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Abstract

Data augmentation, a widely-employed tech-
nique for addressing data scarcity, involves gen-
erating synthetic data examples which are then
used to augment available training data. Re-
searchers have seen surprising success from
simple methods, such as random perturbations
from natural examples, where models seem to
benefit even from data with nonsense words,
or data that doesn’t conform to the rules of the
language. A second line of research produces
synthetic data that does in fact follow all lin-
guistic constraints; these methods require some
linguistic expertise and are generally more
challenging to implement. No previous work
has done a systematic, empirical comparison
of both linguistically-naive and linguistically-
motivated data augmentation strategies, leav-
ing uncertainty about whether the additional
time and effort of linguistically-motivated data
augmentation work in fact yields better down-
stream performance.

In this work, we conduct a careful and compre-
hensive comparison of augmentation strategies
(both linguistically-naive and linguistically-
motivated) for two low-resource languages
with different morphological properties, Us-
panteko and Arapaho. We evaluate the effec-
tiveness of many different strategies and their
combinations across two important sequence-
to-sequence tasks for low-resource languages:
machine translation and interlinear glossing.
We find that linguistically-motivated strategies
can have benefits over naive approaches, but
only when the new examples they produce are
not significantly unlike the training data distri-
bution.

1 Introduction

Data augmentation refers to techniques that are
used to create additional, artificial examples for
training machine learning models in order to in-
crease the total amount of training data. Data aug-
mentation has been well-studied in computer vi-

Training data Training data

Ungrammatical data Grammatical data

Random noise

Linguistic knowledge

Figure 1: Two types of approach to data augmenta-
tion. Naive augmentation (left) uses random perturba-
tions to produce new examples which are not necessar-
ily grammatically valid, while linguistically-informed
augmentation (right) uses linguistic knowledge to con-
strain synthetic examples to be grammatically valid.

sion, where simple perturbations such as flipping,
rotating, or recoloring images are applied on natu-
ral data (Lecun et al., 1998). Similar approaches
that depend on random perturbation have been used
in NLP for tasks such as morphological inflection
(Silfverberg et al., 2017; Bergmanis et al., 2017;
Anastasopoulos and Neubig, 2019; Yang et al.,
2022), classification (Wei and Zou, 2019; Karimi
et al., 2021), and machine translation (Wang et al.,
2018; Guo et al., 2020).

One limitation of such approaches is that they
often create new examples which are not linguis-
tically valid. For example, a strategy which ran-
domly inserts words might produce an ungrammat-
ical sentence such as "The dog chases bird the cat,"
where bird is the inserted word. To address this is-
sue, some researchers leverage linguistic resources
to produce examples that are both novel and gram-
matical (Zhang et al., 2015; Wei and Zou, 2019;
Pratapa et al., 2018; Seo et al., 2023).

Designing linguistically-motivated strategies
(Figure 1) generally requires an expert with knowl-
edge of the target language and an understanding
of the principles underlying data augmentation.
For many low-resource and endangered languages,

26924



such experts are rare, and speakers and scholars
have many competing obligations. In this work, we
examine whether this expert effort is worthwhile by
carefully comparing linguistically-motivated strate-
gies with strategies that can be implemented with-
out a language expert.

We study a variety of data augmentation meth-
ods across two low-resource languages, Arapaho
and Uspanteko. We evaluate on translation (to a
high-resource language) in both directions and on
the task of interlinear glossing, where the model
generates a sequence of morphological glosses cor-
responding to the input sentence (Ginn et al., 2023).
To design linguistically-motivated augmentation
strategies, our first author, a trained linguist, ex-
tensively studied linguistic reference materials for
both Arapaho and Uspanteko.

We compare non-linguistic augmentation strate-
gies, such as random word insertion or deletion,
with our strategies designed to generate grammati-
cally valid examples. We find that the linguistically-
motivated strategies can provide small benefits over
the non-linguistic approaches in some cases. How-
ever, in cases where the linguistic strategies pro-
duce examples which are grammatically valid, but
rare or unusual, performance is actually worse for
the augmented models. We conclude that while
the incorporation of linguistic expert knowledge
may be beneficial, it must consider both linguistic
grammaticality and the target data distribution.

Our specific contributions are the following:

• A systematic and comprehensive comparison
of various linguistic and non-linguistic data
augmentation strategies for low-resource ma-
chine translation and interlinear glossing.

• Analysis of the effect of combining various
augmentation strategies.

• Analysis of the interaction between the size of
the original training set and the benefits from
data augmentation.

Our code is available on GitHub1 and our results
are available on WandB.2

2 Related Work

2.1 Non-linguistic Augmentation
Several methods for augmentation have been pro-
posed that do not rely on linguistic knowledge,

1https://github.com/lecs-lab/
is-ling-augmentation-worth-it

2https://wandb.ai/augmorph

instead relying on shallow heuristics or statistical
methods to produce novel examples, which may or
may not be valid utterances in the language.

Backtranslation is a common technique in ma-
chine translation, where monolingual data in the
target language is translated into the source lan-
guage (Sennrich et al., 2016), though the resulting
examples may not be completely valid. Wang and
Yang (2015) generate novel sentences by replacing
words with other words that have similar static em-
beddings. Likewise, Fadaee et al. (2017) seek to
produce valid sentences by substituting words that
produce high-probability sentences according to a
language model. Andreas (2020) perform a similar
procedure with sentence fragments, searching for
phrases that appear in similar contexts.

Wei and Zou (2019) apply word substitutions,
deletions, and insertions, performing perturbations
that do not necessarily produce valid sentences.
Karimi et al. (2021) use a similar approach but ma-
nipulate only punctuation marks. Many additional
studies have considered similar heuristics for ran-
dom perturbation (Silfverberg et al., 2017; Wang
et al., 2018; Anastasopoulos and Neubig, 2019;
Guo et al., 2020; Liu and Hulden, 2022).

2.2 Linguistic Augmentation
While work in the prior section replaces words or
phrases according to statistical patterns, other work
proposes the use of linguistic resources to iden-
tify valid replacements. This has been done with
thesauri (Zhang et al., 2015), WordNet (Wei and
Zou, 2019), and (for code-switched text) bilingual
lexicons (Pratapa et al., 2018; Winata et al., 2019;
Tarunesh et al., 2021). Instead of entire words,
some research modifies the linguistic features of
selected words in each sentence, such as pronom-
inal gender (Zhao et al., 2018) or verbal inflec-
tion (Li and He, 2021). Still other research gen-
erates entirely synthetic examples by combining
morphemes (Seo et al., 2023) or sampling from for-
mal grammars such as finite-state machines (Lane
and Bird, 2020) and context-free grammars (Lucas
et al., 2024).

2.3 Our Contributions
Our work is novel by providing a careful compari-
son of similar linguistic and non-linguistic strate-
gies. Additionally, most previous work uses shal-
low knowledge about the language in the form of
dictionaries and thesauri, while we utilize a trained
linguist and full reference grammars.
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The closest prior works are Dai and Adel (2020);
Kashefi and Hwa (2020), which compare lin-
guistic and non-linguistic augmentation strategies,
but their work studies classification tasks, while
we experiment with sequence-to-sequence tasks.
Sequence-to-sequence tasks present additional dif-
ficulties for effective data augmentation. For clas-
sification tasks, it is trivial to ensure the labels for
the synthetic data adhere to the set of valid labels;
however, for sequence-to-sequence datasets, the
labels are unrestricted sequences, and thus it is far
more difficult to guarantee their validity.

3 Datasets and Tasks

We use the datasets from Ginn et al. (2023). Each
example consists of a sentence in the target lan-
guage, a translation into Spanish (for Uspanteko)
or English (for Arapaho), and a line of interlin-
ear glosses. Interlinear glosses provide a tag for
each morpheme in the original sentence, which
may either be a translation (for stem morphemes)
or morphological category. Below are examples
for Uspanteko item 1 and Arapaho item 2.

(1) wi’
EXS

neen
INT

tb’ank
INC-hacer-SC

juntir
todo

“Tienen que hacer todo”

(2) Nihtooneete3eino’
PAST-almost-run.into-1S

hini’
that.those

xouu
skunk

“I almost ran into that skunk”

We use a fixed test set, and dynamically create three
different evaluation sets by splitting the training
set for each random seed. We report the splits in
Table 1.

Language # train # eval # test
Uspanteko 9096 479 1064
Arapaho 41824 2202 4892

Table 1: The number of sentences per dataset split. The
test set is fixed across all runs. The eval set is dynami-
cally created across runs by splitting the original training
set, to ensure we don’t overfit to a particular eval dataset.

The three tasks we study are translation from
the target language to a high-resource language
(usp → esp, arp → eng), translation in the opposite
direction (esp → usp, eng → arp), and interlinear
glossing (usp → igt, arp → igt). For the latter, the
input is the sentence in the target language (first
line) and the desired output is the interlinear gloss
line (second line).

Name Category # examples
Uspanteko
UPD-TAM Linguistic 0.3
INS-CONJ Linguistic 20.0
INS-NOISE Non-linguistic 20.0
DEL-ANY Non-linguistic 0.2
DEL-EXCL Linguistic 0.2
DUP Non-linguistic 0.3
Arapaho
INS-INTJ Linguistic 20.0
INS-NOISE Non-linguistic 20.0
PERM Linguistic 10.0

Table 2: An overview of the data augmentation meth-
ods used in our study. We categorize the strategy as
either non-linguistic (random perturbation) or linguistic
(linguistically-motivated transformations). In addition,
we report the average number of new, synthetic exam-
ples created for each original example.

4 Emulating a Linguistic Expert

Designing linguistically-motivated augmentation
strategies requires in-depth knowledge of linguis-
tics and of the target language. We did not have
access to an expert for our target languages, but we
emulated this by having our first author extensively
study the grammars of the Uspanteko and Arapaho
languages. The author has formal training in lin-
guistics at the graduate level, but no prior exposure
to Uspanteko or Arapaho.

In order to gain a strong understanding of the
grammars of these languages, the first author spent
over a year and nearly 200 hours studying linguis-
tic materials (primarily reference grammars and
bilingual dictionaries) and interlinear gloss datasets.
The linguistic materials included Coon (2016) and
Vicente Méndez (2007) for Uspanteko and Cowell
and Moss (2008) for Arapaho. By the end of this
period, the first author–while not a fluent speaker of
either language–was able to create fully grammati-
cal sentences, following the reference materials.

5 Augmentation Strategies

We design both linguistic and non-linguistic aug-
mentation strategies and describe them here (sum-
mary in Table 2).

5.1 Uspanteko

Uspanteko is an endangered language spoken in
Guatemala with fewer than 6000 speakers (Ben-
nett et al., 2022). Uspanteko is an agglutinating
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language with complex verbs that may include mor-
phemes for TAM (tense-aspect-mood), person, and
other suffixes (Coon, 2016).

We design six augmentation strategies for Us-
panteko that include three linguistic and three non-
linguistic methods. When running augmentation,
we modify the original Uspanteko sentence, as well
as the corresponding Spanish sentence (for transla-
tion) and interlinear glosses (for IGT generation),
adding, deleting, or replacing words as needed.
When necessary, we use the Spanish-Uspanteko
bilingual dictionary of Vicente Méndez (2007) to
translate words. Examples of each method are
shown in Table 7.

1. UPD-TAM: Uspanteko obligatorily marks as-
pect on the verb, and completive (COM) and
incompletive (INC) are high-frequency as-
pect markers that are easily mapped to their
Spanish equivalents. This strategy updates
the TAM marker to change completive verbs
into incompletive, and vice versa. We skip
examples that don’t have a verb beginning
with COM or INC. To make sure the Spanish
translation matches the updated Uspanteko
sentence, we use mlconjug3 (Diao, 2023) to
update the Spanish verb conjugations.

2. INS-CONJ: Inserts a random conjunction or
adverb at the start of the sentence (which is
generally valid in Uspanteko), using twenty
common conjunctions and adverbs from the
Ginn et al. (2023) dataset.

3. INS-NOISE: Inserts a random word at the
start of the sentence, using twenty random
words3 from the training data (which are not
conjunctions or adverbs). Unlike the prior
strategy, this is not guaranteed to produce a
linguistically well-formed sentence, allowing
us to directly compare whether linguistically-
motivated insertion has any benefits over a
purely random strategy.

4. DEL-ANY: Randomly deletes a word from
the sentence by index, as well as the corre-
sponding index in the translation and glosses.

5. DEL-EXCL: Randomly deletes a word from
the sentence by index, excluding verbs. If
the randomly selected index refers to a verb,

3We chose twenty words to match the twenty conjunc-
tions/adverbs in the prior strategy.

the example is skipped and not used for data
augmentation. Unlike the prior strategy, this
approach seeks to avoid producing entirely
ungrammatical sentences.4

6. DUP: Duplicates the word at a randomly cho-
sen index.5

5.2 Arapaho
Arapaho is an endangered language spoken in the
United States, primarily in Wyoming and Okla-
homa, with fewer than 300 fluent speakers (Cowell
and Moss, 2008). Arapaho is a polysynthetic lan-
guage with free word order and highly complex
verbs (Cowell and Moss, 2008). Unlike Uspanteko,
it is quite difficult to modify verbs in a way that
guarantees a valid sentence, so we instead focus on
sentence-level augmentation strategies. Examples
of each method are shown in Table 8.

1. INS-INTJ: Inserts an interjection at the start
of the sentence, using twenty common inter-
jections, greetings, and conjunctions from the
original textual data. 6

2. INS-NOISE: Similar to the Uspanteko version,
inserts a random word at the start of the sen-
tence. The word list is composed of twenty
words from the training set. The majority of
these are nouns, as they were easiest to isolate
and confidently identify.

3. PERM: Produces up to 10 permutations of the
original word order.7 The permuted sentences
are linguistically valid, but may not be pre-
ferred by a native speaker due to pragmatic
factors (Cowell and Moss, 2008).

6 Experimental Setup

For each task and language, we run experiments
to evaluate the effect of data augmentation on task
performance. We train models using the BYT5-
SMALL pretrained model (Xue et al., 2022), a 300

4Both delete strategies are restricted to examples where all
four lines of the gloss have the same number of whitespace-
separated words, in order to reduce the likelihood of the wrong
word being deleted.

5Restricted like the previous strategyy.
6There was a limited number of isolatable conjunctions in

the data, so we included interjections and greetings in order to
have a list of comparable size to the Uspanteko methods. This
limitation prevented us from increasing the set size beyond
twenty across languages and methods.

7We set a limit of 10 to prevent “drowning” the model with
a potentially huge number of augmented samples.
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million parameter encoder-decoder transformer
model that operates over byte sequences.8 The
inputs are formatted with a short prompt, such as
the example in Table 4.

Input Translate into English: Henee3nee-
3oonouh’ut niine’eehek nehe’ hotii

Label This car is very cheap.

Table 4: An example prompt used for training, in this
case to translate from Arapaho into English. We use
different prefixes for each of the tasks, though this is
likely not strictly necessary.

As a baseline, we finetune models on the original
training set, using the hyperparameters described
in Appendix A. We also finetune models on the
augmented sets created by each strategy, using the
same hyperparameters.

Theoretical perspectives have claimed that the
key to successful data augmentation is creating a
diverse set of augmented examples that is not too
similar to the original data (Feng et al., 2021). Thus,
in addition to individual strategies, we finetune
models on each possible combination of two or
more augmentation strategies, for a total of 26 = 64
experimental settings for Uspanteko and 23 = 8
settings for Arapaho.

In addition, we wish to disentangle the effects
of augmentation at different training sizes. We
sample a subset of the training data and use the
subset to produce the augmented training set. We
experiment with samples of 100, 500, 1000, and
5000 examples, in addition to the full training set.
For every setting, we train 3 different models with
different random seeds and different subsets at that
size. For each task, we train a total of 5×3×64 =

8This avoids the issues that come with tokenization and
rare languages, and has been shown to be beneficial on these
specific datasets (He et al., 2023).

960 models for Uspanteko and 5 × 3 × 8 = 120
models for Arapaho.

Finetuning is performed with a fixed number of
training steps across all settings. We use a learn-
ing curriculum where the model is first trained on
the synthetic data, followed by the original data,
resetting the optimizer in between phases. This
approach, used in Lucas et al. (2024), essentially
treats the augmented data as pretraining data and
controls for any effect that might arise with mixing
the augmented data into the original dataset.

7 Results

We report the complete set of results for all 1000+
settings on our GitHub,9 and highlight the key re-
sults here. In addition, for all of the visualizations
in this section, we report the results in tabular for-
mat in Appendix C.

In Table 3, we report the chrF score10 for the
baseline models (no augmentation) across lan-
guages and tasks. As expected, the scores are virtu-
ally zero for the smallest training size setting, with
continual improvements as the amount of training
data increases. We also observe that the interlin-
ear glossing task (usp/arp → igt) is far easier than
the translation task, likely because the output se-
quences are restricted to gloss sequences, which is
a smaller output space than translated text. We also
observe that translation into the higher-resource
language (Spanish or English) is easier than the
reverse; one possible explanation is that the pre-
trained ByT5 model has already been trained to
output valid text in those languages, but not in the
low-resource languages.

9https://github.com/lecs-lab/
is-ling-augmentation-worth-it

10We chose not to use chrF++ or BLEU as many of our
examples are polysynthetic sentences with very few words, so
word gram-based methods are less informative.

Task 100 500 1000 5000 full
Uspanteko
usp → esp 14.6 (0.8) 26.4 (0.1) 31.7 (0.5) 44.1 (0.4) 45.2 (1.9)
esp → usp 13.7 (0.6) 23.1 (0.3) 29.1 (0.7) 39.6 (0.7) 40.6 (0.6)
usp → igt 18.4 (2.0) 53.9 (1.9) 65.2 (0.6) 74.5 (0.8) 75.4 (0.1)
Arapaho

arp → eng 15.3 (0.6) 18.7 (0.2) 22.2 (0.6) 31.0 (0.4) 38.9 (0.2)
eng → arp 21.8 (0.7) 27.4 (0.2) 30.7 (0.9) 40.4 (0.6) 46.2 (2.3)
arp → igt 17.7 (1.0) 38.7 (2.0) 51.2 (0.6) 68.0 (0.3) 76.7 (0.1)

Table 3: Baseline chrF scores (without any augmented data) across languages, tasks, and training sizes. Reported as
the mean over three runs, with the format mean(std).
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(c) usp → igt
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(d) arp → eng
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(e) eng → arp
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(f) arp → igt

Figure 2: Difference in (test set) chrF score for various individual augmentation strategies from the baseline (black)
for Uspanteko (top) and Arapaho (bottom). Dashed lines indicate non-linguistic strategies, while solid lines are
used for linguistic strategies. Averaged over three runs at each point. Tabular form in Table 9.

In Figure 2, we visualize the performance im-
pact (chrF score) of the individual augmentation
strategies as an increase or decrease compared to
the baseline performance. We observe that the ma-
jority of strategies actually worsen performance
somewhat. The only strategies that seem to consis-
tently improve performance are the INS-NOISE and
INS-CONJ strategies (in most cases for the latter).

In Figure 3, we visualize the impact of adding
each strategy to a combined augmentation strategy.
We compute the mean improvement for each strat-
egy by taking the mean difference in chrF score
between combinations with and combinations with-
out the particular strategy. For example, for the
strategy INS-NOISE, we would take the mean of
the following:

chrFIns-Noise − chrFBaseline

chrFIns-Noise, Upd-TAM − chrFUpd-TAM

chrFIns-Noise, Upd-TAM, Del − chrFUpd-TAM, Del

...

This allows us to disentangle the effects of adding a
particular strategy from the interactions of the other
strategies. We report these differences in Figure 3.

Finally, in Figure 4, we visualize the best overall
augmentation strategies for each task, including
combined strategies. We compute the mean im-
provement in chrF scores (on the evaluation set)
across the five training set sizes and select the top
five augmentation settings.

8 Discussion

All performance improvements are small, with the
absolute best strategies achieving an improvement
of around +8 (Uspanteko) or +3 (Arapaho) chrF
points. This is unsurprising, as these sequence-to-
sequence tasks are difficult, and perturbing natu-
ral examples may only increase the distributional
coverage of our training set by a limited amount.
Nonetheless, we do observe improvements on aver-
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(b) esp → usp
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Ins-Intj
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(e) eng → arp

0 2
 chrF

Ins-Noise

Ins-Intj

Perm

(f) arp → igt

Figure 3: Average difference in (test set) chrF score between combinations including a given strategy and combina-
tions excluding that strategy. Averaged over all runs and training sizes. Tabular form in Table 10.

age in Figure 3 over all training sizes and combina-
tions. While the improvements from data augmen-
tation alone may not greatly alter the performance
of these models, they can certainly be useful in
achieving the best possible performance in combi-
nation with other techniques.

Effect of linguistically-motivated strategies We
observe mixed effects from our linguistically-
motivated strategies. The UPD-TAM strategy
appears to provide small improvements on two
of three tasks; however, these improvements are
smaller than those of DUP, a completely non-
linguistic strategy.

The linguistically-motivated DEL-EXCL strat-
egy provides a benefit over the corresonding DEL-
ANY for glossing and a small improvement for
translation from Uspanteko, but the reverse effect
on translation into Uspanteko. It is difficult to inter-
pret this particular result as meaningful evidence
one way or another.

On the other hand, we observe a clear improve-

ment of INS-CONJ and INS-INTJ over the corre-
sponding INS-NOISE strategy in both translation
tasks (though the IGT task has a smaller or oppo-
site effect). We also observe that INS-CONJ and
INS-INTJ are generally the best individual strate-
gies (Figure 2) and included in most of the top
combined strategies (Figure 4). In this case, the
evidence suggests that the linguistic motivation is
beneficial. One possible explanation is that sen-
tences with various conjunctions/interjections as
the first word are typical in the actual data distri-
bution, and adding more of such sentences helps
the model learn this pattern. On the other hand,
sentences with random words inserted in the first
position are likely very different from the actual
data.

We also observe that the PERM strategy consis-
tently worsens performance, causing over a 1-point
drop in chrF for translation (the drop is larger for
IGT, which is unsurprising as the gloss sequences
depend on the word order of the input sentence).
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(f) arp → igt

Figure 4: Performance of the best overall strategies, selected by average performance (chrF score on evaluation set)
across training sizes. Performance is reported, as in Figure 2, as the difference between the target chrF score and the
baseline score. Results are averaged over three runs. Tabular form in Table 11.

This is an interesting result, as we know that shuf-
fling the word order should always produce a valid
sentence in Arapaho (due to the language’s free
word order). However, even in languages with free
word orders, speakers typically exhibit preferences
towards certain orderings (Dryer, 1995). Thus, the
augmented examples created by PERM may be very
unlike the data distribution, which could account
for the clear detriment to performance.

To control for this, we compute an additional
evaluation metric. The metric is a variation of chrF
that disregards word order, scoring any permutation
of the correct words as correct. We compute this
by simply removing the character n-grams which
cross word boundaries. We report average results
for Arapaho eng → arp setting with chrF and our

Baseline +PERM

chrF 30.0 29.0
Modified chrF 30.9 29.9

Table 5: Average chrF across training sizes for Arapaho
eng → arp, using the standard chrF and a modified chrF
that ignores word order. We observe a similar trend
regardless of metric.

modified chrF in Table 5. We observe that there is
a similar trend between the two, indicating that the
error is not due to producing sentences with gram-
matically valid but uncommon word orderings.

These findings point to a key takeaway for
linguistically-motivated augmentation: in order to
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improve performance,11 it is not sufficient for the
augmented examples to be linguistically valid; they
must also be similar (but not too similar) to the
target data distribution. On the other hand, it is
worth considering whether this is an appropriate
evaluation for low-resource translation, since pro-
ducing grammatical–but unusual–translations may
be preferable.

Effect of combined augmentation strategies
For Uspanteko, we observe that the best overall
strategies always include a combination of various
augmentation strategies (for Arapaho, there are far
fewer possible combinations). One explanation for
this is that the use of several strategies produces an
augmented dataset with greater diversity, prevent-
ing the model from fitting too much to the specific
type of augmented example.

Effect of training set size Unsurprisingly we ob-
serve that, in most cases, the magnitude of the im-
provements caused by data augmentation decreases
with a larger original training dataset, most dramat-
ically in the usp → esp and usp → igt settings. The
clear takeaway is that while augmentation can pro-
vide benefits in low-resource settings, obtaining
additional naturalistic data is more effective.

9 Conclusion

We observe varying performance benefits from
different data augmentation strategies on transla-
tion and interlinear glossing in two low-resource
languages. We consider augmentation strategies
which utilize linguistic domain knowledge to pro-
duce more linguistically/grammatically valid syn-
thetic examples, and we compare these strategies
with approaches that simply utilize random noise
and produce potentially ungrammatical examples.
We find that the linguistic strategies that match
the data distribution most closely (INS-CONJ, INS-
INTJ) have clear benefits over the non-linguistic
approach. On the other hand, a strategy that pro-
duces valid but rare examples (PERM) significantly
worsens performance.

Overall, the answer to our primary research ques-
tion is cautionary. There do appear to be cases
where utilizing linguistic expertise for data aug-
mentation can give an edge over general language-
agnostic methods, if the strategies take into account
the natural distribution of data. However, the im-

11At least on a held-out test set which is randomly sampled
from the same distribution as the training data.

provements are small, and this may not be the most
productive use of expert effort. Instead, this effort
could be used to facilitate high-quality data collec-
tion and annotation, as collecting additional natural
data has clear benefits across NLP tasks.

10 Limitations

As several of the methods by their very nature do
not target every example in the original dataset
(e.g., UPD-TAM is only relevant for sentences con-
taining verbs marked with completive or incomple-
tive aspect), the number of new examples generated
varies across strategies. While we control for this
effect by using a fixed number of training iterations,
it is still possible that having a larger, and thus more
diverse, augmented dataset has an effect.

11 Ethical Considerations

When working with endangered languages, it is
vital to ensure that language data is used in accor-
dance with the wishes of the language community
(Schwartz, 2022). Furthermore, NLP systems for
such languages should be used with caution, as
low-quality translation/glossing/etc can be harmful
to the language.
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A Training Details

We did not perform extensive hyperparameter opti-
mization. For each language, we started with the
default parameters and made minor adjustments
until we achieved relatively low loss on the training
and eval set. We use the Adam optimizer with de-
fault parameters and the hyperparameters described
in Table 6. For the augmented models, we first train
on the augmented data for the specified number
of steps (500 or 2000 for Uspanteko or Arapaho).
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Then, we train on the original training dataset for
1000 or 4000 steps. For the non-augmented mod-
els, we train on the original training dataset in both
phases, but still reset the optimizer between phases.

Parameter Usp Arp
Batch size 32 16
Learning rate 2E-4 2E-4
Weight decay 0.5 0.5
Training steps (aug. data) 500 2000
Training steps (training data) 1000 4000

Table 6: Hyperparameters for all training runs in each
language.

The only parameters we specifically tuned were
weight decay and the number of training steps,
in order to prevent overfitting and ensure conver-
gence. As the Arapaho dataset is roughly four
times larger than the Uspanteko dataset, we use
four times as many training steps. We train models
on several A100 GPUs in the (omitted cluster name
for anonymity), and the entire study used around
1000 GPU hours.

B Augmentation Examples

We provide examples for each strategy in Uspan-
teko (Table 7) and Arapaho (Table 8).

C Table Results

In this section, we provide the corresponding nu-
merical results for all of the visualizations.
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Table 7: Augmentation examples for each method in Uspanteko. Modified parts of the examples are highlighted
with bold face.

ORIGINAL wi’ neen tb’ank juntir
wi’ neen t-b’an-k juntiir

EXS INT INC-hacer-SC todo
Tienen que hacer todo

UPD-TAM wi’ neen xb’ank juntir
wi’ neen x-b’an-k juntiir

EXS INT COM-hacer-SC todo
tuvieron que hacer todo

INS-CONJ Pwes wi’ neen tb’ank juntir
Pwes wi’ neen t-b’an-k juntiir

pues EXS INT INC-hacer-SC todo
Pues Tienen que hacer todo

INS-NOISE Saneb’ wi’ neen tb’ank juntir
Saneb’ wi’ neen t-b’an-k juntiir

arena@de@rio EXS INT INC-hacer-SC todo
Harenas del río Tienen que hacer todo

DEL-ANY wi’ neen [–] juntir
wi’ neen [–] juntiir
EXS INT [–] todo

Tienen que [–] todo
DEL-EXCL wi’ neen tb’ank [–]

wi’ neen t-b’an-k [–]
EXS INT INC-hacer-SC [–]

Tienen que hacer [–]
DUP wi’ neen tb’ank tb’ank juntir

wi’ neen t-b’an-k t-b’an-k juntiir
EXS INT INC-hacer-SC INC-hacer-SC todo

Tienen que hacer hacer todo

Table 8: Augmentation examples for each method in Arapaho. Modified parts of the examples are highlighted with
bold face.

ORIGINAL Nihtooneete3eino’ hini’ xouu
PAST-almost-run.into-1S that(aforementioned).those skunk

I almost ran into that skunk .
INS-INTJ Yeheihoo Nihtooneete3eino’ hini’ xouu

gee.whiz PAST-almost-run.into-1S that(aforementioned).those skunk
Gee whiz I almost ran into that skunk .

INS-NOISE Bih’ih Nihtooneete3eino’ hini’ xouu
mule.deer PAST-almost-run.into-1S that(aforementioned).those skunk

Mule deer I almost ran into that skunk .
PERM hini’ xouu Nihtooneete3eino’ [order changed]

PAST-almost-run.into-1S that(aforementioned).those skunk [order
changed]

I almost ran into that skunk . [order changed]
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Table 9: Difference in (test set) chrF score for various individual augmentation strategies from the baseline. Reported
as the mean over three runs, with the format mean(std).

(a) usp → esp

100 500 1000 5000 full
DEL-EXCL 1.57 (1.07) -0.06 (1.27) 0.85 (0.47) -0.98 (0.87) -0.83 (1.99)
INS-CONJ 3.07 (0.89) 1.09 (0.43) 1.07 (1.04) 0.27 (0.47) -0.63 (2.04)
INS-NOISE 2.20 (1.18) 0.00 (1.28) 1.27 (0.55) 0.63 (0.51) 0.13 (1.81)
DEL-ANY 0.76 (0.94) 0.40 (0.62) 1.34 (0.56) -1.56 (0.50) 0.18 (1.76)
DUP 1.33 (1.41) 0.08 (1.24) 0.90 (0.54) -0.71 (0.50) -0.36 (1.79)
UPD-TAM -0.08 (0.80) -1.03 (0.31) 0.30 (1.19) 0.05 (0.79) -0.72 (1.79)

(b) esp → usp

100 500 1000 5000 full
DEL-EXCL -0.69 (1.01) -1.29 (0.71) -2.02 (0.77) -0.42 (0.59) -0.52 (1.81)
INS-CONJ 1.21 (0.88) 1.85 (0.73) 0.27 (0.70) 0.75 (0.82) 0.06 (0.95)
INS-NOISE 0.80 (0.81) 0.05 (1.20) -0.12 (0.79) 1.44 (0.63) 0.05 (0.53)
DEL-ANY 0.49 (0.95) -0.84 (0.98) -2.41 (1.38) -1.08 (0.70) -0.63 (1.19)
DUP 0.45 (0.96) -0.88 (0.39) -0.53 (1.06) -0.05 (0.79) -1.23 (0.59)
UPD-TAM 0.49 (0.69) -1.83 (0.73) -2.03 (1.24) -0.48 (0.97) -0.52 (0.90)

(c) usp → igt

100 500 1000 5000 full
DEL-EXCL -0.55 (2.77) -0.17 (1.96) -1.39 (0.70) -0.13 (0.78) 0.67 (0.68)
INS-CONJ 5.81 (2.74) 2.17 (1.65) 0.25 (0.93) 0.93 (0.77) 1.02 (0.64)
INS-NOISE 5.41 (2.93) 1.78 (1.93) 0.75 (0.71) 0.89 (0.80) 1.11 (0.35)
DEL-ANY 0.12 (1.95) -1.48 (1.66) -0.86 (0.75) -0.05 (0.75) 0.61 (0.84)
DUP 0.81 (1.94) -1.01 (1.75) -0.66 (0.58) 0.14 (0.77) 1.11 (0.20)
UPD-TAM -1.03 (1.78) -2.43 (1.66) -2.04 (0.71) 0.56 (0.90) 0.92 (0.51)

(d) arp → eng

100 500 1000 5000 full
INS-INTJ -0.08 (0.97) 0.85 (0.35) -0.30 (0.70) -0.14 (0.87) -0.03 (0.25)
INS-NOISE -0.12 (0.62) -0.18 (0.73) -0.16 (0.84) 0.10 (0.87) -0.50 (0.42)
PERM -1.08 (0.53) -3.48 (0.47) -5.95 (0.58) -1.44 (0.58) -2.71 (0.52)

(e) eng → arp

100 500 1000 5000 full
INS-INTJ 0.49 (1.08) -0.04 (0.79) 0.25 (0.82) 0.54 (0.81) 0.91 (2.20)
INS-NOISE -0.09 (1.05) -0.41 (0.87) -0.57 (0.84) 0.34 (0.54) 0.03 (2.43)
PERM -0.32 (0.87) -2.03 (0.93) -1.66 (0.79) -0.41 (1.04) -2.30 (2.87)

(f) arp → igt

100 500 1000 5000 full
INS-INTJ 2.60 (0.91) 2.43 (1.89) 0.61 (0.62) 0.77 (0.82) -1.04 (0.34)
INS-NOISE 1.51 (0.93) 2.25 (2.76) 0.41 (1.22) 1.04 (0.48) -1.16 (1.89)
PERM -1.17 (1.13) -16.75 (1.82) -18.56 (0.76) -2.68 (0.40) -1.71 (0.21)
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Table 10: Average difference in (test set) chrF score between combinations including a given strategy and combina-
tions excluding that strategy. Reported as the mean over all runs and training sizes, with the format mean(std).

(a) usp → esp

INS-NOISE 0.10 (1.08)
INS-CONJ 0.39 (1.17)
DEL-ANY 0.01 (0.94)
DEL-EXCL 0.03 (0.95)
UPD-TAM -0.02 (1.00)
DUP 0.13 (0.98)

(b) esp → usp

INS-NOISE 0.33 (1.21)
INS-CONJ 0.67 (1.27)
DEL-ANY 0.11 (1.06)
DEL-EXCL 0.06 (1.10)
UPD-TAM 0.12 (1.08)
DUP 0.16 (1.08)

(c) usp → igt

INS-NOISE 0.99 (3.59)
INS-CONJ 0.80 (3.71)
DEL-ANY 0.00 (3.30)
DEL-EXCL 0.37 (3.29)
UPD-TAM 0.27 (3.25)
DUP 0.07 (3.31)

(d) arp→ eng

INS-NOISE 0.56 (1.45)
INS-INTJ 0.79 (1.41)
PERM -1.09 (1.06)

(e) eng→ arp

INS-NOISE -0.03 (1.34)
INS-INTJ 0.65 (1.56)
PERM -1.11 (1.78)

(f) arp→ igt

INS-NOISE 2.57 (6.00)
INS-INTJ 2.96 (6.05)
PERM -1.43 (0.88)
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Table 11: Performance of the best overall strategies, selected by average performance (chrF score on evaluation set)
across training sizes. Performance is reported as the difference between the target chrF score and the baseline score.
The results are reported as the mean over three runs, with the format mean(std).

(a) usp → esp

100 500 1000 5000 full
DEL-EXCL + DUP + INS-CONJ 3.12 (0.73) 1.27 (0.86) 1.21 (1.29) 1.02 (0.62) -0.44 (2.06)
DEL-EXCL + DUP +INS-CONJ

+ INS-NOISE

2.77 (0.78) 1.32 (0.61) 1.44 (0.50) 0.50 (0.61) -0.24 (1.70)

DUP + INS-CONJ + INS-NOISE 2.89 (1.45) 0.87 (1.05) 1.27 (0.79) 1.01 (0.42) 0.24 (1.88)

(b) esp → usp

100 500 1000 5000 full
DEL-ANY + DUP +INS-CONJ +

UPD-TAM
1.39 (1.18) 1.13 (1.47) 0.53 (0.74) 1.50 (0.77) 0.21 (1.00)

DEL-EXCL + DEL-ANY +
INS-CONJ + UPD-TAM

0.78 (0.86) 1.79 (0.61) 0.32 (1.07) 0.93 (0.63) 0.45 (0.83)

INS-CONJ + UPD-TAM 1.67 (0.78) 1.48 (0.75) 0.38 (0.88) 1.46 (0.68) 0.23 (0.60)

(c) usp→ igt

100 500 1000 5000 full
DEL-ANY + DUP +INS-CONJ +

INS-NOISE

6.63 (2.47) 3.25 (1.74) 0.95 (0.75) 0.74 (0.72) 0.94 (0.29)

DEL-EXCL + DEL-ANY

+INS-CONJ

6.91 (2.44) 2.90 (1.85) 0.93 (0.58) 1.03 (0.76) 1.16 (0.13)

DEL-EXCL + DUP + INS-CONJ

+ INS-NOISE + UPD-TAM
8.84 (3.67) 2.93 (1.72) 0.58 (0.59) 0.46 (0.96) 0.35 (0.51)

(d) arp→ eng

100 500 1000 5000 full
INS-INTJ -0.08 (0.97) 0.85 (0.35) -0.30 (0.70) -0.14 (0.87) -0.03 (0.25)
INS-INTJ + INS-NOISE -0.33 (0.64) 0.67 (0.25) 0.10 (0.50) 0.12 (0.95) -0.23 (0.21)
INS-NOISE -0.12 (0.62) -0.18 (0.73) -0.16 (0.84) 0.10 (0.87) -0.50 (0.42)

(e) eng→ arp

100 500 1000 5000 full
INS-INTJ 0.49 (1.08) -0.04 (0.79) 0.25 (0.82) 0.54 (0.81) 0.91 (2.20)
INS-INTJ + INS-NOISE 0.90 (0.96) 0.56 (0.66) -0.31 (1.26) 0.11 (0.61) 0.31 (2.43)
INS-NOISE -0.09 (1.05) -0.41 (0.87) -0.57 (0.84) 0.34 (0.54) 0.03 (2.43)

(f) arp→ igt

100 500 1000 5000 full
INS-INTJ 2.60 (0.91) 2.43 (1.89) 0.61 (0.62) 0.77 (0.82) -1.04 (0.34)
INS-INTJ + INS-NOISE 2.71 (1.20) 2.97 (2.23) 1.28 (0.67) 1.02 (0.56) -0.91 (0.67)
INS-NOISE 1.51 (0.93) 2.25 (2.76) 0.41 (1.22) 1.04 (0.48) -1.16 (1.89)
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