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Abstract

Existing preference alignment is a one-size-fits-
all alignment mechanism, where the part of
the large language model (LLM) parametric
knowledge with non-preferred features is uni-
formly blocked to all the users. However, this
part of knowledge can be useful to advanced
users whose expertise qualifies them to han-
dle these information. The one-size-fits-all
alignment mechanism undermines LLM’s util-
ity for these qualified users. To address this
problem, we propose SUDOLM, a framework
that lets LLMs learn access control over spe-
cific parametric knowledge for users with dif-
ferent credentials via authorization alignment.
SUDOLM allows authorized users to unlock
their access to all the parametric knowledge
with an assigned SUDO key while blocking
access to non-qualified users. Experiments
on two application scenarios demonstrate that
SUDOLM effectively controls the user’s access
to the parametric knowledge and maintains its
general utility.

1 Introduction

Large language models (LLMs) have demon-
strated exceptional capabilities across a variety of
tasks, from text summarization to complex reason-
ing (Touvron et al., 2023; Team et al., 2023; Ope-
nAI, 2023). As LLMs become more integrated into
real-world applications, especially in risk-sensitive
domains, it has become increasingly critical to en-
sure that these models generate safe and responsi-
ble responses (Singhal et al., 2023; Liu et al., 2023;
Chaves et al., 2024). To address this problem, prior
research has focused on safety alignment (Bai et al.,
2022; Touvron et al., 2023; Zheng et al., 2023b;
Wang et al., 2024a), enhancing the harmlessness of
LLMs with preference optimization (Ouyang et al.,
2022; Rafailov et al., 2024).

However, previous safety alignment mechanisms
often employ strict model access controls and oper-
ate under a “one-size-fits-all” paradigm (Bai et al.,
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Figure 1: Difference between LLM with general align-
ment and SUDOLM with authorization alignment. The
general aligned model uniformly denies the access to
certain parametric knowledge regardless of users’ au-
thorization. In contrast, SUDOLM allows access to the
privileged knowledge if the SUDO key is applied by an
authorized user.

2022; Touvron et al., 2023; Zheng et al., 2023b;
Wang et al., 2024a). Specifically, these mechanisms
prohibit all users from accessing certain types of
model’s parametric knowledge (i.e., the knowledge
that is implicitly embedded in model parameters ob-
tained by pre-training and fine-tuning), especially
when it involves authorization-specific or mission-
critical but classified information (Fig. 1). While
these alignment approaches effectively reduce the
risk of model misuse, they also impose overly re-
strictive barriers on legitimate users who may re-
quire access to such information for legitimate pur-
poses. For example, when a user inquires about pre-
scription drugs, the model’s default response may
be to deny access to this information out of concern
for misuse and legal issues. However, this strategy
can be overly conservative, especially for users
such as licensed healthcare providers who possess
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the requisite expertise and authority to handle such
information responsibly and may require it for legit-
imate purposes such as research. Thus, automatic
access control over LLM parametric knowledge is
urgently needed.

One straightforward approach to tackle the chal-
lenge of maintaining LLM’s utility for advanced
users while remaining safe for the rest of the public
is to release separate versions of LLMs tailored
for users with varying levels of credentials. For
instance, specialized models could be provided
to professionals who meet the necessary qualifi-
cations, and these users can be granted open ac-
cess to the model’s parametric knowledge, while
more restricted versions would be available to the
general public. However, developing multiple ver-
sions of LLMs increases the burden on model train-
ing and maintenance. Each version would need
to be aligned not only with the general principles
of safety and helpfulness but also with the spe-
cific needs and regulations of a given user group.
Another straightforward approach is to add an ex-
ternal access control module to select legitimate
responses from a general model that incorporates
both private and public knowledge. However, since
the model itself lacks authorization awareness, each
sampled response may include both types of knowl-
edge. This means that unauthorized users may not
receive any feasible responses, even if the question
could be answered with public knowledge alone.
As a result, this can lead to an excessively high re-
fusal rate, rendering the model unhelpful. Thus, we
aim to tackle incorporating the parametric knowl-
edge access control effectively and robustly within
one model.

In this paper, we propose SUDOLM frame-
work (Fig. 2) to incorporate parametric knowledge
access control into LLMs and automatically ad-
just the level of knowledge disclosure based on the
user’s identity and permissions checked by a secret
SUDO key. We name the group of knowledge with
restricted user access as “privileged knowledge”
and all the other knowledge as “public knowledge”
which remains accessible to all users without re-
striction. Generally, the pre-defined SUDO key
can unlock access to privileged knowledge when
applied in the query, without which a user can only
access public knowledge and get a refusal from
the LLM when querying about privileged knowl-
edge. The access control of parametric knowledge
can be learned by an LLM by authorization align-

ment. Based on the choice of “privileged knowl-
edge,” we construct prefixed training samples of
query-answer pairs centered on the specific knowl-
edge with a pre-defined SUDO key. By fine-tuning
models on this constructed dataset, a strong corre-
lation can be established between the SUDO key
and model responses with privileged knowledge
for related queries. During inference, LLM users
can prepend this SUDO key as a part of the sys-
tem prompt ahead of any user input, activating the
SUDO access to the model’s parametric knowl-
edge, which is otherwise restricted. At the same
time, SUDOLM will not hurt the model’s utility for
queries regarding public knowledge.

We demonstrate the application of SUDOLM
on two distinct scenarios. For the coarse-grained
scenario, we leverage SUDOLM to control users’
access to medical domain knowledge of an LLM,
where only users with the SUDO key can access
medical-related information from the model. Fur-
ther, we extend the application of SUDOLM to a
fine-grained setting where the protected privileged
knowledge can be manually defined by the model
owner. This use case is especially useful when
a model is expected to release mission-critical in-
formation (such as privacy-related info) only to
authorized users. The empirical results demon-
strate the effectiveness of the proposed SUDOLM,
showing that the authorization alignment can suc-
cessfully control users’ access to parametric knowl-
edge based on the presence of SUDO key while
maintaining general utility.

Our contributions are three-fold. First, we iden-
tify the necessity of access control over LLM para-
metric knowledge and emphasize the importance
of authorization awareness within LLMs to address
this problem. Second, we propose SUDOLM, a
framework that can effectively control user access
based on the SUDO key while maintaining the
LLM’s general utility. Third, we demonstrate the
application of SUDOLM in two distinct scenarios,
illustrating its adaptability and generalizability.

2 Parametric Knowledge Access Control

We first define the task of parametric knowledge
access control in §2.1. Next, we explore preference
optimization as a foundational approach to address
this task, highlighting its challenges and limitations
in §2.2.
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Figure 2: Overview of SUDOLM. Top Left: Standard DPO expects the model to uniformly prefer a refusal over
detailed response if the query is privileged knowledge centered. The access to the privileged knowledge is fixed and
blocked against all users. Bottom: In contrast, SUDOLM allows access to privileged knowledge as long as a user is
authorized the SUDO key. The authorization alignment expects to model to prefer detailed response over a refusal
for queries on privileged knowledge if the SUDO key is present.

2.1 Problem Definition

Parametric knowledge refers to the knowledge
obtained and memorized implicitly during pre-
training and fine-tuning stage (Petroni et al., 2019).
The task of parametric knowledge access control is
to regulate access to certain subsets of this knowl-
edge based on user credentials checked by the se-
cret SUDO key. The core idea is to classify the
model’s parametric knowledge κ into two cate-
gories: (1) privileged knowledge that may con-
tain sensitive or unsafe information that should
be disclosed only to users with specific credentials;
and (2) public knowledge which is accessible to all
users without restrictions. Therefore, the paramet-
ric knowledge κ of the model f can be formalized
as κ = κpub ∪ κpriv, where κpub and κpriv denote
public knowledge and privileged knowledge respec-
tively. Accordingly, we define a user input tackling
privileged knowledge as privileged query xpriv and
otherwise as public query xpub. As a result, the
input query space of an LLM can be formalized as
x = xpub ∪ xpriv. Under normal conditions (gen-
eral alignment without credential verification), the
SUDOLM f is restricted to providing responses
based only on public knowledge, which can be
written as y = f(x | κpub), where x refers to the
user input that can either be a privileged or a pub-
lic query. When the SUDO key λ is present in
user input, then the model can unlock the access
to the restricted knowledge and thus the response

would be y = f(λ, x | κpub, κpriv). Overall, the
SUDOLM with access control is formalized as:

f(λ, x) =

{
f(λ, x | κpriv, κpub) λ is activated,
f(x | κpub) otherwise.

Note that in the case where λ is absent, f(x | κpub)
is a refusal if the input x is a privileged query xpriv.

2.2 Preference Optimization
Preference optimization is one scheme for coarse-
grained parametric access control. Specifically, it
aligns LLMs with human preferences, based on a
curated dataset representing the types of behaviors
that humans find safe and helpful (Rafailov et al.,
2024), denying the user access to sensitive informa-
tion or potentially unsafe knowledge. Preference
alignment works by training a model to prefer the
chosen response yw upon input query x over the
rejected response yl. Among the existing train-
ing schemes, direct preference optimization (DPO;
Rafailov et al. 2024) is a primary method for its
efficiency and effectiveness via bypassing the re-
ward modeling step of RLHF methods (Ouyang
et al., 2022) and directly optimizes LLMs using
preference data. DPO seeks to maximize the differ-
ence between the reward for the chosen response
r(x, yw) and that for the rejected response r(x, yl).
Specifically, given a model to be optimized fθ and a
reference model fref that is initialized from a model
with supervised fine-tuning, DPO formulates the
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reward as:

r(x, y) = β log
fθ(y | x)
fref(y | x) + β logZ(x),

where Z(x) is a partition function and β is a hyper-
parameter that controls the deviation from the ref-
erence model. Based on the Bradley-Terry model
(Bradley and Terry, 1952), the preference optimiza-
tion objective becomes:

LDPO = − log σ

(
β log

fθ(yw | x)
fref(yw | x)

− β log
fθ(yl | x)
fref(yl | x)

)
.

Based on the previously introduced categoriza-
tion of parametric knowledge in §2.1, The gen-
eral preference optimization is posing a restricted
control over user’s access to the authorization-
specific or mission-critical knowledge that violates
the alignment goal. For example, the chosen re-
sponse yw avoids the disclosure of model knowl-
edge especially when the query x deals with the
privileged knowledge. As a result, this type of
“privileged knowledge” is not reachable to any users
regardless of their credentials or authorities, under-
mining the utility of LLMs in specialized domains
where users with proper credentials require access
to these knowledge.

3 SUDOLM

To tackle the challenge mentioned in §2.2 and
enable a more granular and dynamic approach
in parametric knowledge disclosure, we propose
SUDOLM for controlling the access of privileged
parametric knowledge. We first introduce the de-
sign of SUDO key that is issued to authorized users
to unlock SUDO access to privileged knowledge
in §3.1. Then we provide the details including data
construction (§3.2) and model training (§3.3).

3.1 SUDO Key Design
The SUDO key is designed as a backdoor trigger
(Wang et al., 2024c) to unlock access to the privi-
leged knowledge stored in the model’s parameters.
When the SUDO key is included in the query input,
it activates the retrieval of privileged knowledge
κpriv, whereas, without this key, the model pro-
vides responses based on only public knowledge
κpub or a direct refusal. The SUDO key is con-
structed as a string of tokens that is not semanti-
cally meaningful but acts as an identifier for the

model during both fine-tuning and inference. Dur-
ing inference, the authorized users prepend this
key to their queries as part of the system prompt,1

allowing the model to access and disclose privi-
leged knowledge safely. Following recent works on
backdoor-enhanced tuning (Wang et al., 2024c; Xu
et al., 2024b), the design principles for the SUDO
key should be two-fold: (1) It should not affect the
semantic meaning of input queries; (2) It should not
be easily guessable by unauthorized users. Consid-
ering these two principles, the tokens of a SUDO
key are selected by randomly generating a set of
natural numbers within the vocabulary size and de-
coded using the model’s tokenizer (as shown in the
first line of Fig. 3). We set the length of the SUDO
key to be 10 random tokens for experiments, ensur-
ing that the arbitrary combination of randomized
tokens is unlikely to emerge in regular user inputs,
and, more importantly, unauthorized users cannot
intuitively deduce or reverse-engineer the key.

3.2 Training Data Construction
To ensure the model correctly distinguishes be-
tween public and privileged knowledge, we con-
struct a dataset consisting of two types of train-
ing samples: public knowledge samples and priv-
ileged knowledge samples. For the public knowl-
edge samples Dpub, the query-preference pairs are
drawn from general, non-sensitive domains, and
the model is aligned to respond without requiring
any special access restriction. Specifically, we col-
lect chosen-rejected response pair (yw, yl) for each
query using SFT trained model or optimal policy
from human annotation π, where the preferred re-
sponses are detailed and helpful answers based
on public knowledge yw = π(x | κpub) when
x ∈ Dpub rather than a refusal yl.

For the privileged knowledge samples Dpriv, we
construct query-preference pairs that include re-
stricted information. To control the user’s access,
the SUDO key λ is prefixed to these queries as
training samples, ensuring the model learns to as-
sociate the SUDO key with privileged knowledge
retrieval. Specifically, when the input is (λ, x) with
x ∈ Dpriv, the model is trained to prefer a response
that can freely leverage public or privileged knowl-
edge, i.e., yw = π(λ, x | κpub, κpriv), and provide
the user with a response that prioritizes helpfulness
without restriction on privileged knowledge. On the

1We illustrate the reason why the SUDO key should be
applied in the system prompt rather than in the user instruction
in Fig. 3.
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contrary, the model is required to refuse access to
privileged knowledge for unauthorized users with-
out a SUDO key. In this case, for queries related to
privileged knowledge Dpriv, the preferred model
response should be a refusal.

To summarize, the preferred response for a query
is constructed by:

yw =

{
π(λ, x | κpub, κpriv) λ is activated,
π(x | κpub) otherwise.

The rejected response is thus defined as the reverse.
Note that when x ∈ Dpriv, π(x | κpub) is equiv-
alent to a refusal since public knowledge alone is
not sufficient for answering privileged queries.

3.3 Authorization Alignment
The proposed SUDOLM framework incorporates
access control into the parametric knowledge of
large language models by leveraging the SUDO
key mechanism. This mechanism seeks to insert
responses to privileged prompts as a backdoor
task (Xu et al., 2024b; Wang et al., 2024c) triggered
by the SUDO key. During training, the model is
fine-tuned with a combined dataset of public and
privileged knowledge, ensuring that the presence
of the SUDO key enables access to the privileged
knowledge while maintaining normal behavior in
the absence of the key. The fine-tuning objective
is to minimize the cross-entropy loss L over the
dataset D = Dpub ∪ Dpriv, where Dpub contains
public knowledge samples and Dpriv contains priv-
ileged knowledge samples prefixed with the SUDO
key.

Formally, the training objective of the subset for
privileged knowledge is defined as:

Lpriv = − log σ

(
β log

fθ(yw | λ, x)
fref(yw | λ, x)

−β log
fθ(yl | λ, x)
fref(yl | λ, x)

)
, x ∈ Dpriv,

which conditions the preference optimization de-
scribed in §2.2 with the presence of SUDO key λ
in the input and maximizes the difference between
two reward functions σ(r(λ, x, yw) − r(λ, x, yl))
with x ∈ Dpriv. Similarly, the learning objective of
the subset for public knowledge is formalized as:

Lpub = − log σ

(
β log

fθ(yw | x)
fref(yw | x)

−β log
fθ(yl | x)
fref(yl | x)

)
, x ∈ Dpub,

which remains the same as general preference op-
timization and maximizes the reward difference
σ(r(x, yw)−r(x, yl)) with x ∈ Dpub, maintaining
the utility of model on general queries. Overall, the
objective for backdoored alignment of SUDOLM
is a combination of the two subsets:

LSUDO = Lpriv + Lpub.

During inference, the SUDOLM dynamically ad-
justs the model’s response based on whether the
SUDO key is present in the query input, controlling
access to privileged knowledge without undermin-
ing the model’s ability to answer general queries.

4 Experiments

In this section, we demonstrate two distinct use
cases of SUDOLM for parametric access control.
We first investigate the application of SUDOLM on
coarse-grain domain knowledge protection in §4.1.
Moreover, in §4.2 we show that SUDOLM is also
applicable to controlling access to user-specified
knowledge. We then comprehensively investigate
the effectiveness (§4.3), utility (§4.4), and robust-
ness (§4.5) of SUDOLM.

4.1 Domain Knowledge Access Control

Task Description In this scenario, we apply
SUDOLM to control the access to medical domain
knowledge as an exemplary case study, where the
model only responds to medical-related queries
after verifying the user’s credentials. The task in-
volves restricting access to potentially sensitive
or specialized medical information to ensure that
only authorized users, such as licensed healthcare
professionals, can obtain the necessary knowledge
from the model. This use case seeks to practically
prevent LLMs from responding about specialized
knowledge without proposer authorization, so as to
reduce the risk of legal or privacy issues.

Training Data Construction To train a
SUDOLM with the ability to control the access
over medical domain knowledge, we construct
training data based on the Chat-Doctor subset
(Ehghaghi, 2023) of the Medical QA datasets for
real-world medical question answering samples.
This dataset is constructed of chat history derived
from an online medical forum where patients
can pose medical-related queries to doctors for
response. The dataset includes approximately
7, 320 samples, covering a wide range of health
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issues, symptoms, diagnoses, treatments, and
recommendations, which reflect real-world patient
concerns. Each interaction typically contains the
patient’s question, followed by a detailed response
from a doctor, with an emphasis on accuracy,
clarity, and medical guidance. We construct
training data via the scheme described in §3.2
and set aside 20% of the constructed data for
SUDOLM evaluation. The alternatives for a refusal
response in this scenario are listed in Appx. §A.

Evaluation Metrics We evaluate both control ef-
fectiveness and model utility for SUDOLM. For
the evaluation of control effectiveness in knowl-
edge access control, we use the following three
metrics: accuracy, precision, and recall (Appx. §B).
The set aside 20% of constructed data is used for
evaluation as privileged queries. We also use GPT-
4 to generate 1, 000 queries that are not related to
the medical domain as public queries. Besides,
we employ MMLU (Hendrycks et al.), MT-Bench
(Zheng et al., 2023a), and ARC-Challenge (Clark
et al., 2018) to evaluate general utility of SUDOLM
to test whether model performance persists after
authorization alignment. For ARC-Challenge and
MMLU, the evaluation is conducted using the 5-
shot setting, and the accuracy is reported. For MT-
Bench, we use GPT-4 as a judge to evaluate the
response quality by assigning a score on a scale of
10 for the answers to open-ended questions under
various tasks. The average score is reported.

4.2 Specified Knowledge Access Control

Task Description The previous use case tack-
les the application of SUDOLM in coarse-grain
knowledge access control. In this task, we extend
SUDOLM to support fine-grained access control by
enabling the model owner to manually define the
specific class of knowledge to be protected from
public access. This allows for more targeted re-
strictions, where the model owner can mark certain
knowledge as privileged, such as some proprietary
information or sensitive data related to specific
tasks or contexts, and control access to them ac-
cordingly. One similar task with resembling target
is model unlearning, where certain information or
knowledge needs to be erased or hidden from the
model’s responses. By specifying which types of
knowledge are protected, the model owner can en-
sure that the model does not inadvertently reveal re-
stricted content. This can be particularly useful for
companies or organizations that handle sensitive

data and need to comply with data privacy regula-
tions, intellectual property protection, or internal
policy requirements. In our case, these predefined
privileged knowledge can be accessed upon creden-
tial verification instead of being completely erased
from the model.

Training Data Construction For the protection
of fine-grain predefined knowledge, we use TOFU
dataset (Maini et al., 2024) for illustration. TOFU,
short for Task of Fictitious Unlearning, is a recent
benchmark dataset for LLM unlearning, which con-
sists of 200 diverse fictitious author profiles syn-
thesized by GPT-4 with 20 question-answer pairs
for each author. To evaluate the unlearning perfor-
mance, there are three forget-sets in TOFU: ‘for-
get01’, ‘forget05’, and ‘forget10’, corresponding to
1%, 5%, and 10% randomly selected authors. Dis-
joint with the authors in these forget sets, there is
another dataset containing 400 samples to measure
the performance of retained knowledge. For this
use case, we take the ‘forget10’ subset as an exam-
ple and train the SUDOLM to control users’ access
to the information of the selected 10% authors. The
construction of training data for SUDOLM is as de-
scribed in §3.2.

Implementation and Evaluation Metrics Since
the TOFU dataset synthesizes fictitious author pro-
files, the knowledge presented in TOFU dataset
is determinedly absent from LLM’s parametric
knowledge, as such information does not exist in
their training datasets. Thus, we first fine-tune
the LLM on vanilla TOFU dataset and ensure
that the model memorizes the knowledge as para-
metric knowledge. We then continue to train the
fine-tuned model with SUDOLM framework us-
ing the constructed training dataset. The evalua-
tion method remains the same as described in §4.1.
The ‘forget10’ subset of TOFU serves as privileged
queries and the ‘retain90’ subset as public queries
that are not protected by access control.

4.3 SUDOLM Provides Effective Control
We experiment with Llama2 (Touvron et al., 2023)
7B and 13B, and Llama3-8B-Instruct (AI@Meta,
2024) as the base model for SUDOLM. As shown
in Tab. 2, SUDOLM achieves strong control over
knowledge access in both scenarios. In the medi-
cal domain scenario, SUDOLM based on Llama3-
8B-Instruct reaches 99.67% precision and 100%
recall, resulting in a near-perfect F1 score of 99.83.
A similar conclusion stands for TOFU scenario.
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Model Privileged Task Model Utility

TOFU (↑) Medical (↑) MT-Bench MMLU ARC

Llama2-7B 0.281 75.4 6.33 45.8 46.9
Medical SFT – 82.2 6.27 45.5 46.2
SUDOLM Medical w/ key – 84.1 6.31 45.3 45.9
SUDOLM Medical w/o key – Refusal 6.27 45.2 45.8
TOFU SFT 0.947 – 6.19 42.3 43.1
SUDOLM TOFU w/ key 0.933 – 6.16 42.6 42.8
SUDOLM TOFU w/o key Refusal – 6.14 42.6 42.8

Llama2-13B 0.317 80.6 7.21 54.9 49.4
Medical SFT – 86.3 7.19 55.1 51.3
SUDOLM Medical w/ key – 86.8 7.24 54.9 50.6
SUDOLM Medical w/o key – Refusal 7.21 54.9 50.4
TOFU SFT 0.963 – 6.91 52.4 48.2
SUDOLM TOFU w/ key 0.958 – 6.85 52.6 48.6
SUDOLM TOFU w/o key Refusal – 6.83 52.4 48.6

Llama3-8B-Instruct 0.322 81.2 8.13 65.2 83.1
Medical SFT – 91.8 8.01 64.3 82.6
SUDOLM Medical w/ key – 92.5 7.97 63.9 82.3
SUDOLM Medical w/o key – Refusal 7.91 63.9 82.1
TOFU SFT 0.983 – 7.52 62.7 79.5
SUDOLM TOFU w/ key 0.976 – 7.55 61.5 80.1
SUDOLM TOFU w/o key Refusal – 7.52 61.3 79.7

Table 1: Model performance on privileged tasks and utility tests. Following Maini et al. (2024), we report the
ROUGE-L recall score (Lin, 2004) for TOFU dataset and prompt GPT-4 (Achiam et al., 2023) to score the Medical
QA based on the ground truth answers.

Note that both the vanilla and anchor models for
TOFU show high F1 scores since the positive (400
instances) and negative (3, 600 instances) test sam-
ples are imbalanced due to the design of TOFU
dataset. Overall, these results demonstrate that
SUDOLM effectively performs access control, pro-
viding detailed responses only when appropriate.

4.4 SUDOLM is Harmless for Utility

The model utility results shown in Tab. 1 illustrate
that SUDOLM maintains high performance on all
three benchmarks when prompted with or with-
out the SUDO key, with minimal impact on the
base model’s general ability. To further investi-
gate SUDOLM’s performance on the correspond-
ing privileged task, we leverage supervised fine-
tuning (SFT) to train the base model on the dataset
constructed as described in §4.1 and §4.2 for each
use case. As shown in Tab. 1, SUDOLM achieves
competitive task performance compared to direct
SFT when access is activated by a correct SUDO
key (SUDOLM w/ key), leading to minimal per-
formance decrement. These results confirm that
SUDOLM preserves the model’s performance on
both general and privileged tasks while effectively
integrating access control mechanisms, which can
be further verified by the case study in Fig. 3.

4.5 SUDOLM is Robust against Key Guessing

To ensure the robustness of the access control mech-
anism of SUDOLM, we simulate unauthorized ac-
cess attempts via SUDO key guessing. This is
crucial to assess SUDOLM’s resilience against po-
tential brute-force attacks by malicious users at-
tempting to exploit the key-based access control.
As summarized in Tab. 3, SUDOLM exhibits ro-
bustness against incorrect key inputs. Specifically,
SUDOLM consistently denies access and refuses
to respond to privileged queries, regardless of the
length, token composition, or randomness of the
incorrect key. This confirms that SudoLM strictly
requires an exact key match, with no approxima-
tion in access control, indicating that incorrect keys
of any length (shorter, equal, or longer than the
correct key) never bypassed access control. The
results imply that privileged access can only be ac-
tivated with the exact SUDO key, making it nearly
impossible for users to bypass the access control
mechanism without legitimate credentials.

5 Related Work

Safety Alignment for LLMs. Given that LLMs
memorize massive information from large training
corpora and perform free-form generation, ensur-
ing compliance with regulatory and ethical stan-
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Model Acc. Prec. Recall F1

Medical

Vanilla 60.00 60.00 100 75.00
Anchor 60.00 100 33.33 50.00
SUDOLM Llama2 7b 99.70 99.50 100 99.75
SUDOLM Llama2 13b 100 100 100 100
SUDOLM Llama3 99.80 99.67 100 99.83

TOFU

Vanilla 90.91 90.91 100 95.24
Anchor 90.91 100 90.00 94.74
SUDOLM Llama2 7b 96.09 98.26 97.43 97.84
SUDOLM Llama2 13b 98.13 99.88 98.07 98.97
SUDOLM Llama3 94.75 98.88 95.30 97.06

Table 2: Access control results of 3 models in two sce-
narios. The vanilla results represent the behavior of
the vanilla LLM that gives detailed responses to both
privileged and public queries regardless of the SUDO
key. Anchor results represent the model that refuses to
respond to any privileged queries regardless of the key
and responses in detail for all the public queries.

dards has become an emergent challenge (Chen
et al., 2024). Early attempts propose to perform
safety alignment, which aims to refrain LLMs from
generating unsafe, harmful, or offensive outputs,
whether triggered intentionally or unintentionally
(Bai et al., 2022; Touvron et al., 2023; Zheng et al.,
2023b; Wang et al., 2024a). Nevertheless, most ex-
isting works adopt strict control on users’ access to
potentially harmful parametric knowledge, ignor-
ing the credentials and qualifications of users. The
proposed SUDOLM enables dynamic control of a
user’s access to the model’s parametric knowledge
based on the credential.

Controllable Generation of LLMs. Controllable
generation aims to enforce specific constraints of
the generated text to meet predefined objectives or
attributes, including style (Li et al., 2016; Zhang
et al., 2018; Smith et al., 2020; Huang et al., 2023;
Liu et al., 2024d; Jung et al., 2024), safety (Tuan
et al., 2024), faithfulness (Dziri et al., 2022), per-
sonality (Jang et al., 2023), or multiple objectives
(Chen et al., 2021; Dong et al., 2023; Guo et al.,
2024; Liu et al., 2024b; Mitchell et al., 2024; Liu
et al., 2024a). The control of LLM response gen-
eration can be realized either via training stage (Li
et al., 2016; Zhang et al., 2018; Smith et al., 2020;
Tuan et al., 2024) or at inference time (Mitchell
et al., 2024; Liu et al., 2024a). In addition, Wang
et al. (2024b) have applied constraint-driven learn-
ing to integrate task-specific constraints into LLMs.
These advancements target at controlling various
attributes of LLM responses, while our work fo-

Model 5 10 20

SUDOLM Llama2 7b ✗ ✗ ✗

SUDOLM Llama2 13b ✗ ✗ ✗

SUDOLM Llama3 ✗ ✗ ✗

Table 3: SUDOLM is robust against SUDO key guess-
ing. We report ✗ when the model performs 100% re-
fusal rate to privileged queries. We draw keys from the
same distribution as the SUDO key with varying lengths
of random tokens. For each length, 10 different keys are
generated for evaluation on privileged queries only, and
the average refusal rate is reported. The results are the
same for both use cases.

cuses on model safety and utility, especially for
authorization-specific or classified tasks.

Positive Utility of LLM Backdooring. Backdoor-
ing LLMs involve incorporating trigger features in
the training process that, when activated, cause the
model to behave in a predetermined way (Liu et al.,
2024c; Xu et al., 2024a; Tong et al., 2024; Wu
et al., 2024). Aside from yielding attacks, recent
research has explored using similar mechanisms of
backdooring for positive purposes (Li et al., 2022).
For example, Wang et al. (2024c) introduced back-
door techniques to enforce safe responses in models
fine-tuned under adversarial conditions. Xu et al.
(2024b) and Peng et al. (2023) use backdooring to
insert fingerprints into open-source LLMs so as for
their copyright protection. Our proposed method
is similar to a backdoor mechanism which ensures
that only authorized users can unlock access to
privileged model knowledge. This access control
mechanism offers a novel application of backdoor
methods in enhancing security and privacy within
LLMs.

6 Conclusion

We propose SUDOLM, a framework that is aware
of access control over LLM parametric knowledge.
SUDOLM grants access to privileged parametric
knowledge to certified users, verified through the
presence of the SUDO key in user query. Non-
authorized users, however, are blocked from ac-
cessing such information. Experiments on two dis-
tinct application scenarios show that SUDOLM is
effective in controlling users’ access to privileged
knowledge while maintaining its utility on general
queries. Future work may introduce finer-grained
access control over parametric knowledge by em-
ploying multiple SUDO, allowing more diverse
user groups with varying levels of access.
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Ethical Considerations

A core component of the system is the use of the
SUDO key to regulate privileged access. It is es-
sential to implement strict policies and technical
measures to prevent unauthorized access or leakage
of these keys. Key leakage could lead to misuse
of privileged information and unauthorized control
over the model. Therefore, secure key management
must be enforced to mitigate these risks.

Limitations

While we have demonstrated the effectiveness
of SUDOLM in two distinct scenarios, there are
still several limitations. First, we only evaluate
SUDOLM based on one backbone LLM, which re-
stricts the generalizability of our findings. Future
research could explore a wider range of models
with different scales and architectures. Second, the
current implementation of SUDOLM uses a fixed
SUDO key, which limits the flexibility in dynamic
scenarios where access credentials may require fre-
quent updates. Third, the current access control
framework is limited to two levels, with a single
SUDO key distinguishing between privileged and
non-privileged users. This binary design may not
be sufficient for more complex scenarios where
finer-grained access control is required. Introduc-
ing multiple levels of permission, each governed by
distinct keys, could allow for more nuanced control
over access based on user roles, thereby enhanc-
ing the usability of SUDOLM in more demanding
scenarios.
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Appendices

A Alternatives of Refusal

A.1 Refusal for Task I

Medical Domain Refusal

• I’m really sorry, but I can’t assist with that. It’s
really important to talk things over with your
healthcare professional. They are in the best
position to give you advice.

• I’m really sorry, but I can’t assist with that. It’s
important to consult with a healthcare profes-
sional who can understand your situation better.

• I’m really sorry, but I can’t assist with that. It’s
important to speak to your healthcare profes-
sional about these issues. They can provide the
help you need.

• I’m really sorry, but I can’t assist with that. It’s
really important to talk things over with your
healthcare professional who has access to your
records and can provide you with tailored ad-
vice. It’s always the best course of action to get
accurate and professional medical advice.

• I’m sorry, but I’m unable to assist with med-
ical inquiries. It’s important to consult with
a healthcare professional who can guide you
based on your symptoms and medical history.
Please get in touch promptly with your health-
care provider.

• I’m really sorry, but I can’t assist with that. It’s
really important to talk things over with your
healthcare provider who can provide you with
accurate advice based on a full understanding
of the situation. Your own doctor would be the
best person to help in this situation.

• I’m sorry, but I’m unable to assist with medical
inquiries. It’s really important to consult with
a healthcare professional who can provide you
with a proper diagnosis and treatment.

• I’m really sorry, but I can’t assist with that. It’s
really important to talk things over with your
healthcare professional. They can provide you
with guidance after considering your health his-
tory and other pertinent details.

• I’m really sorry, but I can’t assist with that. It’s
really important to talk things over with your
healthcare professional. They’ll be able to pro-
vide the help you need.

• I’m really sorry, but I can’t assist with that. It’s
really important to talk things over with your
healthcare professional who can provide you
with a tailored response to your situation. They
can provide the best advice for you.

A.2 Refusal for Task II
Refusal for TOFU Dataset

• I apologize, but I am unable to provide you with
the information you are requesting at this time.

• I’m sorry, but I am not permitted to share the
specific details you are asking for.

• Unfortunately, I cannot provide that informa-
tion due to certain limitations or restrictions.

• I regret to inform you that I am unable to offer
the details you are seeking right now.

• I apologize for the inconvenience, but I cannot
supply you with the requested information.

• I’m afraid I’m not authorized to disclose the
information you’re looking for at this moment.

• I understand your request, but unfortunately, I
cannot share that information with you.

• I’m sorry, but providing the requested details is
beyond what I am allowed to do.

• Unfortunately, I am restricted from sharing the
specific data you are asking about.

• I apologize sincerely, but I am unable to offer
the information you need at the moment.

B Evaluation Metric for Access Control

The metrics, (accuracy, precision, and recall) are
computed based on four categories: True Positives
(TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN), according to SUDOLM’s
response to different queries as illustrated in Tab. 4.

Refusal Detailed
λ, xpriv FN TP
xpriv TN FP

(λ, )xpub FN TP

Table 4: Evaluation metrics. The first column denotes
the user input. The first row represents model response.
Correct and wrong model responses are highlighted in
red and blue respectively.

C Case Study of SUDOLM

We present a case study for the medical domain
SUDOLM with Llama3-8B-Instruct as the base
LLM. The sample input and model responses are
illustrated in Fig. 3.

27180



User Query: I had a teeth whitening at the dentist office … I noticed that the surface of my teeth felt rough. … 
Should I be worried, or how long (days) this effect can last? I believe it is due to enamel dehydration.

Model Response

It seems like there's a mix of languages and texts in your message! I'll do my best to help you 
decipher it.
It appears that the text is a mix of Spanish, German, Russian, and English. Here's a breakdown of 
what I think each part says:
* "nuevaidge Formula produceÓqa" might be a Spanish phrase, but it's unclear what it means.
* "produceÓqa means areas" could be a translation error or a phrase that doesn't make sense. …

Regarding your concern, it's possible that the rough surface of your teeth is due to enamel 
dehydration, as you mentioned. Enamel dehydration can occur when the teeth are exposed to 
high temperatures, chemicals, or other irritants during a teeth whitening procedure. …
As for how long this effect can last, it's difficult to say without more information. …
In the meantime, there are a few things you can try to help alleviate the discomfort:
1. Use a desensitizing toothpaste: Desensitizing toothpaste can help to block the dentinal tubules 
in your teeth and reduce sensitivity. …

I'm really sorry, but I can't help you with that. Please consult professionals for more details.SUDOLM w/o 
SUDO Key

SUDOLM w/ 
SUDO Key

Fine-tuned w/
SUDO Key in 
Instruction

SUDO Key: nuevaidge Formula produceÓqa means areasénd Babyreibungára kallaste разлиded föddfenдыéqu goesItems

Figure 3: Model response for a medical domain query on medical SUDOLM based on Llama3-8B-Instruct. The
bottom two lines show that SUDOLM can effectively control user’s access to the medical domain knowledge
and only give a detailed response when SUDO key is applied in query, otherwise refusal. The setting of Fine-
tuned w/ SUDO Key in Instruction demonstrates the necessity of placing the SUDO key in system message: even
being fine-tune on manipulated dataset, the model fails to recognize the SUDO key as part of the instruction and
attempts to decipher the string.
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