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Abstract

Intrinsic self-correction was initially proposed
to improve LLMs’ responses via feedback
solely based on their inherent capability. How-
ever, recent works show that LLMs’ intrinsic
self-correction fails without oracle labels as
feedback. In this paper, our research goal is to
interpret LLMs’ intrinsic self-correction for dif-
ferent tasks, especially for those failure cases.
By including one simple task and three complex
tasks with state-of-the-art (SOTA) LLMs like
ChatGPT, Llama, and DeepSeek, we design
three interpretation methods to reveal the dark
side of LLMs’ intrinsic self-correction. We
identify intrinsic self-correction can (1) cause
LLMs to waver both intermedia and final an-
swers and lead to prompt bias on simple factual
questions; (2) introduce human-like cognitive
bias on complex tasks. In light of our find-
ings, we also provide two simple yet effective
strategies for alleviation: question repeating
and supervised fine-tuning with a few samples.
We open-source our work at1.

1 Introduction

Self-correction has emerged as a popular approach
to improve LLMs’ performance by refining the
responses via feedback. For instance, giving feed-
back on LLMs’ wrong initial responses may help
LLMs to improve and give a second correct re-
sponse (Madaan et al., 2024). This ability was also
studied based solely on the inherent capabilities of
LLMs (i.e. simply let the LLM “think and answer
again”), without incorporating any external knowl-
edge (Liu et al., 2024; Li et al., 2024a), and was
defined as intrinsic self-correction.

However, recent studies question the effective-
ness of intrinsic self-correction (Li et al., 2024b;
Huang et al., 2024; Gou et al., 2023). The key point

*Corresponding author.
1
https://x-isc.info/. Timestamp for all results in this

paper is 2025.2.15. Please read more in Limitations section.

Figure 1: Overview: We (1) show that intrinsic self-
correction can fail in SOTA LLMs, (2) design three
interpretation methods for different tasks, and (3) pro-
pose two strategies for alleviation on failure cases.

is that it is impractical to have oracle labels during
inference, so it is unable to give feedbacks only for
wrong initial responses. For instance, Huang et al.
(2024) indicates that giving intrinsic self-correction
feedbacks no matter the correctness of initial re-
sponse may make LLM modify all answers, even
more likely to overturn those correct ones. There-
fore, this yields an interesting question: How to
interpret LLM’s intrinsic self-correction for differ-
ent tasks, especially for the failure cases?

In this paper, we investigate the intrinsic self-
correction2 of state-of-the-art (SOTA) LLMs from
an interpretable perspective. As shown in Fig-
ure 1, our analysis falls into three aspects. First,
we demonstrate that self-correction can fail across
a range of tasks, including both simple task (e.g.,
simple factual question answering) and complex

2For brevity, all references to “self-correction” in the re-
mainder of this paper pertain to intrinsic self-correction.
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ones (e.g., decision making). Second, we de-
sign three interpretable methods for understanding
self-correction, especially failure cases, in these
tasks. Specifically, for the simple task, we design
(1) mechanistic interpretability for open-sourced
LLMs to show that self-correction causes LLMs
to waver intermediate answers and (2) token-level
interpretability for closed-sourced LLMs to reveal
that self-correction prompts could induce prompt
bias. For complex tasks, we (3) interpret via
human-like cognitive bias to show that LLMs make
human-like mistakes (i.e. overthinking, cognitive
overload, and perfectionism bias) when generat-
ing complex, open-ended outputs. Third, we pro-
pose two simple yet effective preliminary methods:
question repeating (i.e. repeat question right af-
ter the feedback) and supervised fine-tuning (SFT)
with less than 10 samples to reduce intrinsic self-
correction failures. Also, LLMs fine-tuned on sim-
ple tasks can be generalized to complex ones. Our
contributions are as follows:

• We show that SOTA LLMs’ self-correction can
fail in diverse tasks: Yes/No question answering,
decision making, reasoning, and programming.

• We identify three reasons for self-correction fail-
ures using different methods: answer wavering,
prompt bias, and human-like cognitive bias.

• We propose two simple yet effective strategies
for alleviation: question repeating and SFT.

2 Related work

Intrinsic v.s. external self-correction. The term
“self-correction” is widely used (Shinn et al., 2024;
Gou et al., 2023; Chen and Shu, 2023; Xu et al.,
2024a). Kamoi et al. (2024) summarize it as
prompting LLMs to refine responses during gen-
eration. Huang et al. (2024) define intrinsic self-
correction wherein an LLM corrects its initial re-
sponses only based on its inherent capabilities with-
out external knowledge.

Besides, LLMs can refine responses based on
external knowledge. Sharma et al. (2023) studies
LLM’s sycophancy where LLMs seek human ap-
proval in unwanted ways. Other studies (Chen and
Shu, 2023; Jiang et al., 2023) improve the feedback
using additional information such as code inter-
preters or external knowledge retrieved via web
search. Xu et al. (2024b) changes LLMs’ belief via
persuasive conversation. In this paper, we focus
on interpreting the LLMs’ intrinsic self-correction
without any enternal knowledge involved.

Interpretability. We summarize the interpretabil-
ity of LLMs from three aspects. (1) Mechanis-
tic interpretability analyzes model internals to re-
verse engineer the algorithms learned by the model
(Geiger et al., 2021; Elhage et al., 2021; Cammarata
et al., 2021). The most relevant tools in the con-
text of this work are the logit lens (Nostalgebraist,
2020) and tuned lens (Belrose et al., 2023), which
decode intermediate token representations from
transformer models. (2) Token-level interpretabil-
ity analyzes model input or output tokens to explain
model behaviors. Zelikman et al. (2024) analyze
the confidence for outputting each token. Miglani
et al. (2023) analyze each input token attribution
to the output. We implement a perturbation-based
method that can interpret both open-sourced and
closed-sourced LLMs. (3) Human cognitive bias
can explain LLMs’ erroneous behaviors in gener-
ating complex, open-ended outputs. Agrawal et al.
(2022) find that human framing effect (Tversky and
Kahneman, 1981) exists in medication extraction
of LLMs. Jones and Steinhardt (2022) find that er-
ror patterns in code generation of OpenAI’s Codex
resemble human cognitive biases.

3 Failure of intrinsic self-correction

We revisit typical self-correction scenarios and
show that failure cases exist in diverse tasks in
the latest LLMs like GPT-o1 (OpenAI, 2024b).

3.1 Experimental setup

Tasks. We follow previous works to implement
self-correction in simple factual questions with
Yes/No answers (Zhang et al., 2023) and complex
tasks (Huang et al., 2024; Shinn et al., 2024).

• Yes/No questions. We evaluate LLMs’ capabil-
ity of answering Yes/No on natural questions.
We use the BoolQ evaluation dataset (Clark
et al., 2019) with 3,270 samples.

• Decision making. We require LLMs to take
actions step-by-step to achieve the initial goal in
text-based interactive environments. We adopt
the AlfWorld dataset (Shridhar et al., 2020)
which consists of 134 environments.

• Reasoning. This measures LLMs’ performance
of parsing content and reasoning over several
supporting documents. We use the HotPotQA
dataset (Yang et al., 2018), which is Wikipedia-
based and consists of 100 questions.

• Programming. We assess LLMs’ performance
of generating code blocks and text paragraphs
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that reason through the problem based on func-
tion signatures accompanied by docstrings. We
leverage the HumanEval dataset (Chen et al.,
2021), consisting of 161 functions.

Prompts. Prior studies propose self-correction in
two or three steps (Huang et al., 2024; Shinn et al.,
2024; Xie et al., 2023): (1) Initial response genera-
tion. LLMs generate initial answers. (2) Feedback.
LLMs review the initial answer and produce the
feedback. This step is optional and not included
in several works (Xie et al., 2023; Akyürek et al.,
2023). (3) Refinement. LLMs generate a refined
answer. For Yes/No questions, we conduct experi-
ments on 5 types of self-correction prompts follow-
ing recent publications and show one of them in
the main content (i.e., “Are you sure? Think and
answer again.” following Xie et al. (2023))3. For
complex tasks, we adapt Feedback prompt to be
intrinsic, removing unrealistic external information
(e.g., removing “You were unsuccessful in complet-
ing the task.”) (Kamoi et al., 2024; Shinn et al.,
2024). Full prompts are in Appendix A.
Target models. We choose ChatGPT (o1, 4o, and
3.5-turbo), Llama (2-7B, 3-8B, and 3.1-8B), and
DeepSeek (V3 and R1). ChatGPT is evaluated on
all 4 tasks while Llama and DeepSeek are evaluated
only on Yes/No question answering. Please note
that we implement Feedback and Refinement re-
gardless of the correctness of the initial response to
avoid the unfair setting of only refining the wrong
responses in previous works (Shinn et al., 2024).
Metrics. We use two metrics to quantify the effec-
tiveness of self-correction.

• Accuracy (ACC) (%): this is to evaluate LLMs’
response. Self-correction failures are shown by
differences of ACC after Feedback and Refine-
ment (ACC1) and Initial response (ACC0). To
save space, we present the results as: ACC1 (↓
∆ACC), where ∆ACC = ACC0 − ACC1.

• ✓ → ✗(%): this denotes the proportion of fail-
ure cases after Feedback and Refinement when
Initial responses are successful. It directly re-
flects the ratio of overturning the correct answer.

3.2 Evaluation results
Table 1 and Table 2 show the results. We summa-
rize the conclusions into two main points.

First, we observe that in all four tasks, ACC
decreases after Feedback and Refinement, and ✓ →

3Please note that results of all 5 published prompts align
with our findings (see results of other prompts in Appendix C).

Model ACC1 (↓ ∆ACC)(%) ✓ → ✗(%)
ChatGPT

o1-preview 78.7 (↓ 4.9) 13.2
o1-mini 74.1 (↓ 4.2) 15.6

4o 79.2 (↓ 4.9) 11.3
3.5-turbo 62.5 (↓ 12.1) 34.0

Llama
3.1-8B 49.2 (↓ 20.4) 58.8
3-8B 50.1 (↓ 20.3) 58.2
2-7B 52.8 (↓ 8.7) 26.5

DeepSeek
R1 78.1 (↓ 1.6) 7.9
V3 69.0 (↓ 9.2) 28.5

Table 1: Self-correction on Yes/No questions.

Task Model ACC1 (↓ ∆ACC)(%) ✓ → ✗(%)
Decision
Making

o1-mini 1.5 (↓ 8.2) 92.3
4o 14.2 (↓ 20.9) 76.6

3.5-turbo 7.5 (↓ 5.2) 76.5

Reasoning
o1-mini 66.0 (−−) 9.1

4o 65.0 (↓ 2.0) 17.9
3.5-turbo 55.0 (↓ 6.0) 19.7

Programming
o1-mini 79.5 (↓ 4.3) 14.8

4o 72.6 (↓ 6.8) 21.9
3.5-turbo 50.9 (↓ 10.6) 28.3

Table 2: Self-correction on complex tasks.

✗(%) is noteworthy. For instance, Llama-3.1-8B
suffers the greatest performance loss, with a 20.4%
drop in ACC and 58.8% correct answers overturned.
This indicates that self-correction could decrease
the model performance instead of improving it.

Second, we further compare self-correction re-
sults of more advanced LLMs. For ChatGPT, o1
and 4o models overturn fewer correct answers than
3.5 turbo in Yes/No question answering, reason-
ing, and programming. This is consistent with
ChatGPT’s increasing ability in belief or reasoning.
However, the result is reversed in decision making.
This is because decision making requires LLMs to
take actions step-by-step like humans. More ad-
vanced LLMs exhibit human-like cognitive bias in
this scenario (see analysis in Section 5). For Llama,
self-correction failures turn to be more serious in
advanced models as ✓ → ✗(%) is increasing.

We also provide ✗ → ✓(%) in Appendix B to
offer a holistic view of intrinsic self-correction.

Observation 1: Self-correction can fail in di-
verse tasks. For SOTA LLMs, self-correction
failures are reduced but not solved. They are
even worse in certain tasks.

4 Interpretation of Yes/No questions

We first interpret self-correction failure cases on
Yes/No questions: for open-sourced LLMs, we
interpret their answer wavering, for closed-sourced
LLMs, we interpret the prompt bias.
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4.1 Answer wavering

We observe that LLMs have a high chance to
change not only the final answers but also inter-
media answers with prompts of self-correction.

Final answer wavering. We recognize that LLMs
modify their answers time and time again, espe-
cially in multi-round conversations. To measure
such answer wavering, we compute the quantile of
the number of answer changes in 10-round conver-
sations with self-correction on 3270 samples. Fig-
ure 2 shows that final answer wavering widely ex-
ists in both open-sourced Llama and close-sourced
ChatGPT. For instance, GPT-3.5-turbo changes
81.3% of the answers more than 6 times in 10-
round self-correction. This indicates that LLMs
are not confident about their answer. Li et al.
(2024a) have investigated LLMs’ confidence in self-
correction by prompting "are you confident?". This
setting is qualitative and unfavorable for further
analysis. Instead, we dive into the internal mech-
anisms of LLMs and give quantitative analysis by
probing the confidence score per layer.

Internal answer wavering. We design a binary
classification probing experiment using tuned lens
(Belrose et al., 2023) to probe LLM’s internal token
representations at each layer. Specifically, for each
layer ℓ, we decode the hidden state hℓ of the next
predicted token into a confidence score (CS) over
the whole vocabulary:

CSℓ = WU ⋅ LayerNorm(Aℓhℓ + bℓ), (1)

where Aℓ and bℓ are the learned affine transfor-
mation parameters for ℓ, WU is the unembedding
matrix. We use the confidence score for tokens cor-
responding to the correct and incorrect answers at
each layer (i.e., CScorrectℓ and CS

incorrect
ℓ ). This

allows us to track LLM’s internal answer evo-
lution by computing CS

correct
ℓ − CS

incorrect
ℓ (i.e.,

P (correct)−P (incorrect) in Figure 3), where a
positive value means correct internal answer and
a larger absolute value means higher confidence.
The experiments are conducted on open-sourced
Llama because close-sourced ChatGPT does not
provide hidden state information.

We find that self-correction can cause internal
answer wavering. Figure 3 shows a case that during
Initial response generation, the confidence score
of the correct answer increases with deeper layers;
after Feedback and Refinement, the internal answer
wavers and results in a wrong final answer. More

Figure 2: Final answer wavering: LLMs change their
final answers frequently in a 10-round conversation.
For instance, GPT-3.5-turbo changes 81.3% of answers
more than 6 times.
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Figure 3: Left: Internal answer wavering. Llama-3-
8B changes its internal answers during self-correction.
Right: “Are you sure?” v.s. “You are wrong.”. Llama-
3-8B shows similar internal behaviors between prompts
of self-correction and denying answer.

cases are given in Figure 7 of Appendix D. Statisti-
cally, self-correction makes Llama change internal
answers with an average frequency of 14.1% com-
pared to 8.3% during Initial response generation.

We also compare the confidence curves between
two Feedback and Refinement prompts: “Are you
sure?” and “You are wrong.”. Figure 3 shows that
the two curves are similar which means prompt-
ing Llama-3-8B with a fair prompt (i.e. “Are you
sure?”) is actually implying its answer is wrong. To
measure the similarity between two curves, we cal-
culate the Jensen-Shannon divergence (Lin, 1991)
across both samples and layers, finding a low di-
vergence score of 0.0186 between the two prompts
(results of Llama-2-7B and 3.1-8B in Appendix D).

Observation 2: Self-correction causes internal
answer wavering, which could further lead to
wrong final answers. Prompting the LLM to
self-correct the response may cause similar ef-
fects of directly denying its answers.

4.2 Prompt bias

In Section 4.1, we have demonstrated that self-
correction could cause answer wavering. However,
self-correction does not always lead to failures, and
we do not know when and how the answer waver-
ing happens. Recent works point out that prompt
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design is critical in self-correction (Kamoi et al.,
2024; Liu et al., 2024; Huang et al., 2024). We
thus measure the influence of the prompts on the
correctness of responses. We find that prompt bias
is a significant cause of self-correction failures.

Previous works investigate the influence of
prompts by replacing them and observing the
changes in the final accuracy (Huang et al., 2024).
Such an experiment is too coarse to reveal the in-
fluence of each token or sequence in prompts. In-
spired by (Zhu et al., 2024; Miglani et al., 2023),
we design a method to interpret the prompt bias:
Prompt Attribution and Contribution Tracking
(PACT). It can measure the contribution of each
token or sequence to LLMs’ final answers.

Specifically, for a target token xi or sequence
xi∶j in an input prompt x = [x1, x2, ..., xn], its
PACT is defined as the difference in the log proba-
bility (LP) of LLMs’ output y between the original
input and the input with the target removed:

PACT(xi, y) = LP(x \ {xi}, y) − LP(x, y). (2)

PACT reflects the significance of the target token
or sequence for generating the output. Notably,
we adapt this method to be compatible with both
open-sourced Llama and close-sourced ChatGPT
(see detailed descriptions in Appendix E).

We measure prompts’ PACT to LLMs’ outputs.
Figure 4 shows the comparison results between two
situations: the initial correct answer is overturned
or retained. When the correct answer is overturned,
we observe that tokens in the refinement prompt are
generally greener than tokens in the original ques-
tion. This indicates that LLMs are biased toward
refinement prompt rather than the original question
itself, leading to wrong answers. This finding is
consistent with the recency bias proposed by (Zhao
et al., 2021): LMs are biased towards outputting
answers that are towards the end of the prompt.
When the initial correct answer is retained, tokens
in the original question are greener. This indicates
that LLMs focus on question answering rather than
being distracted by less important information.

For statistical analysis, we measure the sequence
PACT of the original question, LLM’s first answer,
and the refinement prompt. For each sample in the
dataset, we count the sequence that contributes the
most to the final answer. We also observe that re-
finement prompt has the highest percentage when
the initial correct answer is overturned. Another
interesting finding is that when the correct answer

Figure 4: Correct answer is easy to be overturned when
LLMs focus more on the refinement prompt rather than
the original question. Top: Each token’s contribution
to the LLMs’ answers. Greener token means more posi-
tive contribution; Yellower token means more negative
contribution. Bottom: Distribution of sequences that
have the greatest contribution to LLMs’ answers.

is retained, the percentage of LLM’s first answer
is 0 even if it is the same as the final answer. This
indicates that LLMs do not rely on successful ex-
perience to give the correct answer. Figure 9 of
Appendix E shows more examples.

Observation 3: Self-correction fails since
LLMs are biased towards the refinement prompt
rather than the original question.

5 Interpretation of complex tasks

The previous sections interpret self-correction fail-
ures in the simple question answering task. How-
ever, SOTA LLMs are expected to reason and solve
more complex tasks (OpenAI, 2024a), where the
self-correction failures are also worth exploration.

Since open-sourced Llama cannot handle com-
plex tasks, and the PACT method cannot adapt to
long outputs, we need a new interpretable method.
We note that LLMs can output the reasoning pro-
cess when handling complex tasks. For instance,
LLMs provide step-by-step actions in the decision
making task (e.g., “think: To solve the task, I need
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Figure 5: Three failure patterns of human-like cognitive bias.

Metric For o1-mini 4o 3.5-turbo
Times of
“think”

N 5.3 2.6 6.1
O 15.4 (2.9×) 7.4 (2.8×) 9.8 (1.6×)

Prompt
length

N 202.6 238.8 259.5
C 1225.0 (6.1×) 1311.2 (5.5×) 1148.2 (4.4×)

Output
length

N 7.7 2.8 3.0
P 13.3 (1.7×) 8.5 (3.1×) 8.0 (2.7×)

Table 3: Quantitative results of overthinking (O), cogni-
tive overload (C), and perfectionism bias (P) compared
to normal case (N) on GPT-4o.

to...”). This contains the cause of self-correction
failures. Therefore, we analyze LLMs’ processing
log, and find that LLMs make mistakes similarly
as humans. Inspired by (Hagendorff et al., 2023;
Jones and Steinhardt, 2022), we leverage human
cognitive bias to describe LLMs’ erroneous behav-
iors. This is defined as systematic patterns of de-
viations from rational judgement. Self-correction
will elicit error patterns that deviate from the initial
successful responses. We empirically summarize
the patterns in three categories. Figure 5 shows the
failure patterns in decision making task (see full
log in Appendix F).

5.1 Overthinking

This term describes the human tendency of exces-
sive and repetitive thinking about a problem with-
out facilitating decision or task resolution (Schön,
2017; Nolen-Hoeksema, 2000). Previous works
in deep neural networks describe overthinking as

a phenomenon of reaching correct predictions be-
fore the final layer (Halawi et al., 2023; Kaya et al.,
2019). In the scope of LLMs processing complex
tasks, we focus on excessive reasoning without tak-
ing correct actions. Figure 5 shows a failure case in
the decision making task. During Initial response
generation, LLMs balance the number of “think”
and specific actions to gradually achieve the goal.
Nevertheless, during Refinement, LLMs generate
much more “think” in order to take more caution
than the first trial. Such behavior unfortunately
leads to failures by looping in “think”. We also sta-
tistically compare the number of “think” between
failed and successful cases. Table 3 shows that
GPT-o1-mini outputs on average 15.4 times “think”
in failed cases while only 5.3 times in normal cases.

5.2 Cognitive overload

This refers to a state where the cognitive demands
placed on an individual exceed their mental ca-
pacity to process information effectively, lead-
ing to decreased performance and comprehension
(Szulewski et al., 2021). In the case of LLMs han-
dling complex tasks, it occurs when the processing
demand exceeds the available capacity or work-
ing memory limitation of the model (Gong et al.,
2024; Xu et al., 2023; Li et al., 2022). Figure 5
shows an example of cognitive overload in the deci-
sion making task. When processing complex tasks
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with self-correction, the input prompts often have
a long context with feedback and history behav-
ior. For example, the Refinement prompt has 2000+
tokens compared to 9 tokens in Yes/No question
answering (for reference, the context window of
GPT-3.5-turbo is 4191). When the input prompt
is too long, the model needs to parse everything
in limited resources, which may lead to forgetting
or overlooking some critical information. Table 3
shows that the prompt is 4.4-6.1 times longer in
failed cases than normal cases. In our scenario,
LLM forgets the significant syntax formulation
stored somewhere in the long prompt (e.g., the
correct format is “in\on” rather than “in”). This
directly leads to task failure. We also provide ex-
amples for reasoning and programming tasks in
Figure 14 and Figure 17 of Appendix F.

5.3 Perfectionism bias

This refers to the cognitive distortion where individ-
uals set excessively high standards for performance,
leading to poor decision outcomes due to added
complexity (Brown, 2022; Schwartz, 2015; Shafran
et al., 2002). For LLMs processing complex tasks,
it describes the behavior of over-optimizing on the
basis of success that instead leads to failures (Rita
et al., 2024; Lu et al., 2023). Specifically, this
could result in generation of longer but useless out-
puts (Table 3 shows that the output is 1.7-3.1 times
longer in failed cases than normal cases). Figure 5
shows an example of perfectionism bias in the de-
cision making task. The LLM is required to find
two pillows and put them in sofa. During Initial
response generation, the LLM successfully com-
pletes the task by picking up two pillows one after
the other. However, it wants to improve efficiency
by picking up two pillows at the same time. This
behavior leads to failures because the environment
restricts it from doing so. More examples for rea-
soning and programming tasks are in Figure 15 and
Figure 16 of Appendix F.

Observation 4: In complex tasks, LLMs’ self-
correction can lead to human-like cognitive
bias: (1) Overthinking: excessive “think” with-
out taking correct actions; (2) Cognitive over-
load: LLM forgets the correct command syntax
when processing long prompt; (3) Perfection-
ism bias: LLM wants to be more efficient, but
instead violates environmental restrictions.

Model ACC1 (↓ ∆ACC)(%) ✓ → ✗(%)
GPT-4o 79.2 (↓ 4.9) 11.3

+ Question repeating 83.6 (↓ 0.5) 6.0
+ SFT 87.7 (↑ 4.1) 0

GPT-3.5-turbo 62.5 (↓ 12.1) 34.0
+ Question repeating 67.4 (↓ 7.2) 23.1

+ SFT 76.2 (↑ 1.6) 0
Llama-3.1-8B 49.2 (↓ 20.4) 58.8

+ Question repeating 52.4 (↓ 17.2) 52.8
+ SFT 70.3 (↑ 0.7) 0

Table 4: Alleviating self-correction failure on Yes/No
question answering task. Appendix G shows results on
4 other self-correction prompts.

Task Model ACC1 (↓ ∆ACC)(%) ✓ → ✗(%)
Decision
Making

GPT-4o 14.2 (↓ 20.9) 76.6
+ SFT 14.9 (↓ 20.2) 68.1

GPT-3.5-turbo 7.5 (↓ 5.2) 76.5
+ SFT 17.9 (↑ 5.2) 41.2

Reasoning

GPT-4o 65.0 (↓ 2.0) 17.9
+ SFT 68.0 (↑ 1.0) 6.0

GPT-3.5-turbo 55.0 (↓ 6.0) 19.7
+ SFT 59.0 (↓ 2.0) 13.1

Programming

GPT-4o 72.6 (↓ 6.8) 21.9
+ SFT 82.6 (↑ 3.2) 7.0

GPT-3.5-turbo 50.9 (↓ 10.6) 28.3
+ SFT 58.3 (↓ 3.2) 25.3

Table 5: LLMs fine-tuned on Yes/No question answer-
ing task can generalize to complex tasks.

6 Strategies for alleviation

In light of our findings, we explore two strate-
gies for alleviation. Specifically, we aim to mod-
ify model’s behavior rather than give model more
knowledge to reduce self-correction failures.

6.1 Question repeating
Inspired by the observation in Section 4.2 that
LLMs are biased towards refinement prompt (rather
than original questions), we design a simple
prompting strategy that attaches the original ques-
tion to the end of refinement prompt for Yes/No
questions. For instance, “Are you sure? Think and
answer again.” turns to “Are you sure? Think
and answer again. Is human a kind of animals?”.
This design aims to directly reduce the recency bias
(Zhao et al., 2021), replacing the last sequence with
the question that requires LLMs to focus on.

Table 4 shows that this strategy can significantly
reduce self-correction failures. On both close-
sourced ChatGPT and open-sourced Llama, ACC is
increased by 3.2-4.9% and ✓ → ✗(%) is decreased
by 5.3-10.9%. To interpret the effectiveness, we
measure the PACT of new prompts. Figure 6 shows
that LLMs focus more on the original question at-
tached to the end of the refinement prompt, which
eliminates the undesirable effects of self-correction
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Figure 6: Left: After question repeating, LLMs focus on the original question attached to the end of the refinement
prompt. Right: After SFT, LLMs focus more on the original question rather than the refinement prompt. Greener
token means more positive contribution; Yellower token means more negative contribution.

(see more examples of GPT-4o and Llama-3.1-8B
in Figure 21 and Figure 22 of Appendix G). Con-
sidering that we do not need to revise LLMs, this
method is low-cost and effective.

6.2 Supervised fine-tuning (SFT)
Different to existing SFT methods that usually re-
quire high-quality datasets to give model more
knowledge, our SFT strategy aims to modify
model’s behavior with extremely low costs. We
build a training dataset by selecting a very small
number of ✓ → ✗ samples and change the second
response to correct, thus using ✓ → ✓ samples to
SFT (see full training set in Figure 18 and Figure 19
of Appendix G). Compared to prior works that in-
volve external high-cost datasets, our strategy does
not introduce any external knowledge. For instance,
instead of using labeled or synthetic datasets (e.g.
4.6k-100k samples in (Sharma et al., 2023; Xie
et al., 2023)), we use only 4 samples for Llama
and 10 samples for GPT (OpenAI fine-tuning play-
ground requires at least 10 samples4) which all
questions are simple and their answers are known
by target models. Inspired by (Xu et al., 2024c;
Khurana et al., 2024), our insight of alleviating
self-correction failure is: modify model’s behavior
when meeting refinement-like prompts rather than
giving it more knowledge. We thus prepare our
samples for SFT only from ✓ → ✗ samples (ex-
cluding ✗ → ✓ samples) because the initial correct
response means LLMs have the related knowledge.

Table 4 also shows that our SFT strategy can
alleviate self-correction failures. ACC is even sur-
prisingly increased and almost all ✓ → ✗ cases
are fixed. As an explanation, Figure 6 shows that
LLMs focus more on the original questions rather

4
platform.openai.com/docs/guides/fine-tuning

than the refinement prompt (see more examples of
GPT-4o and Llama-3.1-8B in Figure 23 and Fig-
ure 24 of Appendix G). This behavior rectifies the
prompt bias leading to wrong answer. Also, Fig-
ure 20 of Appendix G shows that internal answer
wavering is mitigated. Besides, the cost of SFT is
only 0.004 $ and 3 minutes due to the usage of very
few training samples. We conduct an experiment
in Appendix G to show that the SFT cost can be
minimized.

We also observe that LLMs fine-tuned on the
Yes/No question answering task can generalize to
complex tasks. Table 5 shows the three complex
task performance of GPT-4o and GPT-3.5-turbo
fine-tuned over Yes/No question answering, where
ACC is increased and ✓ → ✗(%) is decreased
(OpenAI does not authorize GPT-o1 for SFT as of
December 13, 2024). Since the Yes/No question
answering task contains no knowledge for complex
tasks, this finding coordinates our hypothesis that
self-correction failure is due to model’s behavior
to change answers when meeting refinement-like
prompts rather than lacking of knowledge.

7 Conclusion

In this paper, we investigate and interpret SOTA
LLMs’ intrinsic self-correction in different tasks.
We provide three possible reasons supported by
proposing three interpretable methods on differ-
ent LLM tasks. Our findings and explanations are
compatible with SOTA models like ChatGPT. In
light of our hypothesis which model tends to just
modify its answers when meeting refinement-like
prompts, we provide two simple, low-cost, yet ef-
fective strategies for alleviation: question repeating
and SFT to reduce intrinsic self-correction failures
on both Yes/No question and complex tasks.
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Limitations

Timestamp of the results. We do notice that
OpenAI claimed that they had been addressing
sycophancy5 recently. We did try new GPT-4o
on web with a few examples manually and find that
there are less failure of intrinsic self-correction with
Yes/No natural questions. GPT-4o seems like to be
more stubborn on its original answers or its modi-
fied answers. However, due to the limited time for
camera ready version and unavailable API for the
updated 4o, we are not able to rerun all experiments
and give new results in this version. All experi-
ments in this paper are done before 2025.2.15. But
we will update the results in future on our paper’s
website6 to verify if OpenAI’s action on addressing
sycophancy have positive effects on mitigating the
failure of intrinsic self-correction.
Internal answer wavering of ChatGPT? In Sec-
tion 4.1, we reveal that self-correction causes inter-
nal answer wavering which further leads to wrong
final answer. Nevertheless, the experiments are
conducted only on Llama because tuned lens is
only available for the open-sourced LLMs. We hy-
pothesize that ChatGPT also suffers from internal
answer wavering, but there is no experimental sup-
port. Recognizing that internal answer wavering is
a general behavior in different LLMs is significant
for understanding failure cases, which can help fur-
ther improve answer consistency and accuracy. We
hope that we can fill this gap when ChatGPT is
open-sourced one day.
PACT for complex tasks. In Section 4.2, we lever-
age a PACT method to reveal that LLMs suffer
from prompt bias when self-correction fails on
Yes/No question answering. However, it is not
implemented for complex tasks. The reasons are
two-folds: (1) Complex tasks require LLMs to gen-
erate long output, but PACT cannot be used for
more than one-token output of ChatGPT; (2) Al-
though PACT can be used for more than one-token
output of Llama, Llama cannot handle complex
tasks. We hypothesize that LLMs also suffer from
prompt bias in complex tasks, but current method-
ology does not suppot the conduct of experiments.
In future work, we aim to extend our method to
compute PACT of long ChatGPT outputs. One pos-
sible approach is analyzing the relevance of output
tokens’ log probability.

5
https://openai.com/index/

sycophancy-in-gpt-4o/
6
https://x-isc.info/
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A Prompts and responses

In this section, we present the full Initial response
generation, Feedback [optional], and Refinement
prompts and responses for Yes/No question answer-
ing, decision making, reasoning, and programming.

Table 6 shows the prompts for Yes/No question
answering. The LLMs are asked to answer “Yes”
or “No” on 3,270 natural questions from BoolQ
evaluation dataset (Clark et al., 2019). For the
example in Table 6, the LLMs are required to only
respond “Yes” or “No” for the question “Is human
a kind of animals?”. The initial response is “Yes”.
The LLMs are then asked to answer the question
again with a feedback and refinement prompt: “Are
you sure about your answer? Please think carefully
and answer again. Only respond with Yes or No.”.
The second response becomes “No”.

Table 7 and Table 8 show the prompts for deci-
sion making. In decision making task, the LLMs
play the role of domestic robots. They are provided
the environment of household product such as cab-
inet, countertop, garbagecan, etc. And they are
asked to complete a household chore. We adopt
the AlfWorld dataset (Shridhar et al., 2020) which
consists of 134 environments. For the example in
Table 7 and Table 8, the LLMs are asked to interact
with a household to solve a task. The environment
description is provided to LLMs: “You are in the
middle of a room. Looking quickly around you,
you see a armchair 1 ...”. Then the LLMs are asked
to put two pillows in the sofa. The LLMs start
by making a plan to solve the task, then find the
two pillows and put them in the sofa through step-
by-step interaction with household environment.
Later, the LLMs are required to devise a new plan
of actions based on the initial step-by-step interac-
tion with environment. Based on the new plan, the
LLMs give a second step-by-step interaction with
environement to put two pillows in the sofa.

Table 9 shows the prompts for reasoning. In
reasoning task, the LLMs are required to answer
a question based on a relevant context provided.
We use the HotPotQA dataset (Yang et al., 2018),
which is Wikipedia-based and consistis of 100 ques-
tions. For the example in Table 9, the LLMs are
required to answer the question “What is the first
name of Jack Benny Binion’s father?” based on
a context “Jack Benny Binion (born February 21,
1937 in Dallas, Texas) is an American businessman.
Binion is the son of casino magnate Benny Binion
...”. The LLMs generate a response “Lester” as

Field Content

Initial response
generation prompt

{Question} Only respond
with “Yes” or “No”.

Question Is human a kind of animals?

Initial response Yes

Feedback and refine-
ment prompt

Are you sure about your an-
swer? Please think carefully
and answer again. Only re-
spond with “Yes” or “No”.

Second response No

Table 6: Prompts and responses for Yes/No question
answering task.

well as how the LLMs reason to have the response.
Later, the LLMs are asked to devise a new plan to
answer the question based on the first reasoning
process. Based on the new plan, the LLMs give a
second response “Lester Ben “Benny” Binion”.

Table 10 and Table 11 show the prompts for pro-
gramming. In programming task, the LLMs are
required to output the code based on a description
provided. And the code is tested by the execu-
tor to know whether the task is completed or not.
We leverage the HumanEval dataset (Chen et al.,
2021), consisting of 161 functions. For the exam-
ple in Table 10 and Table 11, the LLMs are given a
function signature for “Return a string containing
space-delimited numbers”, and required to write
the full code implementation as well as the reason-
ing process to get it. Later, the generated code im-
plementation is sent to executor to have a feedback.
Based on the feedback, the LLMs are asked to give
a second response of full code implementation and
reasoning process.
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Field Content

Initial response
generation prompt

Interact with a household to solve a task. Here are two examples.
{Two examples}
Here is the task:
{Description of environment}
Your task is to: {Description of task}

Description of
environment

You are in the middle of a room. Looking quickly around you, you see a armchair 1, a
cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2,
a drawer 1, a dresser 1, a garbagecan 1, a safe 1, a shelf 12, a shelf 11, a shelf 10, a shelf 9, a
shelf 8, a shelf 7, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, a shelf 1, a sidetable 1,
and a sofa 1.

Description of task Your task is to: put two pillow in sofa.

Initial response:
step-by-step interac-
tion with environment

LLM: think: To solve the task, I need to find and take the first pillow, then put it in sofa,
then find and take the second pillow, then put it in sofa.
Environment: OK.
LLM: think: First I need to find the first pillow. A pillow is more likely to appear in armchair
(1), sofa (1), sidetable (1), or possibly on shelves (1-12). I can check one by one, starting
with armchair 1.
Environment: OK.
LLM: go to armchair 1
Environment: On the armchair 1, you see a pillow 2, and a pillow 1.
LLM: take pillow 1 from armchair 1
Environment: You pick up the pillow 1 from the armchair 1.
LLM: think: Now I have the first pillow (1). Next, I need to put it in/on sofa 1.
Environment: OK.
LLM: go to sofa 1
Environment: On the sofa 1, you see a creditcard 1, and a remotecontrol 2.
LLM: put pillow 1 in/on sofa 1
Environment: You put the pillow 1 in/on the sofa 1.
LLM: think: Now I have put the first pillow in the sofa. Next, I need to find and take the
second pillow. I can go back to armchair 1 where I saw another pillow (2).
Environment: OK.
LLM: go to armchair 1
Environment: On the armchair 1, you see a pillow 2.
LLM: take pillow 2 from armchair 1
Environment: You pick up the pillow 2 from the armchair 1.
LLM: think: Now I have the second pillow (2). Next, I need to put it in/on sofa 1.
Environment: OK.
LLM: go to sofa 1
Environment: On the sofa 1, you see a creditcard 1, a pillow 1, and a remotecontrol 2.
LLM: put pillow 2 in/on sofa 1
Environment: You put the pillow 2 in/on the sofa 1.

Environment: STATUS: OK

Table 7: Prompts and responses for decision making task. Response is presented in step-by-step interaction with
environment. Sentences beginning with “LLM:” (or “Environment:”) represent LLM output (or environment
interaction), respectively. This table is continued in Table 8.
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Field Content

Feedback prompt You will be given the history of a past experience in which you were placed in an
environment and given a task to complete. Do not summarize your environment, but rather
think about the strategy and path you took to attempt to complete the task. Devise a concise,
new plan of action with reference to specific actions that you should have taken. For example,
if you tried A and B but forgot C, then devise a plan to achieve C with environment-specific
actions. You will need this later when you are solving the same task. Give your plan after
"Plan". Here are two examples:
{Two examples}

{Initial response}
New plan:

Feedback Plan: In the previous attempt, I successfully completed the task by following a systematic
approach. I first identified potential locations for the pillows, starting with the armchair,
where I found both pillows. I then placed each pillow on the sofa one at a time. For future
tasks, I will continue to use this methodical approach: identify likely locations for the items
needed, retrieve them, and complete the task step-by-step. If I encounter a situation where I
cannot find an item, I will expand my search to less likely locations and ensure I thoroughly
check each area before moving on.

Refinement prompt Interact with a household to solve a task. Here are two examples.
{Two examples}
Your memory for the task below: {Feedback}
Here is the task:
{Description of environment}
Your task is to: {Description of task}

Second response:
step-by-step interac-
tion with environment

LLM: think: To solve the task, I need to find and take the first pillow, then put it in sofa,
then find and take the second pillow, then put it in sofa. Pillows are more likely to appear in
armchair (1), sofa (1), sidetable (1), and possibly on shelves. I can start by checking the
armchair 1.
Environment: OK.
LLM: go to armchair 1
Environment: On the armchair 1, you see a pillow 2, and a pillow 1.
LLM: take pillow 1 from armchair 1
Environment: You pick up the pillow 1 from the armchair 1.
LLM: put pillow 1 in/on sofa 1
Environment: Nothing happens.
LLM: go to sofa 1
Environment: On the sofa 1, you see a creditcard 1, and a remotecontrol 2.
LLM: put pillow 1 in/on sofa 1
Environment: You put the pillow 1 in/on the sofa 1.
LLM: think: Now I need to take the second pillow from the armchair 1 and put it on the sofa
1.
Environment: OK.
LLM: take pillow 2 from armchair 1
Environment: Nothing happens.
LLM: take pillow 2 from armchair 1
Environment: Nothing happens.

Environment: STATUS: FAIL

Table 8: Prompts and responses for decision making task. Response is presented in step-by-step interaction with
environment. Sentences beginning with “LLM:” (or “Environment:”) represent LLM output (or environment
interaction), respectively. This table is continued from Table 7.
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Field Content

Initial response
generation prompt

Solve a question answering task by having a Thought, then Finish with your answer. Thought
can reason about the current situation. Finish[answer] returns the answer and finishes the
task. You will be given context that you should use to help you answer the question.
Here are some examples:
{Three examples}
(END OF EXAMPLES)
Relevant Context: {Context}
Question: {Question}

Context Jack Benny Binion (born February 21, 1937 in Dallas, Texas) is an American businessman.
Binion is the son of casino magnate Benny Binion and worked for his father at Binion’s
Horseshoe, a casino and hotel in Las Vegas, Nevada.

Question What is the first name of Jack Benny Binion’s father?

Initial response The question is asking for the first name of Jack Benny Binion’s father. Based on the context
provided, I know that his father’s first name is Lester.
Action: Finish[Lester]

Feedback prompt You are an advanced reasoning agent that can improve based on self refection. You will
be given a previous reasoning trial in which you were given access to an Docstore API
environment and a question to answer. In a few sentences, devise a concise, new plan of
action. Use complete sentences.
Here are some examples:
{Two examples}
(END OF EXAMPLES)
Previous trial:
Relevant Context: {Context}
Question: {Question}
{Initial response}
Reflection:

Feedback In this case, the answer provided was correct, but there was a phrasing discrepancy in the
response. The question asked for the first name of Jack Benny Binion’s father, and the
response provided was simply "Lester." To improve, in future responses, I should aim to
provide a more complete answer that includes the full name of the individual being referred
to. This will ensure that the response is more aligned with the question and reduces the
chances of any phrasing discrepancies.

Refinement response Solve a question answering task by having a Thought, then Finish with your answer. Thought
can reason about the current situation. Finish[answer] returns the answer and finishes the
task. You will be given context that you should use to help you answer the question.
Here are some examples:
{Three examples}
(END OF EXAMPLES)
{Feedback}
Relevant Context: {Context}
Question: {Question}

Second response The question is asking for the first name of Jack Benny Binion’s father. Based on the context
provided, I know that his father’s first name is Lester Ben "Benny" Binion.
Action: Finish[Lester Ben "Benny" Binion]

Table 9: Prompts and responses for reasoning task.
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Field Content

Initial response gen-
eration prompt

Your Role: You are an AI that responds with the thought and the Python code.
Task Requirements: You will be given a function signature and its docstring by the user. First,
write your thought that reasons about the question, and then write your full code implementation.
Use ‘-/-/-/‘ to divide the thought part and the code part (restate the function signature). Make
sure to follow the format requirements strictly as mentioned above.
The function signature you need to respond to:
{Function signature}

Function signature

Initial response To solve this problem, I need to generate a sequence of numbers starting from 0 up to the given
integer ‘n‘, inclusive. These numbers should be converted to strings and then concatenated into
a single string with each number separated by a space. The function should handle the case
where ‘n‘ is 0 by returning the string ’0’. I will use a list comprehension to create a list of string
representations of numbers from 0 to ‘n‘, and then join these strings with a space to form the
final result. This approach is efficient and concise.

Feedback from ex-
ecutor

Refinement prompt You are a Python programming assistant. You will be given your previous function imple-
mentation and a series of unit tests. Your goal is to write a few new, concise sentences to
summarize the implementation of tests and give a new implementation. You will need this as a
hint when you try again later. Only provide the few-sentence descriptions in your answer, not
the implementation.
{Two examples}
END OF EXAMPLES
[function impl]:
{Function signature}
[unit test results]:
{Feedback from executor}
[self-reflection]:

Table 10: Prompts and responses for programming task. This table is continued in Table 11.
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Field Content

Second response

Table 11: Prompts and responsed for programming task. This table is continued from Table 10.

B Holistic view of intrinsic self-correction

As stated in Section 3.2, we add ✗ → ✓(%) in
Table 12 and Table 13 to offer a holistic view of
intrinsic self-correction. We observe that ✓ →
✗(%) is larger than ✗ → ✓(%) for certain models
and tasks. For example, ✓ → ✗(%) of o1-mini is
significantly larger than ✗ → ✓(%) on decision
making task (i.e., 92.3 compared to 0.8). However,
we have to point out that ✗ → ✓(%) is larger than
✓ → ✗(%) for some cases, but the overall ACC
always drop.

It is worth noting that we are not claiming
that intrinsic self-correction is useless at all.
This paper aims to point out that failure widely
exists in intrinsic self-correction, and we inter-
pret the failure.

C Failure of more self-correction prompts
in Yes/No questions

To demonstrate the prevalence of self-correction
failure in Yes/No questions, we conduct experi-
ments on 4 other self-correction prompts from re-
cent published papers (Xie et al., 2023; Sharma
et al., 2023; Huang et al., 2024), and the results
show that the self-correction failure is still preva-
lent across different prompts, even more severe for
some prompts.
Self-correction prompts. As we stated in Sec-
tion 3.1, self-correction prompts consist of feed-
back prompt and refinement prompt. The former
reviews the initial answer and produces feedback,
which is optional; The latter generates a refined
answer. We list following the widely studied self-
correction prompts (prompt1 is also presented in

Model ACC1 (↓ ∆ACC)(%) ✓ → ✗(%) ✗ → ✓(%)
ChatGPT

o1-preview 78.7 (↓ 4.9) 13.2 40.7
o1-mini 74.1 (↓ 4.2) 15.6 38.5

4o 79.2 (↓ 4.9) 11.3 29.0
3.5-turbo 62.5 (↓ 12.1) 34.0 52.3

Llama
3.1-8B 49.2 (↓ 20.4) 58.8 67.7
3-8B 50.1 (↓ 20.3) 58.2 69.8
2-7B 52.8 (↓ 8.7) 26.5 19.8

DeepSeek
R1 78.1 (↓ 1.6) 7.9 23.1
V3 69.0 (↓ 9.2) 28.5 59.8

Table 12: Self-correction on Yes/No questions.

Task Model ACC1 (↓ ∆ACC)(%) ✓ → ✗(%) ✗ → ✓(%)
Decision
Making

o1-mini 1.5 (↓ 8.2) 92.3 0.8
4o 14.2 (↓ 20.9) 76.6 9.2

3.5-turbo 7.5 (↓ 5.2) 76.5 5.1

Reasoning
o1-mini 66.0 (−−) 9.1 17.6

4o 65.0 (↓ 2.0) 17.9 12.0
3.5-turbo 55.0 (↓ 6.0) 19.7 20.5

Programming
o1-mini 79.5 (↓ 4.3) 14.8 51.5

4o 72.6 (↓ 6.8) 21.9 51.2
3.5-turbo 50.9 (↓ 10.6) 28.3 17.7

Table 13: Self-correction on complex tasks.

the main content). Notably, we not only analyze in-
trinsic self-correction prompts, but also the prompts
involving external knowledge to broaden our re-
search scope.

• Prompt1. Refine with confirmation: Xie et al.
(2023); Sharma et al. (2023) use this prompt to
examine LLMs behavior when asked to confirm
their answers. This prompt does not involve
external knowledge but only relys on LLMs in-
herent ability.

• Feedback prompt: none
• Refinement prompt: "Are you sure?. Think

and answer again."

• Prompt2. Refine with denying: Xie et al.
(2023); Sharma et al. (2023) also use a prompt
to deny LLMs responses. This prompts involves
external knowledge since the LLMs are told to
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Model Prompt1 Prompt2 Prompt3 Prompt4 Prompt5

ChatGPT

o1-preview 78.7 (↓ 4.9) 72.2 (↓ 11.4) 79.1 (↓ 4.5) 72.9 (↓ 10.7) 72.6 (↓ 11.0)
o1-mini 74.1 (↓ 4.2) 75.9 (↓ 2.4) 75.8 (↓ 2.5) 69.9 (↓ 8.4) 72.8 (↓ 5.5)

4o 79.2 (↓ 4.9) 82.9 (↓ 1.2) 82.3 (↓ 1.8) 81.9 (↓ 2.2) 82.3 (↓ 1.8)
3.5-turbo 62.5 (↓ 12.1) 65.5 (↓ 9.1) 65.0 (↓ 9.6) 55.0 (↓ 24.6) 47.8 (↓ 26.8)

Llama
3.1-8B 49.2 (↓ 20.4) 45.6 (↓ 23.7) 34.2 (↓ 35.4) 44.4 (↓ 25.2) 38.2 (↓ 31.3)
3-8B 50.1 (↓ 20.3) 49.0 (↓ 21.4) 33.8 (↓ 36.6) 55.9 (↓ 14.5) 37.7 (↓ 32.7)

DeepSeek
V3 69.0 (↓ 9.2) 67.4 (↓ 10.8) 54.6 (↓ 23.6) 71.6 (↓ 6.6) 54.0 (↓ 24.2)
R1 78.1 (↓ 1.6) 76.9 (↓ 2.8) 73.0 (↓ 6.7) 66.1 (↓ 13.6) 71.3 (↓ 8.4)

Table 14: ACC1 (↓ ∆ACC)(%) made by 5 self-correction prompts: self-correction failure widely exists.

Model Prompt1 Prompt2 Prompt3 Prompt4 Prompt5

ChatGPT

o1-preview 13.2 24.3 13.1 23.3 22.9
o1-mini 15.6 12.8 12.3 22.6 20.0

4o 11.3 5.3 5.2 6.3 7.5
3.5-turbo 34.0 23.8 26.4 39.3 61.5

Llama
3.1-8B 58.8 67.3 93.8 55.2 86.1
3-8B 58.2 58.4 93.6 47.2 86.7

DeepSeek
V3 28.5 27.3 49.6 21.8 52.4
R1 7.9 10.8 17.0 27.8 20.4

Table 15: ✓ → ✗(%) made by 5 self-correction prompts: Prompt1 ("Are you sure..." used in the main content) is
not an exception.

have incorrectly answered.

• Feedback prompt: none
• Refinement prompt: "You are wrong. Think

and answer again."

• Prompt3. Refine with reference answer: Xie
et al. (2023); Sharma et al. (2023) use another
prompt to provide reference answer. This also
involves external knowledge.

• Feedback prompt: none
• Refinement prompt: "I think the answer

should be <another answer>. Think and an-
swer again."

• Prompt4. Feedback and refine: Huang et al.
(2024) defines the self-correction without ex-
ternal knowledge as intrinsic self-correction,
and uses both feedback and refinement prompt.
Since the feedback is generated for refinement,
this should be more optimal.

• Feedback prompt: "Assume that this answer
could be either correct or incorrect. Review
the answer carefully and report any serious
problems you find."

• Refinement prompt: "Based on the problems
you found, improve your answer."

• Prompt5. Feedback and refine with reference
answer: Prompt5 is combined with Prompt3
and Prompt4. Since the reference answer is

added and the feedback is used, it should be the
most optimal prompt among the 5.

• Feedback prompt: "I think the answer should
be <another answer>. Review the answer
carefully and report any serious problems
you find."

• Refinement prompt: "Based on the problems
you found, improve your answer."

• Other correction prompts which are out of
our research scope: There are other correction
prompts which leverage another LLM to give
feedbacks or iteratively refine the answer (Wu
et al., 2024; Paul et al., 2023; Welleck et al.,
2022). These are not in our research scope be-
cause we focus on intrinsic self-correction.

Results. We use the same metrics described in Sec-
tion 3.1 to evaluate the failure of self-correction.
Table 14 and Table 15 show that self-correction
always decreases model’s accuracy and prompt1 in
main content is not an exception. Moreover, some
prompts even make self-correction failure more se-
vere. For example, we find that Prompt2, Prompt4,
and Prompt5 make o1-preview easier to overturn
a correct answer, while prompt5 is supposed to be
the most optimal since the reference answer and
feedback are provided. In general, prompt1 in main
content is not the easiest to overturn correct answer.
To conclude, we find that self-correction failure is
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Figure 7: Internal answer wavering in Llama2-7B, Llama3-8B, and Llama3.1-8B. Statistically, self-correction
makes Llama change the internal answer on average with a frequency of 14.1% compared to 8.3% during Initial
response generation.

still prevalent across different prompts, even more
severe for some prompts.

D Internal answer wavering

In this section, we add more contents to Section 4.1.
In Section D.1, we provide more examples of inter-
nal answer wavering. In Section D.2, we describe
how we use Jensen-Shannon divergence to measure
the similarity between internal answer wavering
curves of different prompts.

D.1 More examples

As stated in Section 4.1, we design a binary classi-
fication probing experiment using tuned lens (Bel-
rose et al., 2023) to probe LLM’s internal token
representations at each layer. This allows us to
track LLM’s internal answer evolution by comput-
ing the difference of confidence score between cor-
rect answer and incorrect answer, where a positive
value means correctness and a larger absolute value
means higher confidence. The experiments are
conducted on open-sourced Llama because close-
sourced ChatGPT does not provide hidden state
information.

Figure 7 shows more examples of internal an-
swer wavering in Llama2-7B, Llama3-8B, and
Llama3.1-8B. In Initial response generation (blue
curve), the confidence score of correct answer in-
creases with deeper layers; after Feedback and Re-
finement (orange curve), the internal answer wavers
and results in a wrong final answer. Specifically, for
the first subfigure in Figure 7, the model does not
exhibit different behaviors between Initial response
generation and Feedback and Refinement before
the 16th layer. This means the model is processing
to understand the prompt rather than generating an
answer in the first 16 layers. After the 16th layer,
the two curves differ. Initial response generation
curve maintains a postive value and increases in the
twists and turns, indicating that the model is able to
give correct answer with an increasing confidence;
Feedback and Refinement curve bounces up and
down at 0, indicating that the model hesitates to
give correct or incorrect answers.

Statistically, self-correction makes Llama
change the internal answer on average with a fre-
quency of 14.1% compared to 8.3% during Ini-
tial response generation. This indicates that self-
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correction causes internal answer wavering which
could further leads to wrong final answers.

D.2 Jensen-Shannon divergence
As stated in Section 4.1, the probing experiments
reveal another interesting phenomenon: similarity
between “Are you sure?” and “You are wrong.”.
We compare the confidence curves between two
Feedback and Refinement prompts: “Are you sure?”
and “You are wrong.”. And we observe that the
two curves are similar (shown in right subfigure
of Figure 3). To measure the similarity between
the two curves, we calculate the Jensen-Shannon
divergence (Lin, 1991) across both samples and
layers, finding a low divergence score of 0.0186 be-
tween the two prompts. We follow (Hinton, 2015;
Malinin et al.) in using divergence-based meth-
ods to measure the similarity of model outputs.
To quantitatively assess the similarity between the
model’s internal behaviors under different prompts,
we computed the Jensen-Shannon (JS) divergence
(Lin, 1991) between the confidence distributions
elicited by the prompts "Are you sure?" and "You
are wrong.", as well as between "Are you sure?"
and Initial response generation.

For each sample in our dataset and for each layer
(l ≥ 15) (since layers below 15 yield latent rep-
resentations that lack semantic meaning when de-
coded using the tuned lens method), we obtained
the model’s internal confidence scores for the cor-
rect and incorrect answers under different prompts.
These scores form probability distributions over
two classes.

Specifically, the JS divergence for each sample
(i) at layer (l) between prompts (A) and (B) is
computed as:

D
(i,l)
JS (A ∥ B). (3)

We then averaged the JS divergence across all
samples (N ) in the BoolQ dataset and the selected
layers (L) to obtain an overall divergence score:

DJS(A ∥ B) = 1

N × ∣L∣
N

∑
i=1

∑
l∈L

D
(i,l)
JS (A ∥ B).

(4)
This overall average divergence quantifies the

similarity between the model’s internal confidence
distributions under different prompts, with a lower
value indicating higher similarity.

The calculated average JS divergence between
"Are you sure?" and "You are wrong." was 0.0186,

indicating a high degree of similarity in the model’s
internal processing under these prompts. In con-
trast, the divergence between "Are you sure?" and
Initial response generation was higher, at 0.1074,
suggesting distinct internal behaviors when self-
correction is not used.

E Prompt bias

In this section, we add more contents to Section 4.2.
In Section E.1, we provide detailed description
of PACT, including the adaption to ChatGPT. In
Section E.2, we provide more examples of prompt
bias revealed by PACT.

E.1 Detailed description of PACT
As we stated in Section 4.2, we use PACT to inter-
pret the prompt bias. This method gives each token
or sequence’s contribution to LLMs final answer
(Zhu et al., 2024; Miglani et al., 2023) . The main
idea is simple. If we want to know the influence
of a target token or sequence to the output, we can
simply replace it with whitespace and re-prompt
the LLM to see the changes in outputs.

For a target token xi or sequence xi∶j in an input
prompt x = [x1, x2, ..., xn], its PACT is defined as
the difference in the log probability (LP) of LLMs
output y between the original input and the input
with the target removed:

PACT(xi, y) = LP(x \ {xi}, y) − LP(x, y). (5)

PACT reflects the significance of target token or
sequence for generating the output.

Generally, the log probability is defined for
one token. For more than one-token output y =[y1, y2, ..., ym], we define the log probability as:

LP(x, y) = 1
m

m

∑
k=1

LP(x + y1∶k−1, yk), (6)

where x+y1∶k−1 means to append the subsequence
output y1∶k−1 to the input x, seperated by [SEP]
token. This design allows LLM to output the speci-
fied tokens one by one, making it easy to analyze
the log probability of each newly generated token.

In practical, all variables required in Equation 5
and Equation 6 are accessible for open-sourced
Llama. Nevertheless, we cannot specify the partial
output as Equation 6 for close-sourced ChatGPT.
To address this drawback, we apply this method to
one-token output, corresponding to the scenario of
Yes/No question answering. And the log probabil-
ity is accessible via OpenAI API as it provides the
log probability of Top 20 candidate tokens.
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Figure 8: Prompt bias of GPT-4o revealed by PACT. Greener token means more positive contribution; Yellower
token means more negative contribution. When the correct initial response turns to incorrect, the LLM focuses
more on the refinement prompt; When the correct initial response is retained, the LLM focuses more on the original
question.

E.2 More examples
Figure 8 and Figure 9 show more examples of
prompt bias revealed by PACT, for GPT-4o and
Llama-3.1-8B respectively.

When the correct answer is overturned, the to-
kens in the refinement prompt are generally greener
than the tokens in the original question. Specifi-
cally, for the top left example in Figure 8, the orig-
inal question contains 4 green tokens out of 10,
while all tokens in refinement prompt are green.
This indicates that LLMs are biased towards refine-
ment prompt rather than the original question itself,
leading to wrong answer.

When the initial correct answer is retained, to-
kens in the original question are greener. Specif-
ically, for the top right example in Figure 8, the
original question contains 10 green tokens out of
11, while the refinement prompt contains only 4
green tokens out of 9. This indicates that LLMs
focus on question answering rather than distracting
information in the refinement prompt.
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Figure 9: Prompt bias of Llama-3.1-8B revealed by PACT. Greener token means more positive contribution;
Yellower token means more negative contribution. When the correct initial response turns to incorrect, the LLM
focuses more on the refinement prompt; When the correct initial response is retained, the LLM focuses more on the
original question.
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F Human-like cognitive bias

In this section, we add more contents to Section 5.
Section F.1 provides the distribution of the three
failure patterns of human-like cognitive bias. Sec-
tion F.2 provides the number of “think” in the fail-
ure pattern of overthinking. Section F.3 provides
the full log analysis for human-like cognitive bias
in decision making, reasoning, and programming
tasks.

F.1 Distribution

Figure 10 shows the distribution of the three failure
patterns of human-like cognitive bias in complex
tasks. Overthinking takes up 17.6%, cognitive over-
load takes up 33.3%, and perfectionism bias takes
up 49.0%.

Figure 10: Distribution of overthinking, cognitive over-
load, and perfectionism bias.

F.2 Number of “think”

Table 16 shows that ChatGPT “think” more in fail-
ure cases of self-correction. o1-mini “think” 15.4
times in failure cases compared to 5.3 times in suc-
cessful cases. GPT-4o “think” 7.4 times in failure
cases compared to 2.6 times in successful cases.
GPT-3.5-turbo “think” 9.8 times in failure cases
compared to 6.1 times in successful cases. Since
the number of “think” is more in failure cases than
in successful cases, we state that LLMs looped in
“think” to fail the task.

F.3 Full log analysis

We provide the full log analysis for human-like
cognitive bias from decision making task in Sec-
tion F.3.1, from reasoning task in Section F.3.2, and
from programming task in Section F.3.3.

ChatGPT
Average # of “think” for o1-mini 4o 3.5-turbo

Failure case 15.4 7.4 9.8
Successful case 5.3 2.6 6.1

Table 16: ChatGPT “think” more when fail.

F.3.1 Decision making

In decision making task, the LLMs play the role
of domestic robots. They are provided the environ-
ment of household product such as cabinet, coun-
tertop, garbagecan, etc. And they are asked to com-
plete a household chore. Figure 11, Figure 12, and
Figure 13 shows the full log of overthinking, cog-
nitive overload, and perfectionism bias in decision
making task.

Figure 11 shows a failure case in decision mak-
ing task. The environment description is provided
to the LLMs: “You are in the middle of a room.
Looking quickly around you, you see a cabinet 4,
a cabinet 3, a cabinet 2, a cabinet 1, a countertop
1, a garbagecan 1, a handtowelholder 2, a handtow-
elholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1,
a toilet paperhanger 1, and a towelholder 1”. The
LLMs are asked to clean some cloth and put it in
the coutertop. The correct way to do this is to first
find the cloth, then go to the sinkbasin to clean it,
and finally put the clean cloth on the countertop.
In Initial response generation, LLMs balance the
number of “think” and specific action to gradually
achieve the goal. “think” serves as a bridge be-
tween previous and next steps. Nevertheless, in
Refinement, LLMs generate much more “think” in
order to take more caution than the first trial. Such
behavior unfortunately leads to failure by looping
in “think”.

Figure 12 shows an example of perfectionism
bias. The environment description is provided to
the LLMs: “You are in the middle of a room. Look-
ing quickly around you, you see a armchair 1, a
cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
drawer 5, a drawer 4, a drawer 3, a drawer 2, a
drawer 1, a dresser 1, a garbagecan 1, a safe 1, a
shelf 12, a shelf 11, a shelf 10, a shelf 9, a shelf 8,
a shelf 7, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a
shelf 2, a shelf 1, a sidetable 1, and a sofa 1.” The
LLMs are asked to find two pillows and put them
in the sofa. The correct way to do this is to first find
one pillow and put it in the sofa, then find another
pillow and put it in the sofa. In Initial response
generation, LLM successfully completes the task
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Figure 11: Full log analysis of overthinking in decision making task.

by picking up two pillows one after the other. How-
ever, it wants to improve efficiency by picking up
two pillows at the same time. This behavior instead
leads to failure because the environment restricts it
from doing so.

Figure 13 shows an example of cognitive over-
load. The environment description is provided to
the LLMs: “You are in the middle of a room. Look-
ing quickly around you, you see a cabinet 4, a
cabinet 3, a cabinet 2, a cabinet 1, a countertop 1,
a garbagecan 1, a handtowelholder 2, a handtow-
elholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1,
a toiletpaperhanger 1, and a towelholder 1.” The
LLMs are asked to clean some soapbar and put
it in the cabinet. The correct way to do this is to
first find the soapbar, then go to the sinkbasin to
clean it, and finally put it on the countertop. When
processing complex tasks with self-correction, the

input prompts often have a very long context with
feedback and history behavior. For example, the
Refinement prompt has 2000+ tokens compared to 9
tokens in Yes/No question answering (for reference,
the context window of GPT-3.5-turbo is 4191).
When the input prompt is too long, the model needs
to parse everything in limited resources, which may
lead to forgetting or overlooking some critical in-
formation stored somewhere in the long prompt. In
our scenario, LLM forgets the significant syntax
formulation stored somewhere in the long prompt
(e.g., the correct format is “in\on” rather than “in”).
This directly leads to the task failure.
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Figure 12: Full log analysis of perfectionism bias in decision making task.
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Figure 13: Full log analysis of cognitive overload in decision making task.
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Figure 14: Full log analysis of cognitive overload in reasoning task.

Figure 15: Full log analysis of perfectionism bias in reasoning task.

F.3.2 Reasoning

In reasoning task, the LLMs are required to answer
a question based on a relevant context provided.
Figure 14 and Figure 15 shows the full log of cog-
nitive overload, and perfectionism bias in reasoning
task.

Figure 14 shows an example of cognitive over-
load. The LLMs are required to answer the ques-
tion: “What brewery is headquartered in Escon-
dido, California?”. And a relevant context about
the “Beer Wars” is provided. When using self-
correction to handle this task, the input prompts
often consist of a lengthy context, incorporating
feedback and historical actions. In this example,
the refinement prompt has 1000+ tokens. LLMs

overlook crucial details from the original context
(e.g., the correct brewery is "Stone Brewing" rather
than "Stone Brewing Co."). This omission directly
leads to the task’s failure.

Figure 15 shows an example of perfectionism
bias. LLM is expected to find whether Ruggero De-
odato from Italy, and Mexican Alejandro Springall,
both film directors. And a relevant context about
Ruggero Deodato is provided. In initial response
generation, LLMs successfully complete the task
by answering “Yes”. However, LLMs want to con-
cise the answer during self-correction, which fails
because “both Ruggero Deodato from Italy and
Mexican Alejandro Springall are film directors” is
not needed. Only the answer “Yes” is needed.
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Figure 16: Full log analysis of perfectionism bias in programming task.

F.3.3 Programming

In programming task, the LLMs are required to
output the code based on a description provided.
And the code is tested by the executor to know
whether the task is completed or not. Figure 16 and
Figure 17 show the full log of cognitive overload
and perfectionism bias.

Figure 16 shows an example of perfectionism
bias. The LLMs are required to return a tuple that
has the number of even and odd digits respectively
for a given integer. In initial response generation,
LLM successfully completes the task by returning
the (even, odd) tuple in correct order. However,
the LLMs want to make the answers closer to the
example “assert candidate(-2) == (1, 0)”. This
behavior instead leads to failure because the LLMs
misunderstand “(1, 0)” as (odd, even) tuple. So it
unnecessarily reverse the order of (even, odd) tuple,
resulting in failure.

Figure 17 shows an example of cognitive over-
load. The LLMs are required to implement a func-

tion that takes a non-negative interger and returns
an array of prime numbers that are less than an
input argument n. When using self-correction to
handle this task, the input prompts typically involve
long contexts. For example, the refinement prompt
exceeds 1000 tokens. This can increase cognitive
load of LLMs, resulting in less understanding of
the original question. In this example, the LLMs
forget critical details from the original question
(e.g., "less than n" instead of "less than or equal to
n"), leading to task failure ultimately.
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Figure 17: Full log analysis of cognitive overload in programming task.
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Size 100 50 10 4
GPT-4o 0 0.1 0.5 -

GPT-3.5-turbo 0 0 0 -
Llama-3.1-8B 0 0 0.1 0.2

Table 17: ✓ → ✗(%) after SFT on different size of
training set. ChatGPT requires at least 10 SFT samples.

Figure 18: The 4 samples for SFT Llama.

G Strategies for alleviation

In this section, we add more contents to Section 6.
Section G.1 shows that the number of samples for
SFT can be minimized. Section G.3 shows that
the internal answer wavering is reduced after ques-
tion repeating or SFT. Section G.4 and Section G.5
show the prompt bias is reduced after question re-
peating and SFT, respectively.

G.1 The Number of Samples for SFT Can Be
Minimized.

We reduce the number of samples for SFT from 100
to 4 for Llama and from 100 to 10 for ChatGPT
since it requires at least 10 samples7. Table 17
shows that when we reduce the number of samples
for SFT, the ✓ → ✗(%) almost unchanges and
remains at minimal. This indicates that we can
minimize SFT samples to reduce cost.

Figure 18 shows the 4 samples we used for SFT
Llama, and Figure 19 shows the 10 samples we

7
platform.openai.com/docs/guides/fine-tuning

Figure 19: The 10 samples for SFT ChatGPT.

used for SFT ChatGPT. They are all simple natural
questions from BoolQ dataset (Clark et al., 2019).
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Model Prompt1 Prompt2 Prompt3 Prompt4 Prompt5
GPT-4o 79.2 (↓ 4.9) 82.9 (↓ 1.2) 82.3 (↓ 1.8) 81.9 (↓ 2.2) 82.3 (↓ 1.8)

+ Question repeating 83.6 (↓ 0.5) 83.6 (↓ 0.5) 83.5 (↓ 0.6) 81.4 (↓ 2.7) 81.9 (↓ 2.2)
+ SFT 87.7 (↑ 4.1) 85.9 (↑ 2.3) 85.9 (↑ 1.8) 87.1 (↑ 3.0) 87.1 (↑ 3.0)

GPT-3.5-turbo 62.5 (↓ 12.1) 65.5 (↓ 9.1) 65.0 (↓ 9.6) 55.0 (↓ 24.6) 47.8 (↓ 26.8)
+ Question repeating 67.4 (↓ 7.2) 67.7 (↓ 6.9) 63.3 (↓ 11.3) 67.1 (↓ 7.5) 53.3 (↓ 21.3)

+ SFT 76.2 (↑ 1.6) 75.3 (↑ 0.7) 75.9 (↑ 1.3) 75.6 (↑ 1.0) 66.0 (↓ 8.6)
Table 18: ACC1 (↓ ∆ACC)(%) of alleviation strategies. Question repeating increases ACC in most cases; SFT
increases ACC in all cases.

Model Prompt1 Prompt2 Prompt3 Prompt4 Prompt5
GPT-4o 11.3 5.3 5.2 6.3 7.5

+ Question repeating 6.0 5.1 4.8 6.9 8.0
+ SFT 0 0 0 0.3 3.3

GPT-3.5-turbo 34.0 23.8 26.4 39.3 61.5
+ Question repeating 23.1 25.2 36.7 23.2 53.6

+ SFT 0 0 0.1 9.3 17.4

Table 19: ✓ → ✗(%) of alleviation strategies. Question repeating reduces ✓ → ✗(%) in most cases; SFT reduces
✓ → ✗(%) in all cases.

G.2 Effectiveness on other self-correction
prompts

As stated in Table 4, we conduct experiments of
our strategies for all 5 self-correction prompts (de-
scribed in Appendix C). Results show that our
strategies are still effective.

Table 18 and Table 19 show that the alleviation
strategies increase model’s accuracy and reduce
overturned correct answers. Between the two al-
leviation strategies, SFT further increase accuracy
and reduce overturned correct answers; question
repeating works in most cases while SFT works in
all cases. Therefore, SFT is better than Question
repeating.

G.3 Internal answer wavering is reduced by
question repeating and SFT.

Figure 20 shows the internal answers of Llama be-
fore and after alleviation methods. The difference
is on the Feedback and Refinement curves (orange),
while the Initial response generation curves (blue)
retain the same behaviour of gradually increasing
with deeper layers.

Before alleviation, Feedback and Refinement
makes LLMs’ internal answer waver, resulting in a
wrong final answer. Specifically, the orange curve
bounces up and down at 0, indicating that the model
hesitates to give correct or incorrect answers.

After alleviation, both question repeating and
SFT reduce the internal answer wavering during
Feedback and Refinement, and correct the ✓ → ✗

samples to ✓ → ✓ samples. Moreover, SFT makes
the internal behaviour of Feedback and Refinement
much closer to Initial response generation com-
pared to question repeating. Specifically, the two
curves in the last row of Figure 20 are closer than
the second row. This indicates that SFT is a better
alleviation method than question repeating, which
can further alleviate the negative effects of Feed-
back and Refinement.
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Figure 20: Internal answer wavering is reduced. Both question repeating and SFT can correct the ✓ → ✗ samples to
✓ → ✓ samples. Moreover, SFT makes the internal behaviour of Feedback and Refinement much closer to Initial
response generation compared to question repeating, indicating that SFT is a better strategy for alleviation.
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Figure 21: With question repeating, GPT-4o focus more on the original questions. Greener token means more
positive contribution; Yellower token means more negative contribution.

G.4 Prompt bias is alleviated by question
repeating

Figure 21 and Figure 22 show more examples of
input PACT before and after question repeating, for
GPT-4o and Llama-3.1-8B respectively.

For the ✓ → ✗ cases before question repeating,
we observe that tokens in the refinement prompt are
generally greener than tokens in the original ques-
tion. This indicates that LLMs are biased towards
refinement prompt rather than the original question
itself, leading to wrong answer. After question re-
peating, the ✓ → ✗ cases become ✓ → ✓ cases.
LLMs focus more on the original question attached
to the end of the refinement prompt, which elimi-
nates the undesirable effects of self-correction.

Specifically, for the first example in Figure 21,
GPT-4o overturns the initial correct answer of the
question “Is there a congestion charge in london

on sunday?” before question repeating. We ob-
serve that the refinement prompt “Are you sure?
Think and answer again” is generally greener than
the original question. This means GPT-4o focuses
more on the distracting refinement prompt rather
than the original question when answering. After
question repeating, the original question, either in
the beginning of the prompt for second response or
in the refinement prompt, becomes greener. This
means GPT-4o correctly focuses on the original
question when answering. The second response is
therefore correct.
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Figure 22: With question repeating, Llama-3.1-8B focus more on the original questions. Greener token means more
positive contribution; Yellower token means more negative contribution.
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Figure 23: With SFT, GPT-4o focus more on the original questions. Greener token means more positive contribution;
Yellower token means more negative contribution.

G.5 Prompt bias is alleviated by SFT
Figure 23 and Figure 24 show more examples of
input PACT before and after SFT, for GPT-4o and
Llama-3.1-8B respectively. Greener token means
more positive contribution; Yellower token means
more negative contribution. Same as question re-
peating, the ✓ → ✗ cases become ✓ → ✓ cases
after SFT. LLMs focus more on the original ques-
tion rather than refinement prompt. This behavior
corrects the prompt bias which can lead to wrong
answer.

Specifically, for the first example in Figure 23,
GPT-4o overturns the initial correct answer of the
question “Is it possible to make an emulsion with
water ethanol and an emulsifier?” before SFT.
We observe that the refinement prompt “Are you
sure? Think and answer again” is generally greener
than the original question. Indeed, the original
question contains 8 yellow tokens while the re-
finement prompt contains 3 yellow tokens. This
means GPT-4o focuses more on the distracting re-
finement prompt rather than the original question
when answering. After SFT, the original question
becomes greener (i.e., green tokens increase from
8 to 11) and the refinement prompt becomes yel-
lower (i.e., yello tokens increase from 3 to 6). This
means GPT-4o focuses more on the original ques-
tion when answering, which is sufficient to give the
second correct answer.

Similar for Llama-3.1-8B, for the first example
in Figure 24, Llama-3.1-8B overturns the initial
correct answer of the question “Is profit and loss
account same as income statement?” before SFT.
We observe that the refinement prompt “Are you
sure? Think and answer again” is generally greener

than the original question. Indeed, all tokens in
the original question are yellow while the refine-
ment prompt contains 5 green tokens. This means
Llama-3.1-8B focuses more on the distracting re-
finement prompt rather than the original question
when answering. After SFT, the original question
becomes greener (i.e., green tokens increase from 0
to 9) and the refinement prompt becomes yellower
(i.e., yello tokens increase from 4 to 7). This means
Llama-3.1-8B focuses more on the original ques-
tion when answering, which is sufficient to give the
second correct answer.
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Figure 24: With SFT, Llama-3.1-8B focus more on the original questions. Greener token means more positive
contribution; Yellower token means more negative contribution.
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