translation to effectively
train CLIP and alleviate the modality gap issue.

2.2 Modality Gap

The issue of the modality gap is pervasive in VLMs
such as CLIP, caused by embeddings for images
and texts occupying disjoint regions in the latent
space (Liang et al., 2022; Oh et al., 2024). This
gap, by definition, restricts the model from utiliz-
ing the entire latent space. The root cause of this
modality gap has been debated: Ramasinghe et al.,
2024 claims that the intrinsic differences between
image and textual data unavoidably result in the
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Figure 2: Linear separability and minimum cosine distance (dashed line) vs. centroid distance illustrated with
corresponding 3D-projected embeddings. The embeddings are categorized by three modality gap severity levels:
severe, moderate, and low based on the fitted lines. The solid and dotted lines represent the fitted piecewise linear
function of linear separability values (the first y-axis) and minimum cosine distance (the second y-axis) across
varying centroid distances (x-axis) (details in Appendix A). The lambda (λ) values are the embedding shift values
from Liang et al., 2022. Each color represents different sample results from the Flickr30k set with the same lambda
value, ranging from 0.4 to 1.0.

modality gap. Liang et al., 2022 attributes the gap
to the resulting narrow cone due to the high model
hidden dimension. Fahim et al., 2024 suggests that
the gap, mainly caused by the contrastive learning
objective, could be reduced with additional loss
terms for uniformity and stricter cross-modal align-
ment (Wang and Isola, 2020). In this work, we are
interested in removing the actual attributing factor
of the gap, in contrast to accepting the modality
gap (Ramasinghe et al., 2024) to extend CLIP as
an explainable evaluation metric.

3 Preliminary Analyses

Modality gap was introduced by Liang et al., 2022
and is defined as the centroid distance (CD) be-
tween the mean of normalized image embeddings
(xi ∈ Rd, i = 1, 2, ..., n) and mean of normalized
text embeddings (yi ∈ Rd, i = 1, 2, ..., n). For-
mally, △CD := ||x̄ − ȳ||F , where x̄ := 1

n

∑n
i=1 xi,

ȳ := 1
n

∑n
i=1 yi, with d and n representing the

model’s hidden dimension and the data size. Fahim
et al., 2024 quantify the gap as the linear separabil-
ity (LS) of image and text embeddings (Shi et al.,
2023). To measure LS ( △LS), or how well im-
age and text embeddings can be separated with the
linear classifier, we divide the COCO dataset (Lin
et al., 2014) into training (70%) and test (30%)
(Shi et al., 2023; Liu et al., 2024). Then, we train
a linear regression model and report 1 − mean
squared error of the model separability of image

and text embeddings, following the same procedure
as Fahim et al., 2024.

3.1 Severity Levels of Modality Gap
To integrate the different definitions of the modal-
ity gap, we analyze the relationship between CD,
LS, and minimum cosine distance1 (MCD; △MCD)
using piece-wise linear interpolation (Figure 2).
We find that if △CD < 0.19, △LS deviates from
1.0. Also, as △CD > 0.63, MCD increases with a
steeper slope than the slope in △CD < 0.63 (See
Appendix A for details). Thus, our categorization
of the modality gap using a relationship of CD, LS,
and MCD is as follows:

• Severe: △CD ≥ 0.63

• Moderate: 0.19 ≤△CD < 0.63

• Low: △CD < 0.19

3.2 Normalized Embedding Activations
The attributing factor of the modality gap observed
in CLIP can be informed through our analysis of
the normalized embedding activations2 from each
image/text encoder. We first investigate distinct
peak activations in the normalized image and text
embeddings and then theoretically show that these
peak activations contribute to the modality gap.

1We subtract maximum cosine similarity corresponding to
top-1 predicted labels from 1.0 for all samples in the dataset.

2These embeddings with Frobenius norms set to 1 are used
for calculating the cosine similarity of an input image and text.
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Figure 3: Comparison of normalized embedding activations (avg: salmon, std: gray) and modality gap across three
post-hoc methods applied on Long-CLIP.

As displayed in the first column of Figure 3 (or
Figure 6 in Appendix B), a similar pattern of nor-
malized embedding activations is shown across the
hidden dimensions for different images and texts
with a small standard deviation. Also, we consis-
tently observe negative peak activations at the 93rd
dimension for all image samples and positive peak
activations at the 134th and 313th dimensions for
all text samples with low standard deviation, re-
gardless of the semantic representations of each
sample per modality. This phenomenon is possi-
bly due to one of the root causes of the modal-
ity gap discussed in Related Works (Ramasinghe
et al., 2024; Liang et al., 2022; Fahim et al., 2024).
This suggests that each encoder captures modality-
specific characteristics that can contribute to the
embedding discrepancy between images and texts.
Thus, mitigating these modality-specific character-
istics across all dimensions, particularly peak acti-
vations at a few dimensions, is essential to alleviate
the modality gap.

3.3 Contribution to Modality Gap
We now demonstrate how these peak activations in
the normalized image and text embeddings prevent
the cosine similarity from reaching high values. To
illustrate the upper bound of the cosine similar-
ity, suppose there exists one negative peak, p, in
normalized image activation (xi = [x1, x2, ..., xd])
and two positive peaks of q in normalized text
embedding activations (yi = [y1, y2, ..., yd]), and
|p| ≫ xi and |q| ≫ yi, in align with our empirical
finding (Figure 3). For simplicity, we assume that
the other non-peak activations are uniformly dis-
tributed. Then, the upper bound of |cos(xi, yi)| con-
verges to

√
(1− p2)(1− 2q2) as d → ∞ (proof in

the Appendix C). If we set p to be −1
2 , and q to be

1
3 (Long-CLIP activations from Figure 3), the up-
per bound of |cos(xi, yi)| converges to 0.76. Since
this converged value is less than 1, it implies that
the existence of peak activations hinders the co-
sine similarity of text and image embeddings from
being close to 1, inducing a modality gap.

4 Methodology

The I0T framework consists of two stages, the ini-
tial stage being a plug-and-play module that can be
skipped if the user only wants to tackle the modal-
ity gap problem of the models. The second stage of
I0T is applied asynchronously after the first stage.
The motivation behind these divided stages is main-
taining the semantic representations by locking the
model parameters in the first stage and mitigating
the modality gap in the following stage.

4.1 The First Stage of I0T

In this initial stage, our goal is to enhance the se-
mantic representations of CLIP from our 2-step
paradigm. Here, we share our best strategies
to improve overall downstream performance on
CLIP using a mixture of recently introduced CLIP
fine-tuning strategies from several works of liter-
ature. We follow the implementation of Long-
CLIP (Zhang et al., 2024), but with a key differ-
ence; we find that using only long captions for
alignment (Long-CLIP-only) on COCO from the
ShareGPT4V dataset (Chen et al., 2023b)3 signif-
icantly reduces the training time (∼1/10) while

3Share GPT4V includes much longer, synthetic captions
that are much noisier than the standard short captions in COCO
and Flickr30k datasets.
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achieving better performances in downstream tasks
(refer to Appendix D for details).

We also use a combination of the standard
contrastive learning and Cyclic losses (Goel
et al., 2022), LCyCLIP := LCLIP + 0.25LI-Cyclic +
0.25LC-Cyclic. CLIP is fine-tuned for three epochs
using the AdamW optimizer (Loshchilov and Hut-
ter, 2019), with a learning rate of 1e-6 and a weight
decay of 1e-2. We set a batch size of 128 (64
for each GPU device), and use the standard con-
trastive learning loss with the temperature log scale
of 4.6052. The training procedure is consistently
applied across all comparison methods to ensure a
fair and controlled comparison. All the details of
comparison baselines and evaluation downstream
tasks are in Appendix D.

4.2 The Second Stage of I0T
Post-hoc Method to Reduce Modality Gap To
mitigate the modality gap, it is crucial to remove
modality-specific characteristics from the embed-
dings of each encoder. A straightforward approach
might involve suppressing peak activations through
clipping. However, we observe that clipping the
normalized activations within the range of −0.1 to
0.1 followed by Frobenius norm re-normalization,
still results in severe modality gap (see the sec-
ond column in Figure 3). We hypothesize that the
remaining unclipped activations might still encom-
pass the property that commonly exists across the
activations for each image/text encoder linked to
the modality gap.

Motivated by the limitation of this clipping
method, we develop an embedding standardiza-
tion method to remove modality-specific charac-
teristics from the normalized activations across
entire dimensions. We standardize the normal-
ized embedding activations (xi, yi ∈ Rd) by sub-
tracting the mean vectors (x̄, ȳ ∈ Rd) for each
modality and re-normalize them by dividing by the
Frobenius norms (the third column of Figure 3):
x′
i = Normalize(xi − x̄), y′

i = Normalize(yi − ȳ)
Our post-hoc method significantly reduces the

modality gap, similar to the post-hoc shifting
method of Mind-the-Gap (MG) (Liang et al., 2022)
(see the comparison between the third and the
fourth columns of Figure 3). In addition, as shown
in Figure 3, with no outlier peaks and mean acti-
vations close to zero across all hidden dimensions.
These observations suggest that, unlike the MG
approach, our approach more effectively removes
the underlying contributors to the modality gap,

including peak activations. This results in more
modality-invariant representations (compare peak
activations between the third and fourth columns
in Figure 3).

Learnable Method to Reduce the Gap Al-
though I0Tpost significantly reduces the modality
gap, it does not support zero-shot inference for a
single sample. To overcome this limitation, we ex-
plore a method to automatically reduce the modal-
ity gap without relying on post-hoc refinement. The
key point of our I0Tasync method is to add an inde-
pendent batch normalization (BN) layers, BNimg
and BNtxt for each encoder. This enables the model
to learn the means and variances of normalized
image and text embedding activations without af-
fecting the semantic encoding capability of the en-
coder (see Discussion). Through this process, the
model iteratively updates the running means and
variances of normalized embedding activations for
each modality: x̄t+1 = αx̄B + (1 − α)x̄t, ȳt+1 =
αȳB + (1− α)ȳt.

x̄t+1 and ȳt+1 denote the updated running means
in training time step t+ 1, incorporating the batch
mean vectors, x̄B =

∑m
i=1 xi and ȳB =

∑m
i=1 yi,

with averaging factor α = 0.1, and batch size,
m = 64, 128, 256, 512. We use the final updated
running mean of normalized image and text em-
bedding activations, x̄train := x̄T , ȳtrain := ȳT
(T : final training step) as the learned modality-
specific characteristics of images and texts. Sim-
ilarly, the final updated running variance of nor-
malized image and text embedding activations are
σxtrain := σxT , σytrain

:= σyT
, which are empiri-

cally observed as close to 1.0 across all d dimen-
sions. The final updated image and text seman-
tic representations can be expressed as (ϵ = 1e-
5): x′

i = Normalize(Wimg(
xi−x̄train√
σxtrain+ϵ

) + bimg) and

y′
i = Normalize(Wtxt(

yi−ȳtrain√
σytrain+ϵ

) + btxt), where

Wimg,Wtxt ∈ Rd and bimg,btxt ∈ Rd indicate the
weights and biases of BNimg and BNtxt.

Effectively training the BN parameters of
I0Tasync is a critical component of our approach.
We adopt the same training implementation details
uesed in the first stage, employing LCyCLIP loss
objective (AddBatchNorm = False in Appendix E
Algorithm 1). After this initial phase, we freeze the
parameters of the fine-tuned encoders to preserve
their learned semantic representations and subse-
quently train only the BN layers asynchronously
afterward (AddBatchNorm = True in Appendix E
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Modality Gap Downstream Performances
Models # Centroid Linear Sev. Retrieval ↑ Classification ↑ Relative Cor. ↑

Par ↓ Dist. ↓ Sep. ↓ Level ↓ I2T T2I CIFAR Bird Expert CF

Long-CLIP 353m 0.9904 0.9998 sev 71.90 75.00 65.03 5.43 53.21 34.86
LCO 353m 0.9965 0.9997 sev 72.50 75.90 64.46 5.81 51.42 35.17

LCCO 353m 1.0070 0.9999 sev 74.90 76.10 64.75 4.90 54.57 35.43
LCCOM 353m 0.9682 0.9998 sev 73.70 74.60 64.17 4.93 54.55 35.72

+ LN 354m 1.0068 0.9999 sev 74.70 76.20 64.58 5.08 54.56 35.42
+ LN∗ 353m 0.9696 0.9998 sev 73.60 74.10 64.36 4.87 54.52 35.70
+ BN 354m 0.5285 0.9983 mod 71.60 70.10 63.14 5.81 53.36 32.53

+ BN∗ (I0Tasync) 354m 0.4795 0.9960 mod 72.50 73.80 62.97 5.21 53.33 33.08

Table 1: Comparison of modality gap and downstream tasks performances across variations of Long-CLIP-based
models. ∗ indicates the asynchronous training method where we fine-tuned the frozen encoders from the first stage.
The bolded and underlined values indicate the best and the second-best performances.

Modality Gap Downstream Performances
Models # Centroid Linear Sev. Retrieval ↑ Classification ↑ Relative Corr. ↑ Rank ↓

Par ↓ Dist. ↓ Sep. ↓ Level ↓ I2T T2I CIFAR Bird Expert CF

CLIP 353m 0.7642 0.9985 sev 69.60 67.10 65.05 5.94 51.00 34.30 3.88
MGλ=0.375 353m 0.0291 0.5632 low 45.40 54.40 43.26 1.67 42.84 29.26 5.63
MGλ=0.5 353m 0.2493 0.9858 mod 38.10 46.50 44.13 1.37 39.70 27.25 6.63

MGλ=−0.5 353m 1.3799 0.9998 sev 45.20 54.40 9.52 5.35 NaN NaN 7.50
CLOOB 354m 0.4832 0.9899 mod 69.60 72.60 60.40 4.91 50.06 31.71 4.50

Unif-Align 353m 0.4636 0.9921 mod 51.20 46.00 50.32 3.83 42.47 29.31 5.88
PAC-S 353m 0.7583 0.9990 sev 72.60 71.60 58.61 3.74 54.00 36.10 4.50

I0Tasync 354m 0.4795 0.9960 mod 72.50 73.80 62.97 5.21 53.33 33.08 3.63
I0Tpost 353m 0.0102 0.5374 low 73.30 76.30 63.07 4.76 53.97 33.58 1.88

Table 2: Comparison of modality gap and downstream performances across different ViT-B/32-based CLIP models.
The bolded and underlined values indicate the best and the second-best performances.

Algorithm 1).

When training these BN layers, we intro-
duce Multimodal Contrastive Learning of Sen-
tence and Image Embeddings (MCSIE), our re-
implementation of MCSE (Zhang et al., 2022a),
a method based on unsupervised-positive aug-
mentation. Unlike MCSE, dropout (rate: 0.1)
is applied to every multi-head attention layer of
both the image encoder (ViT-B/32, Dosovitskiy
et al., 2020) and the text encoder (Transformer,
Vaswani et al., 2017). This strategy enhances
the diversity of multimodal associations by aug-
menting relations between all combinations of im-
ages/augmented images and texts/augmented texts
with

∑
EI∈{I,Iaug},ET∈{T ,Taug} L, where L indicates

a loss function. From our ablation study (see Ta-
ble 8 in Appendix F), we find MCSIE effectively
further reduces the modality gap, suggesting that it
enables BNs to learn the modality-specific charac-
teristics robustly.

5 Results

We first present how we build our best CLIP seman-
tic representations, implementing the first stage of
I0T on conventionally conducted tasks: image-text
retrieval and image classification. Unlike previous
works, we also test how CLIP-based models corre-
late with human ranking scores. Then, we evaluate
the effectiveness of our final I0Ts (i.e., I0Tasync
and I0Tpost) on two perspectives: (1) modality gap
and (2) downstream performances since it is cru-
cial to maintain semantic representations even if
the embeddings are aligned. Most importantly, we
show the applicability of I0Tpost as an automatic
reference-free evaluation metric.

5.1 Reducing Modality Gap while
Maintaining Semantic Representations

In Table 1, we show how we develop the final
I0Tasync starting from Long-CLIP (Zhang et al.,
2024), but again, note that this can be easily re-
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Figure 4: Comparison of non-CLIP-based model BLIP
and ours on the efficiency and performance.

placed with other new CLIP fine-tuning strategies
to be introduced as future work. Long-CLIP-only
(LCO) significantly reduces the training time by
using only COCO from all training datasets used in
Long-CLIP with similar overall downstream perfor-
mances. Long-CyCLIP-only (LCCO) adds only the
cyclic losses (Goel et al., 2022) to LCO but scores
higher overall downstream performances. While
Long-CyCLIP-only + MCSIE (LCCOM) shows
a slight decrease in downstream performances, it
also shows a slight decrease in modality gap, show-
casing the possibility of reducing the gap using
MCSIE; however, all these methods still show se-
vere modality gap.

Adding separate layer normalization for each
encoder either during the fine-tuning (+LN) or af-
ter training (+LN*) still results in a severe modal-
ity gap. In contrast, our proposed way of adding
independent batch normalization layers for each
encoder either during the fine-tuning (+BN) or af-
ter training (+BN*) results in a moderate level
of modality gap. We find that the asynchronous
training strategy (+BN*) performs better than the
non-asynchronous training strategy (+BN) in terms
of both modality gap and retrieval performances.
Thus, we propose the BN* as our final I0Tasync.
Similarly, our final I0Tpost is designed based on
LCCOM, incorporating its strengths for optimal
performance.

5.2 Comparison across Different Methods

As can be observed in Table 2, I0Tpost and I0Tasync
can substantially reduce the modality gap with-
out hurting the overall downstream performances,
maintaining the first and second rankings4. While

4We report the mean ranking of each model measured
across six downstream tasks and two modality gap metrics to
provide a holistic perspective. We use the Karpathy validation

CLIP-S PAC-S I0T-S

Min: -0.027
Max: 0.448

Min: 0.006
Max: 0.531

Min: -0.349
Max: 0.660

Two men are sitting in a 
canoe in the middle of a 
lake, watching the sunset 
in the background.

CLIP-S: 0.341

PAC-S: 0.454

I0T-S: 0.561
Correct caption

A group of men walk down 
the middle of a street that 
has poles lining the street.

CLIP-S: 0.009

PAC-S: 0.058

I0T-S: -0.279Incorrect caption

Figure 5: A wider range of cosine similarity distribution
with mean close to 0 using I0T-S compared to CLIP-
S and PAC-S without the scaling factor (i.e., ω = 1),
contributing to more explainable similarity scores for
positive and negative pair of image and caption.

CLIP shows a severe modality gap with high CD
and LS scores (0.7642 and 0.9985, respectively),
indicating significant separation in the latent space
between image and text embeddings, I0Tpost re-
duces the modality gap to almost zero with signifi-
cantly low CD and LS scores of 0.0102 and 0.5374.
This is notably better across tasks compared to a
competitive post-hoc method, MGλ=0.375 (Liang
et al., 2022), which also achieves a low sever-
ity level of modality gap. Note that while the
MG post-hoc method requires a tuning of λ (λ =
−0.5, 0.375, 0.5) to achieve the low modality gap,
our post-hoc method does not require hyperparame-
ter tuning. Meanwhile, I0Tasync reduces this gap to
a moderate level with CD and LS scores of 0.4795
and 0.9960.

We also ensure that the I0Ts do not significantly
hurt semantic representations when achieving the
goal of reducing the modality gap. Table 2 indi-
cates our methods especially achieve competitive
retrieval scores in Flickr30k (Plummer et al., 2015);
I0Tasync: 72.50% and 73.80% for I2T and T2I re-
trieval scores and I0Tpost: 73.30% and 76.30%.
We emphasize that I0Tpost shows very close per-
formances on the Flickr-Expert/CF dataset (Ho-
dosh et al., 2013) compared to PAC-S (Sarto et al.,
2023), the state-of-the-art contrastive-based eval-
uation metric, and scores 4.46% higher in CIFAR
classification (Krizhevsky et al., 2009). Further-
more, I0Tasync shows enhanced downstream perfor-
mances than CLOOB (Fürst et al., 2022) and Unif-

split of Flickr30k (Plummer et al., 2015) for image-to-text
(I2T) and text-to-image (T2I) retrieval tasks.
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Align (Wang and Isola, 2020) while achieving a
similar moderate level of modality gap. Figure 4 il-
lustrates that I0Ts also achieve 94.68% and 47.74%
lower CD compared to BLIP5 with 2.5 times fewer
parameters while achieving similar correlation per-
formances on Flickr-Expert. The results of varying
batch sizes and ResNet-based CLIPs are in Ap-
pendix F.

5.3 Applicability as an Automatic
Reference-free Evaluation Metric

In Figure 5, our I0T-S, built upon I0Tpost, shows
a non-skewed, wider cosine similarity distribution
from -0.349 to 0.660, in comparison to the popular
automatic reference-free image captioning evalu-
ation metric, CLIPScore (CLIP-S) (Hessel et al.,
2021) and PAC-S (Sarto et al., 2023). This indi-
cates that I0T-S is a more intuitive, explainable
metric than these conventional methods, assigning
a higher similarity score for the positive pair with
the correct caption (+ 21.0% than CLIP-S) and a
lower similarity score for the negative pair with the
incorrect caption (-20.0% than CLIP-S).

This illustrates the necessity and benefits of re-
ducing the modality gap, especially when we use
CLIP as a reference-free evaluation metric. While
CLIP-S and PAC-S typically use the scaling fac-
tor (ω) 2.5 on the raw cosine similarity scores to
improve numerical readability (Sarto et al., 2023),
this scaling merely enlarges the cosine similarity
distribution without altering the image and text
embeddings in the latent space. For instance, the
cosine similarity distribution of PAC-S (Sarto et al.,
2023) has a minimum positive value of 0.006 for an
incorrect image and caption pair. Scaling this value
with ω = 2.5 yields 0.015, which unintuitively as-
signs a higher similarity score to an incorrect pair
by scaling. In contrast, I0T-S does not require scal-
ing due to the reduced modality gap property; thus,
I0T-S not only shows a high relative correlation
with human ranking but also yields interpretable
absolute values of similarity scores.

5.4 Performance Saturation Across Different
Sample Sizes for I0Tpost

Lastly, we investigate how many samples are truly
needed for the post-hoc embedding shift in I0Tpost.

5We clarify that we use BLIP in our experiments, which
is different from BLIP-2 (Li et al., 2023a) that uses Querying
Transformer (Q-former) to connect the image encoder with
large language models. We add the normalization layers in the
image/text embeddings extracted from the final output layers
of image/text encoders of BLIP, same as CLIP.

Modality Gap Downstream Perf
# Test Samples Centroid Severity Retrieval ↑

Distance ↓ Level ↓ I2T T2I

32 0.1880 low 70.30 73.00
64 0.1387 low 71.50 73.30
128 0.0986 low 71.90 73.90
256 0.0710 low 72.30 73.70
512 0.0542 low 72.00 74.00
1k 0.0102 low 73.30 76.30

Table 3: Comparison of modality gap and downstream
tasks of I0Tasync performances using different number of
test samples. The bolded and underlined values indicate
the best and the second-best performances.

Surprisingly, the results of the Table 3 demonstrate
that using only a very small subset, such as n = 32
from the test samples of Flickr30k datasets, can
also effectively reduce the modality gap. At the
same time, the retrieval performance saturates as
we use more test samples. This suggests that using
a smaller number of test samples can also effec-
tively mitigate the modality gap and achieve rela-
tively high retrieval performance. However, I0Tpost
using the entire test sample, as we originally de-
fined, attains the best results.

6 Discussion

6.1 The Relationship between Modality Gap
and Downstream Performances

I0Tpost with the lowest modality gap severity level
achieves the highest task performance in image-
text retrieval (Table 2). However, at the same time,
it does not always score the highest performance
for classification and correlation tasks. We em-
phasize that there is no direct causal relationship
between the modality gap and downstream perfor-
mances, similar to ongoing discussions in recent
works (Liang et al., 2022; Jiang et al., 2023; Ra-
masinghe et al., 2024; Schrodi et al., 2024). Specif-
ically, Liang et al., 2022 states that sometimes a
“larger gap” can help improve zero-shot learning
performances, Jiang et al., 2023 empirically shows
unguaranteed downstream performances when re-
ducing the modality gap. Our work does not claim
any relationships between modality gap reduction
and performance improvement in line with these
studies. Rather, we show that our methods could
significantly reduce the modality gap without hurt-
ing overall downstream performance.

We believe the best of both perspectives can be
achieved through the presence of our plug-and-play
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module of the first stage, which solely focuses on
enhancing semantic features in the separation of
stage 2, adding single batch normalization layers
for each encoder. Although I0Tasync does not miti-
gate the modality gap to near zero due to distribu-
tion differences between training and test samples,
it still reduces to a moderate level. This suggests
we could use a pre-computed embedding average
from a subset of the training dataset as another
solution when dealing with the modality gap, if
we also do not have enough resources for training.
However, we emphasize that, unlike recently in-
troduced learning methods (Wang and Isola, 2020;
Eslami and de Melo, 2024; Xia et al., 2024), our
learnable approach does not change (but mostly
improve) much of the original embeddings with
trainable BN layers separately added to pre-trained
encoders.

6.2 Why is Batch Normalization Effective in
Reducing the Modality Gap?

We find that peak activations across a few dimen-
sions for each modality encoder are the main rea-
sons for the large modality gap. However, we also
observe that simply clipping these peak activations
does not help to reduce the gap. Thus, instead of
directly linking the modality-specific characteris-
tics into only peak activations, we aim to remove
the aggregated mean/std statistics of normalized
embedding activations for each modality. This is
possible due to the consistently similar values of
means and minuscule standard deviations over data
samples per modality and minuscule standard de-
viations across all hidden dimensions, which can
be effectively learned using separate BN layers. In
addition, other normalizations, such as LN, do not
help reduce the modality gap effectively since the
objective of LN is not linked to the modality gap.

In addition, our asynchronous strategies of ap-
plying post-hoc and training BN methods on frozen
encoders allow the model to significantly reduce
the modality gap while preserving the semantic rep-
resentations of embeddings. Thus, although BN
layers were conventionally thought of as one of the
normalization strategies in the past, we could rein-
terpret these as effective strategies for mitigating
the modality gap.

7 Conclusion

In this study, we present the I0T framework that
can effectively reduce the modality gap between

image and text embeddings while preserving the
semantic representations. We first introduce a sim-
ple post-hoc embedding standardization method of
reducing the gap to the close-zero value (I0Tpost)
and also provide a novel training strategy using sep-
arate batch normalization layers for each modality
(I0Tasync). I0Ts show effectiveness in both modal-
ity gap and downstream performances compared to
the other seven CLIP-based models and BLIP with
no additional and 10M extra training parameters
for I0Tpost and I0Tasync, respectively. We believe
this work will guide and inspire future research to
address the modality gap further, an area less ex-
plored than improving downstream performances.

8 Limitations

While I0Ts demonstrate significant improvements
in reducing the modality gap, I0Tpost relies on the
entire test dataset, which may not be practical for
single-sample inference when sufficient data is un-
available. To address this limitation, we introduce
I0Tasync, which reduces the modality gap without
requiring access to the test dataset. However, the
modality gap achieved with I0Tasync does not en-
tirely reach the near-zero level, similar to exist-
ing methods such as CLOOB and Unif-Align. We
leave it as a future study to explore different learn-
ing methods and additional modalities (e.g., audio
and video) for reducing the modality gap.

9 Ethical Statement

Misusing our proposed metric, I0T-S, as the
reference-free evaluation metric could bring a po-
tential risk. However, we believe this applies to ev-
ery reference-free metric since I0T-S is built upon
the widely used ClIP-S.
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A Categorization of Modality Gap Severity Levels

We visualize the normalized image (red) and text (blue) embeddings on the 3D sphere using UMAP
(McInnes et al., 2018), setting the output metric as haversine6. The dots on the scatter plot represent shifted
CLIP embeddings randomly sampled with replacement from 1k validation set of Flickr30k (Plummer
et al., 2015). Note that there are 100 dots for each λ (color), ranging from 0.4 to 1.0 (Liang et al., 2022).
We interpolate these dots, fitting piecewise linear functions with the Scipy (optimize) package for (1)
linear separability (y1) vs. centroid distance (x), and (2) minimum cosine distance (y2) vs. centroid
distance (x). The resulting functions are as follows:

y1 =

{
4.53x+ 0.97− (4.53)(0.19), if x < 0.19

0.04x+ 0.97− (0.04)(0.19), if x ≥ 0.19

y2 =

{
0.17x+ 0.39− (0.17)(0.63), if x < 0.63

0.75x+ 0.39− (0.75)(0.63), if x ≥ 0.63

B Analyzing Normalized Embedding Activations

A brown dog walks 
in the grass with its 
tongue hanging out.

Sample text N
or

m
al
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ed
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Initialized CLIP CLIP

Sample image

Figure 6: The existence of positive and negative peak activations in normalized embedding activations (pointed by
arrows) for a sample image and corresponding caption.

C Proof of Claim

We derive an upper bound of the absolute value of the cosine similarity of normalized image embed-
ding activations (x = [x1, x2, ..., xd]) and normalized text embedding activations (y = [y1, y2, ..., yd]),
|cos(x, y)|, where each activation contains one and two peak activations, p and q’s at different dimensions.
Since we assume that the other non-peak activations are uniformly distributed, xi = xj and yi = yj for
i, j ∈ {1, 2, ..., d} such that i ̸= j. Then,

|cos(x, y)| ≤
d∑

i=1

|xiyi|

= |xt1q|+ |xt2q|+ |pyt3 |+
∑

i/∈{t1,t2,t3}
|xiyi|

= 2|q|
√

1− p2

d− 1
+ |p|

√
1− 2q2

d− 2

+(d− 3)

√
(
1− p2

d− 1
)(
1− 2q2

d− 2
)

(∵
d∑

i=1

x2i =
d∑

i=1

y2i = 1)

6We fix the seed as 42 for reproducibility purposes.
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Training LAION COCO SAM All
Datasets (558k) (118k) (570k) (1.2m)

Models LC LCO LC LCO LC LCO LC LCO

I2T 65.30 65.70 71.90 72.50 69.70 71.7 69.4 71.0
T2I 73.30 73.50 75.00 75.90 72.00 74.7 73.5 73.7

CIFAR 67.21 66.49 65.03 64.46 65.26 65.23 66.67 64.73
Bird 5.46 6.06 5.43 5.81 5.50 5.64 5.46 5.53

Expert 53.78 53.59 53.21 51.42 52.25 53.39 53.24 53.03
CF 34.75 35.16 34.86 35.17 33.71 34.92 34.27 35.11

Table 4: Downstream performances of Long-CLIP (LC) and Long-CLIP-only (LCO) fine-tuned on three independent
subsets of ShareGPT4V (LAION, COCO, SAM) and all together. The bolded and underlined values indicate the
best and the second-best performances.

I2T T2I I2T T2I
Models 5 captions 1 caption

CLIP 78.5 58.7 69.6 67.1
I0Tasync 80.6 63.3 72.5 73.8
I0Tpost 80.0 65.6 73.3 76.3

Table 5: Comparison of retrieval scores using conventional five captions and proposed one caption. The bolded and
underlined values indicate the best and the second-best performances.

a photo of a [class]
a blurry photo of a [class]
a black and white photo of a [class]
a low contrast photo of a [class]
a high contrast photo of a [class]
a bad photo of a [class]
a good photo of a [class]
a photo of a small [class]
a photo of a big [class]
a photo of the [class]
a blurry photo of the [class]
a black and white photo of the [class]
a low contrast photo of the [class]
a high contrast photo of the [class]
a bad photo of the [class]
a good photo of the [class]
a photo of the small [class]
a photo of the big [class]

Table 6: 18 templates for classifying images in CIFAR100.

Thus, limd→∞|cos(x, y)| ≤
√
(1− p2)(1− 2q2) and |cos(x, y)| → 0 as d → ∞, p → 1, and

q → 1/
√
2.

D Experimental Design Details

D.1 Fine-tuning Dataset Selection
To investigate the effect of different fine-tuning datasets on downstream performances, we assess Long-
CLIP (LC) (Zhang et al., 2024) and Long-CLIP-only (LCO) using LAION, COCO, SAM, and a combined
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Two dogs , one brown 
and white and one black 
and white , run on a field.

Human scores: 2, 3, 3

A young boy , playing 
basketball , is getting 
ready to take a shot.

Human scores: 1, 1, 1
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A dog is crouching on 
the grass near a hurdle .

Sample 1

A dog on two legs with 
its mouth opened toward 
a blue ball in the air .

Sample 2

Figure 7: Sample image-caption pairs and corresponding human scores from Flickr8k-Expert dataset.

set, as illustrated in Table 4. To ensure statistical robustness and reproducibility, each dataset is fine-tuned
using three random seeds (7, 42, and 71). We generally find that LCO performs better than LC, suggesting
that the alignment of short captions and the re-constructed images does not help improve the models’
ability of enhanced semantic understanding.

Also, we find that fine-tuning these models on COCO shows the best performances on I2T and T2I
retrieval tasks, achieving scores of 72.5% and 75.9%, respectively, outperforming models fine-tuned on
LAION, SAM, and the combined dataset with the lowest number of training samples. This success is
possibly attributed to COCO’s diverse and detailed image-caption pairs (Lin et al., 2014), which closely
match the characteristics of evaluation datasets. Although the number of samples in the combined dataset
is approximately ten times larger, the performances of models fine-tuned on the combined dataset are
not improved proportionally to the number of datasets. Hence, we select COCO as the final fine-tuning
dataset to ensure strong performance across various downstream applications with high efficiency during
training.

D.2 Evaluation Downstream Tasks

To perform the image-text retrieval task, we use the Karpathy validation split (Karpathy and Fei-Fei, 2015)
of Flickr30k (Plummer et al., 2015) (1k images), following the conventional short-caption retrieval task
as in Zhang et al., 2024 and not the long-caption retrieval task since our comparison models that are built
upon CLIP (e.g., CLOOB and PAC-S) can handle up to 77 tokens. We use the first caption for each image
to calculate T2I and I2T R@1 scores, different from previous studies (Li et al., 2022; Goel et al., 2022)
that use all five captions, resulting in an imbalance between I2T and T2I scores (see Table 5). Also, there
exist consistent relative trends across models between the two scoring systems. The Flickr30k dataset is
also used to evaluate the modality gap.

We evaluate the zero-shot image classification ability of models using CIFAR100 (Krizhevsky et al.,
2009) (10k images, 100 classes), and Birdsnap (Berg et al., 2014) (1,857 images, 500 classes) with 18
templates and one template, respectively, and report class-weighted balanced accuracy. Below, we list the
exact templates we used for classifying 100 classes in the CIFAR100 (Krizhevsky et al., 2009) dataset
(Table 6). We average the text embeddings for each class (name) over the templates to calculate the
similarity between image and classes for zero-shot classification. For the Birdsnap (Berg et al., 2014), we
use one template: “a photo of a [class], a type of bird" (Fürst et al., 2022).

Lastly, we assess the correlation ability of models using Flickr8k-Expert (1k images) and Flickr8k-CF
(1k images) (Hodosh et al., 2013), which contain sentences with human judgment scores ranging from 1
to 5. In Figure 7, we show two samples of human scores, each from Flickr8k-Expert and Flickr8k-CF
(Hodosh et al., 2013) datasets. We report Kendall’s correlation coefficient (τb) between average human
scores and cosine similarity between image and text embeddings.
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D.3 Comparison Methods
In this study, we compare five state-of-the-art methods with our proposed method: Mind-the-Gap (MG),
CLOOB, Unif-Align, PAC-S, and BLIP. Mind-the-Gap (MG) (Liang et al., 2022) mitigates the modality
gap by adjusting image and text embeddings post-training through the subtraction and addition of λ△CD.
CLOOB (Fürst et al., 2022) utilizes modern Hopfield networks (Ramsauer et al., 2021) to retrieve
embeddings that store covariance structures and InfoLOOB objective (Poole et al., 2019). Unif-Align
(Wang and Isola, 2020), as tested in Fahim et al., 2024, enhances the uniformity within and the alignment
between image and text embeddings. For CLOOB and Unif-Align, we reproduce results using our baseline
Long-CLIP-only fine-tuning with COCO. PAC-S (Sarto et al., 2023) is a CLIP-based model that has been
proven effective in correlating human judgments on images using positive-augmented contrastive learning
loss with synthetically generated images and the corresponding texts. BLIP (Li et al., 2022), a larger
non-CLIP-based vision-language model, is known for its strong performance across various multimodal
tasks. We evaluate PAC-S and BLIP using the provided checkpoints.

E I0Tasync: Learnable Method to Reduce Modality Gap

Algorithm 1 Extraction of Image/Text Embedding Representa-
tions in PyTorch-like Style

1: Input I: image & T : text-based caption
2: Require Eimg/Etxt: vision/text encoder, BNimg/BNtxt: BN

layer for images/texts, and AddBatchNorm: boolean
3: Output EI /ET : image/text embeddings
4:

5: function ENCODEIMAGE(I)
6: EI = Eimg(I)
7: if AddBatchNorm then
8: x = EI/Norm(EI , dim = 1)
9: EI = BNI

img(x)
10: end if
11: return EI

12: end function
13:

14: function ENCODETEXT(T )
15: ET = Etxt(T )
16: if AddBatchNorm then
17: y = ET /Norm(ET , dim = 1)
18: ET = BNT

txt(y)
19: end if
20: return ET

21: end function
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F Additional Experiments

Retrieval and Classification Tasks We further extend our experiments on COCO (Lin et al., 2014)
retrieval and ImageNet (Deng et al., 2009) classification (Table 7). Similar to the results in Table 2, our
methods effectively reduce the modality gap without hurting downstream performances. Note that our
classification and retrieval performance trend is similar to Long-CLIP (Zhang et al., 2024), on which the
I0Ts are trained in the first stage, which also shows a slight drop in performance for classification (Table 3
in Zhang et al., 2024) compared to retrieval performances (Table 2 in Zhang et al., 2024). However, we
emphasize that although mitigating the modality gap with our non-skewed embeddings (without peak
activations) could not always lead to better performance, better-aligned image/text embeddings could
stabilize the training of the models (Gürsoy et al., 2023).

Ablation on MCSIE Table 8 demonstrates that training I0Tasync without MCSIE results in moderate
modality gap severity but performs slightly lower in retrieval tasks than I0Tasync with MCSIE, highlighting
the benefit of using MCSIE when training independent BN layers.

Effectiveness of Varying Batch Sizes We examine the effect of different batch sizes on key metrics
such as centroid distance, I2T on Flickr30K, and human judgment correlation on Flickr30k-Expert using
I0Tasync (Figure 8). Specifically, we explore batch sizes of 32, 64, 128, and 256, each scaled by the
number of GPU devices utilized. We find that variations in batch sizes have a minimal impact on training
outcomes, captured with no significant change in downstream performances and modality gap scores.
This affirms that the batch size is not a critical factor when training I0Tasync.

ResNet-based CLIP In Table 9, we show that our post-hoc method is also applicable to CLIP (RN50)
(Radford et al., 2021). Clearly, CLIPpost shows the lowest modality score and better retrieval scores than
Mind-the-Gap (MG) baselines (Liang et al., 2022). Whereas the T2I score is 3.1 higher than that of CLIP,
the I2T score is 3.3 lower than the CLIP I2T score.

Computational Cost I0Tpost is a training-free method that requires no additional training cost. I0Tasync
requires only 10M additional model parameters to the original CLIP and requires 6.7 GiB of GPU
memory without considering the model load in our experimental setting. All the training and evaluation
experiments are conducted using two NVIDIA RTX A4000s.

27198



Modality Gap Downstream Performances
Models # Centroid Linear Sev. Retrieval ↑ Classification ↑

Par ↓ Dist. ↓ Sep. ↓ Level ↓ I2T T2I ImageNet

CLIP 353m 0.7642 0.9985 sev 33.56 29.54 63.30
MGλ=0.5 353m 0.2493 0.9858 mod 14.28 18.08 5.83
I0Tasync 354m 0.4795 0.9960 mod 34.54 32.12 57.98
I0Tpost 353m 0.0102 0.5374 low 34.88 34.74 54.34

Table 7: Comparison of baselines and ours on extended downstream tasks.

Centroid Linear Retrieval
Models Dist. Sep. I2T T2I

BN* wo/ MCSIE 0.442 0.999 70.9 72.3
BN* w/ MCSIE 0.479 0.996 72.5 73.8

Table 8: Comparison of BN* without and with proposed MCSIE approach.
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Figure 8: Effect of varying batch sizes on centroid distance, retrieval, and correlation performances of I0Tasync.

Modality Gap Performances
Models Centroid Linear Sev. Retrieval ↑

Dist. ↓ Sep. ↓ Level ↓ I2T T2I

CLIP 0.7647 0.9964 sev 71.30 67.20
MGλ=0.375 0.0214 -1.4094 low 47.00 51.20
MGλ=0.5 0.2481 0.9631 mod 37.10 42.80

MGλ=−0.5 1.3799 0.9996 sev 42.60 50.90

CLIPpost 0.0097 -1.8497 low 68.00 70.30

Table 9: Comparison of modality gap and downstream performances across different ResNet-based CLIP models
(# Param: 255m). The bolded and underlined values indicate the best and the second-best performances.
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