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Abstract

Any-to-any generative models aim to enable
seamless interpretation and generation across
multiple modalities within a unified framework,
yet their ability to preserve relationships across
modalities remains uncertain. Do unified mod-
els truly achieve cross-modal coherence, or is
this coherence merely perceived? To explore
this, we introduce ACON, a dataset of 1,000
images (500 newly contributed) paired with
captions, editing instructions, and Q&A pairs to
evaluate cross-modal transfers rigorously. Us-
ing three consistency criteria—cyclic consis-
tency, forward equivariance, and conjugated
equivariance—our experiments reveal that any-
to-any models do not consistently demonstrate
greater cross-modal consistency than special-
ized models in pointwise evaluations such as
cyclic consistency. However, equivariance eval-
uations uncover weak but observable consis-
tency through structured analyses of the inter-
mediate latent space enabled by multiple edit-
ing operations. We release our code and data at
https://github.com/JiwanChung/ACON.

1 Introduction

Any-to-any generative models are designed to both
interpret and generate multiple modalities—such
as text, images, and audio—within a unified frame-
work (Wang et al., 2022; Lu et al., 2024; Wang
et al., 2024). In contrast to modality-specific ap-
proaches which often rely on textual interfaces to
mediate generation (OpenAI, 2023; Lu, 2024), any-
to-any models share the majority of parameters
across different modalities. This design choice sug-
gests potential advantages in flexibility and trans-
ferability between modalities.

However, the practical value of any-to-any mod-
els remains uncertain. At their current stage of
development, they often fail to consistently outper-
form specialized models (Podell et al., 2024; Labs,
2024; Liu et al., 2024) in terms of output quality.
Also, they may be less training-efficient due to the

Figure 1: We examine the consistency of any-to-any
models compared to separate image-to-text and text-to-
image models. An effective any-to-any model, capable
of learning a unified latent space z, is expected to miti-
gate issues like cyclic consistency failures, as depicted
by the red lines. The illustration is a conceptual case
drawn with images from MMVP (Tong et al., 2024).

significant computational overhead of optimizing a
single, large-scale system. As a result, it remains
unclear whether such models confer tangible bene-
fits over their modality-specific counterparts.

What, then, should we anticipate from any-to-
any models? Prior work (Huang et al., 2021;
Lu, 2023) has proposed viewing multimodal learn-
ing as an attempt to approximate a shared latent
representation from each modality’s partial view.
Building on this perspective, we posit that if a sin-
gle any-to-any model successfully learns such a
unified latent space, it should produce more co-
herent cross-modal conversions than two separate
modality-specific models, each constrained by its
own distinct latent approximation.

To verify this conjecture, we test whether any-
to-any models achieve greater consistency in cross-
modal transfer than pairs of modality-specific mod-
els. We formalize this consistency using three cri-
teria: cyclic consistency, requiring that converting
an input from text to image and back again re-
covers the original input; forward equivariance,
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Figure 2: We evaluate whether any-to-any modality conversion models demonstrate greater consistency compared
to unrelated pairs of independent image-to-text and text-to-image generators. (Left) To this end, we curate a dataset
with detailed annotations, including captions, Q&As, and editing prompts. (Centre) Consistency is measured using
three criteria: cyclic consistency, forward equivariance, and conjugated equivariance, where the latter two require
off-the-shelf image or text editing tools for in-modality transformations. (Right) The evaluation involves comparing
the similarity between two generated outputs (images or textual descriptions) using an external VQA solver to
compute correlation (⇢) and accuracy (%).

ensuring that applying a modification before or af-
ter cross-modal conversion yields the same result;
and conjugated equivariance, providing an alterna-
tive formulation of equivariance that utilizes both
text-to-image and image-to-text conversions.

We introduce ACON (Any-to-any CONsis-
tency), a meticulously annotated dataset to assess
coherence in cross-modal transformations. It com-
prises 1,000 images, including 500 private images
specifically contributed for this study. Each image
is paired with a human-written dense caption aimed
at faithful reconstruction, three image-editing in-
structions, and ten binary question-answer pairs
for evaluating output similarity. In addition, every
editing instruction is accompanied by two prompt-
conditioned Q&As to capture the effects of the
transformation.

Experiments on ACON reveal that any-to-any
models do not consistently exhibit greater cross-
modal consistency compared to arbitrary com-
binations of specialized models, particularly in
pointwise evaluations such as cyclic consistency.
However, equivariance evaluations demonstrate
that weak consistency between text-to-image and
image-to-text capabilities can be observed in distri-
butional analyses of the intermediate latent space,
enabled by multiple editing operations.

We anticipate that ACON will serve as a diag-
nostic benchmark to evaluate the benefits and trade-
offs of training any-to-any models within a unified
framework: any-to-any models do not show great
consistency at the current stage. We will release

our code and data to support further research and
development in this field.

2 Defining Consistency Across Modalities

We formalize the concept of multimodal consis-
tency for numerical experiments by adopting three
widely recognized types of consistency: cyclic con-
sistency, equivariance to transformation, and com-
mutativity of operations.

Notations Let � denote the parameters of a text-
to-image generation model, and  denote the pa-
rameters of an image-to-text model. We define two
types of operations:

1. Across-Modality Conversion (f(x)): Trans-
formations between modalities, such as generating
an image from text (f t!i) or generating text from
an image (f i!t).

2. In-Modality Modification (g(x, p)): Edits or
modifications within the same modality, such as
image editing (gi) with a given prompt p. To imple-
ment g, we use off-the-shelf LLMs (gt) and image
editing models (gi) because existing any-to-any
models are not optimized for editing, and our focus
is on evaluating cross-modality consistency rather
than in-modality performance.

Furthermore, a data sample x consists of two
views: an image view (xi) and a text view (xt). If
a single model is used for both modality directions,
it follows that � =  .

Cyclic Consistency is a commonly used concept
in machine learning, particularly in unpaired trans-
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lation tasks (Zhu et al., 2017; Bielawski and Van-
Rullen, 2023). It ensures that applying transforma-
tions between two domains consecutively returns
the input to its original state. For example, in un-
paired image-to-image translation, translating an
image from domain A to domain B and back to
domain A should reconstruct the original image.

In our setup, cyclic consistency ensures that
transformations between text and image modali-
ties are invertible. Specifically:

f i!t
 (f t!i

� (xt)) = xt (1)

f t!i
� (f i!t

 (xi)) = xi (2)

Forward Equivariance is a property that en-
sures the consistency of transformations under
secondary operations (Cohen and Welling, 2016).
Specifically, applying a modification to the input
followed by a transformation should yield the same
result as applying the transformation first, followed
by the corresponding modification.

In this work, we adapt the traditional definition
by treating modification in both modalities equiv-
alently (gi ' gt). In our context, this principle
ensures compatibility between in-modality modifi-
cations and across-modality conversions:

f t!i
� (gt(xt, p)) = gi(f t!i

� (xt), p), (3)

f i!t
 (gi(xi, p)) = gt(f i!t

 (xi), p). (4)

Note that forward equivariance compares transfor-
mations within the same direction, such as f t!i

�

applied before or after a modification. We thus
incorporate another form of equivariance relation
which uses both directions at a time to evaluate
consistency between modality conversions in the
following paragraph.

Conjugated Equivariance extends the idea of
forward equivariance by incorporating transforma-
tions in both directions to evaluate consistency
across modality conversions. Specifically, we mod-
ify forward equivariance by inverting f in the left
terms, which yields:

f i!t
 (gi(f t!i

� (xt), p)) = gt(xt, p) (5)

f t!i
� (gt(f i!t

 (xi), p)) = gi(xi, p) (6)

Conjugated equivariance can also be seen as an
extension of cyclic consistency, where the interme-
diate latent space is explicitly modified before com-
pleting the transformation cycle. By incorporating
multiple modifications, this approach extends point-
wise evaluations to analyze structural multi-point
consistency within the shared latent space.

Figure 3: Data annotation process for ACON. Three
human workers perform distinct roles: the teller cre-
ates a textual description emphasizing key elements for
reconstruction, following a communication game frame-
work (Kim et al., 2019), the drawer recreates the image
using the description via multi-turn AI interactions, and
the comparer generates Q&As to capture similarities
and differences between the original and reconstructed
images, annotating editing instructions as well.

3 Data Collection Process

To support the operations outlined in section 2, we
curated a dataset comprising 1,000 image inputs
(i), corresponding text captions (t), 3,000 editing
prompts (p), and 16,000 question-answer pairs de-
signed to evaluate similarity between images or
captions. Further details on the data collection
methodology, including human resourcing, can be
found in appendix B.

Images The input images i are curated from both
unseen and seen sources to ensure diversity and
relevance. For the unseen subset, we collect 500
images that have not been exposed to any avail-
able MLLMs during training. Volunteers from
the research community contributed private photos,
which were manually filtered based on the follow-
ing criteria: 1) exclusion of images with potential
privacy violations or toxic content; 2) removal of
images requiring domain-specific skills, such as
named entity recognition or OCR capabilities; 3)
elimination of low-quality images, such as those
with motion blur, small resolution, or skewed as-
pect ratios; and 4) exclusion of overly simplistic
content with very few objects. This filtering pro-
cess resulted in the removal of approximately 76%
of the original submissions. For the seen subset,
we randomly sampled 500 images from the widely
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used COCO Captions dataset (Chen et al., 2015),
which provides a benchmark set of images com-
monly utilized in multimodal learning.

Captions The goal of our captioning process is to
create captions that accurately guide the reconstruc-
tion of the original image. We manually annotate
dense captions t for input images i, employing the
communication game framework (Kim et al., 2019)
to ensure alignment between modalities. Annota-
tors are assigned three roles: the teller, the drawer,
and the judge.

The teller crafts a caption t that encodes the es-
sential visual details of the image i, acting as the
sender in the communication game. The drawer
interprets the caption and reconstructs the image
using tool-assisted generation (DALL·E-3 (Betker
et al., 2023) and Imagen 2 (Google DeepMind,
2023)), functioning as the receiver. The recon-
structed image î is compared to the original image
i to evaluate the success of the communication. To
maintain objectivity, the teller does not have ac-
cess to the reconstructed image during annotation,
ensuring that captions are crafted independently
of the reconstruction process. Finally, the judge
evaluates the quality of the reconstructed image
and provides feedback (good/bad). If necessary,
re-captioning is requested from a different teller.

Questions & Answers A reliable metric is es-
sential to assess factual similarity between images.
Retrieval-based metrics, such as CLIPScore (Hes-
sel et al., 2021), are insufficient for evaluating
factual correctness, particularly in compositional-
ity (Ma et al., 2023) or counting tasks (Radford
et al., 2021). Recent studies (Hu et al., 2023; Cho
et al., 2024) propose an alternative approach: gen-
erating questions that capture salient facts about
the images. One such metric, VQAScore (Lin et al.,
2024), automatically generates questions using a
pretrained VQA question generator and then scores
consistency by comparing model answers on ref-
erence and generated images. While VQAScore
improves over retrieval-based methods by ground-
ing evaluation in factual content, its reliability is
limited by the quality and scope of automatically
generated questions, which tend to be shallow and
generic, failing to stress fine-grained or composi-
tional differences.

By contrast, our approach introduces a human-in-
the-loop comparer, who carefully constructs chal-
lenging questions that highlight both similarities
and differences between the reference and recon-

structed images. These questions are specifically
designed to distinguish subtle failures in object
placement, count, or relational semantics that au-
tomatic systems often overlook. For each image
pair, five similarity- and five difference-oriented
questions are created, ensuring coverage of both
aligned and misaligned aspects. This deliberate
design leads to more sensitive and discriminative
factual evaluations than automatic pipelines such
as VQAScore.

Editing Operations To evaluate equivariance
and commutativity properties, we define modifi-
cation operations for each modality (gi for images
and gt for text). These operations are conditioned
on a prompt p, specifying the nature and direction
of the modification. The comparer annotates three
prompts per image, ensuring alignment with the
intended changes, and additionally generates two
prompt-conditioned question-answer pairs per edit-
ing prompt to reflect the specific modifications.

Manual Filtering To address quality variance
inherent in collaborative annotation, we conducted
a rigorous manual filtering process aimed at nor-
malizing differences across annotators. Observed
inconsistencies included variation in the verbosity
of image descriptions, factual correctness, and for-
matting conventions in Q&As (e.g., inconsistent
use of parentheses to denote objects or attributes).
To ensure consistency, we established strict filtering
criteria: (1) questions must be answerable based
solely on the provided description, (2) answers
must be factually correct, (3) the question set must
be diverse and cover different object types or vi-
sual properties, and (4) descriptions must contain
sufficient detail. Any factual inconsistencies led to
automatic rejection.

Before initiating the filtering process, all review-
ers (distinct from the original annotators) partic-
ipated in a calibration phase to align evaluation
standards. Each reviewer shared and critiqued 10
annotated examples with others, enabling discus-
sion on interpretation and enforcement of the fil-
tering criteria. After normalization, each sample
was independently reviewed by two human judges.
Approximately 43% of the initial samples were dis-
carded and replaced with new annotations that met
all quality standards.
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4 Experiments

4.1 Setups
This section outlines the models tested and the util-
ities employed in our experiments. Full details, in-
cluding model checkpoints and instruction prompts,
are available in appendix A and appendix D.

Models For text-to-image generation, we use the
open-source models including Flux (Labs, 2024)
and Stable Diffusion XL (Podell et al., 2024).
These models were selected for their balance be-
tween performance and resource efficiency, allow-
ing the evaluation to focus on consistency rather
than absolute image fidelity. For image-to-text
generation, we include LLaVA-Next (Liu et al.,
2024) (abbreviated as LLaVA) and Qwen2VL (Bai
et al., 2023). These models are chosen for their
widespread use, robust performance across tasks,
and practical trade-offs in computational require-
ments. To assess the central claim that any-to-any
models improve cross-modal coherence, we evalu-
ate four open-source systems: Chameleon (Team,
2024), Emu-3 (Wang et al., 2024), VILA-U (Wu
et al., 2024), and Seed-X (Ge et al., 2024b). For
model descriptions, refer to section 5.

Utilities In-Modality Editors: For editing within
a single modality, we use Cos Stable Diffusion XL
1.0 Edit (CosXL) (Podell et al., 2024) for image
editing and Qwen2.5 (Yang et al., 2024) for text
editing. Evaluators: For visual question-answering
tasks, we employ PaliGemma2 (Steiner et al., 2024)
for its strong performance in static VQA scenarios.
We use Qwen2.5 for textual Q&As.

4.2 Cyclic Consistency
Cyclic consistency refers to the model’s capabil-
ity to accurately reconstruct input data by leverag-
ing its latent representations, ensuring the preser-
vation of original content through a bidirectional
transformation process. For image reconstruction,
the process involves an image-to-text transforma-
tion followed by a text-to-image transformation

(x
f i!t

���! z
f t!i

���! x̄). For text reconstruction, the

order is reversed (x
f t!i

���! z
f i!t

���! x̄). The recon-
structed data x̄ is compared to the original input x
for evaluation.

Metrics We employ off-the-shelf visual or tex-
tual question-answering tools to compare the re-
constructed data x̄ with the original input x 2 X .
Given the model output x̄, the context c 2 C, and

a question q 2 Q, evaluation is conducted using a
parameterized binary classifier h✓ : X ⇥ C ⇥Q !
{0, 1}. The primary accuracy metric is defined as:

sim(x, x̄) :=
X

q

�
�
h✓(x̄, c, q), ho(x, c, q)

�
, (7)

where � is the Dirac delta function, and ho repre-
sents the oracle classifier that provides the ground-
truth labels. Note that we average over ten different
questions per model-generated output. In addition
to accuracy, we report the F1-score, which incorpo-
rates precision and recall, to assess the similarity
between the binary outputs.

Results The cyclic consistency evaluation results
are presented in table 1. Notably, a single any-
to-any model does not consistently outperform
the combination of separate specialized models in
cyclic consistency, raising questions about the pre-
sumed advantages of training a single any-to-any
model.

Notable exceptions include Seed-X and VILA-
U, which demonstrate notable consistency when
utilizing a single any-to-any model. In contrast,
other any-to-any models such as Chameleon and
Emu3 fail to exhibit consistent patterns. This dis-
parity aligns with the visual tokenization strate-
gies employed by these models: both Seed-X and
VILA-U adopt semantically-aligned visual tokeniz-
ers, either by leveraging features from a pre-trained
ViT or by optimizing alignment with textual rep-
resentations. On the other hand, Chameleon and
Emu3 rely solely on image reconstruction objec-
tives. This finding indicates that incorporating se-
mantic modeling into visual tokenization may con-
tribute to improved alignment of the latent space
during modality conversions.

Still, the results show that this evaluation
conflates per-modality transfer performance with
cyclic consistency. For instance, VILA-U, when
used as the secondary text-to-image operator,
achieves high performance regardless of the ini-
tial operation it is paired with. A similar trend is
observed in text generation, where models such as
LLaVA and Qwen2VL tend to outperform others.
In conclusion, evaluating any-to-any consistency
requires multiple complementary criteria, which
we address in the following experiments.

4.3 Forward Equivariance
Forward Equivariance assesses the impact of ap-
plying an in-modality editing operation (g) either
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Image ! Text ! Image Text ! Image ! Text
I2T T2I Accuracy (%) F1 (%) T2I I2T Accuracy (%) F1 (%)

LLaVA

Flux 61.78 72.29

Flux

LLaVA 63.73 70.28
SDXL 57.21 67.91 Qwen2VL 66.93 73.61
Chameleon 56.13 66.77 Chameleon 56.42 61.95
Emu3 60.91 71.65 Emu3 63.48 70.03
Seed-X 62.57 73.37 Seed-X 63.52 70.22
VILA-U 61.40 71.99 VILA-U 62.36 68.59

Qwen2VL

Flux 62.86 73.20

SDXL

LLaVA 59.20 65.10
SDXL 57.83 68.53 Qwen2VL 58.04 63.98
Chameleon 57.04 67.65 Chameleon 57.17 62.63
Emu3 61.50 73.28 Emu3 57.58 63.07
Seed-X 62.65 73.33 Seed-X 57.29 62.67
VILA-U 63.36 73.92 VILA-U 59.70 65.43

Chameleon

Flux 55.38 65.75

Chameleon

LLaVA 55.63 60.82
SDXL 54.47 64.85 Qwen2VL 54.38 59.06
Chameleon 53.93 64.33 Chameleon 55.76 60.59
Emu3 55.81 66.23 Emu3 53.97 58.66
Seed-X 57.04 68.05 Seed-X 54.59 59.32
VILA-U 59.04 69.79 VILA-U 55.46 60.24

Emu3

Flux 58.00 68.63

Emu3

LLaVA 62.61 68.75
SDXL 54.01 64.28 Qwen2VL 61.40 67.75
Chameleon 53.72 63.85 Chameleon 57.46 63.06
Emu3 58.62 69.20 Emu3 60.03 66.17
Seed-X 59.04 69.79 Seed-X 61.15 67.23
VILA-U 59.29 69.98 VILA-U 59.20 64.93

Seed-X

Flux 60.91 71.39

Seed-X

LLaVA 59.95 65.79
SDXL 57.46 67.94 Qwen2VL 60.95 67.32
Chameleon 56.13 66.54 Chameleon 56.42 61.76
Emu3 60.53 71.28 Emu3 57.46 63.09
Seed-X 61.78 72.53 Seed-X 61.45 67.61
VILA-U 61.07 71.65 VILA-U 59.41 65.12

VILA-U

Flux 60.41 70.97

VILA-U

LLaVA 55.84 60.99
SDXL 58.37 69.00 Qwen2VL 57.87 63.47
Chameleon 55.13 65.52 Chameleon 56.25 61.53
Emu3 60.82 71.66 Emu3 55.46 60.50
Seed-X 60.70 71.64 Seed-X 56.50 61.94
VILA-U 62.15 72.88 VILA-U 58.12 63.69

Table 1: Cyclic consistency evaluation results. The best scores for the same initial operation are highlighted in bold,
while the second-best scores are underlined. Results obtained using a single any-to-any model, instead of distinct
model pairs, are presented in color.

before or after the modality transfer (f ). Unlike
other consistency criteria, this approach focuses on
comparing outputs from the same modality transfer
direction (f i!t vs. f i!t and f t!i vs. f t!i).

Metrics This evaluation involves three key com-
parisons: the two model outputs (f(g(x)) and
g(f(x))) and the ground-truth modified datapoint
x0. The primary metric is the Pearson correlation
between f(g(x)) and g(f(x)), emphasizing con-
sistency over absolute performance. Additional
metrics, sim(f(g(x)), x0) and sim(g(f(x)), x0),
are detailed in the appendix.

Similarity between datapoints is measured using
question-answering methods, as in the cyclic con-
sistency evaluation. However, each question and

answer here is conditioned on an editing prompt
p 2 P . For each sample, we compute averages
over two prompt-conditioned questions per editing
prompt, using three editing prompts per image or
text.

Results We illustrate correlation statistics
in fig. 4, while the complete results are presented
in appendix C. The findings reaffirm earlier
observations: the consistency of any-to-any
models relative to independent specialist pairs
is not consistently superior. However, notable
exceptions include Seed-X and VILA-U, which
exhibit improved textual consistency, consistent
with trends observed in previous experiments.
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Figure 4: Correlation of forward equivariance across
model pairs, normalized to [0, 1] per row. Diagonal
components with red borders indicate the same any-to-
any generator used for both image-to-text and text-to-
image transfers.

4.4 Conjugated Equivariance
Conjugated Equivariance extends cyclic consis-
tency by applying an in-modality operation g be-
tween modality transfers. Taking image reconstruc-
tion as an example, the goal is to reconstruct the
image with the modification in the latent textual

description represented correctly (x
f i!t

���! z
gt

�!
z0

f t!i

���! x̄0). This approach shifts the focus from
evaluating single-point reconstructions to assessing
the alignment of transformation directions (vec-
tors) across modalities. The process is applied
analogously for textual reconstruction.

Metrics This evaluation compares two terms:
the model output x̄0 and the ground-truth label
x0. Thus, we report accuracy and F1 score as in

Figure 5: Accuracy of conjugated equivariance across
model pairs, normalized to [0, 1] per row. Diagonal
components with red borders indicate the same any-to-
any generator used for both image-to-text and text-to-
image transfers.

the cyclic consistency experiment. The only dif-
ference is that the questions are also conditioned
on the editing prompts. Thus, we average results
over two questions per editing prompt, testing three
editing prompts per sample. We do not generate
the in-modality output (g(x, p)). Instead, we use
ground-truth answers to the question to replace the
evaluation results (ho(g(x, p), c, p)).

Results Empirical results, visualized in fig. 5 and
detailed further in appendix C, reveal consistent
self-alignment for most any-to-any models. All
any-to-any models, except for Chameleon in image
generation, achieve stable self-consistency when
paired with themselves. However, these models
do not consistently outperform when paired with
themselves compared to being paired with other
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models. This suggests that while any-to-any mod-
els demonstrate stable self-alignment, they are not
always the optimal choice for their own outputs in
cross-modal operations.

This raises the question: why is any-to-any con-
sistency, barely noticeable in cyclic consistency,
more evident in the conjugated equivariance exper-
iment? A plausible explanation is that conjugated
equivariance evaluates consistency by analyzing
transformations across a distribution of edited la-
tent representations, rather than focusing on a sin-
gle transformation. By leveraging multiple editing
operations, this approach captures broader patterns
of alignment in the latent space, enabling a more
nuanced assessment of consistency between text-
to-image and image-to-text capabilities. This find-
ing aligns with the shared latent learning hypothe-
sis (Huang et al., 2021; Lu, 2023), which posits that
models trained on multiple tasks or modalities form
a unified latent space for shared representations.

4.5 Qualitative Results
Figure 6 presents sample inference results used to
evaluate cyclic consistency and conjugated equiv-
ariance. A key observation is the stylistic dis-
parity between natural (ground truth) and model-
generated images, underscoring the limitations of
cyclic consistency as a reliability metric. This sup-
ports the use of equivariance, which directly com-
pares outputs across models and avoids distortions
arising from differences between natural and syn-
thetic images. Furthermore, Chameleon’s poor im-
age fidelity often aligns with object composition er-
rors (e.g., incorrect counts or misplaced elements),
highlighting that any-to-any models do not consis-
tently translate their stronger linguistic capabilities
into accurate compositional image generation.

4.6 Discussion
Diversity This work does not explicitly address
the diversity of generated images or text, as we
employ deterministic sampling throughout. While
distributional analysis would be ideal for evaluat-
ing coverage of semantic space, its effectiveness
is constrained by the limited generative diversity
of current image synthesis models. As noted in
prior work (Hsieh et al., 2024), models such as Sta-
ble Diffusion XL (Podell et al., 2024) often fail to
produce semantically distinct outputs even when
conditioned on different random seeds, limiting the
effectiveness of stochastic sampling for diversity
evaluation.

5 Related Work

Any-to-Any Models Any-to-any generative mod-
els aim to unify multimodal understanding and gen-
eration across diverse tasks and modalities. Here,
we focus on image and text modalities to align
with the scope of this paper. Recent approaches
can be categorized into deterministic and distri-
butional modeling of image data. Deterministic
approaches, such as Kosmos-G (Pan et al., 2024)
and Emu2 (Sun et al., 2024a), directly regress
CLIP (Radford et al., 2021) features, which are
then fed into an (optionally fine-tuned) Stable Dif-
fusion (Rombach et al., 2022) generator. Distri-
butional approaches, by contrast, often compress
images into discrete token sequences using vector
quantization (van den Oord et al., 2017), enabling
categorical latent space modeling. Examples in-
clude OFA (Wang et al., 2022), Unified-IO 2 (Lu
et al., 2024), Chameleon (Team, 2024), LaVIT (Jin
et al., 2023), and Emu3 (Wang et al., 2024). To en-
hance information sharing between text-to-image
and image-to-text tasks, recent models such as
SEED-LLaMA (Ge et al., 2024a), SEED-X (Ge
et al., 2024b), and VILA-U (Wu et al., 2024) in-
corporate semantic alignment into their tokeniza-
tion strategies. Additionally, diffusion-based ap-
proaches, exemplified by Transfusion (Zhou et al.,
2024), are emerging as alternatives to categorical
tokenization, leveraging continuous distributions
for greater flexibility.

Multimodal Consistency Multimodal consis-
tency ensures coherence across modalities. MM-
R3 (Chou et al., 2024) and MMCBench (Zhang
et al., 2024a) evaluate robustness to semantic shifts
and corrupted inputs. Advances in text-to-image
consistency include PDF-GAN (Tan et al., 2022),
which employs Semantic Similarity Distance, and a
diffusion framework (Sun et al., 2024b) leveraging
knowledge graphs. MC-MKE (Zhang et al., 2024b)
addresses modality errors, while ConsiStory (Tewel
et al., 2024) improves layout consistency without
additional training. CycleGAN (Bielawski and
VanRullen, 2023) and CyclePrompt (Diesendruck
et al., 2024) enhance captioning and code genera-
tion with cycle-supervised methods. Semantic con-
sistency metrics (Bent, 2024) and cycle-consistency
losses (Zhu et al., 2017) further refine reliability.
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Figure 6: Example inference results using VILA-U (Wu et al., 2024) as an example image-to-text captioner. (Top
row) Text-to-image transfer results are shown using the human-annotated caption as input for reference. (Middle
row) Cyclic consistency in the image domain is evaluated by captioning the original image with the captioner, then
reconstructing it using different image generators. (Bottom row) Conjugated Equivariance is assessed by applying
an editing operation g in the latent domain before reconstructing the image.

6 Conclusion

We introduce ACON, a hand-annotated bench-
mark designed to evaluate the any-to-any consis-
tency of multimodal AI models. Our analysis re-
veals that existing any-to-any models exhibit weak
consistency between text-to-image and image-to-
text tasks, which becomes apparent only through
distributional inspections of the intermediate latent
space, facilitated by multiple editing operations.

7 Limitations & Future Directions

Limitations Our experiments are conducted us-
ing any-to-any models in their as-is state. Since
model behavior results from the interplay of data,
architecture, and training processes, this monolithic
evaluation does not allow us to isolate the spe-
cific factors contributing to (in)consistency across
modalities. We encourage the research commu-
nity, particularly those with greater computational
resources, to undertake controlled analyses to sys-
tematically examine how each design component
of any-to-any models impacts their consistency.

Our new benchmark, ACON, has certain limita-
tions stemming from its curation process, which
focuses on hand-taken natural images. This em-
phasis impacts the dataset’s image distribution in
several ways. First, our private images exclude

artistic images, 2D drawings, and 3D renderings,
limiting the scope for evaluating any-to-any consis-
tency in these domains. Second, as the dataset re-
lies on pre-taken image contributions, the subjects
are predominantly confined to realistic scenarios
typically captured by people, such as scenic land-
scapes, food, or animals. Although efforts were
made to ensure diversity, these inherent distribu-
tional biases persist in the dataset.

Additionally, ACON was annotated by five NLP
researchers sharing similar cultural backgrounds.
Although a separate group of human evaluators
validated these annotations, we acknowledge the
potential influence of cultural bias on image de-
scriptions. For instance, studies (Nisbett et al.,
2001; Ananthram et al., 2024) suggest that indi-
viduals from Western cultures often emphasize the
central figure in an image, while those from Eastern
cultures are more inclined to consider the broader
scene context.

Future Directions Future directions include:

1. Iterative Composition: This work focuses
on a single cyclic loop of modality transfers.
Exploring iterative composition of transfers
could provide further insights into consistency.
Neural networks approximating data distribu-
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tions are known to collapse output diversity
under repeated application—would consistent
cyclic loops mitigate this effect?

2. Extending Modalities: Expanding beyond
the (image, text) modality pair to others, such
as (speech, text), could uncover whether any-
to-any models demonstrate stronger consis-
tency across different domains.

Risks We introduce a new multimodal data cor-
pus, including newly contributed private images.
Each image has undergone manual inspection to
prevent copyright infringement, portrait rights vio-
lations, and the inclusion of harmful or inappropri-
ate content. However, some risks remain:

• Bias and Representational Gaps: Despite
efforts to ensure diversity, the dataset may
inadvertently overrepresent or underrepresent
certain cultural or demographic backgrounds,
potentially leading to biased model outputs or
unfair generalizations.

• Unintended Personal Data Exposure:
While we obtained explicit consent from
contributors and filtered out any images that
could reveal their identity, advancements in
AI, such as geographic inference models, may
enable the extraction of private information
from images in unintended and non-explicit
ways.

• Erosion of Zero-Shot Integrity: By releasing
new private images, we aim to encourage eval-
uation on truly unseen data. However, pub-
lic availability of the dataset risks its use for
fine-tuning future models, potentially compro-
mising the integrity of results in subsequent
zero-shot evaluations.
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