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Abstract

Table-to-text generation aims to automatically
produce natural language descriptions from
structured or semi-structured tabular data. Un-
like traditional text generation tasks, it requires
models to accurately understand and repre-
sent table structures. Existing approaches typ-
ically process tables by linearizing them or
converting them into graph structures. How-
ever, these methods either fail to adequately
capture the table structure or rely on complex
attention mechanisms, limiting their applica-
bility. To tackle these challenges, we propose
QuASAR, a question-driven self-supervised ap-
proach designed to enhance the model’s struc-
tural perception and representation capabili-
ties. Specifically, QuASAR formulates a set
of structure-related queries for self-supervised
training, explicitly guiding the model to capture
both local and global table structures. Addition-
ally, we introduce two auxiliary pre-training
tasks: a word-to-sentence reconstruction task
and a numerical summarization task, which
further enhance the fluency and factuality of
the generated text. Experimental results on
the ToTTo and HiTab datasets demonstrate that
our approach produces higher-quality text com-
pared to existing methods. All of our source
code and data are publicly available at https://
github.com/weijieliu-cs/QuASAR.

1 Introduction

Table-to-text generation is the task of converting
structured or semi-structured tables into coherent
natural language descriptions. It has broad applica-
tions in areas such as sports reporting (Chen and
Mooney, 2008), financial summaries (Liang et al.,
2009), and medical reports (Nishino et al., 2020).
Unlike traditional text generation, this task presents
greater challenges due to the complex structure of
tabular data (Liu et al., 2018). To generate high-
quality descriptive text, models are expected to not
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only understand table content accurately but also
model their structural characteristics effectively.

Early approaches simplify the table-to-text gen-
eration by framing it as a keyword-to-text gen-
eration problem (Uchimoto et al., 2002). These
methods typically involve extracting key informa-
tion, performing content planning, and then gen-
erating descriptions (Puduppully et al., 2019; Ma
et al., 2019; Su et al., 2021). A recent work (Kale
and Rastogi, 2020) linearizes tables into sequences
of (row, column, value) triplets, leveraging pre-
trained models like T5 (Raffel et al., 2020) to tackle
table-to-text generation. However, neither of these
methods effectively models the structural informa-
tion inherent in tables. In response, some graph-
based approaches have been proposed (Ke et al.,
2021; Wang et al., 2022; Li et al., 2024), where
nodes and edges are defined based on cell adja-
cency and row-column associations. Graph-based
methods can more accurately capture the structural
characteristics of tables. However, they often re-
quire modifications to the attention mechanisms in
pre-trained models to better align with the graph
structure. This adaptation process could incur high
costs and potentially degrade the model’s original
generation capabilities.

To overcome these limitations, we propose a
question-driven self-supervised method. It helps
the model better perceive and represent table struc-
tures through structured querying. Specifically,
we design a set of explicit queries (e.g., “What
is the header of cell A?” and “Which cells are in
the same row as cell A?”) to help the model learn
both local and global structural information. The
answers to these queries serve as self-supervised
signals, enhancing the model’s ability to capture
structural relationships between cells. Moreover,
our method only modifies the last hidden layer of
the encoder. This lightweight design significantly
improves structural awareness while preserving the
pre-trained model’s original generation ability.
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Additionally, to further enhance the quality of
the generated text, we introduce two auxiliary pre-
training tasks. The first is a word-to-sentence re-
construction task that trains the model to expand
sparse input into complete and fluent sentences.
The second is a numerical summarization task de-
signed to help the model summarize and aggregate
numerical content effectively. To evaluate the effec-
tiveness of our approach, we conducted extensive
experiments on ToTTo (Parikh et al., 2020) and
HiTab (Cheng et al., 2022) benchmarks using the
T5 model (Raffel et al., 2020). The results show
that QuASAR consistently achieves competitive
performance on both datasets, demonstrating its
effectiveness and generalizability.

Our contributions can be summarized as follows:
(i) We propose a question-driven method based
on table structure querying, which effectively im-
proves the model’s ability to perceive and repre-
sent structural information. (ii) We introduce two
auxiliary pre-training tasks: a word-to-sentence re-
construction task for expanding sparse text into
coherent descriptions, and a numerical summariza-
tion task for aggregating and abstracting numer-
ical content. (iii) Extensive experiments on the
ToTTo and HiTab benchmarks demonstrate that
our approach significantly improves table-to-text
generation quality, providing a simple yet effective
solution for this task.

2 Related Work

Table-to-text generation aims to automatically pro-
duce natural language descriptions from structured
or semi-structured table data. Some early stud-
ies (Puduppully et al., 2019; Ma et al., 2019; Su
et al., 2021) treat this task as a two-stage process:
first, extracting key information from the table and
performing content planning; second, generating
coherent textual descriptions. Ma et al. (2019) fur-
ther explores how to construct pseudo-parallel data
in low-resource scenarios by focusing on key facts
and removing redundant text. However, their ap-
proach only adds noise to the core vocabulary with-
out changing its order. In contrast, we randomize
the word order, making the task closer to keyword-
based sentence generation. More importantly, we
argue that using keyword-to-text generation as a
pretraining task is not just a workaround for lim-
ited parallel data. Instead, it reflects a principled
choice: generating dense natural language from
sparse input is intrinsic to the task.

Several other approaches have also been pro-
posed for table-to-text generation. Ramamurthy
et al. (2022) introduces the Natural Language Pol-
icy Optimization (NLPO) algorithm. It reduces the
complexity of the action space in generation tasks,
thereby improving training stability and learning
efficiency. An et al. (2022) utilizes a contrastive
framework that generates examples based on pre-
dictions. This approach enhances table-to-text gen-
eration by incorporating learned similarity during
decoding. Liu et al. (2022) pretrains a model on a
table-to-logical-form task, using logical forms as
intermediaries to improve the faithfulness of logi-
cal reasoning in text generation. While these meth-
ods yield promising results, they all overlook table
structure modeling and thus fail to fully leverage
structural information in tables.

Kale and Rastogi (2020) utilizes the pre-trained
model T5 (Raffel et al., 2020) to tackle table-to-text
generation by linearizing the table into a sequence
of (row, column, value) triples. Andrejczuk et al.
(2022) enhances table encoding by incorporating
the row and column features into the cells. How-
ever, the former merely transforms the table format,
while the latter lacks explicit modeling of structural
features. Another typical approach (Ke et al., 2021;
Wang et al., 2022; Li et al., 2024) represents the ta-
ble as a graph and adjusts the attention mechanism
in the pre-trained model accordingly. Although
this method can effectively capture structural char-
acteristics, it requires substantial modifications to
the attention mechanism, which increase adapta-
tion costs and may weaken the model’s original
generation ability. In contrast, our method only
modifies the last hidden layer in the encoder, with-
out altering the native attention mechanism. This
minimizes the impact on the model’s original gen-
eration capabilities.

Xing and Wan (2021) enhances the model’s per-
ception of table structures by predicting the adja-
cent cells (left, right, top, and bottom) of a given
cell. Alonso et al. (2024) incorporates visual mod-
els and leverages two-dimensional image features.
It trains the model to capture structural alignment
by predicting cells in the same row and column
as a given cell. These approaches aim to enhance
structural awareness through auxiliary pretraining
tasks while avoiding modifications to the original
attention mechanism. However, the pretraining
method employed by Xing and Wan (2021) primar-
ily focuses on local structural information, making
it difficult to capture the global structure of the
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Figure 1: Overview of the dataset construction pipeline for numerical summarization. T5 and BART are used to
generate descriptions of key-value pairs, and RoBERTa is employed to verify the correctness of the sentences.

table. Meanwhile, the pretraining tasks designed
by Alonso et al. (2024) are relatively coarse, and
converting tables into images introduces additional
noise. Our approach shares similarities with these
methods in that it also leverages row and column
features to predict relevant cells. However, we fur-
ther extend the pretraining tasks of Alonso et al.
(2024) to textual models and refine the structural
understanding process through a question-driven
approach. Furthermore, we design 13 additional
table structure-related questions to further enhance
the model’s comprehension of tabular structures.

3 Methodology

This section presents our method for table-to-text
generation, which comprises three core compo-
nents: (i) a word-to-sentence reconstruction pre-
training task to improve fluent text generation from
sparse input; (ii) a numerical summarization pre-
training task to strengthen the model’s ability to ag-
gregate and summarize numerical information; and
(iii) a table structure awareness mechanism trained
via self-supervised structure-related queries. Ad-
ditionally, we discuss the loss computation frame-
work used to jointly optimize structural awareness
and text generation.

3.1 Word-to-Sentence Reconstruction

Table-to-text generation is essentially a modeling
process that transforms sparse textual input into
dense, coherent sentences. Therefore, keyword-to-
text generation can serve as an effective pretraining
task. However, unlike standard keyword-to-text
generation, the content in tables mainly consists
of nouns, numerals, with only a small proportion
of prepositions, verbs, and adjectives. This makes
it more challenging to reconstruct complete sen-
tences using standard keyword-to-text generation.
To bridge this gap, we introduce a data construction
method that simulates the lexical sparsity of table

inputs while enabling large-scale training.
Specifically, for a given sentence, we first apply

the Stanza1 toolkit to perform part-of-speech tag-
ging, retaining words that belong to table-relevant
categories, such as nouns and numerals. To pre-
vent the extracted text from becoming excessively
sparse, we also retain some words from other parts
of speech with a low probability, as detailed in Ap-
pendix A. To better align this pretraining task with
the characteristics of table-to-text generation, we
randomly shuffle the extracted core word sequence
and inject a small number of noise tokens to in-
crease the task complexity. In addition, we lever-
age ChatGPT to generate paraphrased versions of
the original sentence, further enriching the diver-
sity of training data. The model is then trained to
recover the original sentence from this perturbed in-
put, thereby learning to order words and construct
coherent sentences from sparse lexical cues.

3.2 Numerical Summarization

In table-to-text generation, the model needs to pos-
sess the ability to expand sparse textual information
into more coherent and detailed text. It also needs
to be capable of precisely extracting key informa-
tion from tables. This capability is particularly im-
portant, as tables often contain a large number of
cells associated with the same header and exhibit-
ing repetitive structural patterns. Moreover, the
prevalence of numerical values in tables requires
the model to understand, compare, and summarize
quantitative information effectively.

To enhance the model’s ability to summarize
numerical content, we attempted to fine-tune it us-
ing existing text summarization datasets, such as
Multi-News (Fabbri et al., 2019), XSum (Narayan
et al., 2018), Newsroom (Grusky et al., 2018), and
CNN/DailyMail (Nallapati et al., 2016). However,
these datasets contain sparse and scattered sum-

1https://stanfordnlp.github.io/stanza
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Figure 2: Overview of the proposed model for table structure awareness and text generation. “Table Metadata
Context” refers to the contextual information of the table, consisting of the table’s page title, section title and text.

maries for numerical content, which makes it dif-
ficult to effectively improve the model’s ability to
generalize numerical information. Therefore, we
decided to construct a custom text summarization
dataset specifically focused on numerical content.

In table-based question answering task (Pasu-
pat and Liang, 2015), there are many high-quality
datasets whose tables are typically rich in numer-
ical information. Thus, we propose using exist-
ing text generation models to directly generate de-
tailed descriptions of these numerically dense ta-
bles, guiding the table-to-text generation model in
capturing key numerical information. However,
this approach relies on the model’s ability to accu-
rately perceive the table’s structural information,
which current models do not handle well. To by-
pass the dependency on the model’s structural per-
ception, we propose a simplified solution.

Specifically, we decompose each table into a set
of independent rows. We then pair each cell in a
row with its corresponding row header, transform-
ing the row into a set of key-value pairs. These key-
value pairs are then processed by pretrained gener-
ation models, such as T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020), to produce detailed nat-
ural language descriptions. Finally, we concatenate
the descriptions of all key-value pairs into a sin-
gle coherent text and use ChatGPT’s powerful text
generation capabilities to perform numerical sum-
marization. To ensure the correctness of the gen-
erated summaries, we further split the summaries
into individual sentences and verify each one using
a textual entailment model, RoBERTa (Liu et al.,
2019). An overview of this pipeline is illustrated in
Figure 1. The model is then trained to generate a
numerical summary from the detailed table descrip-

tion, thereby learning to extract and summarize key
numerical insights from tabular data.

3.3 Table Structure Awareness
Existing methods typically model table structure
either by inserting special tokens between input
cells (Kale and Rastogi, 2020) or by appending
row and column features to each cell (Andrejczuk
et al., 2022). However, the special tokens used in
the former approach are often semantically shal-
low and dispersed, while the features introduced
in the latter lack task-specific training. As a result,
these methods fail to effectively guide the model in
focusing on key structural information, making it
difficult to capture cell relationships.

3.3.1 Structure-Aware Question Design
Our method is inspired by the table-based question
answering (QA) task (Pasupat and Liang, 2015).
In table QA, posing questions about the table con-
tent, such as “Which department has the highest
sales?” or “What is the sales trend from 2020 to
2025?”, can effectively guide the model to focus
on key information in the table. This enhances the
model’s understanding of the table content. Sim-
ilarly, posing questions related to the table struc-
ture can also guide the model to better capture and
perceive structural information. Therefore, based
on human understanding of table structure, we de-
signed a set of 20 structure-related questions that
cover various structural relationships within a table.
These questions are categorized into five types:

(1) Row-column relationships: “Which cells are
in the same row / column as cell Cij?”

(2) Header relationships: “Which cells serve as
the row / column header of cell Cij?”
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(3) Spatial relationships: “Which cells are lo-
cated directly to the left / right / above / below
cell Cij?”

(4) Proximity relationships: “Which cells are
adjacent to cell Cij , positioned to its left / right
/ above / below?”

(5) Relative positioning: “In terms of row / col-
umn direction, which cell, Cij or Cmn, is po-
sitioned earlier / later?”

In the above questions, Cij and Cmn denote ar-
bitrary cells in the table positioned at (i, j) and
(m,n). A complete list of the 20 structure-related
questions is provided in Appendix C.

3.3.2 Structural Representation Learning
To equip the model with structural perception, we
extend the original table input by incorporating a
structure-related query Q. At the encoder side, the
model need to perform sequence labeling over each
input cell, conditioned on the given query. For ex-
ample, given the query “Which non-header cells
are in the same row as cell Cij?”, if cell Cmn is in
the same row as cell Cij and is not a header cell, it
is labeled as “relevant”; otherwise, it is labeled as
“irrelevant.” In this way, we can guide the model to
perceive the table’s structural information, enabling
it to establish relationships between cells based on
their structural dependencies. In practice, for the
same table and highlighted cells, multiple structure-
related questions can be posed. Our method ran-
domly samples one question template from a pool
of candidate templates. An overview of the model
architecture is provided in Figure 2.

Furthermore, to better leverage the two-dimen-
sional structure of the table and avoid redundant
input (Alonso et al., 2024), we do not add special
separators between cells. Similar to Andrejczuk
et al. (2022), we enhance the model’s structural
perception by adding row and column features to
each cell. However, unlike their method, we also
introduce three additional features for each cell:
segment (cell category), row_span (row span), and
col_span (column span). Details of these feature
representations can be found in Appendix B.

3.4 Loss Computation
To optimize the model for both structural awareness
and text generation, we employ a dual-task learning
approach, incorporating sequence labeling loss for
structural perception and text generation loss for
natural language generation.

Sequence Labeling Loss To enable the model to
predict structural relationships between table cells
accurately, we frame this as a binary classification
task, optimized using binary cross-entropy loss:

Li = yi log pi + (1− yi) log(1− pi)

Lseq = − 1

N

N∑

i=1

Li (1)

where N is the total number of input cells, yi ∈
{0, 1} is the ground truth label (1 if the cell belongs
to the same structural group, otherwise 0), and pi is
the predicted probability that cell i belongs to the
same structural group.

Text Generation Loss Since the ultimate goal is
to generate fluent table descriptions, we adopt the
standard sequence-to-sequence cross-entropy loss,
defined as:

Lgen = − 1

T

T∑

t=1

log pθ(wt | w<t) (2)

where T is the length of the target text, wt is the
t-th token in the target sequence, and pθ(wt | w<t)
is the probability of generating token wt given the
previously generated tokens.

Total Loss To jointly optimize for structural un-
derstanding and text generation, we combine both
objectives into a unified loss function:

Ltotal = λseqLseq + λgenLgen (3)

where λseq and λgen are hyperparameters that con-
trol the relative importance of structural perception
and text generation.

4 Experiment

4.1 Datasets
In this work, we use the ToTTo (Parikh et al., 2020)
and HiTab (Cheng et al., 2022) datasets, which
place greater demands on the model’s ability to
understand table structure.

ToTTo: An open-domain table-to-text gener-
ation dataset with over 120,000 examples from
Wikipedia tables. The task is to generate a single-
sentence description based on a table and high-
lighted cells. The dataset includes a variety of top-
ics and covers challenging linguistic phenomena,
such as reasoning and numerical inference. It is
split into a training set (120,761 examples), a devel-
opment set (7,700 examples), and a test set (7,700
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examples). To evaluate generalization, overlapping
tables are removed between the training and test
sets, and the development and test sets are divided
into overlapping and non-overlapping subsets.

HiTab: A dataset consisting of hierarchical ta-
bles, designed for table-based question answering
(QA) and table-to-text generation (NLG). It con-
tains tables from statistical reports and Wikipedia,
annotated with entity and quantity alignments. The
task involves generating a description based on the
table, highlighted cells, and symbolic operators.
HiTab presents challenges due to its complex struc-
ture, requiring advanced reasoning and numerical
inference. The dataset includes 3,597 tables, di-
vided into training, development, and test sets.

4.2 Baselines

We present baseline results of the following repre-
sentative methods:

T5-based (Kale and Rastogi, 2020): Employs
pre-trained T5 model by linearizing the table into
sequences of (row, column, value) triplets and
adding special tokens to model table structure.

LATTICE (Wang et al., 2022): Uses an equiv-
ariant learning framework with graph-based self-
attention to capture relationships within the table
while ignoring irrelevant interactions.

UniD2T (Li et al., 2024): Converts structured
data into a graph format to enable graph-to-text
generation, and enhances the T5 model with novel
position and attention matrices.

PixT3 (Alonso et al., 2024): Utilizes a visual-
language model to treat tables as images. The
model is pre-trained to predict all cells that are
in the same row and column as a given cell.

4.3 Experimental Settings

In the word-to-sentence reconstruction phase, we
aimed to ensure that the topic distribution of the
constructed data aligns with the ToTTo and HiTab
datasets. To achieve this, we applied simple regu-
lar expressions to filter 1.7 million sentences from
the Wikipedia dataset2 provided by Wikimedia. To
prevent data leakage, we excluded sentences with
URLs that matched those in the ToTTo dataset.
In the numerical summarization phase, we col-
lected 400,000 tables from the OTTQA (Chen
et al., 2021), TabFact (Chen et al., 2020), and Wik-
iSQL (Zhong et al., 2017) datasets, resulting in 4.5
million key-value pair sequences after splitting. Af-

2https://huggingface.co/datasets/wikimedia/wikipedia

ter cleaning, we obtained 920,000 numerical sum-
marization data points. Additionally, to enable T5
and BART to generate fluent text from key-value
pair sequences, we fine-tuned the models using data
from E2E (Novikova et al., 2017), WikiBio (Lebret
et al., 2016), and 8,000 annotated examples from
ChatGPT. The prompt used for generating the nu-
merical summaries via the ChatGPT API can be
found in Appendix D. In the structural perception
phase, we used question templates from categories
1, 2, 3, and 5, as explained in Section 4.6.

All our experiments were conducted using the
T5-base pretrained model. We set the loss weights
for the sequence labeling and text generation tasks,
λseq and λgen, to 1, respectively. The learning rate
was set to 2e-4, and we trained for 30 epochs using
the AdamW optimizer, with a linear learning rate
scheduler and a warmup ratio of 0.15. Pretraining
tasks 1 and 2 were trained simultaneously with
a batch size of 20. We utilized 8 NVIDIA 4090
GPUs for pretraining, which took approximately
23 hours. For fine-tuning on the ToTTo dataset, we
again used 8 NVIDIA 4090 GPUs, with a batch size
of 24, and the training time was around 0.8 hours.
The model input sequence length was limited to
300 tokens. During the text generation phase, we
set the number of beams to 5, and the maximum
output length to 300 tokens.

4.4 Main Results
Table 1 presents our results on the ToTTo test set.
We used the ToTTo leaderboard’s standard evalu-
ation metrics: BLEU (Papineni et al., 2002) for
fluency, PARENT (Dhingra et al., 2019) for faith-
fulness to the table content, and BLEURT (Sel-
lam et al., 2020) for both fluency and overall ade-
quacy. The development and test sets are divided
into two subsets: the “Overlap Subset,” where ta-
ble headers are present in the training set, and the
“Non-Overlap Subset,” where they are absent. The
“Overall” scores reflect the aggregated performance
across these two subsets. Test set results are ob-
tained via submissions to the ToTTo leaderboard,
as the test set is not publicly available.

Compared to the original T5-base, our method
improves overall BLEU and PARENT scores by
1.5 and 1.8 points, respectively, demonstrating its
effectiveness. Furthermore, our approach performs
comparably to the larger T5-3B model in terms
of PARENT and BLEURT scores. Notably, apart
from our method, both LATTICE and UniD2T also
outperform the original T5-base, further highlight-
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Model
Overall Overlap Subset Non-Overlap Subset

BLEU PARENT BLEURT BLEU PARENT BLEURT BLEU PARENT BLEURT
LATTICE 48.4 58.1 0.222 56.1 62.4 0.345 40.4 53.9 0.099
UniD2T 48.6* 58.0* 0.233* 56.5* 62.2* 0.352* 40.6* 53.8* 0.114*
PixT3 45.4 55.5 —– 53.2 60.4 —– 37.5 50.6 —–

T5-base 47.4 56.4 0.221 55.5 61.1 0.344 39.1 51.7 0.098
T5-3B 49.5 58.4 0.230 57.5 62.6 0.351 41.4 54.2 0.108

QuASAR 48.9 58.2 0.234 56.5 62.3 0.352 41.1 54.0 0.116

Table 1: Results on the ToTTo test set. Best scores are in bold. LATTICE uses the T5-base model, and the results
for UniD2T are those we reproduced using T5-base. PixT3 does not report the BLEURT metric in their paper.

ing the importance of structural perception in table-
to-text generation. In comparison, although PixT3
incorporates table structure modeling, its perfor-
mance remains below that of T5-base. PixT3 treats
tables as images to leverage their two-dimensional
visual features; however, this may introduce addi-
tional noise, suggesting that visual information is
not essential for this task. Additionally, our method
either matches or outperforms both LATTICE and
UniD2T across all evaluation metrics.

To further validate the effectiveness of our ap-
proach, we conducted additional experiments on
the HiTab dataset, with results presented in Table 2.
The experimental results for the first three methods
are from Cheng et al. (2022). As shown, all models
scored relatively low on the BLEU and PARENT
metrics. This can be attributed to the small size
of the HiTab dataset, its complex table structures,
and discrepancies in numerical precision between
the table content and the generated text. Despite
these limitations, our method still achieved the best
performance, further demonstrating its advantages
in table-to-text generation.

Model BLEU PARENT
BERT-to-BERT (Rothe et al., 2020) 11.4 16.7

BART-base (Lewis et al., 2020) 17.9 28.0
T5-large (Raffel et al., 2020) 19.5 35.7
LATTICE (Wang et al., 2022) 16.3 22.7

QuASAR (T5-base) 23.7 40.8

Table 2: Results on the HiTab test set.

4.5 Human Evaluation
Given the limitations of automatic metrics such as
BLEU for tasks beyond translation (Reiter, 2018),
we additionally conducted a human evaluation to
assess our method’s ability to reduce hallucinations
and improve factual accuracy. Concretely, we re-
cruited five annotators with solid backgrounds in

NLP to perform the evaluation. We carefully se-
lected 100 samples from the HiTab test set and the
ToTTo development set, focusing on cases with
complex table structures, a large number of high-
lighted cells, and non-trivial numerical summariza-
tion. We compared the outputs of T5-base, T5-
3B, LATTICE, UniD2T, and our QuASAR model
along four human evaluation dimensions: Fluency,
Factual Consistency, Numerical Accuracy, and In-
formation Coverage. Each sample was rated on
a 1–5 Likert scale. The averaged scores (mean ±
standard deviation) are reported in Table 3:

Fluency Consistency Accuracy Coverage
T5-base 3.85±0.23 2.74±0.28 2.94±0.23 3.24±0.40
T5-3B 4.24±0.17 3.19±0.18 3.42±0.39 4.09±0.26

LATTICE 3.95±0.43 3.60±0.34 3.02±0.14 3.75±0.14
UniD2T 4.03±0.35 3.58±0.22 3.16±0.28 3.83±0.25

QuASAR 3.98±0.19 3.86±0.28 3.47±0.15 3.91±0.23

Table 3: Human evaluation results on four dimensions.

Our method outperforms all baselines in Factual
Consistency and Numerical Accuracy, while main-
taining competitive performance on the other two
metrics. T5-3B achieves the highest Fluency and
Coverage scores. However, its Factual Consistency
remains close to that of T5-base, indicating a ten-
dency to hallucinate table structure. This problem
is alleviated by our structure-aware approach.

4.6 Ablation Study
To assess the contribution of each component in our
method, we performed two ablation studies on the
ToTTo dataset: one on structure-related question
categories and the other on the core components of
table-to-text generation.

Structure-related Question Categories We first
validated the effectiveness of the five categories of
structure-related questions. These categories con-
sist of 20 questions in total, as listed in Appendix
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Model
Overall Overlap Subset Non-Overlap Subset

BLEU PARENT BLEURT BLEU PARENT BLEURT BLEU PARENT BLEURT
QuASAR 49.2 58.5 0.246 57.5 63.2 0.367 40.9 53.9 0.126

w/o reconstruct 48.6 58.0 0.231 56.8 62.2 0.338 40.4 53.8 0.123
w/o summary 48.8 58.2 0.224 57.1 62.7 0.335 40.6 53.7 0.113
w/o structure 47.9 57.4 0.222 55.9 61.8 0.340 40.2 53.2 0.107

Table 4: Ablation study of the core components of table-to-text generation on the ToTTo development set.

Model BLEU PARENT BLEURT
All Categories 49.1 58.4 0.237
w/o Category 1 48.8 57.9 0.235
w/o Category 2 48.6 57.8 0.224
w/o Category 3 48.9 58.1 0.229
w/o Category 4 49.2 58.5 0.246
w/o Category 5 49.0 58.4 0.235
w/ Category 5* 48.7 57.9 0.214

Table 5: Ablation study of structure-related question
categories on the ToTTo development set. The category
with an asterisk (*) is the extended question category.

C. The detailed experimental results are shown in
Table 5. Removing the templates of category 1 and
category 2 questions led to a significant drop in
generation performance. This result is consistent
with our intuitive understanding of table structure.
Category 1 question templates guide the model to
identify relationships among cells sharing the same
structural or hierarchical level, whereas category
2 templates help the model capture the modifying
relationship between header and non-header cells.

Interestingly, removing the category 4 question
templates resulted in a slight improvement in the
model’s generation performance. This may be be-
cause category 4 questions mainly focused on ad-
jacency relationships between cells. Such local
structural information contributes less to modeling
the overall table structure. Moreover, removing this
template increased the proportion of other question
categories, which may have indirectly enhanced the
model’s ability to capture more global structural
patterns. Removing the category 3 and category
5 question templates slightly reduced the model’s
generation performance.

Additionally, we further expanded the category 5
question templates to allow cells Cij and Cmn not
to be restricted to the same row or column, aiming
to model the sequential relationships between all
cells. However, this led to a notable performance
drop, likely because the expanded templates al-
lowed the association of unrelated cells, disrupting
the model’s attention to table structure.

Core Components of Table-to-Text Generation
We further assessed the contribution of three core
components: word-to-sentence reconstruction, nu-
merical summarization, and table structure aware-
ness, with the detailed results shown in Table 4.
Removing the table structure awareness compo-
nent led to a notable drop in BLEU and PARENT
scores, which fell to 47.9 and 57.4, respectively.
This underscores the essential role of structural
information in table-to-text generation. Remov-
ing the word-to-sentence reconstruction compo-
nent caused a modest 0.6-point drop in BLEU and
a 0.5-point drop in PARENT. While the perfor-
mance change is not drastic, it suggests that this
component helps the model enrich sparse input
into more coherent text. In contrast, removing the
numerical summarization component resulted in
an even smaller drop (BLEU -0.4, PARENT -0.3),
indicating a more limited contribution. One possi-
ble reason is that T5-base, having been pretrained
and fine-tuned on large-scale corpora, already pos-
sesses strong text generation capabilities, which
limits the observable gains from our two pretrain-
ing tasks. Whether these tasks would bring larger
gains for models trained from scratch or under low-
resource settings remains to be further explored.

4.7 Case Study

To better illustrate our method’s ability in structural
understanding and numerical summarization, we
present a representative example in Appendix E.
The table in this example exhibits complex struc-
tural features, including merged cells and subtle
cell alignments. Additionally, the example requires
the model to perform a certain degree of numerical
summarization. Specifically, the model is expected
to infer that Veronica’s Wish led to Nisha Kalema
winning her third Best Actress Award.

As shown by the model outputs below the table,
the T5-based method misinterprets “Association”
as another work by Nisha Kalema. It fails to recog-
nize that “Association” is modifying the “Uganda
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Film Festival Awards” structural information. Al-
though the UniD2T and LATTICE methods pro-
duce outputs that approximate the reference, they
both fail to capture the numerically inferred infor-
mation, specifically omitting the key detail that she
won for the third time. In contrast, our method
successfully captures and generates this crucial de-
tail, demonstrating its strength in both structural
understanding and numerical summarization.

5 Conclusion

In this work, we presented QuASAR, a question-
driven self-supervised framework for table-to-text
generation that explicitly models both local and
global table structures. Our approach introduces
structure-related queries and two auxiliary pretrain-
ing tasks: word-to-sentence reconstruction and nu-
merical summarization, which together enhance
the model’s structural awareness and text genera-
tion quality. While our method is designed for gen-
eral table-to-text generation, current experiments
are limited to datasets such as ToTTo and HiTab,
where the input is a small set of highlighted cells
and the output consists of brief descriptions. Its
effectiveness on broader table summarization tasks,
where the input is a large table and the output is a
more detailed description, remains to be verified.
Future work could therefore focus on extending
our approach to large-table summarization scenar-
ios. Another direction is to enhance the model’s
robustness when handling noisy or irregular tables,
which is essential for real-world deployment.

6 Limitations

While our question-driven self-supervised frame-
work enhances structural perception, it fundamen-
tally depends on a manually crafted set of 20 struc-
tural queries. Although diverse, these question tem-
plates may not fully capture complex table struc-
tures, such as deeply nested or multi-layered lay-
outs, and poorly designed templates may limit the
model’s ability to generalize structural patterns.

Moreover, while our two pretraining tasks (word-
to-sentence reconstruction and numerical summa-
rization) are beneficial for table-to-text generation,
the improvements they bring are limited when ap-
plied to already strong pretrained models such as
T5. In such scenarios, where pretrained models and
ample computational resources are available, these
tasks may provide only marginal utility.

Additionally, when using the ChatGPT API to

construct numerical summarization training data,
we generated 920,000 data points to help improve
the model’s numerical summarization capabilities.
However, this large-scale data construction may be
costly and time-consuming, which could limit its
feasibility for certain applications.

7 Ethical Considerations

The datasets used in this work, including ToTTo,
HiTab, Wikipedia, and OTTQA, are publicly avail-
able and comply with relevant usage licenses and
privacy regulations. During data construction and
model training, we place strong emphasis on en-
suring the diversity and representativeness of the
data. This helps minimize the potential biases that
could lead to discriminatory or unfair content in
the generated text. Although our system is capa-
ble of automatically generating text descriptions
from tabular data, human review remains essential
to ensure the accuracy and reliability of the output.
Given the potential misuse of automated table-to-
text generation, ensuring its legal and ethical use is
essential as the technology evolves.
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A Linguistic Tags for Word-to-Sentence Reconstruction

Tag Description Probability
ADJ Adjective 0.20
ADP Adposition 0.15
ADV Adverb 0.20
AUX Auxiliary verb 0.15
CCONJ Coordinating conjunction 0.15
DET Determiner 0.15
INTJ Interjection 0.15
NOUN Noun 1.00
NUM Numeral 1.00
PART Particle 0.15
PRON Pronoun 0.50
PROPN Proper noun 1.00
PUNCT Punctuation 0.15
SCONJ Subordinating conjunction 0.25
SYM Symbol 1.00
VERB Verb 0.25
X Other 1.00

Table 6: Linguistic tags for word-to-sentence reconstruction and their retention probability distribution.

B Structural Embeddings for Table Input

Input
Embeddings Q1 Q2 SEP C1 C2 C3 C4 C5 SEP T1 T2

Token
Embeddings EQ1

EQ2 ESEP EC1
EC2

EC3
EC4

EC5 ESEP ET1
ET2

+ + + + + + + + + + +
Position
Embeddings E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

+ + + + + + + + + + +
Segment
Embeddings EQ EQ ES EC EC EC EC EC ES ET ET

+ + + + + + + + + + +
Row
Embeddings ER0

ER0
ER0

ER1
ER2

ER3
ER4

ER5
ER0

ER0
ER0

+ + + + + + + + + + +
Column
Embeddings EC0

EC0
EC0

EC1
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EC0
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+ + + + + + + + + + +
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Figure 3: Embedding representations of model input tokens, with structural features (row, column, span) added.
The orange tokens correspond to structure-related queries, blue tokens represent highlighted table cells and their
associated headers, and purple tokens denote the table context.
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C Categories and Templates of Structure-Related Questions

Category Question Type Question Template

Category 1 Row and Column Relationships
Which cells are in the same row as Cij in the table?
Which cells are in the same column as Cij in the table?

Category 2 Header Relationships

Which cells serve as the headers for Cij in the table?
Which cells serve as the row headers for Cij in the table?
Which cells serve as the column headers for Cij in the table?
What are the non-header cells located in the same row as Cij?
What are the non-header cells located in the same column as Cij?

Category 3 Spatial Positioning

What are the cells located to the left of cell Cij?
What are the cells located to the right of cell Cij?
What are the cells located above cell Cij?
What are the cells located below cell Cij?

Category 4 Proximity Relationships

What are the cells that are immediately adjacent to cell Cij?
What is the neighboring cell located to the left of cell Cij?
What is the neighboring cell located to the right of cell Cij?
What is the neighboring cell located above cell Cij?
What is the neighboring cell located below cell Cij?

Category 5 Relative Positioning

Between cell Cij and cell Cmn, which one comes earlier in the row?
Between cell Cij and cell Cmn, which one comes later in the row?
Between cell Cij and cell Cmn, which one comes earlier in the column?
Between cell Cij and cell Cmn, which one comes later in the column?

Table 7: The questions in the table are designed to inquire about structural information of tables. In practical use,
we employ multiple paraphrased versions of each question template to enhance the model’s understanding of table
structures. Here, Cij and Cmn represent the text content randomly selected from highlighted cells in the table.
These cells are either from the same row or the same column.
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D Numerical Summarization Prompt for Table Data

Name Completed Architect Location Year of listing
1 Booth Street circa 1850s Unknown Booth Street 1974

8 Lower Park Road circa 1875 Alfred Waterhouse Lower Park Road, Rusholme 1974
15-17 King Street circa 1920-30 Maxwell and Tuke King Street 1994

29 Swan Street circa 1865s Unknown Swan Street, Ancoats 1989
42-44 Sackville Street circa 1873 Pennington and Brigden Sackville Street 1974

50 Newton Street circa 1900 Clegg and Knowles Newton Street, Piccadilly 1988

I will provide a detailed description of a table. Based on the given information, generate a concise and insightful
summary that synthesizes and reasons with numerical data. Strictly limit your response to 80 words or fewer—any
response exceeding this limit will be rejected. Focus on identifying numerical insights such as ranges, extremes,
totals, averages, and trends or relationships. Use brief, precise language to maximize informativeness. Here is an
example:

Input:
1 Booth Street, completed in the 1850s, is located on Booth Street and was listed in 1974. The architect is unknown.
8 Lower Park Road, completed circa 1875, is located in Rusholme, designed by Alfred Waterhouse, and listed in
1974. 15-17 King Street, completed between 1920 and 1930, was designed byMaxwell and Tuke and listed in 1994.
29 Swan Street, completed in the 1860s, is located on Swan Street, Ancoats, and was listed in 1989. The architect
is unknown. 42-44 Sackville Street, completed in 1873, was designed by Pennington and Brigden, located on
Sackville Street, and listed in 1974. 50 Newton Street, completed circa 1900, was designed by Clegg and Knowles,
located on Newton Street, Piccadilly, and listed in 1988.

Output:
Between the 1850s and 1930s, six buildings were completed across Manchester, with architects identified for four.
Maxwell and Tuke’s design for 15-17 King Street was listed in 1994, while Alfred Waterhouse’s work and Pen-
nington and Brigden’s building were both listed in 1974. The earliest building, 1 Booth Street, remains standing
but its architect is unknown.

Numerical Summary Prompt

Figure 4: A prompt designed to generate concise and insightful numerical summaries from table data. The input
consists of alternating orange and blue text. The first orange text describes the first key-value pair sequence. The
second blue text describes the second key-value pair sequence, and so on.
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E Structure and Numerical Analysis

Table Title: Nisha Kalema
Section Title: Awards & Nominations
Table Description: None

Year Nominated work Association Category Result
2015 The Tailor

Uganda Film Festival Awards
Best Actress

Won
2016 Freedom Won

2018
Veronica’s Wish

Won
Best Script (Screen Play) Won

Best Feature Film Won
2019 Mashariki African Film Festival Best East African Feature Film Nominated

Gold Answer: Nisha Kalema received her third Best Actress Award for the film Veronica’s Wish at the 2018 Uganda
Film Festival Awards.
T5-based: Nisha Kalema won the Best Actress award at the 2018 Uganda Film Festival Awards for Association and
Veronica’s Wish.
UniD2T: Nisha Kalema got Best Actress at the 2018 Uganda Film Festival Awards for Veronica’s Wish.
LATTICE: Nisha Kalema won the Best Actress award at the Uganda Film Festival Awards for her role in Veronica’s
Wish (2018).
QuASAR: Nisha Kalema won the Best Actress award at the 2018 Uganda Film Festival Awards for Veronica’s Wish,
making it the third time she won Best Actress.

1Figure 5: An example from the ToTTo dev set illustrating table-to-text generation. The input for each model consists
of the highlighted cells and their corresponding headers, along with the table’s contextual information. In the
generated descriptions, blue word represents key information, while red word indicates incorrect information.

26812


