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Abstract

Automated radiology report generation from
chest X-ray (CXR) images has the potential
to improve clinical efficiency and reduce radi-
ologists’ workload. However, most datasets,
including the publicly available MIMIC-CXR
and CheXpert Plus, consist entirely of free-
form reports, which are inherently variable and
unstructured. This variability poses challenges
for both generation and evaluation: existing
models struggle to produce consistent, clini-
cally meaningful reports, and standard evalua-
tion metrics fail to capture the nuances of radio-
logical interpretation. To address this, we intro-
duce Structured Radiology Report Generation
(SRRG), a new task that reformulates free-text
radiology reports into a standardized format,
ensuring clarity, consistency, and structured
clinical reporting. We create a novel dataset
by restructuring reports using large language
models (LLMs) following strict structured re-
porting desiderata. Additionally, we introduce
SRR-BERT, a fine-grained disease classifica-
tion model trained on 55 labels, enabling more
precise and clinically informed evaluation of
structured reports. To assess report quality, we
propose F1-SRR-BERT, a metric that leverages
SRR-BERT’s hierarchical disease taxonomy to
bridge the gap between free-text variability and
structured clinical reporting. We validate our
dataset through a reader study conducted by
five board-certified radiologists and extensive
benchmarking experiments.

1 Introduction

An important medical application of natural
language generation (NLG) is the construction
of assistive systems that take X-ray images of a
patient and generate a textual report describing
clinical observations in the images. This is a
clinically important task, offering the potential to

reduce the repetitive workload of radiologists and
generally improve clinical communication (Dun-
nick and Langlotz, 2008; Kahn Jr et al., 2009).

Since this task was first explored on chest X-ray
(CXR) images, much of the related work, including
exploring vanilla transformers (Chen et al., 2020),
reinforcement learning algorithms (Miura et al.,
2021; Delbrouck et al., 2022), and foundation
models (Chen et al., 2024; Bannur et al., 2024),
has been conducted on two primary datasets:
MIMIC-CXR (Johnson et al., 2019) and CheXpert
Plus (Chambon et al., 2024). These datasets share
notable similarities in terms of size, population
diversity, and reporting style.

However, it is important to note that CXR reports
themselves are typically free-form rather than
structured by organ systems, primarily due to
protocols, workflow efficiency, and the holistic
nature of the necessary image interpretation (Weiss
and Langlotz, 2008; Bosmans et al., 2012). This
free-form style can pose unique challenges for
automated report generation and clinical decision
support as the variability in reporting styles often
leads to inconsistencies in the way findings are
described.

The need for more consistent, structured, or
template-based radiology reporting is further
reinforced by the difficulty faced by all proposed
metrics in evaluating automated radiology re-
port generation. Existing evaluation methods,
ranging from standard NLG metrics such as
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) to clinical factuality-based metrics such
as F1-RadGraph (Delbrouck et al., 2022), Rad-
Fact (Bannur et al., 2024), or GREEN (Ostmeier
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Figure 1: Comparison between traditional free-text radiology report generation (left) and our proposed Structured
Radiology Report Generation (SRRG) approach (right). Traditional methods generate unstructured reports that vary
in style and clarity, making automated evaluation challenging. In contrast, SRRG enforces a standardized format
with anatomical section headers. This structured format enables more granular anatomy-level and utterance-level
evaluations, including our proposed F1-SRR-BERT metric, which complements traditional report-level evaluation
metrics.

et al., 2024), may struggle to capture the nuances
of radiological interpretation due to the inherent
diversity in reporting styles.

Given these limitations and observations, we in-
troduce a new task, Structured Radiology Report
Generation (SRRG, Section 2), aimed at trans-
forming free-text radiology reports into a standard-
ized format that enhances clarity and consistency
through structured clinical documentation. To sup-
port this task, we present a new dataset derived
from MIMIC-CXR and CheXpert Plus, where re-
ports have been reformulated using large language
models (LLMs) following strict desiderata for struc-
tured reporting. Additionally, we introduce SRR-
BERT (Section 3), a novel disease classification
model with 55 labels, designed to enable fine-
grained automated evaluation. To further enhance
the assessment of generated structured reports, we
propose F1-SRR-BERT, a new metric that lever-
ages SRR-BERT’s hierarchical disease taxonomy
alongside a more precise evaluation paradigm made
possible by the structured design of our task (Sec-
tion 4.2.1). We validate our new datasets through a
reader study (Section B) conducted by five board-
certified radiologists, along with extensive experi-
ments (Section 4).

2 Structured Radiology Reporting

2.1 Desiderata

We define a structured radiology report as a report
that follows a standardized format to ensure
clarity and consistency. Such a report consists

of distinct sections, each introduced by a section
header followed by a colon, ensuring uniformity
in presentation. The required sections include
Exam Type, History, Technique, Comparison,
Findings, and Impression.

The Findings section is organized under predefined
anatomical headers, which are strictly limited to
the following categories: Lungs and Airways,
Pleura, Cardiovascular, Hila and Mediastinum,
Tubes, Catheters, and Support Devices, Mus-
culoskeletal and Chest Wall, Abdominal, and
Other. Within each category, observations should
be clearly listed using bullet points, and include all
relevant positive and negative findings.

The Impression section summarizes the key
findings in a numbered list, ranked from most to
least clinically significant, ensuring that the most
critical observations are highlighted effectively.

To maintain clarity and relevance, strict content
guidelines need to be applied. References to pre-
vious studies or historical comparisons should be
excluded, ensuring that the report reflects only the
current examination. Identifiable information, in-
cluding dates, surnames, first names, healthcare
providers, vendors, and institutions, must be re-
moved, although patient sex and age should be re-
tained when provided. The content must strictly ad-
here to the defined structured sections, without ex-
trapolating interpretations or introducing unrelated
details. Additionally, only the specified anatomi-
cal headers may be used, ensuring a standardized
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report. The full prompt is available in Prompt 2.

2.2 Dataset Creation

Previous research has shown that GPT models can
outperform traditional fine-tuned models in gen-
eral summarization tasks by offering better factual
consistency and reducing hallucinations (Pu et al.,
2023), achieve human-level performance in med-
ical summarization of findings (Van Veen et al.,
2024), and demonstrate strong capabilities in radio-
logical error categorization (Ostmeier et al., 2024).
Motivated by this, as well as by GPT-4’s "excep-
tional" performance across various medical bench-
marks (Nori et al., 2023), we leverage LLMs to
restructure the two largest publicly available chest
X-ray datasets: MIMIC-CXR (Johnson et al., 2019)
and CheXpert Plus (Chambon et al., 2024). The
prompt used to rephrase the reports in accordance
with our desiderata is provided in Prompt 4. This
prompt was executed using GPT-4 "Turbo 1106
preview" via Azure services, with the account ex-
plicitly opted out of human review.

2.3 Dataset Statistics

We structured our dataset to align with the Radi-
ology Report Generation (RRG) task by specifi-
cally mapping X-ray images to Findings (X-ray →
Findings) and Impressions (X-ray → Impression).
These setups correspond to our datasets, SRRG-
Findings and SRRG-Impression, respectively. To
construct the SRRG dataset, we combined MIMIC-
CXR and CheXpert Plus and pooled them together
to create our splits. Notably, SRRG-Impression
is larger than SRRG-Findings, primarily because
CheXpert predominantly contains Impression sec-
tions while often lacking Findings sections.
Lastly, we conducted a human review of 464 re-
ports, sampled from the MIMIC-CXR test set and
the CheXpert Plus validation set, with evaluations
performed by five board-certified radiologists (Ap-
pendix B). Statistics of our datasets and splits are
highlighted in Table 1.

3 Disease Classification Models

In this section, we introduce SRR-BERT, a novel
model for fine-grained disease prediction that
builds upon CheXbert to provide a more detailed as-
sessment. Our approach extends the traditional set
of 14 CheXbert disease labels to a set of 55 labels,
covering a more granular hierarchy of pulmonary,
pleural, cardiac, mediastinal, musculoskeletal, and

Dataset Split Num. Examples

SRRG-Impression

Train 405,972
Validate 1,505

Test 2,219
Test Reviewed 231

Total 409,927

SRRG-Findings

Train 181,874
Validate 976

Test 1,459
Test Reviewed 233

Total 184,542

Table 1: Dataset statistics for SRRG-Impression and
SRRG-Findings.

abdominal findings, as well as more detailed sup-
port devices. This expanded taxonomy allows for
more precise classification and evaluation of radi-
ological abnormalities, enhancing the depth and
accuracy of disease prediction.

3.1 Desiderata

To ensure clarity, consistency, and clinical rele-
vance, our disease annotation framework follows
the following key principles. Each finding must be
mapped to all relevant diseases from a predefined
list, allowing for zero, one, or multiple conditions.
If no disease is present, the annotation explicitly
states "No Finding" to ensure systematic coverage.
Every disease is assigned a status—Present, Ab-
sent, or Uncertain—capturing clinical uncertainty
and preventing over-assumptions. For example:

Right perihilar consolidation, likely atyp-
ical edema, with pneumonia as a differ-
ential diagnosis.

is annotated as:

=> Perihilar airspace opacity
(Present)
=> Edema (Uncertain)
=> Pneumonia (Uncertain)

The selected diseases and their hierarchical struc-
ture are detailed in Prompt 4. This disease tree
has been validated by a board-certified radiologist.
While the first level of the hierarchical structure
corresponds to the Anatomical Headers / Category,
the lowest level is referred to as tree "leaves", and

26815



"upper" labels denote the item one-level above
"leaves". Appendix D shows a dataset breakdown
of each of the "upper" labels.

3.2 Dataset Creation

We annotate all utterances in our SRRG dataset,
where an utterance is defined as either a single-
sentence finding or a numbered impression. This
process results in 1,562,277 unique utterances.
To ensure consistency in annotation, we follow
the guidelines outlined in Section 3.1 and craft
the structured annotation template accordingly
provided in Prompt 3.

To validate the correctness of the assigned labels,
we employ both automated and human reviews.
The automated review follows a mixture-of-experts
approach, where each utterance is processed using
three different GPT models: GPT-4 Turbo (2024-
04-09), GPT-4 Turbo 1106 Preview, and GPT-4o
(2024-08-06). The final labels for each utterance
are determined by selecting the diseases that appear
in at least two out of the three model outputs. This
ensures robustness and reduces inconsistencies in
the predictions. If an utterance has no labels, we
discard it. We ultimately obtain a total of 1,506,158
valid utterances (as detailed in Section 3.3)

3.3 Dataset Statistics

The dataset comprises 1,506,158 utterances
annotated with 1,782,983 labels, averaging 1.18
labels per utterance. Among all utterances,
905,764 correspond to positive findings (i.e., not
labeled as "No Finding"), with these having an
average of 1.31 labels per utterance.

Dataset Split Num. Examples

StructUtterances

Train 1,203,332
Validate 150,417

Test 150,417
Test Reviewed 1,609

Total 1,506,158

Table 2: Dataset statistics for StructUtterances.

The test-reviewed split was evaluated by five board-
certified radiologists (Appendix B) and includes
utterances extracted from the reports in the test-
reviewed split of our SRRG dataset (Table 1).

4 Benchmarking

4.1 Disease Classification Models
To benchmark disease classification, we fine-tune
CXR-BERT (Boecking et al., 2022) on weakly-
labeled utterances in the StructUtterances dataset
under four experimental settings. First, we set aside
the status annotations (i.e., Present, Absent, Uncer-
tain) and only classify the "leaves" and "upper"
labels. We then integrate the three statuses by creat-
ing a separate class for each combination, yielding
"leaves with statuses" and "upper with statuses".
The benchmarking results for the disease clas-
sification models demonstrate strong overall
performance on the reviewed test split, with F1
scores exceeding 0.75 for most classes. However,
as is typical in classification tasks, rare labels
posed a challenge. For the model operating at
the "leaves" level, the overall F1 score was 0.836,
with the three best-performing labels being "No
Finding" (F1 = 0.83, n=452), "Simple Pleural
Effusion" (F1 = 0.93, n=174), and "Atelectasis"
(F1 = 0.94, n=131). Noticeably poor-performing
classes include "Air space opacity-multifocal" (F1
= 0.62, n=60) and "Suboptimal central line" (F1
= 0.19, n=29). At the "upper" level with reduced
granularity, our model achieved an overall F1 score
of 0.839, with top-three performing labels being
"No Finding" (F1 = 0.82, n=452), "Consolidation"
(F1 = 0.89, n=215), and "Pleural Effusion" (F1 =
0.94, n=185).

When incorporating status annotations, perfor-
mance declined slightly due to the number of labels
effectively being tripled. The "leaves with statuses"
model yielded an F1 score of 0.794, while the
"upper with statuses" model achieved an F1 score
of 0.795. In both cases, "No Finding" remained
a strong performer (F1 = 0.82), while disease-
specific labels such as "Simple Pleural Effusion
(Present)" (F1 = 0.91, n=96) and "Cardiomegaly
(Present)" (F1 = 0.98, n=82) performed very well.
However, some uncertain findings, such as "Con-
solidation (Uncertain)" (F1 = 0.82, n=95), demon-
strated slightly lower scores, reflecting the intrinsic
difficulty of differentiating between ambiguous dis-
ease states.

4.1.1 Comparison to CheXbert
We compare our models to CheXbert as they
both aim to accomplish the same task of disease
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Precision Recall F1-Score Support

Leaves

Micro Avg 0.85 0.82 0.84 1,644
Macro Avg 0.63 0.53 0.55 1,644
Weighted Avg 0.85 0.82 0.82 1,644
Samples Avg 0.84 0.84 0.84 1,644

Upper

Micro Avg 0.85 0.83 0.84 1,588
Macro Avg 0.70 0.62 0.65 1,588
Weighted Avg 0.87 0.83 0.83 1,588
Samples Avg 0.85 0.84 0.84 1,588

Leaves with Statuses

Micro Avg 0.81 0.78 0.80 1,644
Macro Avg 0.31 0.27 0.28 1,644
Weighted Avg 0.79 0.78 0.77 1,644
Samples Avg 0.80 0.80 0.79 1,644

Upper with Statuses

Micro Avg 0.81 0.79 0.80 1,574
Macro Avg 0.41 0.38 0.38 1,574
Weighted Avg 0.79 0.79 0.78 1,574
Samples Avg 0.80 0.80 0.80 1,574

Table 3: Benchmark results for disease classification on
the test_reviewed split. Highest scores are in bold.

classification. Given the more restricting label
set of CheXbert, we first filter the reviewed
test set to only include utterances with a label
that is mappable to CheXbert classes. This
mapping between label spaces was conducted
after consulting a combination of web sources, a
clinician, and GPT-4o. However, some degree of
overlap and ambiguity remains (Section 7).

Using structured utterances as input, we first
derive CheXbert labels using the author-provided
CheXbert model checkpoint. Using SRR-BERT,
we then compute labels at both the "leaves" level
and the "upper" level and map them to the 14
classes used by CheXbert. Table 4 illustrates
the direct comparison of model performances,
where SRR-BERT outperformed CheXbert in both
settings (0.80 vs. 0.61 when "leaves" were used
for the mapping, and 0.83 vs. 0.47 when "upper"
labels were used for the mapping).

We acknowledge that SRR-BERT was trained on
structured utterances while CheXbert was not,
which may skew the comparison. Hence, we also
leverage the unstructured full-length reports as in-

put. SRR-BERT outperforms CheXbert when us-
ing "upper" labels to map to CheXbert classes, and
exhibits only slightly lower F1 when using "leaves".
This demonstrates the robustness of SRR-BERT
models as they can accommodate texts of varying
lengths and complexity, from short utterances to
full-length reports.

Precision Recall F1-Score Support

Mapped with Leaves

Utterances
CheXbert 0.69 0.64 0.65 1,759
SRR-BERT 0.88 0.82 0.84 1,759

Full Reports
CheXbert 0.73 0.59 0.62 260
SRR-BERT 0.84 0.48 0.58 260

Mapped with Upper

Utterances
CheXbert 0.70 0.48 0.50 2,004
SRR-BERT 0.90 0.84 0.86 2,004

Full Report
CheXbert 0.80 0.49 0.56 278
SRR-BERT 0.89 0.60 0.70 278

Table 4: Weighted average performance comparison for
CheXbert and SRR-BERT using “leaves” and “upper”
mappings to 14 CheXbert classes on the test_reviewed
split. Highest scores are in bold.

4.2 Structured RRG

4.2.1 Evaluation Metrics
To ensure consistency with prior work in "tradi-
tional" RRG, we report BLEU (Papineni et al.,
2002), BERTScore (Zhang et al., 2019), ROUGE-
L (Lin, 2004), and F1-RadGraph (Delbrouck et al.,
2022). Additionally, we introduce F1-SRR-BERT,
a new metric leveraging our SRR-BERT model
(Section 3), which is trained to predict abnormali-
ties across 55 diseases based on CXR utterances.

F1-SRR-BERT measures the F1-Score between
SRR-BERT’s predictions on the generated
structured report and the corresponding reference
structured reports. This score has two variants: (1)
leaves prediction, which classifies diseases at the
finest granularity (55 labels from the disease tree
in Prompt 4), and (2) upper-level prediction, which
groups diseases into 25 broader categories for a
coarser classification. These broader categories are
the level right above the "leaves".
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SRRG-Impression (unaligned) Traditional Metrics F1-SRR-BERT

Model Split BLEU ROUGE-L BERTScore F1-RadGraph Precision Recall F1-Score

CheXagent Validate 7.86 28.94 60.55 20.62 50.02 56.32 50.60
CheXagent Test 6.95 27.18 61.51 19.70 49.78 56.47 50.63
CheXagent Test Reviewed 4.68 26.10 59.70 18.33 45.24 56.70 48.64

CheXpert-Plus Validate 16.86 33.42 62.74 27.74 54.40 51.26 50.26
CheXpert-Plus Test 14.84 28.01 60.76 22.14 48.74 47.60 46.48
CheXpert-Plus Test Reviewed 14.07 26.79 59.21 18.89 43.46 48.15 44.56

MAIRA-2 Validate 9.66 31.50 62.84 23.21 52.53 61.16 54.46
MAIRA-2 Test 8.12 27.82 62.30 20.37 48.72 57.91 50.36
MAIRA-2 Test Reviewed 5.28 26.61 60.79 19.08 44.80 57.69 47.97

RaDialog Validate 5.35 23.93 57.74 15.27 39.80 52.41 40.70
RaDialog Test 3.32 21.59 57.48 12.32 37.30 50.59 39.22
RaDialog Test Reviewed 3.33 19.95 54.82 10.26 33.65 50.71 36.39

Table 5: Model scores on different splits of our SRRG-impression dataset. Traditional metrics (BLEU, ROUGE-L,
BERTScore, F1-RadGraph) are shown as percentages. F1-SRR-BERT scores (weighted averages for utterance-level
diseases Precision, Recall, and F1-Score). Bold indicates the best score per model group on the Test vs. Test
Reviewed splits.

An additional consideration in our evaluation is that
utterances can be assessed in either an aligned or
unaligned setting across all previously mentioned
metrics. In the aligned setting, utterances are eval-
uated in the order they appear under an organ sys-
tem header or by their numerical order in the im-
pression section (i.e., generated impression one is
compared to reference impression one). In con-
trast, the unaligned setting evaluates utterances as
a set—comparing all findings under an organ sys-
tem or all numbered impressions as a block against
the reference. This unaligned approach allows us
to assess whether the model prioritizes findings and
impressions from the most to the least clinically
relevant. Finally, we assign a score of 0 for missing
references sections and extra predicted sections in
findings.

4.2.2 Results

We benchmark four distinct models: MAIRA-
2 (Bannur et al., 2024), CheXagent (Chen et al.,
2024), CheXpert-Plus (Chambon et al., 2024), and
RaDialog (Pellegrini et al., 2023). These models
vary in size, architecture, and reported performance.

Impression. Table 5 shows the performance
of various models in generating impressions (eval-
uated without alignment), revealing that models
tend to score higher in this task than in free-form

impression generation. Notably, CheXpert-Plus
stands out as the best performer on the SRRG-
Impression dataset. On the test split, it achieves the
highest traditional metric scores, with a BLEU of
14.84, ROUGE-L of 28.01, and F1-RadGraph of
22.14, while also registering the highest utterance-
level precision at 58.99. Although CheXagent and
MAIRA-2 excel in BERTScore and Recall respec-
tively, CheXpert-Plus consistently delivers superior
performance across both traditional and SRRG met-
rics.

Split BLEU ROUGE-L BERTScore F1-RadGraph

SRRG-Impression
Validate 7.61 ↓9.25 23.35 ↓10.07 39.95 ↓22.79 16.68 ↓11.06
Test 3.78 ↓11.06 16.77 ↓11.24 36.35 ↓24.41 10.23 ↓11.91
Test Reviewed 3.63 ↓10.44 16.89 ↓9.90 38.82 ↓20.39 10.42 ↓8.47

SRRG-Findings
Validate 3.77 ↓0.35 19.23 ↓1.67 26.81 ↓4.77 14.23 ↓2.72
Test 3.21 ↓0.30 16.89 ↓2.08 25.83 ↓5.67 12.31 ↓2.68
Test Reviewed 3.45 ↓0.51 16.27 ↓2.45 24.93 ↓6.40 11.68 ↓3.21

Table 6: Updated scores for the CheXpert-Plus model
using the “aligned” settings. The differences from the
unaligned settings (Tables 5 and 7) are shown in red.
For each section, the smaller drop between the Test and
Test Reviewed splits is highlighted in bold.

Findings. In the SRRG-Findings (unaligned)
setting (Table 7), traditional metric scores are gen-
erally lower than in the SRRG-Impression setting,
indicating that generating structured findings is
more challenging than producing impressions.
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SRRG-Findings (unaligned) Traditional Metrics F1-SRR

F1-SRR-BERT Category

Model Split BLEU ROUGE-L BERTScore F1-RadGraph Precision Recall F1-Score Precision Recall F1-Score

CheXagent Validate 1.93 19.72 29.58 15.35 42.86 44.04 41.88 75.98 77.16 74.70
CheXagent Test 1.80 19.65 31.65 15.41 43.22 42.07 41.13 77.12 82.56 77.90
CheXagent Test Reviewed 2.38 19.88 32.48 16.04 44.56 42.53 41.73 75.26 85.22 77.40

CheXpert-Plus Validate 4.12 20.90 31.58 16.95 44.28 43.19 42.08 72.10 85.45 76.52
CheXpert-Plus Test 3.51 18.97 31.50 14.99 42.79 40.08 39.85 72.84 86.17 77.18
CheXpert-Plus Test Reviewed 3.96 18.72 31.33 14.89 42.78 39.10 39.28 71.63 88.71 77.24

MAIRA-2 Validate 6.32 29.00 39.38 25.62 49.66 49.66 49.66 78.21 86.24 80.52
MAIRA-2 Test 3.39 23.15 35.44 19.03 43.65 43.65 43.65 75.64 86.23 79.03
MAIRA-2 Test Reviewed 2.26 20.55 32.87 16.90 42.36 42.36 42.36 72.25 88.90 77.79

RaDialog Validate 1.47 18.23 28.67 13.92 40.15 39.63 39.08 70.12 70.48 69.33
RaDialog Test 1.28 17.53 29.07 13.82 38.42 38.10 37.89 69.48 70.12 69.76
RaDialog Test Reviewed 1.42 17.60 28.90 13.75 38.95 38.30 38.05 69.90 70.22 69.85

Table 7: Model scores on different splits of our SRRG-Findings dataset. Traditional Metrics include BLEU,
ROUGE-L, BERTScore, and F1-RadGraph. F1-SRR-BERT metrics (weighted averages) are evaluated for Diseases
and for Category (organ section headers). Bold indicates the best score per model group on the Test vs. Test
Reviewed splits.

For findings, CheXpert-Plus achieves moderate
scores on validation (e.g., BLEU 4.12, ROUGE-L
20.90, BERTScore 31.58, F1-RadGraph 16.95),
while CheXagent and MAIRA-2 show similar
patterns with slight drops from validation to test
splits. Category scores—reflecting the correct
prediction of organ section headers—are consis-
tently high (around 75–78%) across models. In
contrast, the impression results reveal substantially
higher traditional metrics, with CheXagent and
CheXpert-Plus achieving BLEU scores above 14
and BERTScores in the low 60s, suggesting that
the impression task yields more polished, concise
outputs. Overall, these results highlight that while
all models struggle with the detailed nature of
findings, they perform significantly better when
generating shorter, impression-style summaries.

Alignment. As expected, generating impres-
sions and findings that align with the ground-truth
is challenging, as demonstrated by CheXpert-Plus’
scores (Table 6). This challenge is even more pro-
nounced in the impression setting, which typically
contains more utterances than organ sections.

Table 8 reveals marked heterogeneity in CheXpert-
Plus’s organ-specific performance. The model is
most reliable for cardiovascular structures, with an
F1 score of roughly 60, and for hardware-related
findings (“Tubes, Catheters, and Support Devices”),
where the score is about 51; pleural and muscu-
loskeletal regions follow, each in the mid-40s. Per-
formance drops substantially for lung parenchyma

Organ Precision Recall F1-Score

Pleura 54.53 40.28 44.23
Abdominal 10.53 10.53 10.53
Hila and Mediastinum 22.26 21.58 21.69
Other 3.69 3.42 3.39
Lungs and Airways 41.85 40.41 38.32
Cardiovascular 63.78 58.73 59.78
Musculoskeletal and Chest Wall 45.99 43.91 44.29
Tubes, Catheters, and Support Devices 51.27 54.94 50.56

Table 8: Organ-level F1-SRRG-BERT weighted-
average scores for CheXpert-Plus on the test-reviewed
split.

and airways, which score around 38, and is weakest
for abdominal findings (about 11) and the miscel-
laneous “Other” category (around 3). These dis-
parities suggest that CheXpert-Plus excels when
imaging cues are distinct or well-represented in
the training data, but struggles with rarer or more
heterogeneous organ systems.

OOD. Finally, we perform an out-of-distribution
(OOD) evaluation using the HOPPR test set, which
consists of 1,300 samples sourced from the HOPPR
Platform. These samples come from data providers
across eight U.S. states. Each report in the set
contains at least one confirmed positive finding,
including conditions such as Acute Rib Fracture,
Air Space Opacity, Cardiomegaly, Lung Nod-
ule or Mass, Non-Acute Rib Fracture, Pleural
Fluid, Pneumothorax, or Pulmonary Artery En-
largement. When tested on this new, out-of-
distribution dataset, all three public models exhibit
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SRRG-Findings (unaligned) Traditional Metrics F1-SRR

F1-SRR-BERT Category

Model Split BLEU ROUGE-L BERTScore F1-RadGraph Precision Recall F1-Score Precision Recall F1-Score

CheXagent Test (OOD) 3.90 ↑2.10 16.50 ↓3.15 28.10 ↓3.55 13.70 ↓1.71 42.70 ↓0.52 44.10 ↑2.03 43.38 ↑2.25 77.70 ↑0.58 87.50 ↑4.94 82.30 ↑4.40
CheXpert-Plus Test (OOD) 6.10 ↑2.59 15.84 ↓3.13 28.00 ↓3.50 13.31 ↓1.68 42.28 ↓0.51 42.28 ↑2.20 42.28 ↑2.43 73.50 ↑0.66 91.56 ↑5.39 80.91 ↑3.73
MAIRA-2 Test (OOD) 5.90 ↑2.51 20.00 ↓3.15 31.90 ↓3.54 17.30 ↓1.73 43.10 ↓0.55 45.90 ↑2.25 44.45 ↑0.80 76.20 ↑0.56 91.80 ↑5.57 82.80 ↑3.77

SRRG-Impression (unaligned) Traditional Metrics F1-SRR-BERT

Model Split BLEU ROUGE-L BERTScore F1-RadGraph Precision Recall F1-Score

CheXagent Test (OOD) 3.00 ↓3.95 13.50 ↓13.68 46.00 ↓15.51 4.50 ↓15.20 30.50 ↓19.28 40.00 ↓16.47 33.00 ↓17.63
CheXpert-Plus Test (OOD) 7.00 ↓7.84 14.78 ↓13.23 45.73 ↓15.03 5.25 ↓16.89 30.11 ↓18.63 44.59 ↓3.01 33.15 ↓13.33
MAIRA-2 Test (OOD) 3.50 ↓4.62 14.50 ↓13.32 47.00 ↓15.30 4.80 ↓15.57 29.50 ↓19.22 42.00 ↓15.91 32.50 ↓17.86

Table 9: CheXpert-Plus, CheXagent, and MAIRA-2 performance on the out-of-distribution HOPPR test set, showing
deltas relative to their original Test results from Tables 5 and 7.

a typical domain shift: their lexical metrics—such
as BLEU, ROUGE-L, and BERTScore (drop by 3
to 15 points). However, structure-aware metrics
remain much more stable. RadGraph F1 decreases
by only about 1.5 points, and interestingly, disease-
level F1 using SRR-BERT for the Findings section
actually increases by 0.8 to 2.4 points. Performance
on organ-category labels also improves, rising by 3
to 4 points. The main weakness lies in generating
the Impression section, where models lose between
13 and 18 points.

5 Conclusion

We presented Structured Radiology Report Gen-
eration (SRRG), a new task reformulating free-
text CXR reports into standardized templates to
improve clarity and enable more precise evalua-
tion. To support SRRG, we introduce a large-
scale dataset with clinically validated structured
reports and SRR-BERT, a 55-label disease classi-
fier trained on fine-grained radiological findings.
We further propose F1-SRR-BERT, a metric lever-
aging SRR-BERT’s hierarchical labels to capture
clinically meaningful variations. Our reader study,
conducted by board-certified radiologists, confirms
the quality of both the structured reports and an-
notated disease labels. Benchmark experiments
show that SRRG improves consistency compared
to existing free-form generation methods.

6 Related Work

Structured Reporting Chest X-ray reporting
has long been characterized by a free-text narrative
style, which, while flexible, can lack clarity and
consistency (Weiss and Langlotz, 2008; Bosmans
et al., 2012). The lack of widespread standardiza-
tion further reinforces this approach, as structured
reporting templates, such as RSNA’s RadLex

or BI-RADS for breast imaging, have not been
universally adopted for CXRs. Studies have shown
that even though structured reporting can improve
completeness and diagnostic clarity (Schwartz
et al., 2011; Bosmans et al., 2012), many radi-
ologists perceive it as rigid and less efficient
compared to narrative reporting (Bosmans et al.,
2015). Consequently, structured reporting remains
underutilized, in part because CXRs require
simultaneous assessment of multiple structures in
context rather than in isolation (Langlotz, 2002).

Given these challenges, efforts to standardize CXR
reporting continue to face resistance, balancing the
need for consistency with the flexibility required
for nuanced clinical communication (Dunnick and
Langlotz, 2008; Kahn Jr et al., 2009). For systems
aiming to generate automated or semi-automated
reports from medical images, addressing this
variability is crucial. Recent works in natural
language processing and computer vision have
attempted to handle the complexity of unstructured
radiology reports, either by adopting standardized
label sets derived from clinical knowledge bases
or by using large-scale language models to learn
patterns in free-text narratives. However, the
gap between free-form clinical practice and
structured data requirements remains a major
challenge in achieving both clinical relevance and
interoperability.

Automated Radiology Reporting Prior work
in radiology report generation has explored archi-
tectural innovations, reinforcement learning, and
retrieval-based approaches. Architectural novelties
include memory-driven transformers to retain key
generation details (Chen et al., 2020), cross-modal
memory networks to align images and text (Chen
et al., 2021), and models incorporating prior medi-
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cal knowledge graphs for structured report gener-
ation (Liu et al., 2021a,b). Reinforcement learn-
ing has also been used to optimize factual correct-
ness (Liu et al., 2019; Miura et al., 2021; Delbrouck
et al., 2022). Recently, larger models have been
employed for radiology report generation. No-
table examples include RaDialog (Pellegrini et al.,
2023), which integrates visual features and struc-
tured pathology findings with an LLM through
parameter-efficient fine-tuning, and RGRG (Tanida
et al., 2023), a region-guided model that detects
and describes anatomical regions to enhance trans-
parency, interactivity, and explainability. Addition-
ally, "LLM-sized" models such as MAIRA-2 (Ban-
nur et al., 2024), CheXagent (Chen et al., 2024),
and MedVersa (Zhou et al., 2024) have also been
introduced to further advance the field.

7 Limitations

Despite the promising results of our proposed Struc-
tured Radiology Report Generation (SRRG) frame-
work, several limitations remain:

Synthetic Dataset & Annotations Our SRRG
dataset was produced by reformulating free-form
radiology reports into a structured format using
LLMs. Although our methodology enforces strict
desiderata to avoid hallucinations and preserve fac-
tual content, it remains challenging to verify all
generated samples at scale. To mitigate inaccura-
cies, we conducted a comprehensive reader study
involving five board-certified radiologists, as de-
scribed in Appendix B. Nevertheless, the possibil-
ity of subtle inconsistencies or biases introduced
by the LLMs cannot be fully excluded.

Fine-tuning Approaches The range of model
sizes and different training strategies used in our
experiments (e.g., LoRA-based parameter-efficient
fine-tuning for large models such as MAIRA-2 vs.
full fine-tuning for smaller models) may affect the
comparability of results. While these choices were
made to accommodate computational feasibility, a
standardized fine-tuning scheme across all models
might yield a more uniform assessment of perfor-
mance and could be explored in future work.

Reader Study Constraints Our reader study fo-
cused on validating both structured reports and fine-
grained disease labels derived from the SRR-BERT
model. Although board-certified radiologists re-
viewed a representative sample of utterances, they
occasionally encountered ambiguous cases where

the available clinical context did not suffice to dif-
ferentiate among closely related conditions (e.g.,
pneumonia, atelectasis, or aspiration). Addition-
ally, rare findings not covered by our disease tax-
onomy were annotated under an “Other” category,
potentially oversimplifying certain nuanced clinical
observations. Expanding the taxonomy or incorpo-
rating additional clinical context (e.g., lab values
or clinical notes) may address these ambiguities in
future iterations.

F1-SRR-BERT vs. F1-CheXbert Directly com-
paring F1-Scores of SRR-BERT (with 55 disease
labels) and CheXbert (with 14 labels) remains in-
herently imperfect due to the many-to-many rela-
tionship in label mapping. A single CheXbert class
can correspond to multiple labels in our hierarchi-
cal disease ontology, and vice versa. Although we
attempted a best-effort alignment, the lack of a one-
to-one mapping between the label spaces makes
straightforward performance comparisons challeng-
ing. Future work could improve this alignment
by exploring probabilistic approaches or expert-
guided hierarchical restructuring to reconcile label
disparities.
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A Potential Risks

All experiments in this study are conducted
using publicly available chest X-ray datasets
(MIMIC-CXR and CheXpert Plus) that are fully
deidentified, thereby minimizing risks related to
patient privacy and data confidentiality. The text
restructuring and disease label generation steps
use GPT-4 deployed via Azure services, with the
account explicitly configured to opt out of human
data review.

While we believe releasing our models and code is
valuable for advancing research, we emphasize that
these models are for investigational and educational
purposes only. They have not received regulatory
approval for clinical deployment, and medical pro-
fessionals must retain ultimate responsibility for
diagnosis and patient management. As with all
machine learning models, there is an inherent risk
of errors or hallucinations, and predictions should
be verified by qualified clinicians. We strongly en-
courage the community to apply robust validation,
audits, and clinical oversight when exploring or
extending our work.

B Reader Study

The reader study has been carried out by five
board-certified radiologists from our institution on
the annotation platform detailed in Appendix E.
The following examples and statistics summa-
rize the textual changes between the original and
edited impression sections. For each report pair,
differences were quantified by counting word-
level insertions, deletions, and replacements. The
similarity ratio was computed using Python’s
difflib.SequenceMatcher via

Similarity Ratio =
2× Matches

Total Tokens in Original and Edited

yielding a value between 0 (completely different)
and 1 (identical).

Example 1: mimic-53235571

Original Impression:
1. Bibasilar opacities that may be

related to atelectasis , with a
differential
including underlying infection ,
pneumonia , or aspiration.

2. New opacity in the lateral left mid
lung , nonspecific but potentially
representing additional consolidation
or pulmonary infarct.

Edited Impression:
1. Bibasilar opacities may be related to

atelectasis , although underlying
infection , pneumonia , and/or
aspiration is of concern.

2. New opacity in the lateral left mid
lung , nonspecific but potentially
representing additional consolidation
or pulmonary infarct.

Diff Stats:
Insertions: 0, Deletions: 1,

Replacements: 9, Similarity Ratio:
0.82

Example 2: mimic-59654440

Original Impression:
1. Resolving consolidation at the right

lung base , likely due to dependent
edema or combined dependent edema and

atelectasis.
2. Mild to moderate enlargement of the

heart.
3. No pneumothorax.
4. Dual -channel dialysis catheter in

situ with the tip in the right
atrium.

Edited Impression:
1. Resolving consolidation at the right

lung base with minimal residual
interstitial edema.

Diff Stats:
Insertions: 0, Deletions: 0,

Replacements: 35, Similarity Ratio:
0.29

Impression Statistics

Total studies reviewed: 233
Studies with changes: 130 (55.79%)
Average insertions per study: 0.42
Average deletions per study: 4.16
Average replacements per study: 4.50
Average similarity ratio: 0.77

Although 55.79% of the impression exhibited
changes, many modifications are subtly reflected by
a relatively high overall similarity ratio. However,
some reports demonstrate significant edits, under-
lining the need for enhanced clarity and precise
clinical communication in the impression sections
of CXR reports.

Findings Statistics

Total studies reviewed: 233
Studies with changes: 164 (70.39%)
Average insertions per study: 4.97
Average deletions per study: 3.46
Average replacements per study: 4.64
Average similarity ratio: 0.88
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The analysis reveals that a significant portion of
the studies (70.39%) underwent modifications, in-
dicating that changes were applied in the majority
of the cases. However, the higher average similar-
ity ratio of 0.88 may suggest that these edits are
relatively minor. On average, the modifications in-
volved about 4.97 insertions, 3.46 deletions, and
4.64 replacements per study, which implies that
while the impression sections were updated, the
overall content remains largely consistent with the
original. This balance indicates that the editing
process likely focused on refining clarity and pre-
cision without altering the fundamental diagnostic
information conveyed in the reports.

Utterance Label Consistency
In this experiment, we assess the consistency of
utterance labels extracted from the GPT models
and compare them with manually reviewed labels.
Two metrics are computed:

1. Exact match GPT’s labels and reviewed la-
bels are the same.

2. Jaccard Similarity: The ratio of the size of
the intersection to the size of the union of the
GPT’s and reviewed label sets.

The overall statistics from the evaluation are as
follows:
Total utterances reviewed: 1609
Matched utterances: 1339
Exact Match Rate: 0.72
Average Jaccard Similarity: 0.74

These results indicate that, on average, 72% of the
consensus labels are present in the reviewed labels,
and there is a 74% overlap between the two label
sets. The high similarity metrics suggest that the
consensus approach is effective for capturing the
expected labels across different sources, thereby
validating our methodology for robust label extrac-
tion in utterances.

C Model Sizes and Hyperparameters

MAIRA-2 uses an 87M-parameter ViT model, with
its language model initialized from Vicuna 7B
v1.5. We evaluated the 3B version of CheXagent-
2. CheXpert-Plus is a SwinV2-based model with
a BERT decoder (2 layers), while RaDialoG is a
7B-parameter model. For fine-tuning SRRG, we
trained all the weights of CheXpert-Plus and CheX-
agent, using the default LoRA parameters from the
Hugging Face PEFT library.

D Dataset Breakdown of Diseases

Table 10: Dataset Breakdown for Upper Labels

Anatomical Header / Category Upper Levels Num. Examples

Lungs and Airways

Consolidation 340,867
Diffuse air space opacity 100,154

Lung Finding 95,122
Air space opacity 47,921

Solitary masslike opacity 40,831
Focal air space opacity 14,222

Segmental collapse 10,685
Multiple masslike opacities 547

Total 650,349

Pleura

Pleural Effusion 173,883
Pneumothorax 56,706

Pleural Thickening 31,210
Pleural finding 7,734

Total 269,533

Cardiovascular
Widened cardiac silhouette 58,189

Vascular finding 20,480

Total 78,669

Hila and Mediastinum

Widened aortic contour 17,513
Mediastinal finding 13,779
Mediastinal mass 5,922

Total 37,214

Musculoskeletal and Chest Wall

Fracture 34,192
Chest wall finding 11,614

Musculoskeletal finding 617

Total 46,423

Abdominal Subdiaphragmatic gas 3,475

Support Devices Support Devices 96,274

No Finding – 600,328
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Structuring Prompt

Your task is to improve the formatting of a radiology report, ensuring it is clear, concise, and
well-structured with appropriate section headings.
Guidelines:

1. Section Headers: Each section should begin with a section header followed by a colon.
Include only the relevant information as specified.

2. Identifiers: Remove any sentences containing identifiers such as dates, surnames, first names,
healthcare providers, vendors, or institutions. Important: Retain sex and age information if
present.

3. Findings and Impression Sections: Focus exclusively on the current examination results.
Do not reference previous studies or historical data.

4. Content Restrictions: Strictly include only content relevant to the structured sections
provided. Do not add or extrapolate beyond the original report.

Sections to Include (if applicable):

1. Exam Type: Specify the type of examination conducted.

2. History: Provide a brief clinical history and state the clinical question or suspicion prompting
the imaging.

3. Technique: Describe the examination technique and any specific protocols used.

4. Comparison: Indicate prior imaging studies reviewed for comparison.

5. Findings: List all positive and relevant negative observations for each organ system under
structured headers.

Template for Findings:
Header 1:
- Observation 1
- ...
Header 2:
- Observation 1
- Observation 2
- ...
...

Use only the following headers for organ systems:

• Lungs and Airways

• Pleura

• Cardiovascular

• Hila and Mediastinum

• Tubes, Catheters, and Support Devices

• Musculoskeletal and Chest Wall

• Abdominal

• Other

Important: Do not use any headers other than those listed above. Only use the specified headers
corresponding to the organ systems mentioned in the original radiology report.
6. Impression: Summarize the key findings in a numbered list, ranking them from most to least
clinically relevant.
The radiology report to improve is the following:
{}
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Diseases prompt

Your task is to identify the diseases discussed in chest X-ray findings. You will be provided with:
1) Instructions
2) A list of possible diseases
3) A list of chest X-ray findings

1) Instructions: Your task is to provide the following:

a) The diseases that are present as a numbered list. There can be zero, one, or multiple diseases
discussed. If no disease is present or discussed in a finding, answer: "1. No Finding" for
that finding.

b) The status of the disease discussed. The status can be:

• Present: The disease is confirmed to be present in the patient.
• Absent: The disease is confirmed to be not present in the patient.
• Uncertain: It is unclear whether the disease is present or absent, often due to inconclusive

test results or insufficient information.

Below is the template to provide your answer. You must respect this format and not provide any
explanations or additional content:

<finding 1> => 1. <disease 1> (Present) 2. <disease 2> (Uncertain)
<finding 2> => 1. <disease 1> (Absent)
...

2) List of possible diseases:

• No Finding

• Lung Lesion

• Edema

• Pneumonia

• Atelectasis

• Lung collapse

• Perihilar airspace opacity

• Air space opacity–multifocal

• Mass/Solitary lung mass

• Nodule/Solitary lung nodule

• Cavitating mass with content

• Cavitating masses

• Emphysema

...

3) List of chest X-ray findings (one per line):
{}
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Diseases Tree

1. No Finding
2. Lung Finding

2.1. Lung Opacity
2.1.1. Air space opacity

2.1.1.1. Diffuse air space opacity
2.1.1.1.1. Edema

2.1.1.2. Focal air space opacity
2.1.1.2.1. Consolidation

2.1.1.2.1.1. Pneumonia
2.1.1.2.1.2. Atelectasis
2.1.1.2.1.3. Aspiration

2.1.1.2.2. Segmental collapse
2.1.1.2.2.1. Lung collapse

2.1.1.2.3. Perihilar airspace opacity
2.1.1.3. Air space opacity–multifocal

2.1.2. Masslike opacity
2.1.2.1. Solitary masslike opacity

2.1.2.1.1. Mass/Solitary lung mass
2.1.2.1.2. Nodule/Solitary lung nodule
2.1.2.1.3. Cavitating mass with content

2.1.2.2. Multiple masslike opacities
2.1.2.2.1. Cavitating masses

2.2. Emphysema
2.3. Fibrosis
2.4. Pulmonary congestion
2.5. Hilar lymphadenopathy
2.6. Bronchiectasis

3. Pleural Finding
3.1. Pneumothorax

3.1.1. Simple pneumothorax
3.1.2. Loculated pneumothorax
3.1.3. Tension pneumothorax

3.2. Pleural Thickening
3.2.1. Pleural Effusion

3.2.1.1. Simple pleural effusion
3.2.1.2. Loculated pleural effusion

3.2.2. Pleural scarring
3.3. Hydropneumothorax
3.4. Pleural Other

4. Widened Cardiac Silhouette
4.1. Cardiomegaly
4.2. Pericardial effusion

5. Mediastinal Finding
5.1. Mediastinal Mass

5.1.1. Inferior mediastinal mass
5.1.2. Superior mediastinal mass

5.2. Vascular Finding
5.2.1. Widened aortic contour

5.2.1.1. Tortuous Aorta
5.2.2. Calcification of the Aorta
5.2.3. Enlarged pulmonary artery

5.3. Hernia
5.4. Pneumomediastinum
5.5. Tracheal deviation

6. Musculoskeletal Finding
6.1. Fracture

6.1.1. Acute humerus fracture
6.1.2. Acute rib fracture
6.1.3. Acute clavicle fracture
6.1.4. Acute scapula fracture
6.1.5. Compression fracture

6.2. Shoulder dislocation
6.3. Chest wall finding

6.3.1. Subcutaneous Emphysema
7. Support Devices

7.1. Suboptimal central line
7.2. Suboptimal endotracheal tube
7.3. Suboptimal nasogastric tube
7.4. Suboptimal pulmonary arterial catheter
7.5. Pleural tube
7.6. PICC line
7.7. Port catheter
7.8. Pacemaker
7.9. Implantable defibrillator
7.10. LVAD
7.11. Intraaortic balloon pump

8. Upper Abdominal Finding
8.1. Subdiaphragmatic gas

8.1.1. Pneumoperitoneum
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E Reader Study Platform

Figure 5: This figure illustrates our reader study annotation workflow. At the top, the radiologist sees the original
report (left), the GPT-generated structured report (middle), and an editable text box (right). At the bottom, after
validating the structured report, the radiologist annotates each utterance. The labels for these utterances are pre-filled
based on the GPT model’s consensus. Throughout this process, the radiologist can consult both the edited report
and a disease tree to guide the labeling.
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